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We consider the possibility to detect cosmic light dark matter (DM), i.e., axions and dark photons, of
mass ∼10−6 eV and ∼10−4 eV, by magnetic excitation in a magnet with strong hyperfine interaction.
In particular, we consider a canted antiferromagnet, MnCO3, as a concrete candidate material. With spin
transfer between nuclear and electron spins allowed by the hyperfine interaction, nuclear spins become
naturally highly polarized due to an effective (electron-spin-induced) magnetic field, and have long-range
interactions with each other. The collective precession of nuclear spins, i.e., a nuclear magnon, can be
generated by the DM field through the nucleon-DM interaction, while they are also sensitive to the
electron-DM interaction through the electron-nuclear spin mixing. Compared with conventional nuclear-
spin precession experiments, this system as a DM sensor is sensitive to higher frequency needing only a
small static magnetic field applied. The system also has collective precession of electron spins, mixed with
nuclear spins, as the additional channels that can be used for DM probes. We estimate the sensitivity under
appropriate readout setups such as an inductive pick-up loop associated with an LC resonant circuit, or a
photon cavity with a photon counting device. We show that this method covers an unexplored parameter
region of light bosonic DM.
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I. INTRODUCTION

Dark matter (DM) has been the unanswered mystery of
particle physics for decades. Its existence, covering 80% of
matter in the Universe, has been vividly suggested and
supported by both astrophysical and cosmological evidence
(for a review, see, e.g., Ref. [1]). However, DM cannot be
reasonably accounted for by particles already known in the
standard model (SM), and its particle-physics properties are
still unknown.Undoubtedly, DMwould provide us priceless
hints for understanding physics beyond the standard model,
even if we discover just a few secrets of its anatomy directly.
Light bosonic particles with mass 10−22 eV–keV

are possible candidates of DM. These include axions,
pseudo Nambu-Goldstone bosons emerging from the
Peccei–Quinn (PQ) symmetry breaking [2–5], including

axion-like-particles (ALPs) motivated from string theory
[6–8], and dark photons [9–12], spin-1 vector bosons
kinetically mixing with ordinary photons. Generally, they
have small mass with large number density which causes
them to effectively behave like a coherent classical field.
This type of DM is out of reach from the nuclear (electron)
recoil experiments, e.g., CDMS [13–15], XENON [16,17],
and PANDA [18,19]; these experiments have excellent
sensitivity for ∼GeV (MeV) DM, however, for the DM of
mass below GeV (MeV) the sensitivities become worse
rapidly because the recoil energy is severely suppressed
due to the smallness of the momentum of DM. So far,
constraints on the sub-MeV and light DM are weak and
require dedicated methods for their detection.
Interestingly, physical excitations in condensed matter

show their unique and bizarrely various range of excitation
energy which is sensitive to the energy deposition of the
sub-eV scale. They also provide rich types of interaction
between them and DM. The scattering and absorption of
light DM with/via the excitation in a solid have been
studied and experimented on by, e.g., SENSEI [20], QUAX
[21], and CASPEr [22–24]. They aim to utilize electronic
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states, collective electron spins, and nuclear spins in
condensed matter, respectively. Various types of excitation
are showing their potential: for example, electrons [25–41],
phonons [42–46], electron spins or magnons [45,47–50],
electron states in topological material [51–53], and
qubits [54,55].
In this paper, we consider the nuclear magnetization

system with a strong hyperfine interaction [56–60], which
allows the mixing between electron spin and nuclear spin.
At low temperature, nuclear spins are highly polarized due
to the electron-spin-induced effective magnetic field of
Oð10Þ T. Besides, nuclear spins have a long-range inter-
action with each other via the so-called Suhl–Nakamura
exchange interaction [61,62], which ensures the existence
of nuclear spin waves (or nuclear magnons in the quantized
version [60]). The presence of DM can excite the mixed
state between electron and nuclear spin precessions, result-
ing in macroscopically observable magnetization, which is
enhanced by a factor of Oð10Þ −Oð103Þ compared with
the typical nuclear magnetization signal. According to
the eigenfrequency profile of material with a strong hyper-
fine interaction such as MnCO3 [58,59,63,64], CsMnF3
[65–67], CoCO3 [57], and FeBO3 [57], they may probe
∼μeV–meV DM with good sensitivity to various inter-
action parameters through either electron-DM or nucleon-
DM coupling.1 This kind of system also has electron-spin
precession modes, mixed with nuclear spins, as an addi-
tional channel that can be used for DM probes. In order to
show the possibility of using magnetically ordered material
with strong hyperfine interaction for DM detection, we
focus on the canted antiferromagnetic material MnCO3,
which has strong hyperfine interaction with 100%magnetic
isotope, as a concrete example. We explore in detail its
resonance profile and response to the DM field composed
of axions or dark photons under the sensible readout setup
such as an inductive pick-up loop associated with an LC
resonant circuit, or a photon cavity with a photon counting
device. We show that a sizable signal from a DM axion or
dark photons can be expected.
We summarize the advantage of a magnetic system with

hyperfine interaction as follows:
(1) Nuclear spins are naturally highly polarized, which

leads to a large resonance signal.
(2) Sensitivity at high DM mass is achievable with a

small applied static field, compared with a nuclear
magnetic system without hyperfine interaction.

(3) There are sensitivities to both electron-DM or
nucleon-DM couplings.

(4) Readout is enhanced or becomes possible by the
presence of mixing of electron spins to nuclear spins.

The construction of this paper is as follows. We start with
a review of DM focusing on the two promising candidates,
axions and dark photons in Sec. II. We elaborate on the
properties of the material in Sec. III: the magnetic material
with strong hyperfine interaction and excitation of hybrid-
ized precession state of electron and nuclear spins induced
by DM. In Sec. IV, we show the sensitivity of light DM
detection with several concrete proposals of experimental
setup. We conclude in Sec. V.

II. DARK MATTER TARGET

We consider two candidates of light bosonic DM, axions
and dark photons, whose masses correspond to the energy
which can cause the magnetic resonance in a magnet with
hyperfine interaction. Because their masses are small, their
number densities are large such that theybehave coherently as
a classical field andmay act as an oscillatingmagnetic field in
the view of spins of SM particles. If the coupling is strong
enough, spins insidemagneticmaterial can be perturbed from
the ground state and macroscopically produce an observable
signal as oscillating magnetization. We review models of
axions anddarkphotons, anddescribe the oscillating effective
magnetic field induced by them. We illustrate in Sec. III the
response of magnet excited by DM, based on MnCO3 as a
concrete example material with strong hyperfine interaction.
In this section, natural unit is adopted.

A. DM axion

QCD axions and ALPs are candidates for the DM
particle. QCD axions are pseudo Nambu-Goldstone bosons
arising from the PQ symmetry breaking [2–5]. They are
proposed to solve the strong CP problem. QCD axions
interact with gluons, photons, and SM fermions with
interaction strength determined by the axion mass. On
the other hand, ALPs are the generalization of QCD axions;
they are particles that interact with SM particles with a
similar form of interactions but do not have roles to solve
the strong CP problem and do not have a specific relation
between the mass and the coupling with SM particles. We
collectively call QCD axions and ALPs as simply “axions.”

1. Axion model and effective Lagrangian

Typically, the QCD axion is introduced as the Nambu-
Goldstone boson from spontaneous symmetry breaking of
a new U(1) symmetry, the so-called U(1) PQ symmetry,
with chiral anomaly associated with the color SU(3)
symmetry and also electromagnetic symmetry in some
models. With this mechanism called the PQ mechanism,
axion effective Lagrangian reads as

La ¼
1

2
ð∂μaÞ2 þ

1

2
m2

aa2 þ
1

4
gaγγaFμνF̃μν

þ gaNN
∂μa

2mN
N̄γμγ5N þ gaee

∂μa

2me
ēγμγ5e; ð2:1Þ

1To achieve sensitivity in such a range of frequency, techni-
cally, a nuclear magnetic system without a strong hyperfine
interaction needs an applied magnetic field of magnitude larger
than 30 T for the experimental setup.
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where a,Nð≡p; nÞ, and e represent axion, nucleon (proton,
neutron), and electron fields, respectively; ma is the axion
mass; and Fμν is the field strength tensor of photons.
Coupling constants gaγγ , gaNN , and gaee are model depen-
dent and can be written in the form

gapp ¼mp
cap
fa

; gann ¼mn
can
fa

; gaee ¼me
cae
fa

; ð2:2Þ

showing the dependence on the axion decay constant fa
and model-dependent constants caf with f ¼ p, n, e.
The QCD axion mass ma is related to scale fa by the
relation [68]

ma ≃ 5.7 ×

�
1012 GeV

fa

�
μeV; ð2:3Þ

which implies a model-dependent relation between the
coupling constant gaff and the axion mass ma.
As explicit examples of the QCD axion model, there are

several famous ones adopted as building blocks of others.
The main difference lies in how the anomaly of the Uð1ÞPQ
symmetry is introduced. The model of Kim-Shifman-
Vainshtein-Zakharov (KSVZ) type introduces heavy
quarks Qs which transform under PQ charge chirally
[69,70]. The other one is the Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ) type model which contains two Higgs
doublets responsible for the electroweak symmetry break-
ing and assigns the PQ charges to SM particles and to
Higgs bosons [71,72]. For the KSVZ model of axions, the
model-dependent parameters are

cKSVZap ¼ −0.47ð3Þ; cKSVZan ¼ −0.02ð3Þ; ð2:4Þ

cKSVZae ¼ 0: ð2:5Þ

For the DFSZ model of axions,

cDFSZap ¼ −0.182 − 0.435sin2β � 0.025;

cDFSZan ¼ 0.160þ 0.414sin2β � 0.025; ð2:6Þ

cDFSZae ¼ 1

3
sin2 β; ð2:7Þ

where β is the ratio of the vacuum expectation values of two
Higgs doublets. It should be noted that the value of
parameter β is constrained by the perturbativity of the
Yukawa coupling as 0.28 < tan β < 140 [73]. Recently
flavorful axion models are also considered [74,75], which
also predict sizable axion-fermion couplings.
On the other hand, ALPs in general are expected to

possess the same Lagrangian as shown in Eq. (2.1) while
there is no relationship between its mass ma and the
coupling gaff.

