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Dark matter particles can form halos gravitationally bound to massive astrophysical objects. The Earth
could have such a halo where depending on the particle mass, the halo either extends beyond the surface
or is confined to the Earth’s interior. We consider the possibility that if dark matter particles are coupled
to neutrinos, then neutrino oscillations can be used to probe an Earth dark matter halo. In particular,
atmospheric neutrinos traversing the Earth can be sensitive to a small size, interior halo, inaccessible by
other means. Depending on the halo mass and neutrino energy, constraints on the dark matter-neutrino
couplings are obtained from the halo corrections to the neutrino oscillations.
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I. INTRODUCTION

Ultralight scalar or vector bosons are well-motivated
dark matter (DM) candidates. These include the QCD axion
(which simultaneously addresses the strong CP problem)
and a massive U(1) gauge boson or “dark photon” [1]. They
can form a coherently oscillating background that accounts
for the observed dark matter abundance [2–5]. The inter-
action of Standard Model states with this background can
lead to a plethora of new phenomena, including the time
variation of the fundamental constants of nature. This opens
up possibilities for dark matter searches such as, for example,
in atomic clock experiments (see [6] for a review).
Furthermore, it is possible for ultralight particles to

form compact objects bound either by self-gravity and
self-interaction [4,7–13], or by the background potential of
some astrophysical object [14,15]. The dark matter density
in such objects can be many orders of magnitude larger than
the average density, thus enhancing the effects that arise
from coupling to Standard Model fields. In particular,
terrestrial experiments may have increased sensitivity
due to the presence of such a local halo, bound to the
Earth or the Sun [14–19].
Once the halo is formed with a particular mass, its

stability can be maintained by the gravitational attraction of
the host object. However, owing to the complicated history

of formation, the halo mass cannot be easily determined,
and therefore, for simplicity, we treat it as a free parameter,
subject to experimental constraints. The halo size, on the
other hand, is determined by the particle mass, m and
the parameters of the host object. For the Earth, a halo
composed of particles with m≲ 10−9 eV extends beyond
the Earth’s radius, thus enabling experiments conducted
on the surface and in near orbit to probe it. Instead, for
m ≫ 10−9 eV, the halo size is much smaller than the
Earth’s radius, and therefore becomes much more difficult
to detect [14].
In this paper, we study the possibility of using neutrinos

to probe a local dark matter halo that is either larger (“big
halo”) or smaller (“small halo”) than the Earth. Neutrino
couplings to ultralight dark matter generally result in time-
varying corrections to the neutrino masses and mixing
angles. They have been studied in the literature in various
terrestrial, astrophysical, and cosmological setups [20–36].
Instead, we will show that the corrections can be greatly
enhanced by the overdensity of dark matter in the local
halo, to the point when they are no longer small. The
nonobservation of these effects implies an upper bound on
the dark matter-neutrino coupling, which becomes more
stringent for heavier halos. Furthermore, for an Earth halo
with m≳ 10−10 eV, the field comprising the halo oscillates
too rapidly for experiments to resolve a periodic modula-
tion in the neutrino parameters. Rather, we will obtain
constraints on the dark matter-neutrino couplings due to the
halo, which do not rely on the nonobservation of such a
modulation.
The neutrino is a natural, though challenging, way

to measure the internal structure of the Earth (see, e.g.,
[37–43]), and, in particular, to detect its possible dark
matter halo. For example, an interior dark matter halo can
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change the average survival probability of atmospheric
neutrinos passing through it. Thus, with sufficient preci-
sion, one can use neutrinos coming from different direc-
tions to scan the spatial profile of the halo. Depending on
the halo mass and the strength of the neutrino-halo
interactions, the inner halo region can cause nonadiabatic
neutrino oscillations. These nonadiabatic effects are due to
the rapid time variation of the field comprising the halo;
interestingly, they can both enhance and suppress distor-
tions to the vacuum neutrino oscillations. We will also see
that at sufficiently large neutrino energies, the magnitude of
the deviation from the vacuum oscillation probability
becomes energy independent.
We will focus on two-flavor oscillations to compute

these effects for both a big and small halo surrounding the
Earth. For simplicity, we will neglect the Standard Model
neutrino-matter interactions. We will see that, unlike the
Mikheyev-Smirnov-Wolfenstein (MSW) resonances owing
to the matter potential of the Earth, the nonadiabatic
correction to the oscillation probability due to the DM
halo can be large in a broad range of neutrino energies.
In Sec. II, we revisit the properties of a nonrelativistic

halo, gravitationally bound by an external body where
we will remain agnostic about the particular halo formation
mechanism. The halo is assumed to comprise massive
(pseudo) scalar particles, and no self-interaction or cou-
plings to Standard Model fields (except to the neutrino)
will be needed to discuss the halo effects. In Sec. III,
we calculate the corrections to neutrino oscillations in the
presence of the halo. We consider the cases when the scalar
contributes to the neutrino mass via a dimension-four
Yukawa coupling, or to the neutrino momentum via a
dimension-five derivative coupling. These couplings natu-
rally arise in DFSZ-type axion models as well as in flavor-
axion models (see, e.g., [44–46]). Next, in Sec. IV, we
focus on the Earth as the host body and study the survival
probability of neutrinos propagating in the time- and space-
varying halo profile. We study both the small corrections
within perturbation theory and the adiabatic approximation,
as well as nonadiabatic resonance effects.
In Sec. V we consider a halo made of massive real vector

particles, such as dark photons. We solve the equations of
motion and obtain vector field configurations describing
a nonrelativistic, radially polarized halo, gravitationally
bound to the host body. Under the assumption that the
vector field couples to the neutrino current, we repeat the
neutrino oscillation analysis in the background of the vector
halo and obtain constraints on the coupling parameters. Our
concluding remarks are given in Sec. VI.

II. LOCAL SCALAR HALO

Consider a free, massive, real scalar field φ in the
gravitational background generated by the host astrophysi-
cal object. In the nonrelativistic, weak-field regime, the line
element, assuming spherical symmetry, takes the form

ds2 ¼ −NðrÞc2dt2 þ dr2

NðrÞ þ r2dΩ2;

NðrÞ ¼ 1þ 2ΦðrÞ
c2

; ð1Þ

where ΦðrÞ is the Newtonian gravitational potential, and c
is the speed of light. The real scalar field φwith massm can
be decomposed into the nonrelativistic wave function Ψ as1

