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In this work, we attempt to answer the question, “What is the minimal viable renormalizable SUð5Þ
grand unified theory with representations no higher than adjoints?” We find that an SUð5Þ model with a
pair of vectorlike fermions 5F þ 5̄F, as well as two copies of 15H Higgs fields, is the minimal candidate that
accommodates for correct charged fermion and neutrino masses and can also address the matter-antimatter
asymmetry of the Universe. Our results show that the presented model is highly predictive and will be fully
tested by a combination of upcoming proton decay experiments, collider searches, and low-energy
experiments in search of flavor violations. Moreover, we also entertain the possibility of adding a pair of
vectorlike fermions 10F þ 10F or 15F þ 15F (instead of a 5F þ 5̄F). Our study reveals that the entire
parameter space of these two models, even with minimal particle content, cannot be fully probed due to a
possible longer proton lifetime beyond the reach of Hyper-Kamiokande.
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I. INTRODUCTION

The minimal simple group containing the entire gauge
group of the Standard Model (SM) is SUð5Þ, which has
the same rank as the SM group. The minimal grand
unified theory (GUT) [1–6] based on SUð5Þ gauge
symmetry, namely, the Georgi-Glashow (GG) model [3],
embeds all SM fermions of a single generation into one
5̄F and one 10F dimensional representation. The scalar
sector of this theory is also exceedingly simple, consist-
ing only of a fundamental 5H and an adjoint 24H Higgs.
Despite its simplicity, the GG model suffers from fatal
flaws, such as (i) it predicts a wrong mass relation
between the down-type quarks and the charged leptons,
(ii) gauge coupling unification does not take place, and
(iii) the neutrinos remain massless.
There are several ways to overcome the drawbacks of the

GG model, e.g., extending the particle content by a 45H [7]
dimensional Higgs representation can cure [8] the first two
problems listed above. However, neutrinos still remain
massless. Straightforward ways to give neutrinos a nonzero
mass are the implementation of a (a) type-I seesaw [9–13],
(b) type-II seesaw [14–17], or (c) type-III seesaw [18]

mechanism. The first of these possibilities requires
the addition of at least two gauge-singlet right-chiral
neutrinos [19], while the second (third) option can
be achieved by introducing a scalar (fermion) in the
15H [20–22] (24F [23,24]) dimensional representation.
An alternative to these tree-level neutrino mass mech-

anisms is to generate it via quantum corrections. The
most economical choice for this possibility utilizing
smaller dimensional representations is to generate neu-
trino mass at the one-loop level by extending the GG
model with a scalar 35H and a vectorlike fermion (VLF)
in the 15F þ 15F [25–27] representation. If a 45H Higgs
is used instead, neutrino masses at one loop can arise
by adding a scalar in the 10H representation [28–30].
A realization of a two-loop neutrino mass model,
however, requires a nonminimal particle content; see,
for example, Ref. [31].
In this work, we aim to answer to the question, “What is

the minimal viable renormalizable SUð5Þ GUT with
representations no higher than adjoints?” In this context,
within a renormalizable framework, the only way to correct
the aforementioned wrong mass relation is to introduce
a pair of VLFs: ① 5F þ 5̄F;② 10F þ 10F, or ③ 15F þ 15F.
For the first case with 5F þ 5̄F, the type-I seesaw mecha-
nism to generate the observed neutrino masses is not viable
since gauge couplings unify at such a low scale that it is
ruled out by proton-decay experiments. Our analysis shows
that a type-II seesaw with a single 15H Higgs is also not
feasible for the same reason. Therefore, we study a scenario
with two copies of the 15H Higgs and find that the proposed
model has high predictive power and will be tested by
the upcoming proton-decay experiments, collider searches,
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and low-energy experiments in search of flavor viola-
tions. It is interesting to note that one also requires
two copies of 15H ’s to correctly produce the matter-
antimatter asymmetry of the Universe. Moreover,
implementing the type-III seesaw requires two copies
of 24F fermions, for which corners of the parameter
space exist where a large gauge coupling unification
scale can be obtained, making this scenario difficult
to probe experimentally. For the latter two cases (i.e., ②
and ③), we find that, even with the implementation of
the type-I seesaw to generate the neutrino masses, high-
scale unification can easily be achieved without requir-
ing new physics states lower than 106 GeV, making
these scenarios difficult to probe experimentally. These
findings are summarized in Table I.
This paper is organized in the following way. In

Sec. II we propose the minimal model with 5F þ 5̄F
VLFs and provide all the model details, including a
phenomenological study of the model. In Sec. III we
explore the possibility of replacing the 5F þ 5̄F VLFs with
either a 10F þ 10F or a 15F þ 15F. Finally, we conclude
in Sec. IV.

II. CASE STUDY: 5F + 5̄F VLFs

As mentioned earlier, our goal is to build a viable
minimal renormalizable model with representations no
higher than adjoints, i.e., R ≤ 24. In this section,
we consider the case with a pair of 5F þ 5̄F VLFs to
resolve [32] (see also [33]) the bad mass relation. Within
this setup, if the type-I seesaw mechanism is employed
for neutrino mass generation, the GUT scale comes out to
be MGUT ≲ 1.0 × 1014 GeV, which is too low and is
incompatible with current proton decay bounds. The
minimal value of the GUT scale compatible with the

current proton decay bound can be estimated as follows.
From the superheavy gauge-boson-mediated proton decay,
the expected lifetime can be written as [34]

τp ∼
16π2M4

X

g4GUTm
5
p
; ð1Þ

where mp and MX are the proton and gauge-boson
masses, respectively, and gGUT stands for the unified gauge
coupling. Then, from the current proton decay bound of
τpðp → eþπ0Þ > 2.4 × 1034 yrs, we obtain MX ∼MGUT ≳
6 × 1015 GeV, where we have used gGUT ¼ 0.6.
For the type-II seesaw with one copy of 15H, we find

the maximum possible GUT scale to be MGUT ≲
6.7 × 1014 GeV. This maximum value is also not compat-
ible with the present experimental limits on proton decay.
This is why, in the following, we study the scenario with
two copies of 15H Higgs fields, where the maximum
unification scale we obtain is MGUT ≲ 6.3 × 1015 GeV
(at two-loop order), making this scenario highly predictive,
as will be discussed in more detail later in the text. Before
presenting the details of this model, we point out that our
study shows that if, on the other hand, the type-III seesaw
mechanism is used, which in the absence of 45H Higgs
requires at least two copies of fermionic 24F, by assuming
(nearly) mass-degenerate weak triplets (which is required
for resonant leptogenesis) a GUT scale of order MGUT ≲
2 × 1015 GeV (at two-loop order) can be obtained, which
is a factor of 3 smaller than the expected lower limit
mentioned above. If the assumption of degenerate weak
triplet masses is dropped, the GUT scale can be as high
as MGUT ≲ 9 × 1016 GeV, making the model difficult
to probe.

A. Charged fermion masses

As in the GG model, the GUT symmetry is sponta-
neously broken to the SM group via the vacuum
expectation value (VEV) of the adjoint Higgs. Finally,
the SM is broken at the electroweak (EW) scale when a
Higgs in the fundamental representation acquires its VEV.
These fields, under the SM group, decompose in the
following way:

24H ¼ ϕ8ð8; 1; 0Þ þ ϕ1ð1; 3; 0Þ þ ϕ0ð1; 1; 0Þ
þ ϕ3ð3; 2;−5=6Þ þ ϕ3̄ð3̄; 2; 5=6Þ; ð2Þ

5H ¼ Hð1; 2; 1=2Þ þ Tð3; 1;−1=3Þ: ð3Þ

Moreover, the decomposition of the VLF is shown below,

5F4
¼ dc4ð3; 1;−1=3Þ þ L̄4ð1; 2; 1=2Þ; ð4Þ

5̄F4
¼ dc4ð3̄; 1; 1=3Þ þ L4ð1; 2;−1=2Þ: ð5Þ

TABLE I. Various SUð5Þ GUT scenarios in which the wrong
mass relation between down-type quarks and charged leptons is
corrected by the introduction of a single pair of VLFs, while
neutrino masses are generated by one of the seesaw mechanisms.
The third column indicates whether leptogenesis can be realized in
a given scenario, whereas the forth column indicates the maximal
proton lifetime for each scenario. For the case of 5F þ 5̄F VLFs
with the type-III seesaw, successful implementation of leptogenesis
is not viable due to too rapid proton decay. On the contrary, a large
GUT scale can be obtained in this scenario if leptogenesis
constraints are not imposed. See text for details.