2. Axion-induced magnetic field

We now estimate the magnitude of the axion-induced
effective magnetic field acting on spins of SM particles
assuming that all of the DM is composed of axions. Recall
that the axion-nucleon interaction is given by the fourth
term of Eq. (2.1). In the nonrelativistic limit, the interaction
reduces to the form

LaNN ¼ gaNN

mN
ð∇!aÞ · S⃗N; ð2:8Þ

with S⃗N representing the nucleon spin. This shows us that
the axion field acts as an effective magnetic field interacting
with nuclear spins. Below, we estimate the amplitude of the
effective magnetic field from the axion properties.
We consider the axion DM in the mass range

10−6 eV≲ma ≲ 10−4 eV. We adopt the standard cold
DM velocity profiles that the DM velocity vDM is expected
to be ∼10−3 with spreadingΔvDM of the same order. The de
Broglie wavelength of axion DM,

λDM ¼ 2π

mavDM
∼Oð0.01Þ −Oð1Þ km; ð2:9Þ

is much longer than the size of the magnetic material used
for the experiment. The occupation number of the axion
DM is also large due to the small mass, so we treat the axion
DM as a classical field that interacts coherently with
nuclear spins inside the magnetic material within coherence
time

τDM ¼ 2π

mav2DM
∼Oð0.01Þ −Oð1Þ ms: ð2:10Þ

We parametrize the axion DM classical field as

aðx⃗; tÞ¼ a0 sinðmatþmv2DMt=2−mav⃗DM · x⃗þδÞ; ð2:11Þ

where a0 is the oscillation amplitude with which the energy
density is given by ρa ¼ 1

2
m2

aa20, while δ is a random phase.
We assume ρa ¼ ρDM, where ρDM is the local DM density
around the Earth. In our numerical calculation, we take

ρDM ¼ 0.4 GeV=cm3: ð2:12Þ

We assume that the oscillation persists in its coherent phase
for time interval τDM, each interval connected with a
discrete jump of v⃗DM and δ. Owing to the velocity
distribution, the bandwidth of the field is given by

ΔωDM ¼ mav2DM ¼ 2π

τDM
; ð2:13Þ

which translates to quality factor
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QDM ¼ ma

ΔωDM
∼ 106: ð2:14Þ

To consider the interaction between nuclear spin I⃗ and
the axion, we need to take into account the nucleon spin
contribution to the nuclear spin. This is shown in detail in
Appendix A. Matching the nucleon spin-axion interaction
to the interaction between the nuclear magnetic moment μ⃗I
and an arbitrary magnetic field h⃗ of the form Lint ¼ μ⃗I · h⃗,
we can define the effective magnetic field induced by the
axion, which is felt by the nuclear spin as

h⃗axionn ¼ 1

γn

g̃aI
mN

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
v⃗DM sin ðmatþ δÞ; ð2:15Þ

where g̃aI ≡ gappσp þ gannσn with σp;n denoting the spin
contribution of proton and neutron to nuclear spin, and
γn ≡ gIμN is the nuclear gyromagnetic ratio defined by the
nuclear g factor gI and the nuclear magneton μN ≡ e=2mp.
Note that the value of γn depends on the magnetic isotope,
while the typical order of magnitude is Oð107Þ rad s−1 T−1.
On the other hand, the axion also interacts with an

electron through the last term of Eq. (2.1). Similarly to the
case of the nuclear spin, we introduce the axion-induced
effective magnetic field for the electron spin as

h⃗axione ¼ 1

γe

gaee
me

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
v⃗DM sinðmatþ δÞ; ð2:16Þ

where γe ¼ 1.760 × 1011 rad s−1 T−1 is the electron gyro-
magnetic ratio.
As a result, we obtain the amplitude of the effective

magnetic field as

haxionn ¼ 4.0 × 10−18 T ×

�
gaNN

10−10

�

×

�
ρDM

0.4 GeV=cm3

�
1=2

�
vDM=c
10−3

�

×

�
5 × 107 rad s−1 T−1

γn

��
σp þ σn
0.5

�
; ð2:17Þ

haxione ¼ 4.2 × 10−18 T ×

�
gaee
10−10

��
ρDM

0.4 GeV=cm3

�
1=2

×

�
vDM=c
10−3

�
; ð2:18Þ

for gapp ¼ gann ¼ gaNN.

B. DM dark photon

The dark photon is introduced as a new gauge boson of a
new dark U(1) gauge symmetry in addition to the SM
symmetry. Even when SM particles do not have dark U(1)
charges, kinetic mixing between the dark photon and the

SM photon becomes a portal for the SM particles to interact
with dark photons. The massive dark photon that is light
enough and weakly interacts with SM particles is a viable
candidate of DM from the viewpoint of the up-to-present
observable constraints. See Refs. [76–86] for production
mechanisms of dark photon DM. The general review of the
dark photon is given in Ref. [12], while the careful
treatment of dark photon polarization and its effect on
actual experiments are discussed in Ref. [87].

1. Dark photon model

We introduce the dark photon, a massive vector field
(denoted as A0

μ) which couples to the SM fields only
through the kinetic mixing with the ordinary photon. The
Lagrangian includes the following terms:

L ∋
1

2
mγ0A0

μA0μ −
1

4
ðF0

μνÞ2 −
1

4
ðF μνÞ2 þ

ϵ

2
F0
μνF μν

þ eJEMμ Aμ; ð2:19Þ

where Aμ; A0
μ are the gauge fields associated with the

electromagnetic U(1) symmetry and dark U(1) symmetry,
respectively, F μν ≡ ∂μAν − ∂νAμ and F0

μν ≡ ∂μA0
ν − ∂νA0

μ

are the corresponding field strength tensors, while JEMμ is
the electromagnetic current of the SM particles. In addition,
ϵ is the kinetic mixing parameter that should be much
smaller than unity. In this basis, there is no direct coupling
between the dark photon and the SM fermions.
We can also work in the basis in which the kinetic

mixing of dark and ordinary photons vanishes. There is a
mass eigenstate with zero mass, which corresponds to the
ordinary photon as

Aμ ≡Aμ − ϵA0
μ: ð2:20Þ

The Lagrangian can be expressed as

L ∋
1

2
m2

γ0A
0
μA0μ −

1

4
ðF0

μνÞ2 −
1

4
ðFμνÞ2

þ eJEMμ ðAμ þ ϵA0μÞ: ð2:21Þ

Here and hereafter, we neglect terms of Oðϵ2Þ because
ϵ ≪ 1. We can see that, in this basis, the dark photon A0

μ

obeys the Proca Lagrangian with ϵeJEMμ A0μ as a source
term. By taking the Lorenz gauge for the SM photon, the
equations of motion are given by

□Aμ ¼ JEMμ ; ∂μAμ ¼ 0; ð2:22Þ

ð□þm2
γ0 ÞA0

μ ¼ ϵJEMμ ; ∂μA0μ ¼ 0; ð2:23Þ

with □ ¼ ∂
2
t − ∇!2

.
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2. Dark-photon-induced magnetic field

Let us focus on the interaction between the dark photon
and the SM particles in the basis of mass eigenstates:

Lint ¼ eϵJEMμ A0μ: ð2:24Þ
We assume the following form of the vector potential of
dark photon:

A⃗0ðtÞ¼ A⃗0
0 sinðmγ0 tþmγ0v2DMt=2−mγ0 v⃗DM · x⃗þδÞ: ð2:25Þ

The spread of amplitude in frequency space is given also by
Eq. (2.13) with mass replaced by mγ0. Then, assuming that
the whole DM abundance is explained by the dark photon,
we obtain ρDM ¼ ð1=2Þm2

γ0A⃗
0
0
2. Similarly to the ordinary

relation between the vector potential and the magnetic field,
the effective magnetic field induced by the dark photon is
expressed as

h⃗γ
0 ðtÞ ¼ ϵ∇!× A⃗0ðtÞ

¼ ϵvDM
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
sinðmγ0 tþ δÞv̂DM × Â0; ð2:26Þ

where the hat symbol represents the unit vector pointing in
the direction of the original vector. Numerically, we obtain
the amplitude of the effective magnetic field as

hγ
0 ¼ 9 × 10−19 T ×

�
ϵ

10−10

��
ρDM

0.4 GeV=cm3

�
1=2

×

�
vDM=c
10−3

��
sinφffiffiffiffiffiffiffi
0.5

p
�
; ð2:27Þ

where sinφ≡ v̂DM × Â0 is the angle between the DM
velocity and the vector potential A⃗0.
Note that the effective magnetic=electric field induced by

the dark photon is significantly affected by the conductor
shield around the experimental apparatus [88]. As a rough
estimate, for the typical length scale of the shield Lshield, the
effective magnetic field (2.26) should be multiplied by an
additional factor of ðmγ0LshieldvDMÞ−1 for 1 < mγ0Lshield <
v−1DM and by mγ0Lshield=vDM for mγ0Lshield < 1, which can
either enhance or suppress the signal depending on
mγ0Lshield. Note that vDM ∼ 10−3. Numerically, the signal
is suppressed when

Lshield ≲ 20 cm

�
10−6 eV

mγ0

�
; ð2:28Þ

which could be avoided by using a reasonably large
magnetic shield. On the other hand, thanks to the absence
of a suppression factor vDM in the shielding effect, the
effective magnetic field (2.26) can be enhanced up to a
factor of 103. In this paper, we do not discuss a real
experimental apparatus including the shield and simply use
Eq. (2.26) as a conservative estimate.

III. MAGNETIZATION DYNAMICS IN MnCO3

The DM-induced magnetic field discussed in the pre-
vious section can cause magnetic resonance in the material
and give an observable oscillating magnetization signal. We
propose to use materials with strong hyperfine interaction
that allows spin transfer between nuclear and electron spins
for DM detection.
The hyperfine interaction between electron and nuclear

spins originates from the magnetic dipole interaction
between them. The following properties are realized due
to this interaction. Nuclear spins are highly polarized by the
large effective magnetic field due to electron spin even in the
low external static magnetic field. It provides large magnetic
signals in the high-frequency region not easily accessible by
other approaches using ordinary nuclear magnetization.
Through the exchange interaction with electron spins,
nuclear spins effectively obtain an exchange interaction
among themselves called the Suhl-Nakamura interaction
[61,62], to realize the nuclear spin wave modes (or the
nuclear magnons in the quantum picture). In this mode
dominated by the precession of nuclear spins, the electron
spins with a larger gyromagnetic ratio also contribute to the
total observable magnetization enhancing the overall mag-
netization signal compared with nuclear magnetization
alone. On the other hand, there is also an electron-
spin-dominated mode mixed with nuclear spins. They are
sensitive to both the DM-electron and the DM-nucleon
interactions. As a concrete example, we focus on a canted
antiferromagnetic material MnCO3.
We introduce the property of MnCO3 in Sec. III A. Then,

we illustrate the magnetic dynamics of MnCO3 in Sec. III B
and its response to the DM coupled only to either the
nuclear spin or the electron spin in Sec. III C.
The calculation in the following sections is done in the SI

unit. However, we simply omit the vacuum permeability
factor μ0 in the formulas for convenience.2 The factor μ0 is
restored in Sec. IV.