φðr; tÞ ¼
ffiffiffiffiffi
2c
m

r
ðΨðr; tÞe−imc2t þ c:c:Þ: ð2Þ

To leading order in c, the equation of motion for φ in the
background (1) becomes

iΨ̇ðr; tÞ ¼ −
1

2m
ΔΨðr; tÞ þmΦðrÞΨðr; tÞ; ð3Þ

where the dot denotes the time derivative. We are interested
in stationary, bound-state, spherically symmetric solutions
of this equation, Ψðr; tÞ ¼ ψðrÞe−iEt where jEj ≪ mc2 is
the nonrelativistic energy. The host astrophysical object is
assumed to be a sphere of constant density with mass M
and radius R. Introducing the dimensionless variables

x ¼ r=R; M ¼ Gm2MR; E ¼ EmR2; ð4Þ

where G is Newton’s constant, Eq. (3) can then be
conveniently written as

−
1

x2
d
dx

�
x2

dψ
dx

�
þ 2ðMΦ̃ − EÞψ ¼ 0; ð5Þ

where

Φ̃ðxÞ ¼
(

1
2
ðx2 − 3Þ x < 1

− 1
x x > 1

: ð6Þ

The solution ψðxÞ to the equation of motion (5) is assumed
to be regular at x ¼ 0 and to vanish as x → ∞.
Furthermore, requiring that the solution ψðxÞ is smoothly
continuous at x ¼ 1 leads to a discrete set of allowed
bound-state energies En; n ¼ 0; 1; 2…. The solution can be
written in terms of the confluent hypergeometric functions:

ψn∝

8>><
>>:
e−

1
2

ffiffiffiffiffi
M

p
x2
1F1

�
3
4
ð1− ffiffiffiffiffiffi

M
p Þþ jEnj

2
ffiffiffiffiffi
M

p ;3
2
;

ffiffiffiffiffiffi
M

p
x2
�
x<1;

e−
ffiffiffiffiffiffiffi
2jEnj

p
xU

�
1− Mffiffiffiffiffiffiffi

2jEnj
p ;2;2

ffiffiffiffiffiffiffiffiffiffi
2jEnj

p
x
�

x>1:

ð7Þ

1Note that Ψðr; tÞ represents a classical solitonic configuration
(halo). This is ensured by the large occupation number of the field
modes comprising the halo.
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For our purposes, the ground state ψ0 with the lowest
energy E0 will be the most relevant solution. The physical
halo size can be defined as l≡ Rxl, where xl is the
distance at which the amplitude of the profile (7) decreases
by a factor of 1=e. From the asymptotic behavior of the
functions in the solution (7) we then find

jE0j ≃
(

1
2
M2

ffiffiffi
2

p
M

; xl ≃

8<
:

1
M M ≪ 1ffiffi

2
p

M1=4 M ≫ 1
: ð8Þ

In what follows, we will focus on the Earth (with massM⊕,
radius R⊕) as the host of the dark matter halo. From Eq. (4),
we obtain

M ≃
�

m
10−9 eV

�
2
�

MR
M⊕R⊕

�
: ð9Þ

Thus, M ∼ 1 corresponds to a nano-eV mass, dark matter
particle with a physical halo size l ∼ R⊕. From Eq. (8) it
also follows that

l ∼ R⊕

�
10−9 eV

m

�
2

m ≪ 10−9 eV; ð10aÞ

l ∼ R⊕

�
10−9 eV

m

�
1=2

m ≫ 10−9 eV: ð10bÞ

This behavior is illustrated in Fig. 1, which agrees with
the more qualitative analysis of Ref. [14]. Note that the
analytic solution for the halo profile (7) does not apply for a
more realistic distribution of matter in the Earth [47];
however, the parametric dependence in Eqs. (9) and (10)
remains valid.
When m≲ 10−10 eV, the halo extends much beyond

the Earth’s radius. In this case, local experiments are not
sensitive to the spatial profile of the halo, and can only
probe the amplitude f0 of the time variations of the field φ
in the halo center. In this paper, we consider a “big” local
halo that extends not far from the Earth’s surface, corre-
sponding to a mass m ∼ 10−10 eV. This is because for

much smaller masses, the larger size halo [using (10)]
would likely be disrupted by the gravitational pull of the
Sun. Note that the analysis below regarding the neutrino
propagating in a constant-amplitude background is readily
applicable to the case when the local halo inhabits the
Solar System and is hosted by the Sun, corresponding to
m≲ 10−13 eV. The results of the previous studies can also
be adapted to this case [21,23,28,30]. Nevertheless, our
main interest is to explore the sensitivity of terrestrial
experiments to the spatial halo profile, rather than the
background value, for which m≳ 10−9 eV is an appro-
priate mass range. Interestingly, this includes the QCD
axion mass range 10−12 eV≲m≲ 10−3 eV corresponding
to axion decay constants 109 GeV≲ fa ≲ 1018 GeV.
The halo mass is estimated asMhalo ∼ l3m2f20, where f

2
0

is proportional to the occupation number of the field modes
comprising the halo and can be very large. Ifm ∼ 10−10 eV,
most of the halo is located inside the moon’s orbit, and the
constraint on Mhalo (and, hence, on f0) arises from lunar
laser ranging, Mhalo ≲ 1016 kg [48]. For small halos
l≲ R⊕ ðm≳ 10−9 eVÞ, there is no such constraint, and
we will consider Mhalo ≤ 0.1M⊕ to ensure that the halo
contributes negligibly to the gravitational potential of the
Earth. We will next employ neutrino interactions to probe
both big and small halos.

III. NEUTRINO INTERACTION WITH THE HALO

Wewill study the effect on the oscillations of left-handed
active neutrinos ψL from their interactions with the halo.
We will consider two simple scalar-neutrino interaction
terms whose effect can be qualitatively different. The first is
the dimension-four operator

L4;int ¼ −yhabφψ̄Laψ
C
Lb þ H:c:; ð11Þ

where ψC
La denotes the charge conjugate, a, b are flavor

indices, hab is a complex and symmetric flavor matrix
whose values are assumed to be of order 1, and y is a small
dimensionless coupling. Furthermore, φ is the background
halo configuration (2), (7) which we rewrite as follows
(switching to the natural units with c ¼ 1):

φðr; tÞ ¼ fðrÞ cosðmtþ δÞ; ð12Þ
where δ is the phase of the halo at the moment t ¼ 0
of neutrino production. The interaction (11) modifies the
dispersion relation of neutrinos by shifting the neutrino
mass. Interactions of this type generically arise in DFSZ-
type axion models (see, e.g., [44,45]).
Another possibility is the dimension-five derivative

operator2

10 10 10 8 10 6 10 4 0.01

0.01

10

104

FIG. 1. The size of the Earth’s dark matter halo (in units of R⊕)
as a function of the scalar field mass, m.