Ye ≠ Yd Mν ≠ 0 Leptogenesis
Proton lifetime

(years)

5F þ 5̄F 2 × 1F ✓ 1028

2 × 24F ✓/✗ 1033=1039

1 × 15H ✗ 1031

2 × 15H ✓ 1035

10F þ 10F=15F þ 15F 2 × 1F ✓ 1038
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With this set of fields, the complete Yukawa sector of the
theory is [32]

−LY ¼ 10iY
ij
1010j5H þ 5̄aY

aj
5 10j5

�
H þ 5̄aðμa þ ηa24HÞ54;

ð6Þ

where i; j∈ f1; 2; 3g and a; b∈ f1; 2; 3; 4g are the family
indices. Without loss of generality, one can choose a basis
where the upper 3 × 3 block of Y5 is real and diagonal in
the family space, Y5 ¼ diagðy1y2y3Þ. After the EW sym-
metry is broken, the mass terms for the fermions can be
written as

−LY ¼ LTMEEc þDTMDDc þ uTMUuc; ð7Þ

where the corresponding fields are defined in the
following way:

LT ¼ ðl1;l2;l3;l4Þ; EcT ¼ ðec1; ec2; ec3; ec4Þ; ð8Þ

DT ¼ ðd1; d2; d3; d̄c4Þ; DcT ¼ ðdc1; dc2; dc3; dc4Þ: ð9Þ

The 3 × 3 mass matrix for the up-type quarks and 4 × 4
matrices for the down-type quarks and charged leptons are
given by

MU ¼ 4v5ðY10 þ YT
10Þ; ð10Þ

MD ¼
 

v5Y5 0

μi þ 2ηiv24 jμ4 þ 2η4v24j

!
; ð11Þ

ME ¼
�
v5Y5 μi − 3ηiv24
0 jμ4 − 3η4v24j

�
: ð12Þ

As expected, the up-type quark mass matrix is symmetric.
In the above equations we have used the notation h5Hi ¼
v5 and h24Hi¼v24ð2;2;2;−3;−3Þ, with v24 ¼ VGUT=

ffiffiffiffiffi
15

p
.

For later convenience, we further define mi ¼ v5yi, MD
a ¼

μa þ 2ηav24, ME
a ¼ μa − 3ηav24 and ML4

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

a jME
a j2

p
,

Mdc
4
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
a jMD

a j2
p

.

B. Neutrino mass

In our model, neutrino mass is generated by the type-II
seesaw mechanism, for which we introduce scalars in the
15H dimensional representation. As mentioned above, even
though obtaining correct neutrino oscillation data requires
one copy, too rapid proton decay rules out this scenario.
Consequently, we introduce two copies of 15H. In the
following analysis, we keep the index of this field implicit.
A 15H field decomposes in the following way:

15H¼Δ1ð1;3;1ÞþΔ3ð3;2;1=6ÞþΔ6ð6̄;1;−2=3Þ: ð13Þ

The weak triplet Δ1ð1; 3; 1Þ is responsible for generating
neutrino masses via the type-II seesaw mechanism.
Additionally, 15H contains a scalar leptoquark Δ3ð3; 2;
1=6Þ commonly known as R̃2, and a scalar sextet
Δ6ð6̄; 1;−2=3Þ. As we will see, this leptoquark (LQ) plays
a crucial role in achieving unification at a high scale.
The additional terms in the Yukawa sector due to the

presence of 15H are

−LY ⊃ 5̄aF5̄
b
F15HY

ab
15 þ 54F5

4
F15

�
Hy

0; ð14Þ

where y0 is a number and Y15 is a 4 × 4 symmetric matrix.
For the simplicity of the analysis, we assume that both 15H
fields share the same Yukawa coupling, and that submul-
tiplets are degenerate in mass. The latter assumption is
crucial in maximizing the GUT scale. Splitting their masses
would only reduce the maximally allowed unification scale.
The neutrino mass matrix then becomes a 5 × 5 matrix,

which in the ðνLa
; Nc

RÞ basis [where we adopt the notation
that νL4

¼ NL is the neutral component of the extra left-
handed fermion doublet LLð1; 2;−1=2Þ ¼ ðNL; E−

LÞT , and
where NR is the corresponding neutral component in the
right-handed doublet LRð1; 2;−1=2Þ ¼ ðNR; E−

RÞT] takes
the form

MN ¼
�
vΔY15 ME

a

ME
b v�Δy

0

�
5×5

¼ N�Mdiag
N N†: ð15Þ

Here we motivate the existence of two copies of 15H
representations. Although one copy of 15H is enough to
account for the neutrino oscillation data, it is not sufficient
to produce the observed baryon asymmetry of the Universe.
In fact, one needs two such copies [35–37], as suggested by
our proposed model. Unlike the heavy Majorana neutrinos
of standard leptogenesis [38], since the scalar triplet Δ1 is
not a self-conjugate state, one has both a triplet Δ1 and its
antitriplet Δ̄1. Nevertheless, there is no CP asymmetry in
Δ1=Δ̄1 decays at the one-loop level. To have a nonzero CP
asymmetry, one must have another state, e.g., another
triplet,Δ2, with couplings to the lepton and Higgs doublets.
Introducing this second copy of the triplet then yields one-
loop processes that can contribute to sufficiently large CP
asymmetries.
In the standard scenario of type-II seesaw leptogenesis, it

is typically assumed that Δ2 is much heavier than Δ1, and
the CP asymmetries in the decays of the triplets and
antitriplets are generated via their decays to SM leptons
and an SM Higgs boson pair, Δ1 → HH;ll and Δ1 →
HH;ll. Without assuming extra sources of CP violation
unrelated to neutrino masses, it is shown that a correct
baryon asymmetry is obtained for a triplet mass of
mΔ1

≳ 1010 GeV [36,37], which is precisely what is
predicted by our model from proton decay constraints
(as shown later in the text). However, our scenario is more
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involved since additional 2 → 2 scattering as well as decay
channels of the triplet are allowed and have more freedom
compared to the vanilla scenario. Therefore, we leave the
study of leptogenesis for the future.

C. Flavor violation

It will be shown later that to maximize the GUT scale
the vectorlike quark (VLQ) needs to be at the GUT scale,
while, on the contrary, the vectorlike doublet (VLD)
needs to reside in the 1–100 TeV range. Furthermore,
the scalar LQ must live very close to the TeV scale to
maximize the GUT scale and evade stringent proton
decay constraints. This leads to interesting correlations
between proton decay mediated by the GUT-scale par-
ticles with the quark- and lepton-flavor-violating proc-
esses mediated by the VLD and LQ residing at low scales.
In this section, we compute their contributions to flavor-
violating processes.
First, we make a change of basis,

LTMEEc → L̄LM̂EER; M̂E ¼ M�
E; ð16Þ

and diagonalize this 4 × 4 matrix as

M̂diag
E ¼ Ue

LM̂EU
e†
R : ð17Þ

Then, the interactions of the charged lepton mass eigen-
states (note the abuse of notation, i.e., flavor and mass
eigenstates are denoted by the same symbols) with the Z
boson is given by

LZ ⊃ fðgZLÞabL̄La
γμLLb

þ ðgZRÞabĒRa
γμERb

gZμ; ð18Þ

where

ðgZRÞab ¼
g
cW

s2Wδab þ
g

2cW
fUe

Rdiagð 0 0 0 1 ÞUe
R
†g:

ð19Þ

On the other hand, the corresponding left-handed inter-
actions do not mediate flavor violation since gZL ∝ 14×4.
Similarly, we obtain the interactions with the W boson

that lead to

ðgWL Þαa¼
gffiffiffi
2

p ðP†ÞαbðRÞba; ðgWR Þαa¼
gffiffiffi
2

p ðQ†ÞαðSÞa: ð20Þ

Here, we have defined the mixing matrices

Piα ¼ ðN3×5Þiα; Qα ¼ ðN�
1×5Þ5α;

Ria ¼ ðUe
L
†
3×4Þia; Sa ¼ ðUe

R
†
1×4Þ4a; ð21Þ

and the index α takes the values α∈ f1;…; 5g.

These interactions lead to charged lepton flavor violation
(cLFV) in the form of l → l0γ, l → 3l0, and μ → e
conversion. The decay width of the l → l0γ process is
given by [39]

Γðlα → lβγÞ

¼ αemm3
lα

1024e2π4

����X
p

Ap
2L;αβ

���2 þ ���X
p

Ap
2R;αβ

���2�; ð22Þ

where p runs over W and Z bosons. Processes of the
type l → 3l0 are mediated by the Z boson and have the
following expressions [40,41]:

Γðlα → 3lβÞ ¼
m5

lα

512π3

�
2

3
jTZll

RR;αβββj2 þ
1

3
jTZll

RL;αβββj2
�
;

ð23Þ

Γðl−
α →l−

βl
−
γ lþ

γ Þ¼
m5

lα

512π3

�
1

3
jTZll

RR;αβγγj2þ
1

3
jTZll

RL;αβγγj2
�
;

ð24Þ

Γðl−
α →lþ

β l
−
γ l−

γ Þ¼
m5

lα

512π3

�
2

3
jTZll

RR;αγβγj2þ
1

3
jTZll

RL;αγβγj2
�
;

ð25Þ
where we have defined

TZll
RR;jikl ¼

−1
m2

Z
ðgZRÞijðgZRÞlk; ð26Þ

TZll
RL;jikl ¼

−1
m2

Z
ðgZRÞijðgZLÞlk: ð27Þ

Furthermore, we find the following expressions for the
relevant amplitudes:

AW
2L;ji ¼ −2e

n
ððgWR Þ�αiðgWR Þαjmei þ ðgWL Þ�αiðgWL ÞαjmejÞIW1

þ ð3ðgWL Þ�αiðgWR ÞαjmναÞIW2
o
; ð28Þ

AW
2R;ji ¼ AW

2L;jiðL ↔ RÞ, and x ¼ m2
να=m

2
W . The IWi func-

tions are defined as

IW1 ¼ 6ð1 − 3xÞx2 ln xþ ðx − 1Þ½xð31x − 26Þ þ 7�
12m2

Wðx − 1Þ4 ; ð29Þ

IW2 ¼ 2x2 ln xþ ð4 − 3xÞx − 1

2m2
Wðx − 1Þ3 : ð30Þ

Similarly, for the Z boson,

AZ
2L;ji ¼ 4e

n
−ððgZRÞ�aiðgZRÞajmeiÞIZ1

þ 2ððgZLÞ�aiðgZRÞajmeaÞIZ2
o
; ð31Þ
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AZ
2R;ji¼4e

n
ððgZRÞ�aiðgZRÞajmeiÞIZ1 þ2ððgZRÞ�aiðgZLÞajmeaÞIZ2

o
;

ð32Þ

with x ¼ m2
ea=m

2
Z, and

IZ1 ¼ −4þ 9x − 5x3 þ 6xð2x − 1Þ ln x
12m2

Zðx − 1Þ4 ; ð33Þ

IZ2 ¼ −1þ x2 − 2x ln x
2m2

Zðx − 1Þ3 : ð34Þ

Interactions of the Z boson also lead to μ → e conversion
that takes the form [41,42]

CR ¼ m5
μα

3
em

16π2

�
Z4
effF

2
p

ZΓcap

����CV
d

�
NGðd;nÞ

V þ ZGðd;pÞ
V

	
þ CV

u

�
NGðu;nÞ

V þ ZGðu;pÞ
V

	���2; ð35Þ

where CV
q ¼ TZqq

RR;21 þ TZqq
RL;21 and we have defined

TZdd
RR;ji ¼

−1
m2

Z
ðgZRÞijgZqqR ; TZdd

RL;ji ¼
−1
m2

Z
ðgZRÞijgZqqL ; ð36Þ

and

gZuuL ¼ −
1

6
ð3g2cW − g1sWÞ; gZuuR ¼ −

2

3
g1sW; ð37Þ

gZddL ¼ 1

6
ð3g2cW þ g1sWÞ; gZddR ¼ −

1

3
g1sW: ð38Þ

In Eq. (35), Z and N are the numbers of protons and
neutrons in the nucleus, and Zeff is the effective atomic
charge [43]. Γcap is the total muon capture rate, and Fp

represents the nuclear matrix element. The values of the
relevant GV factors can be found in [40,44].
Finally, the scalar leptoquark contributes to both cLFV

and semileptonic decays of kaons. We derive the following
formulas for the relevant processes [45]:

BRðK0
L → μ�e∓Þ

¼ τKf2Km
2
μmK0

256πm4
LQ

�
1 −

m2
μ

m2
K

�
2

jŶ21Ŷ
�
12 þ Ŷ11Ŷ

�
22j2; ð39Þ

BRðKþ → πþμeÞ

¼ τKm5
Kþjfð0Þj2I0
12288π3

(
jŶ21Ŷ

�
12j2; Kþ → πþμþe−;

jŶ22Ŷ
�
11j2; Kþ → πþμ−eþ;

ð40Þ

where we have defined Ŷ¼Ud
RY15Ue

L
† and I0 ¼ 0.178366.

Moreover,

CR ¼ m5
μα

3
em

16π2

�
Z4
effF

2
p

ZΓcap

����CV
d

�
NGðd;nÞ

V þ ZGðd;pÞ
V

	���2; ð41Þ

with CV
d ¼ Tϕdd

LR;2111, and

Tϕdd
LR;jikl ¼

−1
2m2

LQ
ðŶ�ÞikðŶÞlj: ð42Þ

Current experimental bounds and future sensitives of these
flavor violating processes are summarized in Table II.

D. Gauge coupling unification

In order to perform the gauge coupling unification
analysis we compute the renormalization group (RG)
running of the SM gauge couplings at two loops. The
corresponding beta functions (with i∈ f1; 2; 3g) read

μ
dα−1i
dμ

¼ −
1

2π

�
aSMi þ

X
J

aJi θðμ;MJÞ
�

−
1

8π2

�X
j

�
bSMij þ

X
J

bJijθðμ;MJÞ
�
α−1j þ βYi

�
;

ð43Þ

with aSMi (bSMij ) being the SM one-loop (two-loop) gauge
coefficients, whereas aJi (bJij) are the one-loop (two-loop)
gauge coefficients of the multiplets J with massesMJ, such
that MZ ≤ MJ ≤ MGUT. The gauge coefficients aJi and bJij
can be found in Appendix A. Moreover, the step function
θðμ; mÞ ¼ 1 if μ > m and θðμ; mÞ ¼ 0 if μ ≤ m. The
Yukawa contributions βYi are neglected for beyond-
the-SM Yukawa couplings.
To achieve gauge coupling unification we freely vary

all intermediate-scale particle masses, i.e., the masses
of the fields ϕ8, ϕ1, T, L4 þ L̄4, dc4 þ dc4, Δ1, Δ3, and Δ6.
For the mass of the scalar color triplet T we take a lower
bound of 3 × 1011 GeV to sufficiently suppress LQ-
mediated nucleon decay. The masses of all of the other
fields are varied between the TeV and the GUT scale,
while ensuring that all neutrino Yukawa couplings in
Eq. (14) can be chosen perturbatively. We run the SM
gauge couplings from the GUT scale down to the Z
scale, where we compute a χ2 function comparing the
obtained values with the experimental low-scale values
g1 ¼ 0.461425, g2 ¼ 0.65184, and g3 ¼ 1.2143 [46],
where we have used the relation gi ¼

ffiffiffiffiffiffiffiffiffi
4παi

p
. Gauge

coupling unification can, for example, be achieved if
the intermediate-scale particle masses are chosen as
Mϕ8

¼1.00TeV, Mϕ1
¼ 1.00 TeV, MT ¼ MGUT,

ML4
¼1.00TeV, Mdc

4
¼MGUT, MΔ1

¼ 1.00 × 1012 GeV,
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MΔ3
¼1.00TeV, and MΔ6

¼3.28×108 GeV. For this sce-
nario we find a GUT scale of MGUT ¼ 6.15 × 1015 GeV
which is large enough to evade the current proton decay
bounds. The corresponding gauge coupling unification
plot is presented in Fig. 1. Note that if the RG evolution is
computed at one loop the GUT scale cannot be larger than
3 × 1015 GeV, which is roughly a factor of 2 too small to
evade the proton decay constraints. This means that in
order to show that our model is indeed viable, a more
accurate two-loop computation is required.

E. Proton decay

Here, we collect relevant formulas for computing proton
decay rates. Decay widths for proton decay channels into
charged antileptons and antineutrinos are given by
(cf. [47,48] for the remaining decay channels)

Γðp → π0eþβ Þ ¼
mpπ

2

�
1 −

m2
π

m2
p

�
2 α2GUT
M4

GUT
A2
LðA2

SLjcðecα; dÞhπ0jðudÞLuLjpij2 þ A2
SRjcðeα; dcÞhπ0jðudÞRuLjpij2Þ; ð44Þ

Γðp→Kþν̄Þ¼mpπ

2

�
1−

m2
Kþ

m2
p

�
2 α2GUT
M4

GUT
A2
LA

2
SR

�X
i

jcðνi;d;scÞhKþjðusÞRdLjpiþcðνi;s;dcÞhKþjðudÞRsLjpij2
�
; ð45Þ

Γðp → η0eþβ Þ ¼
mpπ

2

�
1 −

m2
η

m2
p

�
2 α2GUT
M4

GUT
A2
LðA2

SLjcðecα; dÞhη0jðudÞLuLjpij2 þ A2
SRjcðeα; dcÞhη0jðudÞRuLjpij2Þ; ð46Þ

where AL ¼ 1.2 [49] and ASLðRÞ denotes the leading-log
dimension-six operator renormalization. The latter is
given by1 [50–52]

ASLðRÞ ¼
Y

i¼1;2;3

YMZ≤MI≤MGUT

I

�
αiðMIþ1Þ
αiðMIÞ

� γLðRÞi
bSM
i

þ
P

MZ≤MJ≤MGUT
J

bJ
i ;

with γLðRÞi ¼ ð23ð11Þ=20; 9=4; 2Þ: ð47Þ
Moreover, mp ¼ 939.3 MeV, mπ ¼ 139.6 MeV, mKþ ¼
493.7 MeV, and mη ¼ 547.9 MeV are the proton, pion,
kaon, and eta meson mass, respectively. Taking into
account the fact that in our model the up-type Yukawa
matrix is symmetric, the c coefficients read2 [53–55]

cðecα; dβÞ ¼ ðE�
RÞiαðD�

LÞiβ þ ðE�
RÞiαðU�

LÞi1ðULÞi1ðD�
LÞiβ

þ ðE�
RÞ4αðD�

LÞ4β; ð48Þ
cðeα; dcβÞ ¼ ðE�

LÞaαðD�
RÞaβ; ð49Þ

cðνl; dα; dcβÞ ¼ ðULÞi1ðD�
LÞiα½ðD�

RÞaβðNÞal þ ðD�
RÞ4βN5l�;