A. Introduction to MnCO3

MnCO3 is a canted antiferromagnetic material. It has
large nuclear spins (with I ¼ 5=2) associated with 100%
magnetic isotope of 55Mn, which couple to localized
electron spins (with S ¼ 5=2) through strong hyperfine
interactions. The electron ground state configuration of
55Mn is [Ar] 4s2 3d5 with multiplet 6S5=2.
The MnCO3 lattice structure can be represented by the

rhombohedral unit cell. The parameters for this represen-
tation are interval length arh ¼ 5.84 Å with angle α ¼ 47°.
The unit cell including only a Mn ion is shown in Fig. 1.
See also Refs. [58,89,90] for crystallography of MnCO3. In
the following, lattice directions such as [111] or ½101̄� are to

2The formulas are then the same as that in the centimetre-
gram-second unit except for the definition of susceptibility.
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be understood as of the rhombohedral representation; the
[nml] direction means the direction of na⃗1 þma⃗2 þ la⃗3
where a⃗1;2;3 is the translation vector connecting lattice sites
of the same sublattice and bars on numbers (e.g., that in
½101̄�) indicates minus signs.
Electron spins, which are localized at each Mn ion, lie in

the basal plane [(111) plane] perpendicular to the [111]
direction showing hard-axis anisotropy. Importantly, owing
to an exchange interaction between electron spins, they
align antiparallel to the one in the nearest site, forming two
sublattices in an antiferromagnetic order below the Nèel
temperature (T� ≈ 35 K [58]). Besides, the Dzyaloshinskii-
Moriya interaction [91–93] slightly bends spins of two
sublattices producing the weak-ferromagnetic properties of
MnCO3 in the basal plane.
In general, the interaction between nuclear spin I⃗ and

electron spin s⃗ originates from the dipolar interaction
between them. It is given as follows [94]:

Hhy ¼ γeγnℏ2

�ðl⃗− s⃗Þ · I⃗
r3

þ 3
1

r5
ðs⃗ · r⃗ÞðI⃗ · r⃗Þ þ 8

3
ðs⃗ · I⃗Þδðr⃗Þ

�
;

ð3:1Þ
where γe and γn are gyromagnetic ratios of the electron and
nucleus, respectively; ⃗l is the orbital angular momentum of

the electron and r⃗ is the position vector of the electron with
the origin r⃗ ¼ 0 being the nucleus position. In the MnCO3

case, the unpaired 3d electrons have Coulomb interaction
with the 2s electrons of the opposite spin more efficiently
than the 2s electrons of the same spin. Thus the spin-
polarization occurs at the core and is proportional to the
magnitude of 3d electron spins. The last term of Eq. (3.1)
shows the interaction between an electron-spin polarized
core and nuclear spins, which indicates an effective but
strong interaction between 3d electron spins and nuclear
spins of the form Hhy ∝ I⃗ · S⃗ where S⃗ is the total electron
spin associated with each Mn atom.
In MnCO3, the nuclear spin is sensitive to a hyperfine

field and becomes highly polarized pointing to the direction
correlated to the electron spin. Besides, nuclear magnetic
resonance occurs at a very high frequency ∼500 MHz
compared with that of typical nuclear spin precession.
Under the presence of the strong hyperfine interaction and
the exchange interaction of electron spins, there exists an
effective exchange interaction between nuclear spins ensur-
ing the existence of nuclear spin wave. On the other hand,
the system can also be viewed as a hybrid system of nuclear
and electron spins. Detailed dynamics of such a system and
its response to the DM will be discussed in the following
subsections.
Materials with 55Mn ions are frequently used in nuclear-

spin-wave experiments. The reasons are the following:
(1) 55Mn magnetic isotopes have large localized nuclear

and electron spins (I ¼ 5=2; S ¼ 5=2).
(2) The electron spin wave modes have low eigenfre-

quency close to that of nuclear modes, leading to a
large mixing between nuclear and electron spins.3

Other example materials with 55Mn ions besides the
canted antiferromagnet MnCO3

4 [58,59,64,95,96] include
the hexagonal antiferromagnet CsMnF3 [65–67] with biaxial
anisotropy, the antiferromagnet RbMnF3 [97,98] and
KMnF3 [99] with cubic crystalline anisotropy, the antiferro-
magnet MnF2 [100] with uniaxial anisotropy, and the
ferrimagnetMnFe2O4 [101]. Othermaterials are also studied
in the context of nuclear spin waves: CoCO3 [57] since the
59Co isotope is 100% abundance, and FeBO3 [57] since its
electron magnetic precession has low eigenfrequencies.
Recently, Shiomi et al. [58] and Kikkawa et al. [59]

reported experiments combining nuclear-spin waves with

FIG. 1. Rhombohedral unit cell of MnCO3. We show here for
simplicity only Mn ions. Translation vector a⃗1;2;3 with length
arh ¼ 5.84 Å connects Mn of the same sublattice. Note that the
Mn ion in the middle and those connected to it by a⃗1;2;3 belong to
different sublattices. In the antiferromagnetic phase, spins local-
ized at Mn’s of one sublattice align in the same direction in the
(111) plane perpendicular to the [111] direction, and in the
opposite direction to spins of the other sublattice. See also
Refs. [58,89,90] for crystallography of MnCO3.

3Note that the 3d electrons of 55Mn are all unpaired and fill
each 3d shell, and hence the total orbital angular momentum of
the electron spin associated with each atom is zero. This only
leads to a weak magnetocrystalline anisotropy, which causes a
small gap of the electron-spin system.

4MnCO3 has a weak-ferromagnetic property due to the
Dzyaloshinkii–Moriya interaction, which forces the ground state
spins to be canted even in the absence of an applied static
magnetic field. Therefore, there is no need to worry about the
phase transition from the antiferromagnetic phase to the spin-flop
phase as in usual antiferromagnetic materials.
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spintronics in MnCO3, showing the nuclear-spin pumping
effect and nuclear-spin Seebeck effect of the system
and establishing a new area of spin technology, nuclear
spintronics.
The spin transfer between electron and nuclear spins

allows us to deal with nuclear spins more easily through
more-accessible electron spins. Here, for DM detection, it
provides a unique probe for nucleon-DM and electron-DM
interactions of the favorable frequency range, with a
“nature” tool (electron spins and their magnetization)
supporting signal readout. At the same time, the precession
of electron spins, mixed with nuclear spins, is also sensitive
to DM (specifically to electron-DM coupling), and we then
include it in the discussion. Next, we move to the details of
the magnetic system of MnCO3.

B. Magnetic system of MnCO3

We discuss the (macroscopic) magnetization dynamics
of MnCO3 within a classical theory, with some details
shown in Appendix B. We also show that the results are
consistent with those derived in the quantum magnon
picture in Appendix C.
We define M⃗1 and M⃗2 as electron magnetization vectors

and m⃗1 and m⃗2 as nuclear magnetization vectors, where the
subscripts indicate the sublattices they belong to.
Magnetization is defined as the magnetic dipole moment
per unit volume, and thus5

M⃗1 ¼−γeℏ
P

lattice1
i S⃗i
V

; M⃗2¼−γeℏ
P

lattice2
j S⃗j
V

; ð3:2Þ

m⃗1 ¼ γnℏ

P
lattice1
i I⃗i
V

; m⃗2 ¼ γnℏ

P
lattice2
j I⃗j
V

; ð3:3Þ

where S⃗i and I⃗i are the electron-spin operator and nuclear-
spin operator at the spin site i, respectively, and V is the
volume of the sample. The summations of spins run over
sublattice 1 and 2 for the corresponding magnetization
vector. At the ground state, the magnitude of magnetization
of each sublattice is assumed to be M0 and m0 for electron
magnetization and nuclear magnetization, respectively.
They can be expressed by

M0 ¼ γeℏS
ρs
2
; m0 ¼ γnℏhIi

ρs
2
; ð3:4Þ

where ρs ≡ Ntotal=V is the number density of Mn ions with
Ntotal denoting the total number of Mn (which is equal to
the number of spin sites); S ¼ 5=2 is the total value of
electron spins localized at each Mn ion, and hIi is the
thermal average of nuclear spins localized at each Mn ion,

which generally takes a smaller value than I ¼ 5=2 as we
will argue later.
In the antiferromagnetic phase, the potential per unit

volume for magnetizations in MnCO3 is given by (see, e.g.,
Refs. [63,96,102,103])

U ¼ HE

M0

M⃗1 · M⃗2 þ
HD

M0

fMx
1M

z
2 −Mz

1M
x
2g

þ HK

2M0

f½My
1�2 þ ½My

2�2g−
HK0

2M0

f½Mz
1�2 þ ½Mz

2�2g

− ðM⃗1 þ M⃗2Þ · ðH⃗þ h⃗eðtÞÞ− ðm⃗1 þ m⃗2Þ · ðH⃗þ h⃗nðtÞÞ
−AhyM⃗1 · m⃗1 −AhyM⃗2 · m⃗2: ð3:5Þ

The subscripts x, y, z attached to the magnetization param-
eters refer to the component of the vector which points in
those directions. The potential contains the (1) antiferromag-
netic exchange interaction, (2) Dzyaloshinskii-Moriya inter-
action, (3) hard-axis anisotropy, (4) in-plane uniaxial
anisotropy, (5) Zeeman effect, and (6) hyperfine interaction.
The coefficients HE, HD, HK , HK0 and Ahy correspond to
constants associated with the exchange interaction,
Dzyaloshinskii-Moriya interaction, hard-axis anisotropic
effect, in-plane anisotropic effect, and hyperfine interaction,
respectively. The coordinate setup is assumed such that the y
direction is the hard axis corresponding to the [111] lattice
direction. External magnetic fields are assumed to include an
applied static field H⃗ pointing in the ½101̄� lattice direction
(which we call x):

H⃗ ¼ H0e⃗x; ð3:6Þ

with e⃗i being the unit vector pointing in the i direction,
an oscillating field h⃗e coupling to electron spins, and an
oscillating field h⃗n coupling to nuclear spins. The latter two
account for the exotic fields originating from DM. For
convenience of later discussion, we define effective fields

Ha ≡ Ahym0; Hn ≡ AhyM0; ð3:7Þ

which come from hyperfine interactions and are felt by
electron and nuclear spins in their ground state, respectively.
In the ground state of this system, there are two

sublattices of spins pointing in almost antiparallel direc-
tions along the z axis and in the basal plane (xz plane) due
to the in-plane and hard-axis anisotropic effects, respec-
tively. The Dyaloshinskii-Moriya interaction and an
applied magnetic field in the x direction tilt the spins of
two sublattices; the tilt angle is denoted as ψ . Then, the
magnetic system shows effective ferromagnetism in the
basal plane. The schematic picture of the ground state and
effective fields are shown in Fig. 2. For convenience, we
use magnetization parameters based on the coordinate

5The gyromagnetic ratio of the electron is negative. However,
we define γe and γn to be positive and hence the additional minus
sign appears for electron magnetization.
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systems tilted by angles ψ , π − ψ . For electron magneti-
zation, we apply