2If φ is a pseudoscalar, one should insert γ5 into the neutrino
current in (13). Since we consider oscillations of ultrarelativistic
active neutrinos, this does not change the subsequent analysis.
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L5;int ¼ −
gab
Λ5

∂μφψ̄Laγ
μψLb; ð13Þ

where Λ5 is the UV scale at which the interaction is
generated. The coupling matrix, gab is Hermitian, and we
assume that its values are of order 1. Interestingly, axion
models, which address both the axion quality problem and
the flavor hierarchies in the Standard Model, generate
interactions of the type (13) with Λ5 ≳ 1013 GeV [46]. In
the background (12), the interaction (13) modifies the
neutrino dispersion relation by shifting the neutrino
momentum. In general, both matrices h, g do not commute
with the neutrino mass matrix in the flavor basis, mν.
We adopt the plane-wave treatment of neutrino oscil-

lations and neglect the effects of neutrino dispersion
and decoherence. The evolution equation for the ultra-
relativistic neutrino wave function νa in the flavor basis
then takes the form

i
dνa
dz

¼ Habνb: ð14Þ

Here z denotes the direction of neutrino propagation, and
the Hamiltonian H is given by

H ¼ 1

2E
U0diagð0;Δm2

0;21;…ÞU†
0 þ ΔH; ð15Þ

where E is the mean neutrino energy, U0 is the vacuum
neutrino mixing matrix, Δm2

0;ij are the mass-squared
differences, and ΔH depends on the choice of the scalar-
neutrino interaction. In particular, the interaction (11)
results in the following contribution to the Hamiltonian:

ΔH4 ¼
y
E
φðh†mν þm†

νhÞ þ 2y2

E
φ2h†h; ð16Þ

where φ is given in Eq. (12).
Next, consider the interaction (13). In the scalar halo

background hosted by the Earth, the temporal component
of the current in Eq. (13) dominates over the gradient part.
Indeed, using Eq. (12) one can estimate j∂0φj ∼mf0,
j∇φj ∼ f0=l, and from Eq. (10) we obtain ml≳ 104.
Hence, the interaction (13) is analogous to the MSWeffect;
it contributes to the Hamiltonian as follows:

ΔH5 ¼
m
Λ5

gφ; ð17Þ

where φ̇ ¼ mφ upon shifting the phase. The Hamiltonian
(15) can be written as

H ¼ 1

2E
Udiagð0;Δm2

21;…ÞU†; ð18Þ

where the unitarymatrixU diagonalizes the full Hamiltonian,
andΔm2

ij are the corresponding z-dependent eigenvalues that
have been shifted by the scalar field background.

Within the adiabatic approximation, the oscillation
probability at the baseline L is given by

PabðLÞ ¼
����
X
i

Uaið0Þe−
i
2E

R
L

0
dz m2

i ðzÞU�
biðLÞ

����
2

; ð19Þ

where z ¼ 0; L are the neutrino production and detection
locations, respectively. For simplicity, we will focus on
two-flavor oscillations. The survival probability for flavor a
is then

PaaðLÞ ¼
1

2
f1þ cos 2θð0Þ cos 2θðLÞ

þ sin 2θð0Þ sin 2θðLÞ cos ð2XeffÞg; ð20Þ
where Xeff ¼ Δm2

effL=ð4EÞ and the effective mass-squared
difference is

Δm2
eff ¼

1

L

Z
L

0

dzΔm2ðzÞ: ð21Þ

In the adiabatic regime, it is useful to expand the oscillation
parameters in (19)–(21) around their vacuum values.
To analyze both types of scalar-neutrino interactions (11)
and (13), we define

β4 ≡ y
P

mν

2E
; β5 ≡ m

2Λ5

; ð22Þ

where
P

mν is the sum of the physical active neutrino
masses. Using β ≪ 1 as the perturbative parameter (where
β denotes either β4 or β5), the first three terms in the
expansion of the mixing angle and the mass-squared
difference are

θðzÞ ¼ θ0 þ βθ1ðzÞ þ β2θ2ðzÞ þ � � � ð23aÞ

Δm2ðzÞ ¼ Δm2
0 þ βΔm2

1ðzÞ þ β2Δm2
2ðzÞ þ � � � ð23bÞ

Substituting into Eq. (18), it is straightforward to obtain

θ1ðzÞ ¼
ΓðzÞ
2Δm2

0

Aθ1; Δm2
1ðzÞ ¼ ΓðzÞAm1; ð24aÞ

θ2ðzÞ ¼
Γ2ðzÞ

ð2Δm2
0Þ2

Aθ2; Δm2
2ðzÞ ¼

Γ2ðzÞ
2Δm2

0

Am2: ð24bÞ

The function ΓðzÞ≡ 4EφðrðzÞ; tðzÞÞ depends on the time-
and space-varying halo profile probed by the neutrino.
For ultrarelativistic neutrinos, t ¼ z, and using Eq. (12)
we obtain

ΓðzÞ ¼ 4EfðzÞ cosðmzþ δÞ: ð25Þ

In Eq. (24), the dimensionless parameters Aθ;m are of
order 1. They depend on the vacuum mixing angle and the
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matrix elements, hab, mνab=
P

mν or gab, for the inter-
actions (11) or (13), respectively. Their exact form is not
important for the subsequent analysis; for completeness, we
quote them in the Appendix.

IV. NEUTRINO PROPAGATION THROUGH
THE HALO

A. Adiabatic oscillations in the big halo

We start with the big halo case (corresponding to a halo
size l≳ R⊕) which can be probed with reactor or accel-
erator neutrinos. For the benchmark value m ¼ 10−10 eV,
the background scalar field oscillates too rapidly for
experiments to resolve any periodic modulation in the
neutrino data, and therefore the oscillation probability
should be averaged over the phase δ of the halo,

hPaaiδ ≡ 1

2π

Z
2π

0

dδ Paa: ð26Þ

We consider neutrino energies in the range 1 MeV–1 GeV
which covers both reactor and accelerator neutrino

experiments. Thus, for the vacuum neutrino mass-squared
difference we take the value appropriate for these experi-
ments, Δm2

0 ¼ 2.5 × 10−3 eV2 [1].
First, we discuss perturbative corrections to the survival

probability in the adiabatic approximation. It is convenient
to introduce the following parameters:

ϵ≡ βf0
m

∼
�

β

10−22

��
m

10−10 eV

��
Mhalo

1015 kg

�
1=2

; ð27Þ

η≡ mE
Δm2

0

¼
�
2.5 × 10−3 eV2

Δm2
0

��
m

10−10 eV

��
E

25 MeV

�
;

ð28Þ

where Mhalo ∼ l3m2f20 and Eq. (10a) has been used.
The parameter ϵ plays the role of an expansion parameter,
while η determines the number of halo oscillations in one
neutrino oscillation length. After integrating (26) over δ
using Eq. (20), the linear in β correction to the survival
probability vanishes. To second order in β, one obtains

hPaaiδ ¼ 1 − sin22θ0sin2X0 − 2ϵ2ðA2
m1sin

22θ0 cosð2X0Þsin2ð2ηX0Þ þ ηAθ1Am1 sin 4θ0 sinð2X0Þ sinð4ηX0Þ
þ 2η2½X0Am2sin22θ0 sinð2X0Þ þ 2A2

θ1ðcos 4θ0sin2X0cos2ð2ηX0Þ þ cos2X0sin2ð2ηX0ÞÞ þ Aθ2 sin 4θ0sin2X0�Þ;
ð29Þ

where X0 ¼ πL=Losc
0 and Losc

0 ¼ 4πE=Δm2
0 is the vacuum

oscillation length. Note that the correction to the vacuum
oscillation probability is qualitatively different depending
on the asymptotic limits of η. When η ≪ 1 (halo oscillation
much slower than the neutrino), the correction is simply
due to the constant background potential (similar to the