ð50Þ
where we implicitly sum over the indices i∈ f1; 2; 3g and
a∈ f1; 2; 3; 4g. The unitary matrices U, DL, DR, EL, ER,
and N are defined such that they diagonalize the corre-
sponding fermion mass matrices,

MU ¼ UMdiag
U UT; MD ¼ DLM

diag
D D†

R;

ME ¼ ELM
diag
E E†

R; MN ¼ N�Mdiag
N N†: ð51Þ

Finally, the matrix elements are given by [56,57]

hπ0jðudÞLuLjpi ¼ þ0.134ð5Þð16Þ GeV2;

hπ0jðudÞRuLjpi ¼ −0.131ð4Þð13Þ GeV2;

hKþjðudÞRsLjpi ¼ −0.134ð4Þð14Þ GeV2;

hKþjðusÞRdLjpi ¼ −0.049ð2Þð5Þ GeV2;

hη0jðudÞLuLjpi ¼ þ0.134ð5Þð16Þ GeV2;

hη0jðudÞRuLjpi ¼ −0.131ð4Þð13Þ GeV2: ð52Þ
In Table III we show the present experimental bounds
together with the future sensitivities for partial proton
lifetimes for various decay channels.

FIG. 1. Example for gauge coupling unification at two loops
and a GUT scale of 6.15 × 1015 GeV. The particle masses are
chosen asMΔ1

¼ 1.00 × 1012 GeV andMΔ6
¼ 3.28 × 108 GeV.

1A different factor, namely, exp½γLðRÞiαðMJþ1Þ�=ð2πÞ, is used
instead if the one-loop gauge coefficient vanishes in a certain
interval.

2Note the fact that the c coefficients are modified in our model
compared to their typical form due to the additional mixing with
the VLFs.
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F. Numerical analysis

This section is devoted to a step-by-step description of
our numerical procedure. We start by parametrizing the
fermion mass matrices. Already at this step we compute the
unitary matrices that diagonalize the fermion mass matri-
ces. These unitary matrices are used later on for the
computation of proton decay and flavor violation predic-
tions as well as for the fit of the Cabibbo-Kobayashi-
Maskawa (CKM) and Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrices. Moreover, the singular values of the
mass matrices are used for the fermion mass fit.
To parametrize the down-type and charged lepton mass

matrices we use the mass parameters mi, the VLF mass
Mdc

4
(ML4

), as well as the angles θD;E
i that are defined in

Appendix B. We then reconstruct the mass parameters
MD;E

a using Eq. (B6). It turns out that in order to allow
for gauge coupling unification the VLQ stemming from
5F4

þ 5̄F4
has to reside close to the GUT scale, i.e., its mass

is 15 orders of magnitude above the bottom-quark mass.
Because of this, we can safely use the method described
in Appendix B to block diagonalize MD. Afterwards, we
diagonalize the remaining upper 3 × 3 block numerically.
The vectorlike lepton (VLL) mass has to be close to the
TeV scale to successfully achieve gauge coupling unifica-
tion. That means that for the charged lepton mass matrix
we cannot safely use the block diagonalization described
in Appendix B, since it is only correct up to corrections
of order m3=ML4

. We therefore diagonalize ME using a
numerical method.
Utilizing the fact that the up-type mass matrix is

symmetric in our model, we decompose it by a Takagi
decomposition,

MU ¼ Udiagðmu;mc;mtÞUT; ð53Þ

where U is a unitary matrix. For the three up-type quark
masses appearing in Eq. (53) we directly insert their
experimental central GUT-scale values which we take
from [82]. Since the down-type quark mass matrix MD
can be block diagonalized with very high accuracy using
only a right rotation matrix, the left rotation matrix turns out
to be nontrivial only in its upper 3 × 3 block, i.e.,

DL ¼
�
D3×3

L 0

0 1

�
: ð54Þ

Therefore, the CKM matrix is approximately unitary and
we can thus parametrize the unitary matrix U as

U¼D3×3
L diagðeiβu1 ;eiβu2 ;1ÞVexp

CKMdiagðeiη
u
1 ;eiη

u
2 ;eiη

u
3 Þ; ð55Þ

where Vexp
CKM is the CKM matrix and where ηui are

unphysical parameters that can safely be set to zero, while
the so-called GUT phases βu1 and βu2 are free phases that
affect the proton decay predictions. We directly insert the
experimental central GUT-scale values into Vexp

CKM.
We block diagonalize the neutrino mass matrix using the

method described in Appendix B, since ML4
is expected to

reside at the TeV scale, while the other entries inMN are of
the order of eV, i.e., the corrections to the approximate
block diagonalization are of order 10−12. After the block
diagonalization we decompose the symmetric upper 3 × 3
block utilizing a Takagi decomposition,

M3×3
N ¼ U3×3

N
�ðmν1 ; mν2 ; mν3ÞU3×3

N
†; ð56Þ

where U3×3
N is a unitary matrix. We take mν1 as a free

parameter and use experimental central values of the two

TABLE III. Table of current experimental bounds and future
sensitivities (for 10 years of runtime) for different proton decay
channels. For a recent review on the subject, see Ref. [74].

Decay channel
Current

bound τp [yrs]
Future sensitivity

τp [yrs]

p → π0eþ 2.4 × 1034 [75] 7.8 × 1034 [76]
p → π0μþ 1.6 × 1034 [75] 7.7 × 1034 [76]
p → η0eþ 1.0 × 1034 [77] 4.3 × 1034 [76]
p → η0μþ 4.7 × 1033 [77] 4.9 × 1034 [76]

p → K0eþ 1.1 × 1033 [78] � � �
p → K0μþ 3.6 × 1033 [79] � � �
p → πþν̄ 3.9 × 1032 [80] � � �
p → Kþν̄ 6.6 × 1033 [81] 3.2 × 1034 [76]

TABLE II. Current experimental constraints and future sensi-
tivities for various lepton-violating processes and semileptonic
decays of kaons, all at the 90% confidence level.

Process Current bound Future sensitivity

BRðτ → μγÞ 4.4 × 10−8 [58] ∼10−9 [59]
BRðτ → eγÞ 3.3 × 10−8 [58] ∼10−9 [59]
BRðμ → eγÞ 4.2 × 10−13 [60] 6 × 10−14 [61]

BRðτ → μμμÞ 2.1 × 10−8 [62] ∼10−9 [59]
BRðτ → eeeÞ 2.7 × 10−8 [62] ∼10−9 [59]
BRðμ → eeeÞ 1.0 × 10−12 [63] ∼10−16 [64]
BRðτ− → e−μμÞ 2.7 × 10−8 [62] ∼10−9 [59]
BRðτ− → μ−eeÞ 1.8 × 10−8 [62] ∼10−9 [59]
BRðτ− → eþμ−μ−Þ 1.7 × 10−8 [62] ∼10−9 [59]
BRðτ− → μþe−e−Þ 1.5 × 10−8 [62] ∼10−9 [59]

CRðμAu → eAuÞ 7 × 10−13 [65] � � �
CRðμTi → eTiÞ 4.3 × 10−12 [66] ∼10−18 [67]
CRðμAl → eAlÞ � � � 10−15–10−18 [68]

BRðK0
L → μ�e∓Þ 4.7 × 10−12 [69] ∼10−12 [70]

BRðK0
L → π0μþe−Þ 7.6 × 10−11 [71] ∼10−12 [70]

BRðKþ → πþμþe−Þ 1.3 × 10−11 [72] ∼10−12 [70]
BRðKþ → π0μ−eþÞ 5.2 × 10−10 [73] ∼10−12 [70]

MINIMAL SUð5Þ GUTS WITH VECTORLIKE FERMIONS PHYS. REV. D 108, 095010 (2023)

095010-7



mass-squared differences from NuFIT 5.2 [83,84] to
directly obtain mν2 and mν3 .
Since the rightmost columns in both mass matrices ME

and MN depend on the same parameters, when computing
the PMNS matrix VPMNS (which is a 4 × 5 matrix),

ðVPMNSÞal ¼ ðE�
LÞbaNbl

¼ ðE�
LÞbaðPN

L ÞbmðVNÞmn

�
U3×3

N 0

0 12×2

�
nl
:

ð57Þ

Therefore, defining

ðV3×3
EN Þij ¼ ðE�

LÞbiðPN
L ÞbmðVNÞmj; ð58Þ

we parametrize U3×3
N as

ðU3×3
N Þij ¼ ðV3×3

EN
−1Þik½diagðeiην1 ; eiην2 ; eiην3Þ

×Vexp
PMNSdiagðeiβ

ν
1 ; eiβ

ν
2 ; 1Þ�kj; ð59Þ

where we plug the experimental central values of the
PMNS parameters from NuFIT 5.2 [83,84] into Vexp

PMNS.
The phases eiβ

ν
1 , eiβ

ν
2 denote the Majorana phases, while the

phases eiη
ν
1 , eiη

ν
2 , eiη

ν
3 are unphysical and thus set to zero.