0
B@

Mx
1

My
1

Mz
1

1
CA ¼

0
B@

cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ

1
CA
0
B@

Mx1
1

My1
1

Mz1
1

1
CA; ð3:8aÞ

0
B@

Mx
2

My
2

Mz
2

1
CA ¼

0
B@

− cosψ 0 sinψ

0 1 0

− sinψ 0 − cosψ

1
CA
0
B@

Mx2
2

My2
2

Mz2
2

1
CA; ð3:8bÞ

and similarly, for nuclear magnetization, we apply

0
B@

mx
1

my
1

mz
1

1
CA ¼

0
B@

cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ

1
CA
0
B@

mx1
1

my1
1

mz1
1

1
CA; ð3:9aÞ

0
B@

mx
2

my
2

mz
2

1
CA ¼

0
B@

− cosψ 0 sinψ

0 1 0

− sinψ 0 − cosψ

1
CA
0
B@

mx2
2

my2
2

mz2
2

1
CA: ð3:9bÞ

In these tilted frames with

sinψ ¼ H0 þHD

2HE þHK0
; ð3:10Þ

the ground state expectation values are given by Mx1;y1
1 ¼

0;Mx2;y2
2 ¼ 0 with Mz1

1 ¼ Mz2
2 ¼ M0 and mx1;y1

1 ¼
0; mx2;y2

2 ¼ 0 with mz1
1 ¼ mz2

2 ¼ m0. The coordinate system

adopted in the transformation is shown in Fig. 3. The
polarization factor hIi=I is expressed by the thermal
average in the presence of magnetic field Hn exerted on
the nuclear spins:

hIi
I

¼ B5=2

�
5

2

γnℏHn

kT

�
; ð3:11Þ

with

BJðxÞ≡ 2J þ 1

2J
coth

�
2J þ 1

2J
x

�
−

1

2J
coth

x
2J

: ð3:12Þ

We plot it in Fig. 4, which clearly shows a paramagnetic
property of nuclear spins. However, owing to the large
magnetic field Hn ∼ 60 T through the hyperfine interac-
tion, the polarization is naturally large without any other
external field. This is one benefit of the strong hyperfine
interaction. For concrete estimation, we adopt the temper-
ature of the sample and of nuclear spins to be T ¼ 0.1 K.
With this coordinate, the hyperfine interaction [the last

line of (3.5)] can be written in the form

Uhy ¼ Uk þUmix; ð3:13Þ

where

Uk ¼ −AhyðMz1
1 m

z1
1 þMz2

2 m
z2
2 Þ; ð3:14Þ

Umix ¼ −AhyðMx1
1 m

x1
1 þMy1

1 m
y1
1 þMx2

2 m
x2
2 þMy2

2 m
y2
2 Þ:
ð3:15Þ

FIG. 2. The ground state of magnetization in MnCO3 under the
Hamiltonian given by Eq. (3.5). The red and blue arrows
represent the nuclear and electron magnetizations of each sub-
lattice. The light blue arrow shows the total magnetization. The
black (thick) arrows represent some of the effective fields present
in the system. The tilted angle ψ is given by Eq. (3.10).

FIG. 3. Coordinate transformation according to the tilt angle of
the spin configuration of the ground state. The red and orange
coordinate systems are those of sublattices 1 and 2, respectively.
See also Eqs. (3.8) and (3.9) for the explicit representation of the
transformation applied to electron and nuclear magnetizations.
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The term Uk represents the hyperfine interaction in the
direction of spin alignment in the ground state, which
makes the Larmor frequency of both nuclear and electron
spin precessions higher. On the other hand, the term
Umix causes the mixing of the nuclear- and electron-spin
precessions.
In the presence of an effective oscillating magnetic field

induced by DM, the magnetic resonance of this system may
occur. We derive the equation of motion for magnetization
similarly as done in Refs. [96,103]. Under the potential
UðM⃗1;2; m⃗1;2Þ, the magnetizations M⃗1;2 and m⃗1;2 feel the
effective magnetic fields determined by

H⃗M1;2
eff ≡ −

∂U

∂M⃗1;2

; H⃗m1;2
eff ≡ −

∂U
∂m⃗1;2

; ð3:16Þ

from which they receive torque and precess according to
the equations of motion given by

dM⃗1;2

dt
¼ −γeM⃗1;2 × H⃗M1;2

eff ;

dm⃗1;2

dt
¼ γnm⃗1;2 × H⃗m1;2

eff : ð3:17Þ

We can linearize these equations by focusing on the small
perturbations around the ground state. We consider the
precession of magnetization with a small deflect angle such
that Mx1;y1

1 ≪ Mz1
1 and Mx2;y2

2 ≪ Mz2
2 , and approximate

Mz1
1 ;M

z2
2 to be M0. Similarly, we consider a situation

where the precession angle of the nuclear magnetization
vector from the ground state is small such thatmx1;y1

1 ≪ mz1
1

and mx2;y2
2 ≪ mz2

2 , and approximate mz1
1 ; m

z2
2 to be m0.

Defining “plus” and “minus” modes as

Mα
� ≡Mα1

1 �Mα2
2 ; mα

� ≡mα1
1 �mα2

2 ; ð3:18Þ

with α ¼ x, y, z, it turns out that the equation of motions for
the magnetization vector are decoupled for þ and −
combinations, which are usually called the in-phase and
out-phase modes, respectively. The total magnetization
vector can be written in terms of in-phase and out-phase
modes as

M⃗1 þ M⃗2 ¼ ðMx
− cosψ þ 2M0 sinψÞe⃗x þMy

þe⃗y
−Mxþ sinψ e⃗z; ð3:19aÞ

m⃗1 þ m⃗2 ¼ ðmx
− cosψ þ 2m0 sinψÞe⃗x þmy

þe⃗y
−mxþ sinψ e⃗z: ð3:19bÞ

For electron magnetization, we obtain the equation of
motion for the in-phase mode as

−
1

γe

dMxþ
dt

¼
�
2HEþHKþHK0 þHaþ

HDðH0þHDÞ
2HE

�
My

þ

−Hnm
y
þ−2M0h

y
e; ð3:20aÞ

−
1

γe

dMy
þ

dt
¼ −

�
2HEðHK0 þHaÞ þH0ðH0 þHDÞ

2HE

�
Mxþ

− 2M0hze sinψ þHnmxþ; ð3:20bÞ

and for the out-phase mode as

−
1

γe

dMx
−

dt
¼

�
HK þHK0 þHa þ

HDðH0 þHDÞ
2HE

�
My

−

−Hnmy
−; ð3:21aÞ

−
1

γe

dMy
−

dt
¼ −Mx

−

�
2HE þHK0 þHa

þ ð2HD −H0ÞðHD þH0Þ
2HE

�
þHnmx

−

þ
�
2M0 −

M0ðH0 þHDÞ2
4H2

E

�
hxe; ð3:21bÞ

where the magnetic field hx;y;ze is an exotic field interacting
only with electron spins and oscillates in the x, y, or z
direction, respectively. For nuclear magnetization, the
equations of motion for the in-phase mode are

1

γn

dmxþ
dt

¼ Hnm
y
þ − 2m0h

y
n −HaM

y
þ; ð3:22aÞ

1

γn

dmy
þ

dt
¼ HaMxþ −Hnmxþ − 2m0hzn sinψ ; ð3:22bÞ

FIG. 4. The nuclear spin polarization ratio hIi=I as a function of
temperature. For T ¼ 0.1 K, the alignment of nuclear spins is
hIi=I ≃ 0.4. Note that, in the temperature range shown in the plot,
electron spins align in two sublattices in the antiferromagnetic
phase with hSi ≈ S ¼ 5=2.
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and those for the out-phase mode are

1

γn

dmx
−

dt
¼ Hnmy

− −HaMy
−; ð3:23aÞ

1

γn

dmy
−

dt
¼ HaMx

− −Hnmxþ þ 2m0hxn; ð3:23bÞ

which include an exotic oscillating field hx;y;zn that interacts
only with nuclear spins and oscillates in the x, y or z
direction, respectively. Note that the in-phase modes can
only be excited by oscillating fields in y and z directions.
On the other hand, the out-phase modes can be excited only
via the x direction.
The eigensystem of the in-phase mode can be solved

with the ansatz,

MxþðtÞ ¼ Mxþeiωt; My
þðtÞ ¼ My

þeiωt; ð3:24Þ

mxþðtÞ ¼ mxþeiωt; my
þðtÞ ¼ my

þeiωt; ð3:25Þ

in the absence of exotic fields (he;n ¼ 0). The problem is
reduced to an ordinary eigenproblem. The detailed calcu-
lation is shown in Appendix B. The same can be done for
the out-phase mode. For convenience, we give first the
eigenfrequency of the in-phase/out-phase precession mode
of the electron and nuclear magnetization without mixing
between them (i.e., neglecting Umix). The eigenfrequencies
of the electron-magnetization system are

ωe;− ¼ γe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HEðHK þHK0 þHaÞ þHDðH0 þHDÞ

p
;

ð3:26Þ

ωe;þ ¼ γe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HEðHK0 þHaÞ þH0ðH0 þHDÞ

p
; ð3:27Þ

and the eigenfrequency of the nuclear-magnetization
system is

ωn ¼ γnHn: ð3:28Þ

Note that nuclear magnetization precessions have two
degenerate modes (with angular frequency ωn) in the
absence of the mixing term Umix.
Oncewe take into account the mixingUmix, we obtain the

following. For the out-phase mode, the eigenfrequencies are

ωẽ;− ≈ ωe;−; ð3:29Þ

ωñ;− ≈ ωn

�
1 −

hIi
S

ωnωE

ω2
e;−

�
; ωE ¼ γeHE; ð3:30Þ

which correspond to the eigenmodes dominated by electron
and nuclear spins, respectively. For the in-phase mode, we
can obtain a similar expression:

ωẽ;þ ≈ ωe;þ; ð3:31Þ

ωñ;þ ≈ ωn

�
1 − 2

hIi
S

ωnωE

ω2
e;þ

�
1=2

; ð3:32Þ

corresponding to the electron- and nuclear-dominated
modes, respectively. The eigenfrequencies of the magnetic
precession in MnCO3 are plotted in Fig. 5. The gyromag-
netic ratio γn of 55Mn is taken from Refs. [104,105], while
the other parameters in the Hamiltonian are taken from
Refs. [64,102,106], which we show in Table I. There is a
relation among magnitudes of effective fields

HK0 ; Ha ≪ H0; HD;HK ≪ HE;Hn

while HEHK0 ; HEHa ∼H2
0; H

2
D;H0HD: ð3:33Þ

Because of the relatively large difference between the
eigenfrequencies of the out-phase modes of nuclear and
electron magnetizations, the mixing angle between their

FIG. 5. Field-dispersion relation ωðH0Þ of diagonalized modes for both nuclear-dominated and electron-dominated hybridized modes
at T ¼ 0.1 K.
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precessions is expected to be small.6 On the other hand, the
in-phase modes of nuclear and electron magnetizations,
which have similar eigenfrequencies, significantly mix
with each other showing the bending shape of the spectrum
of the nuclear-dominated mode (the so-called pulling
effect). Therefore, from now on, we focus on and discuss
only the in-phase modes and their response to the external
oscillating field, while neglecting the out-phase modes.
We want to emphasize that the magnetic resonance of the

system has a relatively high frequency compared with the
nuclear magnetic system without hyperfine interaction. For
instance, 3He needs a magnetic field of 30 T to realize a
magnetic resonance of the same frequency.