MSW effect). Expanding Eq. (29) for small η, the leading
correction term is ∝ ϵ2η2, and hence the perturbation
expansion is valid until ϵ ∼ η−1 ≫ 1. This can be seen in
Fig. 2, where (29) is plotted at E ¼ 2.5 MeV and several
values of ϵη. Neutrinos of similar energies are studied in
medium baseline reactor experiments, and thus we assume
sin2 2θ0 ¼ sin2 2θ13 ¼ 0.087, relevant for the survival
probability Pee [1]. For definiteness, in Fig. 2 we use
the dimension-five coupling (13).
In the second case, when η ≫ 1 (halo oscillates much

faster than the neutrino), the probability is modulated by
small “wiggles” of frequency ∼ηX0=L ∼m.3 Expanding at
large η, one again finds that the leading correction is
∝ ϵ2η2, which would lead to the conclusion that the
perturbation expansion remains valid until ϵ ∼ η−1.
However, the above analysis is applicable only as long as

nonadiabatic effects are small. The adiabatic approximation
is controlled by the gradient of the instantaneous mixing
angle: θ0ðzÞ ≪ Δm2ðzÞ=E. The function θ0ðzÞ not only
depends on the spatial gradient of the halo but also on its

0.0 0.5 1.0 1.5

0.6

0.7

0.8

0.9

1.0

FIG. 2. The averaged neutrino survival probability (29) in the
near-constant background, within the validity of perturbation
theory and the adiabatic approximation, as a function of
X0 ¼ πL=Losc

0 . We assume that the neutrino couples to the halo
via the derivative interaction (13) and take sin2 2θ0 ¼ 0.087,
g11 ¼ 0.5, g12 ¼ i, g22 ¼ 0, η ¼ 0.1, and ϵη ¼ 0.1 (black solid),
0.25 (red dot-dashed). The green dashed line denotes the vacuum
probability.

3Note that the length scale of the halo oscillations, ∼m−1, is
still much larger than the effective length of the neutrino wave
packet (see, e.g., [49,50]), and does not spoil the plane-wave
treatment of neutrino oscillations according to Eq. (14).

PROBING A LOCAL DARK MATTER HALO WITH NEUTRINO … PHYS. REV. D 108, 095009 (2023)

095009-5



much more rapid temporal variation. From Eqs. (24a) and
(25) we find that inside the halo θ0ðzÞ ∼ βEmf0=Δm2

0.
Hence, the expression (20) and the perturbative result (29)
are valid, provided

ϵη2 ≪ 1: ð30Þ

Thus, for neutrinos with η ≫ 1, Eq. (29) is only valid for
ϵ≲ η−2. For larger halo amplitudes (or larger neutrino
energies), the time variation of the oscillation probability
leads to multiple resonances during the neutrino propaga-
tion and, in general, needs to be treated numerically. We
will next study this case.

B. Nonadiabatic regime in the big halo

When the analytic expression (29) is no longer valid,
either because perturbation theory or the adiabatic approxi-
mation breaks down, one has to solve the evolution
equation (14) numerically. The survival probability Paa
of flavor a, at a distance L with boundary conditions
νað0Þ ¼ 1, νbð0Þ ¼ 0 is then given by jνaðLÞj2. Before
presenting the numerical results, it is instructive to ana-
lytically estimate the deviation from the vacuum probability
in the nonadiabatic regime for neutrino energies
E ≫ 25 MeV, corresponding to η ≫ 1. In this case, as
discussed in Sec. IVA, the adiabatic regime breaks down at
ϵ ∼ η−2, long before the correction to the vacuum oscil-
lations becomes sizeable. The probability behavior at larger
values of ϵ is qualitatively different for the dimension-
four (11) and dimension-five (13) interactions, and there-
fore we will treat them separately.
Consider first the derivative coupling (13). Interestingly,

in this case, nonadiabatic effects tend to suppress the
correction until ϵ ∼ 1 ≫ η−1. To see this explicitly, we
rotate to the mass basis in Eq. (14) with the vacuum mixing
matrix, νi ¼ U†

0;iaνa. Using Eqs. (17) and (22), we obtain

i
dνi
dz

¼ m2
i

2E
νi þ 2β5f0 cosðmzþ δÞ g̃ijνj; ð31Þ

where g̃ ¼ U†
0gU0. We expand the mass eigenstates around

their vacuum values,

νiðzÞ ¼ ð1þ ΔνiðzÞÞe−i
m2
i
z

2E ; ð32Þ

assuming that jΔνiðzÞj ≪ 1. Substituting Eq. (32) in
Eq. (31) and assuming η ≫ 1, we find that the deviation
accumulated over one neutrino oscillation period is

jΔνiðLosc
0 Þj ∼ ϵjg̃ij sinð4πηÞj; ð33Þ

where, in the two-flavor scheme, i, j ¼ 1, 2 and i ≠ j.
Thus, for neutrinos with E ≫ 25 MeV, the size of the
correction due to the halo is controlled by the parameter ϵ.

Note again that, even though at η−2 ≲ ϵ ≪ 1 the correction
to the vacuum oscillation is small, the neutrino propaga-
tion is governed by nonadiabatic effects. The neutrino
experiences two resonances at every cycle of the halo time
variation; however, their combined effect is small unless
ϵ≳ 1. This behavior is illustrated in Fig. 3, which shows
the numerical solution for the survival probability, aver-
aged over the halo phase, at E ¼ 1 GeV (corresponding
to η ¼ 40) and several values of ϵ. The neutrinos with
these energies are typical in long baseline accelerator
experiments, and hence for the mixing angle we adopt
the value sin2 2θ0 ¼ sin2 2θ23 ¼ 0.99, relevant for the
survival probability Pμμ [1]. From Fig. 3 we see that
the halo time variation induces secondary oscillations in
the vacuum neutrino oscillations. In the limit ϵ ≫ 1, the
probability, which is averaged over these secondary
oscillations, tends to 1=2.
We next turn to the dimension-four interaction (11). The

important difference is the presence of the quadratic φ term
in the Hamiltonian (17). This term dominates the linear φ
term when ϵ≳ η−1ðPmνÞ=

ffiffiffiffiffiffiffiffiffiffi
Δm2

0

p
. On the other hand,

repeating the computation of the correction ΔνiðzÞ to the
mass eigenstates, we obtain that the quadratic term results
in the following correction:

jΔνiðLosc
0 Þj ∼ ϵ2η2

Δm2
0

ðPmνÞ2
jh̃ijj; ð34Þ

where h̃ ¼ U†
0h

†hU0. We see that, barring the order-one
ratio

ffiffiffiffiffiffiffiffiffiffi
Δm2

0

p
=
P

mν ≳ 0.5, the parameter governing the
nonadiabatic oscillations in the presence of the interaction
(11) is ϵη, which is similar to the adiabatic regime. To
confirm this, we solve numerically Eq. (14) with the
Hamiltonian (15), (16), and compute the survival proba-
bility averaged over the halo phase. The result is shown
in Fig. 4, where we take again E ¼ 1 GeV and several
values of ϵη. Note that the quadratic φ term in the
Hamiltonian (16) does not induce secondary oscillations,
unlike the linear term, and the latter are suppressed.