In Eqs. (57)–(59) the indices i, j, k run from 1 to 3, the
indices a, b, c run from 1 to 4, and the indices l, m, n run
from 1 to 5.
In summary, to parametrize the fermion mass matrices

we use the three mass parameters mi, the six angles θD;E
i ,

the nine phases in MD and ME, the four phases βu1, β
u
2 , β

ν
1,

βν2, and the light neutrino mass mν1 . Additional parameters
of the model are the GUT-scale MGUT, the unified gauge
coupling αGUT, the masses of the intermediate scale fields
ϕ8, ϕ1, T, L4 þ L̄4, dc4 þ dc4, Δ1, Δ3, Δ6, and the triplet
Higgs VEV vΔ. Taking proton decay and flavor violation
constraints into account, these parameters are fitted to the
down-type quark and charged lepton masses md, ms, mb,
me,mμ,mb, and to the SM gauge couplings g1, g2, g3, while
also ensuring perturbativity of all Yukawa couplings. The
remaining experimental values, namely, the up-type quark
masses, the CKM and PMNS parameters, as well as the

neutrino mass-squared differences, are automatically
accounted for. Note that in order to find a benchmark
point with a good fit, not all input parameters need to be
varied. In particular, fixed values can be assigned to all
phases as well as to the light neutrino mass mν1 .
In the fitting procedure, we compute the two-loop

running of the gauge couplings from the GUT scale down
to the Z scale, as discussed in Sec. II D. The gauge
couplings are then fitted to their low-energy values that
we take from [46]. The fermion masses and mixings, on the
other hand, are for simplicity directly fitted at the GUT
scale to their corresponding high-energy values, which
were provided in [82]. We then compute the χ2 function
summing over the individual pulls χ2i for all observables i.
For the PMNS observables θPMNS

23 and δPMNS we use the
exact χ2i provided by NuFIT 5.2 [83,84]. For all other
observables i, we compute the pull χ2i via

χ2i ¼
�
pi − ei
σi

�
2

; ð60Þ

where pi denotes the theoretical prediction, ei is the
experimental central value, and σi is the standard deviation.
We obtain a viable benchmark point of the model mini-
mizing the χ2 function using a differential evolution
algorithm. Afterwards, we determine the posterior density
of the observables of our model by applying an adaptive
Metropolis-Hastings algorithm to perform anMarkov chain
Monte Carlo (MCMC) analysis. We start this MCMC
analysis from the benchmark point and compute 6 × 106

data points using flat prior probability distributions.

G. Results

In this section we present and discuss the results of our
numerical analysis. We are mainly interested in the pre-
dictions for the rates of proton decay channels and their
connection to the masses of the added scalar multiplets.
Moreover, various predictions for flavor-violating proc-
esses give rise to additional possibilities to test our model.
We have presented in Sec. II D a possibility for achieving

gauge coupling unification. If additionally the mass matri-
ces MD and ME are chosen as

MD ¼

0
BBBBB@

1.80 × 10−3 0 0 0

0 1.34 × 10−1 0 0

0 0 3.32 0

2.31 × 1014 1.84 × 1015 6.00 × 1015 1.90 × 1014

1
CCCCCA GeV; ð61Þ
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ME¼

0
BBB@
1.80×10−3 0 0 5.77×102

0 1.34×10−1 0 5.40×102

0 0 3.32 1.36×103

0 0 0 1.56×102

1
CCCAGeV;

ð62Þ

then the down-type and charged lepton masses can be fitted.
This defines a viable benchmark point (with χ2 < 10−2).
We start our Markov chains from this benchmark point to
approximate the posterior density. From the obtained points
we compute the highest posterior density (HPD) intervals
of partial proton lifetimes of various decay channels. Our
findings are presented in Fig. 2. The dark (light) rectangles
represent the 1σ (2σ) HPD intervals of partial proton
lifetimes. The blue line segments represent the current
experimental bounds, whereas the future sensitivities for a
runtime of 10 years (20 years) are indicated by gray (black)
line segments. Interestingly, Hyper-Kamiokande will be able
to test four different proton decay channels; after a runtime
of 10 years, it will already test the full 2σ HPD region of the
decay channel p → π0eþ as well as the full 1σ HPD interval
of the decay channel p → π0μþ. Moreover, Hyper-
Kamiokande will test part of the 1σ region of the two decay
channels p → η0eþ and p → η0μþ.
Considering the ratios of two different decay channels, we

find another interesting result which we present in Fig. 3. In
the left panel we show that for a given GUT scale the decay
channels p → π0eþ and p → π0μþ are inversely correlated.

This is particularly interesting since it tells us that, if the
proton decay in the decay channel p → π0eþ is not observed
after a 10 year runtime of Hyper-Kamiokande, we should
definitely see proton decay in the decay channel p → π0μþ
after a 20 year runtime of Hyper-Kamiokande. In the right
panel we see that the two decay channels p → η0μþ and
p → π0μþ are highly correlated. Our analysis finds their
ratio at 2σ to lie within 3.09 and 3.47, which is another
possibility to test our model.
From Eq. (44), the question arises whether the freedom

in the flavor structure in the fermionic mass matrices can be
used to rotate proton decay in the decay channel p → π0eþ
away. Our findings show that it is indeed possible to
suppress proton decay in this decay channel by an
appropriate choice of the model parameters. However, it
cannot be completely rotated away. Note that the decay
channel under consideration is mostly dependent on the
model parameter θE1 ¼ arctanðjME

1 j=jME
4 jÞ. We present the

dependence of the partial lifetime on θE1 for a benchmark
scenario of gauge coupling unification in the left panel of
Fig. 4. Clearly, proton decay gets suppressed by a bit more
than half an order of magnitude for θE;D1 → π=2. The reason
it cannot get suppressed further is that the decay width for
this channel is obtained by the sum of two contributions,
one of which is proportional to cðec; dÞ, while the other one
is proportional to cðe; dcÞ. Only, cðec; dÞ depends on ER
and DL. Thus, only the contribution proportional to this c
factor (which is the dominant contribution for θE1 < π=2)
gets suppressed. Then, for θE1 close to π=2, the contribution

FIG. 2. 1σ (dark) and 2σ (light) HPD intervals of partial proton lifetimes for various decay channels. The current experimental bounds
at 90% confidence level are indicated by blue line segments (for all cases, it corresponds to the lowest lying line). Moreover, the future
sensitivities at 90% confidence level of Hyper-Kamiokande after a runtime of 10 years (20 years) are represented by gray (black) line
segments (for cases with three-line segments, the black line corresponds to the uppermost line, whereas the gray line corresponds to the
middle line segment).
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proportional to the c factor cðe; dcÞ becomes dominant and
no further proton decay suppression is possible.
Another interesting result is the predicted range for the

masses of the added fields. We present the 1σ (dark) and 2σ
(light) HPD results for these masses in Fig. 5. As discussed
in Sec. II D, we vary all masses between the TeV scale
and the GUT scale apart from MT which we keep above
3 × 1011 GeV to sufficiently suppress scalar-mediated
proton decay. As already indicated by our gauge coupling
unification plot (Fig. 1), there are four particles that can
reside at the TeV scale, namely, the SUð2Þ triplet ϕ1, the
SUð3Þ octet ϕ8, the LQ Δ3, and the VLD L4. While ϕ8 and
L4 are also allowed to be heavier than 100 TeV, the upper
bounds on the ranges for ϕ1 and Δ3 are relatively small.
The upper bound of the 1σ (2σ) range for Mϕ1

is 6 TeV
(29 TeV). Moreover, forMΔ3

we find an upper bound of the
1σ (2σ) range of 2 TeV (5 TeV). Since the predicted upper

bound of the HPD range of the LQ mass is so small, we are
further interested in its absolute bound and the correlation
of this bound with the proton decay predictions. We
therefore perform a fitting procedure maximizing the
proton decay lifetime for a given constant LQ mass. The
corresponding correlation between the LQ mass and
the upper bound of the partial proton lifetime in the decay
channel p → π0eþ is shown in Fig. 6. The solid blue line
shows the dependence of the maximal partial proton
lifetime of the decay channel p → π0eþ on the LQ mass
MΔ3

without using the freedom of the flavor structure of the
fermion mass matrices to suppress proton decay, i.e., the
case θE1 < π=2. The dashed blue line shows the same
relation where the flavor freedom is used to suppress proton
decay, i.e., θE1 → π=2. If the flavor freedom is (not) used the
current upper bound on the LQ mass is 20 TeV (3 TeV). In
the future, for the case where the flavor freedom is used,

FIG. 4. Dependence of the partial proton lifetime τðp → π0eþÞ on the model parameter θE1 for a benchmark scenario with
MGUT ¼ 6.28 × 1015 GeV. Left panel: partial lifetime τðp → π0eþÞ. Right panel: individual contributions to the partial lifetime
[cf. Eq. (44)]. The orange colored points (the lower segment) indicate the contribution proportional to cðec; dÞ, while the blue colored
points (the upper segment) represent the contribution proportional to cðe; dcÞ.