C. Response to DM field

As discussed in Sec. II A 2, when the entire DM is
composed of axions, a magnetized sample is affected by
oscillating magnetic fields h⃗n ¼ h⃗axionn and h⃗e ¼ h⃗axione
defined in Eqs. (2.15) and (2.16), respectively. It should
be noted that, based on the nuclear shell model of nuclei
with odd atomic number, the nuclear spin of MnCO3

mainly comes from the proton spin [107,108] and hence
is sensitive to the axion-proton coupling gapp, not to the
axion-neutron coupling gann. For simplicity, we take
σp ¼ 0.1, σn ¼ 0.0 as a spin contribution from protons
and neutrons for the numerical estimation of axion-induced
magnetic field h⃗axionn . See Appendix A for more detail. For

the case of dark photon DM, we have instead h⃗n ¼ h⃗e ¼ h⃗γ
0

defined in (2.26).
Here we show the response of the system by evaluating

the magnetization and power absorbed by the system, in
Secs. III C 1 and III C 2, respectively, when the DMmass is
equal to the excitation energy of the magnetic material.

1. Magnetization signal

Now suppose the existence of a nonzero oscillating
field from axion or dark-photon DM, h⃗n;e ∝ sinωDMt with
ℏωDM ¼ ma;mγ0 . We can write the response in terms of
susceptibility χ defined by the relation of total magnetiza-
tion M⃗total and external oscillating field h⃗n and h⃗e as

Mα
total ≡Mα

1 þMα
2 þmα

1 þmα
2

¼
X
β

ðχαβn hβn þ χαβe hβeÞ; ð3:34Þ

with α; β ¼ x, y, z denoting the direction of vectors
M⃗total; h⃗n; h⃗e or the corresponding component of the tensor χ.
The magnetization susceptibility χ can be found by solving
the equation of motion for magnetization given by
Eqs. (3.20) and (3.22). The relaxation time of magnetization
should also be taken into account. The detailed calculation
for signal susceptibility is shown in Appendix B.We assume
that the MnCO3 sample is magnetized along the x direction,
as in Fig. 2, and consider only in-phase modes. The relevant
direction of the oscillating field induced by DM is the y or z
direction, corresponding to the precession of total magneti-
zation in the yz plane [see Eq. (3.19)]. We define a
magnetization signal Msignal as the z component of the total
magnetization vector:

Msignal ≡Mz
total ¼

X
α¼y;z

ðχzαn hαn þ χzαe hαeÞ: ð3:35Þ

Note that because the gyromagnetic ratio of the electron spin
is much larger than that of the nuclear spin, a large part of
magnetization of the sample is induced by electrons. One can
then estimate Mz

total from Mz
total ≃Mz

1 þMz
2 ¼ Mxþ sinψ .

When theDMmass is close to the precession frequency, in
particular jωDM − ωñ;þj≲ 1=T2n or jωDM − ωẽ;þj≲ 1=T2e,
the collective spins would be excited, where T2n and T2e are
the relaxation times for the nuclear-dominated mode and the
electron-dominated mode, respectively. In other words, the
excitation bandwidth is given by Δωn;e ¼ 2=T2n;2e. We
assume that magnetic relaxation times are much smaller
than the coherence time τDM of theDM field (T2e;2n ≪ τDM),
which is actually the case for MnCO3. Within the DM
coherence time t≲ τDM, the magnetic field from DM is a
coherent driving field, so the magnetization signal rotates
coherently with frequency ωDM whereas its amplitude is
determined by the relaxation time T2e;2n. The spreadΔωsignal

in the frequency space of the signal is determined by that of
the DM spectrum:

Δωsignal ¼ ΔωDM ¼ 2π

τDM
: ð3:36Þ

Numerically, we assume the values of the relaxation time at
T¼0.1K as T2n ¼ 1 μs and T2e ¼ 1 ns [57,58,63,95,109],

TABLE I. Parameters in the Hamiltonian of MnCO3. The
gyromagnetic ratio γn of 55Mn is taken from Refs. [104,105],
while the other parameters in the Hamiltonian are taken from
Refs. [64,102,106].

Parameters Magnitude

γe 1.76 × 1011 s−1 T−1
γn 6.63 × 107 s−1 T−1
HE 33.4 T
HD 0.46 T
HK 0.2 T
HK0 1.0 × 10−4 T
Hn ≡ AhyM0 60.6 T
Ha ≡ Ahym0 0.02 × hIi=I T

6The shift Δωp;� ≡ ωn − ωñ;� of nuclear eigenfrequency due
to the hyperfine mixing is inversely proportional to ω2

e;� when
ωe;� ≫ ωn as can be seen from Eqs. (3.30) and (3.32). The
mixing angle between nuclear and electron magnetizations is
expected to scale as ∼Δωp;� ∝ 1=ω2

e;�.
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corresponding to the bandwidth Δωn=2π ∼ 0.3 MHz and
Δωe=2π ∼ 0.3 GHz, respectively. For the DM mass of
interest, 10−6 eV≲ma ≲ 10−4 eV, the value of τDM is
∼Oð0.01Þ −Oð1Þ ms [see Eq. (2.10)], corresponding to
the spread ΔωDM=2π ∼Oð0.1Þ −Oð10Þ kHz.
The susceptibility on resonance is shown in Tables II and

III. The star symbols represent the “sensitive” channels
whose responses χ are large compared with the other
channels that can probe the same coupling of DM. We
introduce a parameter η defined by

η≡Hn
ðH0 þHDÞγ2e

ω2
e;þ

; ð3:37Þ

which is an enhancement factor of signal magnetization
compared to the nuclear magnetization, in addition to the
effect that nuclear spins are highly polarized by the
hyperfine interaction with electron spins. Note that η →
0 for sinψ → 0 [see Eq. (3.10)]. At T ¼ 0.1 K, we obtain
η ≈ 50. For example, at H0 ¼ 1 T corresponding to
ωñ;þ=2π ≈ 500 MHz and ωẽ;þ=2π ≈ 40 GHz, we obtain
numerically for sensitive channels

χzyn ðωDM ≈ ωñ;þÞ ¼ 0.2 ×
�
T2n

1 μs

�
;

χzyn ðωDM ≈ ωẽ;þÞ ¼ 0.2 × 10−3 ×

�
T2e

1 ns

�
; ð3:38Þ

χzze ðωDM ≈ ωñ;þÞ ¼ 10 ×

�
T2n

1 μs

�
;

χzy;zze ðωDM ≈ ωẽ;þÞ ¼ 2 ×

�
T2e

1 ns

�
; ð3:39Þ

where we assume MnCO3 of density 3.7 g=cm3 and
hence the spin density ρs ∼ 2 × 1022 cm−3. The order of
magnitude of response does not change around the fre-
quency range of interest (corresponding to H0 ∼ 0.5–2 T)
where the mixing between precessions of electron
spins and nuclear spins remains large. (See, e.g., Fig. 5
for the relation between H0 and the eigenfrequency of the
system.)
Through the DM-nuclear interaction, the system is

sensitive mostly to the DM-induced field polarized in
the y direction. On the other hand, through the DM-electron
interaction, the system is sensitive mostly to the DM-
induced field polarized in the z direction or both y and z
direction depending on the mode considered. We define the
angle between the sensitive direction and the polarization
direction of the DM-induced magnetic field by a parameter
θ. To account for the unknown polarization (equivalently
the unknown direction of the velocity of DM), we perform a
substitution cos2 θ → 1=3 if the system is sensitive to a
single polarization direction, or by cos2 θ → 2=3 if it is
sensitive to any polarization direction in a plane [87].

2. Power absorbed to the magnetized sample

The absorbed power into the material can be estimated
by the relation

Pabsorb ¼ V ·
X
α¼y;z

�
dmα

dt
hαn þ

dMα

dt
hαe

�
; ð3:40Þ

where V is the sample volume. In Tables IVand V, we show
the time-averaged power absorbed under the resonance
condition for each channel. For example, at H0 ¼ 1 T
corresponding to ωñ;þ=2π ≈ 500 MHz and ωẽ;þ=2π ≈
40 GHz, numerically, we obtain absorbed power for the

TABLE II. The signal susceptibility for the exotic perturbation

h⃗n that interacts only with nuclear spins. The stars ☆ indicate
sensitive channels for probing the axion-proton coupling gapp.
The magnetic system is excited when jωDM − ωñ;þj≲ 1=T2n or
jωDM − ωẽ;þj≲ 1=T2e corresponding to the first or second
column, respectively.

ωDM χzyn ðωDMÞ χzzn ðωDMÞ
ωDM ∼ ωñ;þ ☆ηm0T2nγn ð ωn

ωñ;þ
sinψÞηm0T2nγn

ωDM ∼ ωẽ;þ ☆ηm0T2eγn ð ωn
ωẽ;þ

sinψÞηm0T2eγnð1 − ω2
e;þ

2HEγeωn
Þ

TABLE III. The signal susceptibility for the exotic perturbation

h⃗e that interacts only with electron spins. The stars ⛤ indicate
sensitive channels for probing the axion-electron coupling gaee
and kinetic mixing parameter ϵ. The magnetic system is excited
when jωDM − ωñ;þj≲ 1=T2n or jωDM − ωẽ;þj≲ 1=T2e corre-
sponding to the first or second column, respectively.

ωDM χzye ðωDMÞ χzze ðωDMÞ
ωDM ∼ ωñ;þ η2ð ωn

γeðH0þHDÞÞm0T2nγn ⛤η2 ωn
ωñ;þ

m0T2nγn

×ð1 − ω2
e;þ

2HEγeωn
Þ

ωDM ∼ ωẽ;þ ⛤ðsinψÞM0T2eγe ⛤ðγeðH0þHDÞ
ωe;þ

sinψÞM0T2eγe

TABLE IV. Power absorbed in the magnetized sample on
resonance in the presence of the DM-induced magnetic field
interacting only with nuclear spins. The stars☆ indicate sensitive
channels for probing the axion-proton coupling gapp. The
magnetic system is excited when jωDM − ωñ;þj ≲ 1=T2n or
jωDM − ωẽ;þj≲ 1=T2e corresponding to the first or second
column, respectively.