0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

FIG. 3. The averaged neutrino survival probability (26) in the
oscillatory halo background, where the neutrino couples to the
halo via the derivative interaction (13), assuming sin2 2θ0 ¼ 0.99,
g11 ¼ 0.5, g12 ¼ i, g22 ¼ 0, η ¼ 40, and ϵ ¼ 0.1 (black), 1.0 (thin
blue). The green dashed line denotes the vacuum probability.
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In the limit ϵη ≫ 1, the averaged survival probability tends
to 1=2.
In summary, for neutrinos with η ≪ 1, the small param-

eter controlling the deviation from the vacuum oscillations
is ϵη, and the effect of the halo background is similar to that
of a homogeneous matter potential. For neutrinos with
η ≫ 1, the small parameter is ϵ in the case of the derivative
interaction (13), and ϵη in the case of the marginal
interaction (11). Using the definitions (27), (28), these
results can be rephrased in terms of the neutrino energy, the
halo mass, and the scalar-neutrino coupling parameter, y
orΛ5. This is done in Fig. 5, which shows the values of y [in
the dimension-four interaction (11)] or Λ5 [in the dimen-
sion-five interaction (13)] necessary for a big halo com-
posed of particles with m ¼ 10−10 eV to induce a 10%
deviation in the oscillation probability, at a given neutrino

energy and a given halo mass. Depending on the choice of
the scalar-neutrino interaction term, the sensitivity to the
halo is either energy independent (for y), or reaches its
maximum at E≳ 25 MeV (for Λ5). Thus, neutrinos inter-
acting with sufficiently heavy scalar halos constrain
dimensionless couplings to be y≲ 10−16 and dimension-
five scales Λ5 ≲ 105 GeV.

C. Probing the small (interior) halo

For a scalar mass m≳ 10−9 eV, the halo core is located
inside the Earth. Such a halo can be probed by neutrinos
traversing the Earth, with their source and detector located
on opposite sides of the planet (see Fig. 6 for an
illustration). This setup is typical for atmospheric neutrinos,
and we will consider oscillation parameters relevant for
a GeV-scale neutrino: Δm2

0 ≈ 2.5 × 10−3 eV, sin2 2θ0 ≈
0.087 [1]. Note that, depending on the neutrino mass
ordering and energy, the contribution to the Hamiltonian
(15) generated by the Earth’s matter can significantly affect
atmospheric neutrino oscillations and enhance them reso-
nantly (see [37] and references therein). For simplicity, we
do not consider this matter effect here. This is justified
since, unlike the Earth’s matter, the resonant oscillations
due to the halo can occur for neutrinos in a broad range of
energies, as seen in Sec. IV B.
First, we repeat the analysis of the perturbative correc-

tions in the adiabatic regime. Using Eq. (10b) it is
convenient to rewrite the parameters (27), (28) as

ϵ ∼
�

β

10−23

��
10−9 eV

m

�
5=4

�
Mhalo

1015 kg

�
1=2

; ð35Þ

0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

FIG. 4. The averaged neutrino survival probability (26) in the
oscillatory halo background, where the neutrino couples to the
halo via the interaction (11), assuming sin2 2θ0 ¼ 0.99,
Δm2

0 ¼ 2.5 × 10−3 eV2,
P

mν ¼ 0.1 eV, h11 ¼ 0.5, h12 ¼ i,
h22 ¼ 0, η ¼ 40, and ϵη ¼ 0.5 (black), 2.0 (thin blue). The green
dashed line denotes the vacuum probability.
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FIG. 5. Left: contours showing the value of the scalar-neutrino coupling y in (11), for a given neutrino energy E and halo massMhalo,
at which the relative deviation from the vacuum neutrino oscillation probability is 0.1. Right: a similar contour plot for the suppression
scale Λ5 of the scalar-neutrino interaction (13). We assumem ¼ 10−10 eV (big halo), Δm2

0 ¼ 2.5 × 10−3 eV2, and sin2 2θ0 ¼ 0.99. The
gray shaded region depicts the experimentally excluded values of Mhalo, and the vertical dashed line depicts the value of E at which
η ¼ 1 [see Eq. (28)].
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η ¼ 400

�
2.5 × 10−3 eV2

Δm2
0

��
m

10−9 eV

��
E

1 GeV

�
: ð36Þ

Here the parameter ϵ contains the amplitude of the field f0
in the center of the halo. Next, for atmospheric neutrinos
one clearly obtains η ≫ 1. Additionally, mL ≫ 1 for
neutrinos traversing the Earth. This allows us to compute
the effective mass-squared difference Δm2

eff in Eq. (20)
independently of the rest of the probability. Furthermore,
it is convenient to express Δm2

eff as a function of the
nadir angle Θ of the incoming neutrino. From Eqs. (21),
(23b), (24b), and (25) we obtain

Δm2
eff ¼ Δm2

0

�
1þ 2ϵ2η2Am2

IsðΘ;mÞ
cosΘ

�
; ð37Þ

where we define

IsðΘ;mÞ≡
Z

2s

0

dx f̂2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1 − 2xs
p �

; ð38Þ

s ¼ cosΘ, x ¼ z=R⊕, and f̂ is the normalized halo profile,
f̂ð0Þ ¼ 1. The function IsðΘ;mÞ=cosΘ is plotted in Fig. 7
for the scalar massm ¼ 5 × 10−9 eV at which the halo size
is comparable to that of the Earth, l ≈ 0.5R⊕.
In a realistic setup, due to the limited angular and energy

resolution of a neutrino detector, one is sensitive to the
oscillation probability which is averaged over the position
of the neutrino source and the neutrino energy band
ΔE ≫ m. The averaged probability can be written as

hPaaiδ;L;ΔE ¼ 1 −
1

2
sin2 2θeff : ð39Þ

Using Eqs. (20), (23a), (24a), and (25) we obtain the
effective mixing angle,

θeff ¼ θ0 þ 2ϵ2⊕η
2ðAθ2 þA2

θ1 cot 2θ0Þ; ð40Þ

where ϵ⊕ ¼ ϵf⊕=f0, and f⊕ is the amplitude of the halo at
the Earth’s surface. Clearly, the correction to the mixing
angle is additionally suppressed by a factor f2⊕=f