FIG. 3. Left: relationship between partial lifetimes of the proton decay channels p → π0μþ and p → π0eþ. The two channels are
inversely correlated for a fixed GUT scale. Right: relationship between partial lifetimes of the proton decay channels p → π0μþ and
p → η0eþ. The two channels are highly correlated. Their ratio is predicted to lie within 3.09 and 3.47 at 2σ.
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this upper bound will be reduced to 3 TeV (900 GeV) if no
proton decay is seen after 10 years (20 years) of runtime at
Hyper-Kamiokande. Since the current LHC bound on this
LQ mass is 1 TeV [85], intriguingly, Hyper-Kamiokande
has the potential to fully test our model.
Other interesting predictions that can potentially be used

to test our model are various flavor-violating processes.
Figures 7–10 show our predictions for some of these
processes. We obtain the data that is visualized in these
figures by performing MCMC analyses. The current
experimental bounds are represented in all figures by the
magenta regions, while future sensitivities of upcoming

experiments are indicated with dashed lines. For all
processes we assume normal neutrino mass ordering. We
also analyze the case of inverted neutrino mass ordering,
but it turns out that the obtained relations are very similar to
the normal-ordering case. Therefore, we omit the results
obtained from the inverted neutrino ordering.
Figure 7 shows various relations between the processes

that are mediated by a Z-boson exchange, namely, l → 3l0
and μ → e conversion. The third panel is especially
interesting since it suggests a strong correlation between
the process μ → 3e and μ → e conversion. From the first
panel we deduce that if the process τ → 3μ is seen at the
upcoming experiment, then we should also see a μ → e
conversion just above the current experimental constraint.
Moreover, an observation of the process τ → 3e at the
upcoming experiment would highly disfavor our proposed
model. Also, interesting correlations between these four
processes with the VLD mass ML4

are depicted in Fig. 8.
The processes l → l0γ stem from loop diagrams involv-

ing a W or a Z boson. The correlations between these
processes are presented in Fig. 9. The left panel suggests
that if the process τ → μγ is observed, then μ → eγ should
also be seen. On the other hand, an observation of the
process τ → eγ would disfavor our model.
Various kaon decays as well as μ → e conversion are

mediated via an exchange of the LQ Δ3. The couplings of
this LQ are related with the couplings for neutrino mass
generation, since the LQ lives in the same SUð5Þ repre-
sentation as the weak triplet Δ1 that is responsible for
neutrino mass generation. In Fig. 10, we show the corre-
lation between μ → e conversion and different kaon decays
for a benchmark scenario, assuming that the two weak
triplets Δ1 are mass degenerate and similarly the two LQs

FIG. 5. 1σ (dark) and 2σ (light) HPD ranges of the masses of the added beyond-the-SM states.

FIG. 6. Dependence of the partial proton lifetime for the decay
channel p → π0eþ on the LQ mass. The upper bound of the
partial proton lifetime is indicated by a solid (blue) line for a
generic choice of the model parameter θE1 . The dashed (blue) line
corresponds to the special region in the parameter space, namely,
θE1 → π=2 (see text for details).
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FIG. 7. Relation between the flavor-violating processes l → 3l0 and μ → e conversion.

FIG. 8. Example flavor violating processes: l → 3l0 (upper plots and lower left plot) and μ → e conversion (lower right plot) as a
function of the VLD mass.
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Δ3 are degenerate in mass (to maximize the GUT scale).
The figure shows that although only a small part of the
parameter space will be tested by upcoming experiments,
there is still the potential to observe kaon decays. Such an
observation would imply that μ → e conversion should also
be seen close to its current experimental bound.
Before concluding this section, we point out that in the

supersymmetric (SUSY) framework (which we do not
consider in this work), the wrong mass relations between
the down-quark and charged lepton sectors can be resolved

by the same mechanism as discussed above. The formulas
of the Yukawa matrices derived at the GUT scale remain
identical regardless of whether SUSY is imposed. For the
mass matrices, in the case of SUSY, v5 → vu (v5 → vd)
needs to be performed in the up-quark sector (in the down-
quark and charged lepton sectors). This is also true for the
scenarios we explore in Sec. III. However, it is worth
pointing out that in the case of SUSY with TeV-scale
sparticles, the minimal supersymmetric SM (MSSM) auto-
matically guarantees gauge coupling unification close to

FIG. 9. Correlation between the processes l → l0γ.

FIG. 10. Correlation between various kaon decays and μ → e conversion.
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2 × 1016 GeV. Therefore, the phenomenological implica-
tions are completely different, since the low-energy effec-
tive theory in the SUSY version is similar to the MSSM
case. On the contrary, in the non-SUSY case studied in this
paper, we find definite predictions that a specific set of
beyond-the-SM states arising from GUT multiplets must
be close to the TeV scale to allow for gauge coupling
unification and satisfy the proton decay bounds.

III. CASE STUDY: 10F + 10F=15F + 15F VLFs

Instead of introducing VLFs in the fundamental repre-
sentations, one can add VLFs in the 10F þ 10F=15F þ 15F
dimensional representations. In this section, we derive the
full mass matrices of the fermions and discuss the gauge
coupling unification in these scenarios.

A. Case study: 10F + 10F VLFs

As before, we introduce a single generation of VLF. We denote the component fields within 10aF þ 10F as

10aF ¼ 1ffiffiffi
2

p

0
BBBBBB@

0 ucb −ucg ur dr
−ucg 0 uc1 u2 dg
ucg −ucr 0 ub db
−ur −ug −ub 0 ec

−dr −dg −db −ec 0

1
CCCCCCA

a

; 10F ¼ 1ffiffiffi
2

p

0
BBBBBB@

0 Ub −Ug Uc
r Dc

r

−Ug 0 Ur Uc
g Dc

g

Ug −Ur 0 Uc
b Dc

b

−Uc
r −Uc

g −Uc
b 0 E−

−Dc
r −Dc

g −Dc
b −E− 0

1
CCCCCCA: ð63Þ

With the addition of one generation of 10F þ 10F, the complete Yukawa part of the Lagrangian can be written as

LY ¼ Yab
1010

a
F10

b
F5H þ Yia

5 5̄
i
F10

a
F5

�
H þ y010F10F5�H þ ðma þ λa24HÞ10F10aF: ð64Þ

Considering only the mass term for 10F þ 10F, i.e., the last term in the above equation by setting a ¼ 4, we find a mass
relation among the submultiplet, which is given by

MQ̃ ¼ 1

2
ðMEc þMUcÞ: ð65Þ

From the above Yukawa interactions, it is straightforward to derive the fermion mass matrices, which we find
to be

LY ⊃ ðd1 d2 d3 d4Þ

0
BBBBBB@

ðYT
5 Þijv5|fflfflfflffl{zfflfflfflffl}
3×3

mi þ
λiv24
2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

3×1

ðYT
5 Þ4jv5|fflfflfflfflffl{zfflfflfflfflffl}
1×3

m4 þ
λ4v24
2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

1×1

1
CCCCCCA

0
BBB@

dc1
dc2
dc3
Dc

1
CCCA ð66Þ

þ ðe1 e2 e3 E−Þ

0
BBB@

ðY5Þijv5|fflfflfflffl{zfflfflfflffl}
3×3

ðY5Þi4v5|fflfflfflffl{zfflfflfflffl}
3×1

mj þ 3λjv24|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
1×3

m4 þ 3λ4v24|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
1×1

1
CCCCCA
0
BBB@

ec1
ec2
ec3
ec4

1
CCCA ð67Þ

þ ðu1 u2 u3 u4 UÞ

0
BBBBB@

4ðY10 þ YT
10Þabv5|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

4×4

ma þ
λav24
2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

4×1

mb − 2λbv24|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
1×4

4y0v5|ffl{zffl}
1×1

1
CCCCCA

0
BBBBBB@

uc1
uc2
uc3
uc4
Uc

1
CCCCCCA: ð68Þ
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As can be easily seen from these matrices, there are enough
free parameters to correct the wrong mass relations between
the down-type quarks and the charged leptons. By inte-
grating out the heavy states, the 3 × 3 mass matrices of the
corresponding light states can be written as

Md ¼
�
1þ 1

jηQ4j2
ηQη

†
Q

�
−1=2

�
v5YT −

v5
ηQ4

ηQŶ

�
ð69Þ

and

Me ¼
�
v5Y −

v5
ηL4

ỸηL

��
1þ 1

jηL4j2
η†LηL

�
−1=2

; ð70Þ

for the down-quark and charged lepton sectors, respec-
tively, where we have defined the following quantities:

ηQ4 ¼ m4 þ
λ4v24
2

; ηL4 ¼ m4 þ 3λ4v24; ð71Þ

ηQ ¼

0
BB@

m1 þ λ1v24
2

m2 þ λ2v24
2

m3 þ λ3v24
2

1
CCA; ηL ¼

0
BB@

m1 þ 3λ1v24
m2 þ 3λ2v24
m3 þ 3λ3v24

1
CCA

T

; ð72Þ

Yj3×3¼ðY5Þij; Ŷj1×3¼ðYT
5 Þ4j; Ỹj3×1¼ðY5Þi4: ð73Þ

The 5 × 5-dim up-type quark mass matrix, Eq. (68),
can be approximately block diagonalized, as described
in Appendix B. Afterwards, the 3 × 3 block of light up-type
quarks can be diagonalized using the usual numerical
method.