ωDM Pabsorb=VðhynÞ2 due to hyn Pabsorb=VðhznÞ2 due to hzn

ωñ;þ ☆m0T2nγnω
2
ñ;þ=2ωn sin2ðψÞm0T2nγnωn=2

ωẽ;þ ☆m0T2eγnð1 − ω2
ñ;þ
ω2
n
Þωn=2 ð ωn

ωe;þ
sinψð1 − ω2

e;þ
2HEγeωn

ÞÞ2

×ð1 − ω2
ñ;þ
ω2
n
Þωnm0T2eγn=2
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(most sensitive) y direction of the DM-nucleon interaction
(hyn ≠ 0) as

PabsorbðωDM∼ωñ;þÞ¼ 1.5×10−21 μW×

�
T2n

1 μs

�

×

�
hyn

10−18 T

�
2
�
WMnCO3

1 kg

�
; ð3:41Þ

PabsorbðωDM ∼ ωẽ;þÞ ¼ 5.4 × 10−25 μW

×

�
T2e

1 ns

��
hyn

10−18 T

�
2
�
WMnCO3

1 kg

�
;

ð3:42Þ
whereWMnCO3

is the total mass of theMnCO3 sample. Also,
at H0 ¼ 1 T, we obtain absorbed power for the y and z
directions of the DM-electron interaction (hy;ze ≠ 0) as

PabsorbðωDM ∼ ωñ;þÞ ¼ 4.1 × 10−18 μW

×

�
T2n

1 μs

��
hye

10−18 T

�
2
�
WMnCO3

1 kg

�
;

ð3:43Þ

PabsorbðωDM ∼ ωẽ;þÞ ¼ 6.0 × 10−17 μW×

�
T2e

1 ns

�

×
�

hy;ze

10−18 T

�
2
�
WMnCO3

1 kg

�
: ð3:44Þ

Within the frequency range of interest (corresponding to
H0 ∼ 0.5–2 T), magnitude of absorption power only slightly
changes.
In Sec. IV, we suggest experimental ways to detect the

signal through a magnetic system with the hyperfine
interaction. We estimate the sensitivity of the method based
on the magnetization signal and power absorbed into the
system, which we compare with the power of relevant
noises.

IV. DARK MATTER DETECTION WITH
NUCLEAR MAGNETIC EXCITATION

In this section, we present the sensitivity of DM
detection by excitation of hybridized spin precession
modes under a low-temperature environment T ¼ 0.1 K.
Our basic strategy is as follows. We can set an eigenfre-
quency of the magnetic system to a desired value by tuning
the applied magnetic field H0. When the DM mass is close
to the eigenfrequency, collective motion of spins can be
excited, since the field of DM axions or DM dark photons
oscillates with the frequency ωDM ≃ma;γ0=ℏ. Then, a wide
DM mass range can be searched for by sweeping H0. The
probe range is divided into two much different scales
corresponding to the two bands of the nuclear- and
electron-dominated modes in MnCO3. We discuss them
in Secs. IVA and IV B, respectively.

A. Sensitivity at the nuclear resonance frequency

We consider the LC resonant circuit with a pick-up loop
similar to Ref. [110], combined with the microstrip SQUID
amplifier7 [115–117] to detect magnetization induced by
DM. It has flexibility to tune the resonance frequency in the
range of interest, and the high quality factor can be
achieved. Before going into the details of the measurement
method and setup, let us consider the frequency range of
interest and the quality factor of the resonator.
At T ¼ 0.1 K, the spectrum of the nuclear-dominant

magnetization precession of MnCO3 covers a high fre-
quency range from Oð10Þ MHz to ∼600 MHz (see Fig. 5).
For a frequency range ω=2π ≳ 500 MHz, the observed
intrinsic relaxation time T2n from spin echoes is of order
Oð10Þ μs at a low temperature Oð1Þ K, while below
500 MHz the relaxation time T2n drops rapidly and the
signal from DM might be suppressed (see, e.g.,
Refs. [57,58,95,109]). Here, for simplicity we focus on a
frequency range ωDM=2π ≈ ωñ;þ=2π ¼ 500–600 MHz,
which can be covered by sweeping the static field H0

from 0.7 T to 2 T (see Fig. 5), while assuming con-
stant T2n ¼ 1 μs.
An important quantity for quantifying the signal and

noise in the resonant approach is the quality factorQr of the
circuit, which is related to the circuit bandwidth Δωr and
the resonant frequency ω0 as

TABLE V. Power absorbed in the magnetized sample on
resonance in the presence of the DM-induced magnetic field
interacting only with electron spins. The stars ⛤ indicate
sensitive channels for probing the axion-electron coupling gaee
and the kinetic mixing parameter ϵ. The magnetic system is
excited when jωDM − ωñ;þj ≲ 1=T2n or jωDM − ωẽ;þj ≲ 1=T2e

corresponding to the first or second column, respectively.

ωDM

Pabsorb=VðhyeÞ2 due
to hye Pabsorb=VðhzeÞ2 due to hze

ωñ;þ η2ð ωnω
2
ñ;þ

γ2eðH0þHDÞ2Þm0T2nγn

×ð1 − ω2
e;þ

2HEγeωn
Þ2=2

⛤η2ωnm0T2nγn=2

ωẽ;þ ⛤M0T2eγe
ω2
e;þ

2HEγe
=2 ⛤ðγeðH0 þHDÞ sinψÞM0T2eγe=2

7In the frequency range of interest, the dc SQUID is not
favorable as a magnetometer because there is a severe parasitic
capacitance between the dc SQUID washer and the input coil.
Detection with a reactive (dissipationless) ac SQUID and the
microwave resonator [111,112] is proposed to detect dark
photons in the frequency range from 10 MHz to 1 GHz in [113].
Putting the input coil inside the hole in the SQUID washer might
cure the parasitic capacitance problem for the dc SQUID as
well [114]. Using a microstrip-coupled dc SQUID as the
amplifier is also a way to deal with this issue; we pursue this
possibility in this work.
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Δωr ¼
ω0

Qr
: ð4:1Þ

We desire the value of Qr as high as possible up to
QDM ¼ 106 so that the signal is highly resonant while the
circuit bandwidth Δωr still covers bandwidth ΔωDM
of DM signal. Here, in numerical calculation we assume
Qr ¼ 105, while a higher value such as Qr ∼ 106 might
also be achieved by the LC circuit, which is discussed
in Ref. [88].
The following steps can be used to scan DM masses

within the frequency range ω=2π ¼ 500–600 MHz:
(1) Match eigenfrequencies of the magnetic system and

the resonant circuit to the frequency ω of interest
at the same time. The former can be tuned by
changing the external static field H0, while the latter
by changing the values of resistance and capacitance
of the circuit.

(2) Measure the magnetization signal from the magnetic
material MnCO3 for an interrogation time Δt.

(3) Shift the frequency ω by an interval Δω determined
by Eq. (4.1) after each step of the signal measure-
ment until the frequency range of interest is fully
covered.

The interrogation time Δt is determined by the total
observation time T total and the number of scan steps
determined as a function of Qr.
Now we move to the discussion of experimental setup.

We consider picking up the signal inductively by a pick-up
loop L that is in parallel with the resistance R and capacitor

C, while the resonant circuit is capacitively coupled to the
amplifier through the capacitor Cc (Fig. 6). When DM
induces a magnetic excitation in the magnetized sample,
the oscillation of magnetization produces an oscillating flux
through the pick-up loop, which generates a voltage Vp that
can be detected through the load resistance Rload associated
with the amplifier.
Let us estimate the voltage over the load resistance Rload

(which is the input voltage of the amplifier) so that we can
compare the power due to the magnetization signal with
that of the thermal noise to derive the signal-to-noise ratio
(SNR). We apply the Thevenin theorem to simplify the
task. For convenience, the Thevenin equivalent circuit is
illustrated in Fig. 6(c). The Thevenin impedance ZðωÞ is
the impedance of the circuit when we look from the
terminal of Rload with Vp neglected. It is given by

ZðωÞ ¼ 1

ð1=iωLÞ þ ð1=RÞ þ iωC
þ 1

iωCc
: ð4:2Þ

The parameters are to be chosen such that the impedance is
matched to the amplifier impedance Rload ¼ 50 Ω at
resonance. Requiring Z ¼ Z0 ¼ 50 Ω at an arbitrary res-
onance frequency ω0, we can choose [110,118]

R ¼ Q0ω0L; ð4:3Þ

C ¼ 1

ω2
0L

�
1 −

1

Q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − Z0

Z0

s �
; ð4:4Þ

FIG. 6. The LC circuit capacitively coupled to an amplifier of impedance Rload for picking up a magnetization signal from the magnetic
sample perturbed by cosmic DM. (a) The original probe circuit with a loaded resistance. (b) The original probe circuit emphasizing the
voltage source Vp from the pick-up loop due to a magnetization oscillation of the sample. (c) The Thevenin equivalent circuit.
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Cc ¼
1

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Z0ðR − Z0Þ

s
; ð4:5Þ

where Q0 is the unloaded quality factor (or, equivalently,
the quality factor of the circuit without Cc and Rload). Since
the impedance is matched, the loaded quality factor Qr is
determined to be Qr ¼ Q0=2 [118].
On the other hand, according to the Thevenin theorem,

the equivalent voltage Vs is equal to the voltage between
terminals of Rload when it is replaced by open terminals
(the unloaded probe). Equivalently, this is the case when
we take the limit of Rload → ∞. Therefore, we obtain the
Thevenin equivalent voltage Vs in the frequency space as

ṼsðωÞ ¼ Ṽp
ð1=Rþ iωCÞ−1

iωLþ ð1=Rþ iωCÞ−1

¼ −iωΦ̃pðωÞ
ð1=Rþ iωCÞ−1

iωLþ ð1=Rþ iωCÞ−1

≈ −iωΦ̃pðωÞ
ffiffiffiffiffiffiffiffiffiffiffi
Q0Z0

ω0L

s
; ð4:6Þ

whereQ0ω0L ≫ Z0 andω ≈ ω0 are assumed, andΦp is the
flux signal at the pick-up coil induced by the transverse
magnetization Msignal of the sample. The tilde symbol
represents the value in the frequency space. One can derive
the flux signal Φp from the Faraday induction law [119]
and the reciprocity theorem,

Φp ¼
Z
V
dV Msignalβ; ð4:7Þ

where β is the rate of flux induction from one unit current.
With the geometry of a one-turn pick-up loop with the
sample at the center, we obtain

Φp ¼ MsignalV
μ0
4π

2πa2

ða2 þ d2Þ3=2

≈MsignalV
μ0
2a

ðwhen d → 0Þ; ð4:8Þ

where a is the loop radius, d the distance of the sample
from the loop, and V the sample volume. Note that the
sample volume V is limited by the size of the loop.
Assuming a sample of cylindrical shape shrunk by ratio
ν from a cylinder of radius a and height 2a, the sample
volume is given by

V ¼ νπa2ð2aÞ: ð4:9Þ

We arrive at the Thevenin equivalent circuit with Vs
given by Eq. (4.6) and impedance ZðωÞ given by Eq. (4.2),
whose value on resonance is set to Rload. Since the

impedance is matched, half of the voltage Vs is applied
to the input amplifier. [See Fig. 6(c) for the Thevenin
equivalent circuit.] We consider the Johnson-Nyquist ther-
mal noise from the resonator and amplifier with voltage
Ṽnoise ¼ kBðT þ TaÞZ0 at the input amplifier, where Ta is
the noise temperature of the amplifier, T the resonator
temperature, and kB the Boltzmann constant. Combining
contributions from the DM signal and noise, we obtain the
power density at the input amplifier as