2
0 com-

pared with the mass-squared difference (37).
As discussed in Sec. IV B, the halo time variation

severely limits the applicability of the adiabatic approxi-
mation for neutrinos with η ≫ 1, and the corrections (37),
(40) are only valid for ϵ ≪ η−2, which, by Eq. (36), limits
the deviation from vacuum oscillation of neutrino with
E ∼ 1 GeV to be ≲1%. When ϵ≳ η−2, one needs to solve
Eq. (14) numerically. From the results of the previous
section one can nevertheless draw a qualitative picture of
what happens at larger values of ϵ. Namely, the correction
to the oscillation probability due to the halo is expected to
be small for all incoming neutrinos until the amplitude

FIG. 6. The path of a neutrino propagating through a halo core
located inside the Earth.
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FIG. 7. The angle-dependent part of the correction in (37) to the
neutrino mass-squared difference as a function of the nadir angle
of the incoming neutrino, for m ¼ 5 × 10−9 eV.
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FIG. 8. The survival probability of the neutrino traversing the
halo inside the Earth, averaged over the halo phase, for several
values of ϵ (35). We assume the derivative scalar coupling (13),
m ¼ 3 × 10−9 eV, E ¼ 1 GeV, and the vacuum oscillation
parameters Δm2

0 ≈ 2.5 × 10−3 eV, sin2 2θ0 ≈ 0.99. When ϵ ¼
0.1 (black line), the deviation from the vacuum oscillation
(green, dot-dashed line) is only sizeable at small nadir angles
Θ corresponding to the neutrino traversing the halo core (see
Fig. 6). When ϵ ¼ 0.5 (red, dashed line), the deviation is visible
at all Θ. For even higher values, ϵ ¼ 1.5 (thin, blue line), the
probability tends to 1=2 (gray, dashed line). All probabilities are
plotted with the step ΔΘ ¼ 0.01.
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of the field in the halo center is such that ϵ ∼ η−1 [for the
interaction (11)] or ϵ ∼ 1 [for the interaction (13)].
Furthermore, if the halo mass increases, the largest value
of the nadir angle Θ at which the oscillation probability is
significantly affected by the halo also increases.
As an illustration, Fig. 8 shows an example of the

numerical calculation of the survival probability, averaged
according to Eq. (26), as a function of Θ, where, for
concreteness, we choose the interaction (13). We also take
the scalar field mass m ¼ 3 × 10−9 eV, corresponding to
the halo size close to the size of the Earth, l ≈ 0.65R⊕. We
see indeed that the magnitude of the deviation from the

vacuum probability is controlled by the parameter ϵ. For
ϵ ≪ 1, the effect may only be visible at small Θ, when the
neutrino passes through the core of the halo, owing to the
fact that l=Losc

0 ∼ 10 for l ∼ R⊕. In the opposite regime,
ϵ ≫ 1, the probability tends to 1=2 irrespective of the angle.
Figure 9 shows the survival probability averaged over the

incoming angle Θ in the range −10° < Θ < 10°, for the
same parameters as in Fig. 8. We see that a 10% deviation
from the vacuum probability is achieved at ϵ ≈ 0.1; at ϵ≳ 1
the probability becomes close to 1=2.
What happens at much larger values of m corresponding

to much smaller halos? Assume that the neutrino detector
has a certain angular resolution Θres. By smearing (35) over
Θres one can define an effective expansion parameter:

ϵeff ¼ Θ−1
res

Z
Θres

0

dΘ ϵðΘÞ; ð41Þ

where

ϵðΘÞ ¼ β

m
fðR⊕ sinΘÞ; ð42Þ

corresponds to the maximal amplitude of the halo
probed by the neutrino with the angle Θ. At a given m
and E, one can infer the halo mass corresponding to, e.g.,
ϵeffη ¼ 0.1 [for the interaction (11)] or ϵeff ¼ 0.1 [for the
interaction (13)]. The result is shown in Fig. 10, where, for
concreteness, we take Θres ¼ 20°. We see that the absence
of the constraint on Mhalo from the lunar laser ranging
allows us to probe much lower values of y (or higher
values of Λ5). In particular, for m ∼ 10−9 eV, couplings as
small as 10−21 and scales as large as 1010 GeV can be
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FIG. 9. The survival probability of the neutrino traversing the
halo inside the Earth, averaged over the halo phase and the
incoming angleΘ in the range−10° < Θ < 10°, as a function of ϵ
[Eq. (35)]. We assume the derivative scalar coupling (13),
m ¼ 3 × 10−9 eV, E ¼ 1 GeV, and the vacuum oscillation
parameters Δm2

0 ≈ 2.5 × 10−3 eV, sin2 2θ0 ≈ 0.99. As ϵ grows,
the probability interpolates between its vacuum value and 1=2
(gray dashed lines). The big colored dots correspond to the curves
shown in Fig. 8.
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FIG. 10. Left: contours showing the values of the scalar-neutrino coupling y in (11) for a given scalar field mass m ≳ 10−9 eV (small
halo) and halo mass Mhalo, at which the relative deviation from the vacuum neutrino oscillation probability is 0.1. Right: a similar
contour plot for the suppression scale Λ5 of the scalar-neutrino interaction (13). We assume the angular resolution of the neutrino
detector Θres ¼ 20°, the neutrino energy E ¼ 1 GeV, Δm2

0 ¼ 2.5 × 10−3 eV2, and sin2 2θ0 ¼ 0.99. The gray shaded region depicts the
values of Mhalo > 0.1M⊕.
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probed. However, the sensitivity diminishes as the scalar
field mass increases since this corresponds to decreasing
the halo size, which then contributes less to the integral in
Eq. (41). Also, changing Θres leads to a proportional
change in the sensitivity.

V. LOCAL VECTOR HALO

A. Nonrelativistic vector soliton

In this section we repeat the analysis in the previous
sections for the case when the halo is made of massive
vector particles, such as a dark photon. Coupling the Uð1Þ
vector field to the neutrino current leads to new effects in
the neutrino oscillations due to the polarization [22,23,34].
We again assume the Earth hosts the halo, but this time
arising from a Uð1Þ massive vector field Aμ. To obtain a
soliton solution, we consider radially polarized, spheri-
cally symmetric configurations described by the ansatz
(see also [51])

Atðr; tÞ ¼ cuðrÞ cosωt; Arðr; tÞ ¼ vðrÞ sinωt; ð43Þ

and Aθ ¼ Aϕ ¼ 0. In the gravitational background (1), the
equations of motion for the components u, v are

ωvðrÞ − cu0ðrÞ ¼ m2c4

ω
NðrÞvðrÞ; ð44aÞ

1

r2
d
dr

ðr2ðcu0ðrÞ − ωvðrÞÞÞ ¼ m2c3
uðrÞ
NðrÞ ; ð44bÞ

where m is the mass of the vector boson. These equations
are analogous to those appearing in the studies of
self-gravitating, relativistic, (complex) vector field
configurations—Proca stars [52]. The important differ-
ence is, however, that in our case the functionNðrÞ is fixed
by the background metric.
Since the equation of motion does not contain the second

time derivative of At, the dynamical degree of freedom is
associated with the function vðrÞ. Nevertheless, it is
convenient to write Eq. (44) as a differential equation on
uðrÞ. Taking the nonrelativistic limit ω ¼ mc2 þ E, with
jEj ≪ mc2, and using the units (4), we obtain, to leading
order in c,