B. Case study: 15F + 15F VLFs

In this case, we add one generation of 15F þ 15F. The
decomposition of 15F is as follows:

15F ¼ Σ1ð1; 3; 1Þ þ Σ3ð3; 2; 1=6Þ þ Σ6ð6; 1;−2=3Þ: ð74Þ

The Yukawa Lagrangian in the scenario takes the
following form:

L ⊃ Yu
ij10Fi10Fj5H þ Yd

ij10Fi5̄Fj5
�
H þ Ya

i 15F5̄Fi5
�
H

þ Yc
i 10Fi15F24H þ ðm15 þ y24HÞ15F15F þ H:c:

ð75Þ

By considering only the last term (i.e., the 15F15F term),
one obtains the following mass relation among the sub-
multiplets:

MΣ3
¼ 1

2
ðMΣ1

þMΣ6
Þ: ð76Þ

In this scenario, the mismatch between the down-type
quarks and the charged leptons arises due to the mixing
between the VLFs and fermions in 10Fi. Once the GUTand
electroweak symmetries are broken, the relevant decom-
position under the SUð3Þ ×Uð1Þem gauge group is
Qi ¼ uið3; 2=3Þ þ dið3;−1=3Þ, Li ¼ eið1;−1Þ þ νið1; 0Þ,
Σ3 ¼ Σuð3; 2=3Þ þ Σdð3;−1=3Þ, and Σ1 ¼ Σνð1; 0Þ þ
Σecð1; 1Þ þ Σececð1; 2Þ. Then, the charged fermion mass
matrices can be written as

L ⊃ ðui ΣuÞ

0
BBBBB@

4v5YU|fflfflffl{zfflfflffl}
3×3

5

2
v24Yc|fflfflffl{zfflfflffl}
3×1

0|{z}
1×3

MΣ3|{z}
1×1

1
CCCCCA
 
ucj

Σ̄u

!

þ ðdi ΣdÞ

0
BBBBB@

v5Yd|ffl{zffl}
3×3

5

2
v24Yc|fflfflffl{zfflfflffl}
3×1

v5Ya|ffl{zffl}
1×3

MΣ3|{z}
1×1

1
CCCCCA
 
dcj

Σ̄d

!

þ ðei Σ̄ec Þ

0
BBB@

v5ðYdÞT|fflfflfflffl{zfflfflfflffl}
3×3

v5Ya|ffl{zffl}
3×1

0|{z}
1×3

MΣ1|{z}
1×1

1
CCCA
 

ecj

Σec

!
; ð77Þ

where we have defined YU ¼ Yu þ ðYuÞT .
Finally, integrating out the heavy states, we can write the

3 × 3 mass matrices of the light SM fermions as

Mu ¼
�
1þ 25v224

4M2
Σ3

YcYc†
�−1

2

4v5YU; ð78Þ

Md ¼
�
1þ 25v224

4M2
Σ3

YcYc†
�−1

2

v5

�
Yd −

5v24
2MΣ3

YcYa

�
; ð79Þ

Me ¼ v5ðYdÞT: ð80Þ

This case also provides a sufficient number of free param-
eters to correct the bad mass relations [25–27]. See also
Refs. [86–88] for SUSY models with vectorlike 15-plets.

C. Gauge coupling unification

The two-loop beta function for the gauge coupling
unification can be found in Sec. II D, and the relevant
one- and two-loop gauge coefficients are listed in
Appendix A. Both SUð5Þ representations, 10F and 15F,
contain a multiplet ð3; 2; 1=6Þ, which can mix with the SM
left-chiral quark doublet, i.e., 10F ⊃ Q̃ð3; 2; 1=6Þ and
15F ⊃ Σ3ð3; 2; 1=6Þ. In both cases, the GUT scale is
maximized if this fermionic multiplet Q̃ (Σ3) is kept light
together with the weak triplet ϕ1 and color octet ϕ8 of the
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adjoint Higgs field, while the remaining multiplets in
10F (15F) and 24H reside at the GUT scale. This choice
of masses automatically respects the mass relations pro-
vided in Eq. (65) [respectively, Eq. (76)]. Figure 11 shows
the maximal GUT scale as a function of the intermediate
mass scale MJ, which refers to the mass MQ̃ or MΣ3

, while
MΦ1

and MΦ8
are varied between MJ and MGUT. The

horizontal dashed line approximately indicates the GUT
scale (MGUT ∼ 6 × 1015 GeV) that is required to evade
the current proton decay bound without using the flavor
freedom of the fermion mass matrices. In the case of
10F þ 10F, utilizing additional freedom from the flavor

sector, proton decay can be further suppressed such that
even lower GUT scales become viable. This freedom in the
flavor sector does not exist in the case of 15F þ 15F, as
discussed in Refs. [25–27].

IV. CONCLUSIONS

This work aimed to determine the minimal viable
renormalizable SUð5Þ GUT with representations with no
higher than adjoints. We concluded that an SUð5Þ model
containing a pair of VLFs 5F þ 5̄F and two copies of 15H
Higgs fields serves as the minimal candidate, satisfying the
requirements for correct charged fermion and neutrino
masses while addressing the matter-antimatter asymmetry
of the Universe. Our findings demonstrate that this pro-
posed model possesses a high degree of predictability, and
will undergo comprehensive testing through a combination
of upcoming proton decay experiments, collider searches,
and low-energy experiments targeting flavor violation.
Additionally, we explored the possibility of incorporating
either 10F þ 10F or 15F þ 15F VLFs instead of 5F þ 5̄F to
correct the wrong mass relations. However, our study
revealed that the entire parameter space of these alternative
models, even with minimal particle content, cannot be
fully probed by the next round of experiments due to the
potential for long proton lifetimes that lie beyond the
capabilities of Hyper-Kamiokande.
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APPENDIX A: GAUGE COEFFICIENTS OF ADDED MULTIPLETS

The RG running of the SM gauge couplings depends on the gauge coefficients of the intermediate-scale fields.
The one-loop gauge coefficients read

aϕ8

i ¼ ð 0 0 1
2
Þ; aϕ1

i ¼ ð 0 1
3

0 Þ; aL4

i ¼ ð 1
5

1
3

0 Þ; aL̄4

i ¼ ð 1
5

1
3

0 Þ;
a
dc
4

i ¼ ð 2
15

0 1
3
Þ; a

dc
4

i ¼ ð 2
15

0 1
3
Þ; aTi ¼ ð 1

15
0 1

6
Þ; aΔ1

i ¼ ð 3
5

2
3

0 Þ;
aΔ3

i ¼ ð 1
30

1
2

1
3
Þ; aΔ6

i ¼ ð 8
15

0 5
6
Þ; aΣ1

i ¼ ð 6
5

4
3

0 Þ; aΣ̄1

i ¼ ð 6
5

4
3

0 Þ;
aΣ3

i ¼ ð 1
15

1 2
3
Þ; aΣ̄3

i ¼ ð 1
15

1 2
3
Þ; aΣ6

i ¼ ð 16
15

0 5
3
Þ; aΣ̄6

i ¼ ð 16
15

0 5
3
Þ: ðA1Þ

The two-loop gauge coefficients are given by

bϕ8

ij ¼

0
B@ 0 0 0

0 0 0

0 0 21

1
CA; bϕ3

ij ¼

0
B@ 0 0 0

0 28
3

0

0 0 0

1
CA; bL4

ij ¼

0
B@

9
100

9
20

0

3
20

49
12

0

0 0 0

1
CA; bL̄4

ij ¼

0
B@

9
100

9
20

0

3
20

49
12

0

0 0 0

1
CA;

b
dc
4

ij ¼

0
B@

2
75

0 8
15

0 0 0
1
15

0 19
3

1
CA; b

dc
4

ij ¼

0
B@

2
75

0 8
15

0 0 0
1
15

0 19
3

1
CA; bTij ¼

0
B@

4
75

0 16
15

0 0 0

2
15

0 11
3

1
CA; bΔ1

ij ¼

0
B@

108
25

72
5

0

24
5

56
3

0

0 0 0

1
CA;

FIG. 11. Maximal GUT scale as a function of the smallest mass
of intermediate-scale particles for the case where a VLF in the
representation 10F þ 10F or 15F þ 15F has been added to the GG
model. See text for details.
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bΔ3