P̃ðωÞ ¼ P̃sðωÞ þ P̃noiseðωÞ; ð4:10Þ

P̃sðωÞ ¼
1

4

Ṽ2
sðωÞ
Z0

; P̃noiseðωÞ ¼ kBðT þ TaÞ: ð4:11Þ

At the temperature T ¼ 0.1 K, with the microstrip
SQUID amplifier tuned for a frequency ∼Oð100Þ MHz,
combined with the heterostructure field-effect transistor
amplifier [120], the noise temperature of the amplifier is
less than Ta ¼ 0.1 K.
The SNR is estimated from the Dicke radiometer

equation [121] with Eqs. (4.8) and (4.10). Assuming
ωDM ≈ ω0, we obtain

SNR ¼ Ps

P̃noiseðωÞΔfr=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔfrΔt

p

¼ 1

2
ðμ0MsignalV=2aÞ2

ωDMQ0

L
1

4kBðT þ TaÞ

ffiffiffiffiffiffiffiffi
Δt
Δfr

s
;

ð4:12Þ

where Δfr is the circuit bandwidth, Δt is the interrogation
time at each frequency, and the overall coefficient 1=2 is
added to account for the time average. Note that MsignalV
depends on the total number of spin sites and hence on the
total mass WMnCO3

of MnCO3. By requiring SNR ≥ 1, we
obtain the expected sensitivity for the coupling constant
between DM and nucleons or electrons.
Here we assume that the material is placed in the proper

direction to read out Msignal ≡Mz
total, and is appropriately

shielded from unwanted perturbations. The sensitivities
based on sensitive channels of MnCO3 discussed in
Sec. III C, along with the present constraints of the relevant
DM parameters, are shown in Figs. 7–9. We take T ¼ Ta ¼
0.1 K, the pick-up coil inductance L≈0.45×ða=5 cmÞ μH,
a ¼ 5 cm, and the total observation time T total ¼ 1 year for
probing the range ω=2π ¼ 500–600 MHz. We assume the
total MnCO3 mass of 1 kg that can be achieved with ν ≈ 0.3
and the MnCO3 density of 3.7 g=cm3. The quality factor
Qr is assumed to be 105. Although the quality factor of
circuit might be affected by the relaxation time of the
magnet through the coupling between the circuit and
magnet, we neglect this effect just for simplicity. The
interrogation time at each scan step is Δt ¼ 1.7 × 103 s.
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The relaxation time T2n is assumed to be 1 μs for a realistic
setup and, in addition, 10 μs for an optimistic one. The
latter choice corresponds to a situation where the (effective)
magnetic relaxation time is longer thanks to the reduced
inhomogeneity in material and applied field.
For the dark photon DM detection, the observed flux at

the pick-up loop is due to both the dark photon field itself
hγ

0
and the field generated by the magnetization Msignal.

Since typically χe ≳ 1, the pick-up magnetic flux caused by
Msignal is larger than that of hγ

0
; thus, the sensitivity to ϵ is

derived taking into account only the contribution ofMsignal,
neglecting that of hγ

0
.

B. Sensitivity at the electron resonance frequency

The material MnCO3 is also sensitive to another fre-
quency range of ω=2π ≳ 10 GHz. It is due to excitation of
the electron-dominated mode (see Fig. 5). However,
because of the hyperfine interaction, it also contains a

nuclear-spin component, and hence we also expect a
sensitivity to gapp. Here we consider the frequency range
ωDM=2π ≈ ωẽ;þ=2π ¼ 45–55 GHz. The relaxation time of
this mode is mainly determined by that of the electron spin
which is found to be T2e ≈Oð0.1Þ ns at T ¼ 4.2 K [63]
and T2e ≈Oð1Þ ns at T ¼ 1.5 K [58]. We use T2e ¼ 1 ns
for estimating the sensitivity at T ¼ 0.1 K in the following.
Our strategy is to use a microwave cavity strongly

coupled to the magnetization of the material [21,48].
When the DM mass is the same as the excitation energy
of the homogeneous magnetic precession, the collective
motion of spins is resonantly excited. With the setup of the
microwave cavity strongly coupled to the magnetization of
the material, half of the energy of the magnetic resonance is
transferred to the excitation of cavity photons which can
be detected as the signal. The readout can be done by a
linear amplifier or photon counter, which are discussed in
Secs. IV B 1 and IVB 2, respectively. However, our aim is to

FIG. 7. The sensitivity to the axion-proton coupling gapp of
an experimental setup using a 1 kg canted antiferromagnet
MnCO3. Two hybridized oscillation modes of nuclear and
electron spins are considered with each total observation time
T total ¼ 1 year. Green (pale green) projection (derived in
Sec. IVA): the nuclear-dominated mode χzyn ðωñ;þÞ is used with
ωñ;þ=2π ¼ 500–600 MHz, T2n ¼ 1ð10Þ μs. The macroscopic
magnetization signal is assumed to be detected by the inductive
pick-up loop associated with the LC resonant circuit, of which the
quality factor Qr ¼ 105 is expected. Each scan step at a fixed
frequency takes Δt≈1.7×103 s. Red (orange) projection (derived
in Sec. IV B 2): electron-dominated mode resonance χzyn ðωẽ;þÞ is
used with ωẽ;þ=2π ¼ 45–55 GHz, T2e ¼ 1ð10Þ ns and Δt ¼
5 × 105ð5 × 104Þ s. In this case, the cavity photons excited in
cavity by spin systems are the expected signal. For both
projections, the angular average cos2 θ → 1=3 is assumed to
account for the unknown polarization of DM-induced magnetic
field. The gray area represents constraints from astrophysical
consideration: SN1987A [122–124], neutron star cooling [125].
The blue band shows the theoretical prediction from the DFSZ
axion model, with 0.28 < tan β < 140 [73].

FIG. 8. The sensitivity to the axion-electron coupling gaee of an
experimental setup using a 1 kg canted antiferromagnet MnCO3.
Two hybridized oscillation modes of nuclear and electron spins
are considered with each total observation time T total ¼ 1 year.
Green (pale green) projection (derived in Sec. IVA): the
nuclear-dominated mode χzze ðωñ;þÞ is used with ωñ;þ=2π ¼
500–600 MHz, T2n ¼ 1ð10Þ μs. The macroscopic magnetization
signal is assumed to be detected by the inductive pick-up loop
associated with the LC resonant circuit, of which the quality
factor Qr ¼ 105 is expected. Each scan step at a fixed frequency
takes time Δt ≈ 1.7 × 103 s. Red (orange) projection (derived in
Sec. IV B 2): electron-dominated mode resonance χzz;zye ðωẽ;þÞ
is used with ωẽ;þ=2π ¼ 45–55 GHz, T2e ¼ 1ð10Þ ns and Δt ¼
5 × 105ð5 × 104Þ s. In this case, the cavity photons excited by
spin systems are the expected signal. The angular average
cos2 θ → 1=3 and 2=3 are assumed for the former and latter
projections, respectively. The gray area represents constraints
from astrophysical consideration: the tip of red giants [126],
luminosity function of white dwarfs [127,128], and the con-
straints from underground detectors searching for solar axions
[129–131]. The blue band shows the theoretical prediction from
the DFSZ axion model, with 0.28 < tan β < 140 [73].
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utilize the latter, a photon counter, to avoid the quantum limit
that significantly suppresses the sensitivity at the frequency
of interest when we use a linear amplifier [132].
The microwave cavity frequency should be tuned to the

electron precession frequency, realizing a strong coupling
between the magnet and the cavity. The overall relaxation
time of a single mode of this coupled system is given by

Tcoupled ¼ 2

�
1

T2e
þ 1

τcav

�
−1

≈ 2T2e ¼ 2 ns; ð4:13Þ

where τcav is the cavity lifetime, which we assume to be
Oð1Þ μs as in Ref. [21]. The strong coupling between the
magnet and the cavity affects the signal calculation dis-
cussed in Sec. III C in several ways. Firstly, the relaxation
timescale T2e should be replaced by the coupled scale:
T2e → Tcoupled. Secondly, the interaction strength between
a coupled mode and the DM field is reduced by a factor of

ffiffiffi
2

p
due to the maximal mixing, which results in a 50%

reduction of power absorbed to the material when only a
single mode is excited.8 Finally, the coupled relaxation time
Tcoupled also determines the bandwidth of the magnon-
cavity coupled mode

Δωcoupled ¼ 2=Tcoupled ≈ 1=T2e: ð4:14Þ

Similarly to the case of the nuclear-frequency range, the
following steps can be used to scan the DM mass over the
frequency range ω=2π ¼ 45–55 GHz:
(1) Match eigenfrequencies of the magnetic system and

the cavity photon to the frequency ω of interest at the
same time, realizing the strong coupling between
them. The former can be tuned by changing the
external static field H0, while the latter by changing
the size of the cavity.

(2) Measure the power of cavity photons induced by the
magnetic material MnCO3 for an interrogation
time Δt.

(3) Shift the frequency ω by an interval Δω ¼ Δωcoupled
after each step of the signal measurement until the
frequency range of interest is fully covered.

The interrogation time Δt is determined by the total
observation time T total and the number of scan steps, which
is fixed from Δω and the whole frequency range of interest.

1. Microwave cavity with linear amplifier

Using a linear amplifier for probing ωDM=2π ∼ 50 GHz,
the effective temperature of the quantum noise is
TQ ¼ ℏωDM=kB ≃ 2.3 K. Therefore, under an experimen-
tal setup with the temperature T ¼ 0.1 K, we assume the
quantum noise dominates over others.
Let us assume that the resonance condition is satisfied:

ωDM ≈ ωẽ;þ. Input power is discussed in Sec. III C with
some subtle care from the magnet-cavity mixing mentioned
below Eq. (4.13). In the case of the strong coupling where
half of the power is transferred to the cavity [21,48], we
have Pout ¼ Pabsorb=2.
The following is the output power calculated at

ωDM=2π ¼ 48 GHz. For detecting the axion-induced
field through the axion-proton coupling gapp and axion-
electron coupling gaee, χ

zy
n ðωẽ;þÞ and χzy;zze ðωẽ;þÞ are the

most important, respectively; the corresponding output
powers are

P
gapp
out ¼ 2.2 × 10−26 μW×

�
WMnCO3

1 kg

��
T2e

1 ns

��
gapp
10−10

�
2

×

�
vDM=c
10−3

�
2
�
cos2θ
1=3

�
; ð4:15Þ

FIG. 9. The sensitivity to the dark photon kinetic mixing
parameter ϵ of an experimental setup using a 1 kg canted
antiferromagnet MnCO3. Two hybridized oscillation modes of
nuclear and electron spins are considered with each total
observation time T total ¼ 1 year. Green (pale green) projection
(derived in Sec. IVA): the nuclear-dominated mode χzze ðωñ;þÞ is
used with ωñ;þ=2π ¼ 500–600 MHz, T2n ¼ 1ð10Þ μs. The mac-
roscopic magnetization signal is assumed to be detected by the
inductive pick-up loop associated with the LC resonant circuit, of
which the quality factorQr ¼ 105 is expected. Each scan step at a
fixed frequency takes time Δt ≈ 1.7 × 103 s. Red (orange)
projection (derived in Sec. IV B 2): electron-dominated mode
resonance χzz;zye ðωẽ;þÞ is used with ωẽ;þ=2π ¼ 45–55 GHz,
T2e ¼ 1ð10Þ ns and Δt ¼ 5 × 105ð5 × 104Þ s. In this case, the
cavity photons excited by spin systems are the expected signal.
The angular average sin2 φ → 1=2 is assumed for both projec-
tions, while cos2 θ → 1=3 and cos2 θ → 2=3 are assumed for
the former and latter, respectively. The gray area covered by the
bold line represents constraints from cosmological considerations
[11], i.e., distortion of cosmic microwave background and
effective neutrino species. The other gray areas are constraints
from haloscope searches [87].