−
1

x2
d
dx

�
x2

du
dx

�
þ MΦ̃0

MΦ̃ − E

du
dx

þ 2ðMΦ̃ − EÞu ¼ 0;

ð45aÞ

v ¼ mR⊕

2ðE −MΦ̃Þ
du
dx

; ð45bÞ

where Φ̃ is given in Eq. (6). Unlike the scalar field [Eq. (5)],
there is now a “friction” term in Eq. (45a). This term

becomes negligible in the limits x → 0 and x → ∞, in
which one recovers the scalar wave function.
The equation of motion (45a) is solved numerically for

the ground state u0ðxÞwhere the usual boundary conditions
of regularity at the origin and vanishing at infinity are
imposed. A particular ground-state solution u0ðxÞ, v0ðxÞ is
shown in Fig. 11. Note that the vector halo profile is not
monotonic in x; in particular, u00 vanishes together with
MΦ̃ − E0 at a finite value of x. It is reasonable to use this
value as the size of the vector halo xl. The vector halo size
exhibits the same asymptotic behavior as the scalar halo (8)
(up to order-one factors), and therefore the estimates (10)
remain valid in the vector case.

B. Vector-neutrino coupling

We turn to the vector-neutrino coupling and consider the
following interaction:

LV;int ¼ −yVκabAμψ̄Laγ
μψLb; ð46Þ

where yV is a small dimensionless coupling and the
Hermitian coupling matrix, κab has order one matrix
elements. We are agnostic about a particular model generat-
ing this interaction; as an example, Aμ can be identified with
theUð1ÞLe−Lμ

andUð1ÞLμ−Lτ
gauge bosons that give rise to a

flavor nonuniversal vector-neutrino coupling [34,53,54].
The main difference between the neutrino interaction

(46) with the radially polarized vector halo and the
derivative interaction (13) with the scalar halo is that in
the former case the spatial component of the neutrino
current dominates for the range of vector field masses we
are interested in. Indeed, using Eqs. (10) and (45b), we
obtain jv0j ≫ ju0j provided 10−12 eV≲m≲ 10−3 eV.
The interaction (46) modifies the neutrino dispersion

relation by shifting the neutrino momentum. Assuming E ≫
yV jv0j along the neutrino trajectory, one obtains the follow-
ing contribution to the Hamiltonian in the flavor basis:

ΔHV ¼ jEn⃗1þ yVA⃗κj − E1; ð47Þ
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FIG. 11. A ground-state solution of the vector field equation
of motion (45), assuming M ¼ 2. The black dashed line
depicts the normalized function u0ðxÞ, while the red line
depicts v0ðxÞ=ðmR⊕Þ.
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where n⃗ is a unit vector in the direction of neutrino
propagation and 1 is the 2 × 2 identity matrix. If one further
assumes that yV jv0j ≪ Δm2

0=E, then Eq. (47) simplifies to

ΔHV ¼ yVn⃗ · A⃗ κ: ð48Þ

Comparing with the derivative coupling to the scalar
halo (17), we see that the perturbative analysis of Sec. III
readily applies to the vector halo. The perturbative parameter
is now β ¼ yV, and the function ΓðzÞ is defined as

ΓðzÞ¼2En⃗ · A⃗¼2E

�
z−

L
2

�
v0ðrðzÞÞ
rðzÞ cosðmzþδÞ: ð49Þ

We work in the coordinate system shown in Fig. 6 where
r2ðzÞ ¼ z2 þ R2

⊕ − 2zR⊕ cosΘ. Finally, the parameters
Aθ;m are given in Eq. (A1) of the Appendix, with gab
replaced by κab.
For the big halo, owing to its radial polarization,

terrestrial experiments involving reactor or accelerator
neutrinos with baselines L ≪ R⊕ are less advantageous
than in the scalar case, since the neutrino propagates almost
orthogonally to the vector A⃗. However for the small halo,
the effects can be much larger, and it is straightforward to
derive the correction to the mass-squared difference
[cf. Eq. (37)],

Δm2
eff ¼ Δm2

0

�
1þ 1

2
ϵ2η2Am2

IvðΘ;mÞ
cosΘ

�
; ð50Þ

where f0 is replaced by v0ð0Þ in the definition of ϵ (27),

IvðΘ;mÞ≡
Z

2s

0

dx
ðx − sÞ2

x2 þ 1 − 2xs
v̂20
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1 − 2xs
p �

;

ð51Þ

and v̂0 is normalized so that v̂0 ¼ 1 at the maximum. The
function IvðΘ;mÞ=cosΘ is shown in Fig. 12 for the vector

mass m ¼ 5 × 10−9 eV. The function is monotonic even
though the radial component of the halo profile v0 is not.
The effective mixing angle is given by Eq. (40) where now
ϵ⊕ ¼ ϵv0ðR⊕Þ=v0ð0Þ. Note that the condition yV jv0j ≪
Δm2

0=E made to simplify the Hamiltonian (47) is equiv-
alent to the condition ϵη ≪ 1 corresponding to the validity
of perturbation theory.

When the adiabatic condition (30) is violated, the
equation of motion (14) with the Hamiltonian (15), (47)
must be solved numerically. Let us focus on the most
interesting case of a small halo for whichm≳ 10−9 eV. We
introduce again the parameter ϵeff via Eq. (41), where now
ϵðΘÞ ¼ yVv0ðR⊕ sinΘÞ=m, and compute the halo mass
corresponding to ϵeff ¼ 0.1, that is, to ∼10% relative
difference between the measured neutrino survival proba-
bilities in the presence and absence of the halo. The result
is shown in Fig. 13. It closely resembles the plot on the
right panel of Fig. 10 upon changing the variable
Λ5 ↦ m=ð2yVÞ. This is because of the similarity between
the neutrino coupling (46) to the radially polarized vector
halo and the derivative coupling (11) to the scalar halo: both
interactions provide linear in the halo field and (as soon as
E ≫ m, both types of interactions lead to the linear in φ (or
Aμ) and energy-independent correction Hamiltonian.