ij ¼

0
B@

1
150

3
10

8
15

1
10

13
2

8

1
15

3 22
3

1
CA; bΔ6

ij ¼

0
B@

128
75

0 64
3

0 0 0
8
3

0 115
3

1
CA; bΣ1

ij ¼

0
B@

54
25

36
5

0

12
5

64
3

0

0 0 0

1
CA; bΣ̄1

ij ¼

0
B@

54
25

36
5

0

12
5

64
3

0

0 0 0

1
CA;

bΣ3

ij ¼

0
B@

1
300

3
20

4
15

1
20

49
4

4

1
30

3
2

38
3

1
CA; bΣ̄3

ij ¼

0
B@

1
300

3
20

4
15

1
20

49
4

4

1
30

3
2

38
3

1
CA; bΣ6

ij ¼

0
B@

64
75

0 32
3

0 0 0

4
3

0 125
3

1
CA; bΣ̄6

ij ¼

0
B@

64
75

0 32
3

0 0 0

4
3

0 125
3

1
CA: ðA2Þ

APPENDIX B: BLOCK DIAGONALIZATION OF FERMION MASS MATRICES

Defining the transformation matrices

PE
L ¼ diagðe−i argME

1 ; e−i argM
E
2 ; e−i argM

E
3 ; e−i argM

E
4 Þ; ðB1Þ

PE
R ¼ diagðei argðME

1
=m1Þ; ei argðME

2
=m2Þ; ei argðME

3
=m3Þ; 1Þ; ðB2Þ

PD
L ¼ diagðei argðMD

1
=m1Þ; ei argðMD

2
=m2Þ; ei argðMD

3
=m3Þ; 1Þ; ðB3Þ

PD
R ¼ diagðe−i argMD

1 ; e−i argM
D
2 ; e−i argM

D
3 ; e−i argM

D
4 Þ; ðB4Þ

VE;D ¼

0
BBBBB@

cE;D1 −sE;D1 sE;D2 −cE;D2 sE;D1 sE;D3 cE;D2 cE;D3 sE;D1

0 cE;D2 −sE;D2 sE;D3 cE;D3 sE;D2

0 0 cE;D3 sE;D3

−sE;D1 −cE;D1 sE;D2 −cE;D1 cE;D2 sE;D3 cE;D1 cE;D2 cE;D3

1
CCCCCA; ðB5Þ

where cE;Di ¼ cos θE;Di and sE;Di ¼ sin θE;Di , i ¼ 1, 2, 3, and where the angles θE;Di are given by

tan θE;D1 ¼ jME
1 j

jME
4 j
; tan θE;D2 ¼ jME

2 j
jME

4 j
cos θE;D1 ; tan θE;D3 ¼ jME

3 j
jME

4 j
cos θE;D1 cos θE;D2 ; ðB6Þ

we can approximately block diagonalize the 4 × 4 down-type and charged lepton mass matrices via

Mbd
D ¼ PD

LMDPD
RVD ¼

0
BBBBB@

m1cD1 −m1sD1 s
D
2 −m1cD2 s

D
1 s

D
3 m1cD2 c

D
3 s

D
1

0 m2cD2 −m2sD2 s
D
3 m2cD3 s

D
2

0 0 m3cD3 m3sD3
0 0 0 Mdc

4

1
CCCCCA; ðB7Þ

Mbd
E ¼ VT

EP
E
LMEPE

R ¼

0
BBBBB@

m1cE1 0 0 0

−m1sE1 s
E
2 m2cE2 0 0

−m1cE2 s
E
1 s

E
3 −m2sE2 s

E
3 m3cE3 0

m1cE2 c
E
3 s

E
1 m2cE3 s

E
2 m3sE3 ML4

1
CCCCCA: ðB8Þ

In the case in which the VLQ (VLL) mass is much larger than mi, the matrix Mbd
D (Mbd

E ) is approximately block
diagonalized. Otherwise, the block-diagonal form can only be achieved after using an additional left (right) rotation matrix
corrections with angles of the order mi=Mdc

4
(mi=ML4

).
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With a similar strategy, the 5 × 5 neutrino mass matrix can be approximately block diagonalized. Denoting cNi ¼ cos θNi
and sNi ¼ sin θNi , with i∈ f1; 2; 3g, we define the angles θNi as

tan θN1 ¼ −
jME

1 j
jME

2 j
; tan θN2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jME

1 j2 þ jME
2 j2

p
jME

3 j
; tan θN3 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jME

1 j2 þ jME
2 j2 þ jME

3 j2
p

jME
4 j

: ðB9Þ

Using the transformation matrices

PN
L ¼ diagðe−i argME

1 ; e−i argM
E
2 ; e−i argM

E
3 ; e−i argM

E
4 ; 1Þ; ðB10Þ

VN ¼

0
BBBBBBBBB@

cN1 −cN2 sN1 cN3 s
N
1 s

N
2 − 1ffiffi

2
p sN1 s

N
2 s

N
3

iffiffi
2

p sN1 s
N
2 s

N
3

sN1 cN1 c
N
2 −cN1 cN3 sN2 1ffiffi

2
p cN1 s

N
2 s

N
3 − iffiffi

2
p cN1 s

N
2 s

N
3

0 sN2 cN2 c
N
3 − 1ffiffi

2
p cN2 s

N
3

iffiffi
2

p cN2 s
N
3

0 0 sN3
1ffiffi
2

p cN3 − iffiffi
2

p cN3

0 0 0 1ffiffi
2

p iffiffi
2

p

1
CCCCCCCCCA

ðB11Þ

allows for an approximate block diagonalization of the neutrino mass matrix via

Mbd
N ¼ VT

NP
N
LMNPN

LVN ¼

0
BB@

M3×3
N OðeVÞ OðeVÞ

OðeVÞ ML4
OðeVÞ

OðeVÞ OðeVÞ ML4

1
CCA: ðB12Þ

The off-diagonal blocks in Mbd
N are of the same order as the neutrino masses, i.e., sub-eV, and thus much smaller than

the VLD mass.
Similarly, the 5 × 5-dim up-type quark mass matrix M5×5

U that is obtained by adding a pair of vectorlike fermionic
10-plets [see Eq. (68) in Sec. III A] can be approximately block diagonalized via

Mbd
U ¼ VL

U
TPL

UM
5×5
U PR

UV
R
U ¼

0
BB@

M3×3
U OðmtÞ OðmtÞ

OðmtÞ MQ OðmtÞ
OðmtÞ OðmtÞ Muc

4

1
CCA: ðB13Þ

Here, we have defined the transformation matrices

PU
L ¼ diagðe−i arg ηQ1 ; e−i arg ηQ2 ; e−i arg ηQ3 ; e−i arg ηQ4 ; 1Þ; ðB14Þ

PU
R ¼ diagðe−i arg ηU1 ; e−i arg ηU2 ; e−i arg ηU3 ; e−i arg ηU4 ; 1Þ; ðB15Þ

VU
L ¼

0
BBBBBBBB@

cU;L
1 −cU;L

2 sU;L
1 cU;L

3 sU;L
1 sU;L

2 −sU;L
1 sU;L

2 sU;L
3 0

sU;L
1 cU;L

1 cU;L
2 −cU;L

1 cU;L
3 sU;L

2 cU;L
1 sU;L

2 sU;L
3 0

0 sU;L
2 cU;L

2 cU;L
3 −cU;L

2 sU;L
3 0

0 0 sU;L
3 cU;L

3 0

0 0 0 0 1

1
CCCCCCCCA
; ðB16Þ
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VU
R ¼

0
BBBBBBBB@

cU;R
1 −cU;R

2 sU;R
1 cU;R

3 sU;R
1 sU;R

2 0 −sU;R
1 sU;R

2 sU;R
3

sU;R
1 cU;R

1 cU;R
2 −cU;R

1 cU;R
3 sU;R

2 0 cU;R
1 sU;R

2 sU;R
3

0 sU;R
2 cU;R

2 cU;R
3 0 −cU;R

2 sU;R
3

0 0 sU;R
3 0 cU;R

3

0 0 0 1 0

1
CCCCCCCCA
; ðB17Þ

using the quantities

ηUa ¼ ma − 2 − λav24; ðB18Þ

MQ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2Q1

þ η2Q2
þ η2Q3

þ η2Q4

q
; Muc

4
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2U1

þ η2U2
þ η2U3

þ η2U4

q
; ðB19Þ

tU;L
1 ¼ −

jηQ1j
jηQ2j

; tU;L
2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηQ1j2 þ jηQ2j2

q
jηQ3j

; tU;L
3 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηQ1j2 þ jηQ2j2 þ jηQ3j2

q
jηQ4j

; ðB20Þ

tU;R
1 ¼ −

jηU1j
jηU2j

; tU;R
2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηU1j2 þ jηU2j2

p
jηU3j

; tU;R
3 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηU1j2 þ jηU2j2 þ jηU3j2

p
jηU4j

; ðB21Þ

and applying the notation sU;L=R
i ¼ sin θU;L=R

i , cU;L=R
i ¼ cos θU;L=R

i , and tU;L=R
i ¼ tan θU;L=R

i , with i∈ f1; 2; 3g.
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