VI. CONCLUSION

The background potential of massive, astrophysical
objects can bound dark matter particles (scalars or vector
bosons) to form a halo surrounding the object. Assuming
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FIG. 12. The angle-dependent part of the vector halo correc-
tion in (50) to the neutrino mass-squared difference as a
function of the nadir angle of the incoming neutrino, assuming
m ¼ 5 × 10−9 eV.
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FIG. 13. Contours showing the values of the vector-neutrino
coupling yV in (46) for a given vector field mass m≳ 10−9 eV
(small halo) and halo mass Mhalo, at which the relative deviation
from the vacuum neutrino oscillation probability is 0.1. We
assume the angular resolution of the neutrino detector is Θres ¼
20°, the neutrino energy E ¼ 1 GeV, Δm2

0 ¼ 2.5 × 10−3 eV2,
and sin2 2θ0 ¼ 0.99. The gray shaded region depicts the values of
Mhalo > 0.1M⊕.
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that the possible dark matter interactions, either self or
with ordinary matter, play no role in sustaining the halo,
one can analytically solve for the nonrelativistic, solitonic
halo configuration in a spherically symmetric gravitational
potential due to the host body. For the Earth as the host
body, the halo extends beyond the Earth’s surface and
remains homogeneous for 10−10 eV≲m≲ 10−9 eV, while
form ≫ 10−9 eV the halo forms within the Earth’s interior.
Furthermore, the density of dark matter in the halo can be
much larger than the average relic density, thereby increas-
ing the possibility to detect it.
An interesting way to detect such a local dark matter halo

is to assume that it interacts with the neutrino. There are
several dark matter-neutrino interactions that modify the
neutrino dispersion relation, and assuming two-flavor oscil-
lations and neglecting the MSW effect, we computed the
distortions of the vacuum oscillations caused by the halo.
The corresponding survival probability can be calculated
analytically in perturbation theory and within the adiabatic
approximation. Beyond the domain of validity of the
adiabatic approximation, the survival probability was com-
puted numerically. Nonadiabatic effects manifest themselves
as multiple resonances during the neutrino propagation,
caused by the halo time variation. Despite the resonances,
the deviation from the vacuum oscillation probability can
still be small if the halo remains sufficiently light.
For dark matter masses m≳ 10−10 eV, one cannot rely

on the periodic modulation of neutrino parameters that
follows from the time variation of the coherent dark matter
background (see, e.g., [21]). Instead, the correction to the
oscillation probability is due to the enhanced dark matter
density in the halo. We showed that for neutrino energies
ðE=25 MeVÞ ≫ ð10−9 eV=mÞ × ðΔm2

0=2.5 × 10−3 eV2Þ,
corresponding to η ≫ 1, the visible correction is driven by
the nonadiabatic effects. Depending on the halo mass, these
effects can alter observably the average oscillation prob-
ability for a broad range of energies, including those typical
for accelerator and atmospheric neutrinos.
Since there is no strong bound on the total mass of DM,

which can possibly be accumulated inside the Earth,
assuming a sufficiently heavy local DM halo puts much
stronger constraints on the DM-neutrino interactions than
other terrestrial, solar, astrophysical, or cosmological con-
siderations (see, e.g., [21,22,28,31]). In the big halo case,
corresponding to m ≪ 10−9 eV, we are able to probe the
scalar-neutrino Yukawa-like coupling (11) down to 10−15,
while the effective scale of the derivative coupling (13) can
be probed up to 105 GeV. For the small (interior) halo,
owing to the weaker constraint on the halo mass, the
Yukawa-like coupling down to 10−21 and the effective scale
of the derivative coupling up to 1010 GeV, can potentially
be observed. Constraints can also be obtained for a small
halo comprising massive, Uð1Þ vector particles, where the

vector-neutrino current coupling as small as 10−28 can be
probed. These bounds assume a sensitivity to detect an
∼10% deviation from standard neutrino oscillations. If the
sensitivity is higher (see, e.g., [28]), the bounds are lowered
proportionally.
There are several interesting avenues to extend the

analysis in this work. These include performing a more
complete analysis of three-flavor oscillations and studying
the effects of CP violation. Nevertheless, we expect that the
bounds on the dark matter-neutrino couplings discussed in
this paper will remain qualitatively the same in the three-
flavor analysis. Furthermore, it would be interesting to
study effects from other neutrino sources, such as the Sun.
Next, our study of the vector halo was restricted to the
simple radially polarized case, hence the similar effects
between the vector-neutrino current coupling and the
derivative coupling to the scalar halo. It would be interest-
ing to study other types of polarization, since this will
introduce an additional directional dependence and daily
modulations in the neutrino data (see, e.g., [34]). Finally,
other possible interactions between the dark matter and
Standard Model fields can be considered. For example, in
the case of an axion, couplings to nuclei and electrons can
play a role in the formation and structure of the halo,
affecting the predictions of the halo mass.
It is intriguing that a local dark matter halo could exist

surrounding the Earth. Its possible interactions with neu-
trinos provide a novel way to search for the elusive dark
matter particle in neutrino oscillation experiments.
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APPENDIX

In this Appendix we give the analytic expressions for the
Aθ;m parameters that appear in (24a) and (24b). For the
dimension-five interaction (13) where gab is Hermitian, we
obtain (see also [25])

Aθ1 ¼ 2Reðg12Þ cos 2θ0 − ðg22 − g11Þ sin 2θ0; ðA1aÞ

Am1 ¼ 2Reðg12Þ sin 2θ0 þ ðg22 − g11Þ cos 2θ0; ðA1bÞ

Aθ2 ¼ −2Aθ1Am1 þ 4Im2ðg12Þ cot 2θ0; ðA1cÞ

Am2 ¼ −A2
m1 þ 4jg12j2 þ ðg22 − g11Þ2: ðA1dÞ

Instead, in the case of the marginal interaction (11), we
obtain
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Aθ1 ¼
2P
mν

ðRe½ðm11 þm22Þh�12 þm�
12ðh11 þ h22Þ� cos 2θ0 − Re½m22h�22 −m11h�11� sin 2θ0Þ; ðA2aÞ

Am1 ¼
2P
mν

ðRe½ðm11 þm22Þh�12 þm�
12ðh11 þ h22Þ� sin 2θ0 þ Re½m22h�22 −m11h�11� cos 2θ0Þ; ðA2bÞ

Aθ2 ¼ −2Aθ1Am1 þ 4Im2½m12h�11 −m11h�12 þm22h�12 −m12h�22� cot 2θ0
þ 2Δm2

0

ðPmνÞ2
ð2Re½ðh11 þ h22Þh�12� cos 2θ0 þ ðjh11j2 − jh22j2Þ sin 2θ0Þ; ðA2cÞ

Am2 ¼ −A2
m1 þ

2

ðPmνÞ2
fΔm2

0ððjh22j2 − jh11j2Þ cos 2θ0 þ 2Re½ðh11 þ h22Þh�12� sin 2θ0Þ þ Re½ðm11h�11 −m22h�22Þ2

− 2m11m�
22h

�
11h22 þ 4ðm11m22h�212 þm11m12h�11h

�
12 þm2

12h
�
11h

�
22 þm12m22h�12h

�
22 þm12m�

11h12h
�
22

þm12m�
22h12h

�
11Þ� þ 2jm12j2ðjh11j2 þ jh22j2Þ þ 2ðjm11j2 þ jm22j2Þjh12j2 þ jh11j2jm11j2 þ jh22j2jm22j2g; ðA2dÞ

where mij are the elements of the neutrino mass matrix in the flavor basis.
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