8However, with Tcoupled ≈ 2T2e, the two mentioned contribu-
tions cancel each other out, giving the same absorption power
Pabsorb as originally derived in Sec. III C.
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and

Pgaee
out ¼ 5.3 × 10−20 μW×

�
WMnCO3

1 kg

��
T2e

1 ns

��
gaee
10−12

�
2

×

�
vDM=c
10−3

�
2
�
cos2θ
2=3

�
: ð4:16Þ

In the case of dark photon DM, the dominant channels are
χzy;zze ðωẽ;þÞ, and we obtain the output power

Pϵ
out ¼ 2.4 × 10−21 μW×

�
WMnCO3

1 kg

��
T2e

1 ns

��
ϵ

10−12

�
2

×

�
vDM=c
10−3

�
2
�
cos2θ
2=3

��
sin2φ
1=2

�
: ð4:17Þ

On the other hand, the power of the quantum noise
calculated at ωDM=2π ¼ 48 GHz is

Pnoise ¼ ℏωDM

ffiffiffiffiffiffiffi
Δf
Δt

r
≃ 5.7 × 10−16 μW; ð4:18Þ

with the condition of using T total ¼ 1 year to probe the
frequency range 45–55 GHz (and hence fixing the value of
Δf=Δt). We can see that this method is not sensitive
enough for detecting the DM signal, suffering from the
quantum noise from the linear amplifier.

2. Microwave cavity with photon counter

Instead of using a linear amplifier, we may utilize a
single photon counter avoiding the standard quantum limit
[132]. In this case, the only relevant noise is the shot noise
of the cavity photon of frequency ω ¼ ωDM, whose rate is
determined by the effective relaxation time of the coupled
system Tcoupled and the cavity temperature Tc as [21]

Rth ¼
2=Tcoupled

eℏω=kBTc − 1
: ð4:19Þ

In this setup, we define the SNR as

SNR≡ RsignalΔtffiffiffiffiffiffiffiffiffiffiffi
RthΔt

p : ð4:20Þ

The constraints on DM couplings are given by requiring
SNR≳ 1. The output power Pout transferring to the cavity
photon system is related to the excitation rate Rsignal

(of spin-flip-induced photons) by the relation

Rsignal ≡ Pout=ℏωDM: ð4:21Þ

The sensitivities, based on the sensitive channels of
MnCO3 discussed in Sec. III C, are shown in Figs. 7–9
together with the relevant constraints. We take T total¼1year
for probing the range ω=2π ¼ 45–55 GHz, and assume

the relaxation time T2e ¼ 1 ns as a realistic case. In addition,
we add the case with T2e ¼ 10 ns, illustrating the optimistic
situation when inhomogeneity in the material and the applied
field could be reduced and hence the effective magnetic
relaxation time is increased. The interrogation time at each
scan step is Δt ¼ 5 × 105 s and Δt ¼ 5 × 104 s for the
two cases, respectively. Again, we assume the total MnCO3

mass of 1 kg.

V. CONCLUSION AND DISCUSSION

We have discussed a possibility of detecting axion or
dark photon DM using nuclear magnetization in a magnet,
which has a strong hyperfine coupling between electron
and nuclear spins. We focus on the canted antiferromagnet
MnCO3 as a concrete example of such a magnet. Both
axion and dark photon DMs may interact with nuclear and
electron spins and exert (effective) oscillating magnetic
fields on them. This can induce magnetic resonance when
the DM mass is equal to the excitation energy of the
magnet. Owing to strong magnetic fields generated by
electron spins through the hyperfine interaction, nuclear
spins are highly polarized and can give a sizable resonance
signal under relatively low external magnetic field. There is
also an electron magnetic resonance, which is also sensitive
to DM. Owing to the hyperfine interaction, the nuclear
and electron resonance modes are mixed with each other.
Specifically in MnCO3, both modes are sensitive to
frequencies much higher than typical values achieved by
ordinary nuclear spin precession experiments. Other mate-
rials such as CsMnF3 [65–67], CoCO3 [57], FeBO3 [57],
and Nd2CuO4 [133,134] are expected to share the same
properties.
We investigated the observable magnetization and

energy stored in the magnetic material due to the DM-
induced oscillating magnetic field. The details of the
measurement setup and strategy are discussed in Sec. IV
for two frequency ranges: the nuclear frequency ωDM=2π ∼
500–600 MHz corresponding tomDM∼10−6 eV (Sec. IVA)
and the electron frequency ωDM=2π ∼ 45–55 GHz corre-
sponding to mDM ∼ 10−4 eV (Sec. IV B). As detection
schemes, a pick-up loop with LC resonant circuit and
cavity photons coupled with the spin systems are consid-
ered for the former and latter channels, respectively. The
sensitivity for the 1-year measurement with 1 kg of MnCO3

under temperature 0.1 K is shown in Figs. 7–9. We
summarize the results in the following.
(1) This system is sensitive to the axion-proton inter-

action. The axion of mass ∼10−6 eV with gapp ≳
10−11 could be probed by our method through the
nuclear-dominated mode. So far it is hardly reached
by other experiments. For example, a nuclear-
precession experiment like CASPEr is sensitive to
lower mass regions due to the limitation of the
magnitude of the external magnetic field. We have
also examined the electron magnetic resonance
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excited through the mixing with the nuclear spins,
which indeed has a sensitivity to the nucleon-DM
interaction at the mass scale ∼10−4 eV or
Oð10Þ GHz. However, it turns out that this elec-
tron-dominated mode is not sensitive enough to
constrain the axion parameter space beyond astro-
physical constraints, because the signal is suppressed
by the short relaxation scaleT2e of thematerial. Other
materials with longer relaxation times should be
able to achieve better sensitivity, which is left as a
future work.

(2) The system is also sensitive to the axion-electron
interaction assuming an optimistic magnetic relax-
ation time achieved by small inhomogeneity of
the material and the applied magnetic field. The
nuclear-dominated mode can be used to explore
the axion parameter region with gaee ≈ 10−14 and
ma ∼ 10−6 eV. This region still survives the astro-
physical constraints from stellar evolution such as
white dwarf luminosity function and the tip of the
red giant branch. In addition, by using the electron
magnetic resonance mixed with nuclear spins, we
can search for the axion mass of 10−4 eV with
parameter gaee ∼ 10−13.

(3) For the kineticmixing parameter ϵ of the dark photon,
there are already haloscope experiments that are
searching for the mass range mγ0 ∼ 10−6 eV corre-
sponding to the frequency regions to which the
nuclear-dominated mode is sensitive. Even though
we can only probe the already scanned regions with
our method, a complementary check of such regions
is plausible for ϵ ∼ 10−13. In addition, with the
electron magnetic resonance mixed with nuclear
spins, wemight be able to probe the parameter region
down to ϵ ∼ 10−13 atmγ0 ∼ 10−4 eV, which is beyond
the current experimental limits and cosmological
constraints.

As shown above, DM detection with a magnet with a
strong hyperfine interaction provides possibilities to detect
both axion DM and dark photon DM. The unique feature of
DM detection via the proposed system is the allowed spin
transfer between electron and nuclear spins, which provides
several available channels and supports the readout of the
nuclear signal relying on more accessible electron spins.
Nevertheless, further study is still needed to investigate its
real potential and improvability. A further study of param-
eters of magnetic materials is encouraged, such as the
magnetic relaxation time T2n;2e and the susceptibility of
materials with a strong hyperfine coupling other than
MnCO3. Taking into account the statistical behavior of
the DM field would also help one to estimate the result
more precisely. Further study to cure the weak points
associated with the limited band of nuclear-dominated
modes and the short relaxation time of electron-spin

systems is also definitely useful to maximize the compe-
tence of this method.
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APPENDIX A: EXOTIC INTERACTION
BETWEEN NUCLEAR SPINS OF MN

AND DARK MATTER

In this Appendix, we consider the interaction between
nuclear spin I⃗ and axions based on the interaction between
the nucleon spin and axion given by Eq. (2.8). We mainly
follow Ref. [135] in the discussion below. Natural unit is
adopted in this Appendix.
Both the spin and orbital angular momentum of protons

and neutrons contribute to the nuclear spin I⃗ and nuclear
magnetic moment μ⃗I:

I⃗ ¼ S⃗p þ S⃗n þ L⃗p þ L⃗n; ðA1Þ

μ⃗I ¼ gpμNS⃗p þ gnμNS⃗n þ glpμNL⃗p þ glnμNL⃗n; ðA2Þ

where S⃗p;n and L⃗p;n are the total spin and orbital angular
momentum operators for protons or neutrons, respectively.
Spin and orbital g factors are given by gp ¼ 5.586;
gn ¼ −3.826; glp ¼ 1, and gln ¼ 0. For convenience, using

contribution variable σξ ≡ hI⃗ · ξ⃗i=hI⃗ · I⃗i with the expect-
ation value taken with respect to a nuclear state, and
defining the nuclear g factor gI from hμzIi ¼ gIμNhIzi,
we obtain the relation

1 ¼ σp þ σn þ σlp þ σln; ðA3Þ

gI ¼ gpσp þ gnσn þ glpσlp þ glnσln: ðA4Þ

Now let us discuss the axion interaction with the nuclear
spin. One should note that the axion only couples to the
nucleon spin, not to its orbital motion. Starting from the

axion interaction of the form ðgappS⃗p þ gannS⃗nÞ · ∇!a, we

obtain the interaction between the nuclear spin I⃗ and the
axion of the form
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Lint ¼
g̃aI
mN

ð∇!aÞ · I⃗ ¼ 1

gIμN

g̃aI
mN

ð∇!aÞ · μ⃗I; ðA5Þ

where g̃aI ≡ gappσp þ gannσn. Matching this to the mag-

netic interaction of the form Lint ¼ μ⃗I · h⃗, with h⃗ being the
magnetic field and μ⃗I the nuclear magnetic moment, we can
define the effective magnetic field caused by the axion and
felt by the nucleus as

h⃗axionI ¼ 1

gIμN

g̃aI
mp

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
v⃗DM sin ðmatþ δÞ; ðA6Þ

where ρDM and v⃗DM are the density and velocity vector of

DM, respectively. We have used ∇!a ≈mv⃗DMaðtÞ and
assumed that DM is composed solely of axions, hence
ρDM ¼ m2

aa20=2where a0 is the amplitude of axion coherent
oscillation.
The remaining task is to find a spin contribution for the

case of the magnetic isotope of interest; here we focus on
55Mn. For example, we can adopt the semiempirical
approach following Engel and Vogel [136], by assuming
that the nucleon species with even number (in this case,
neutrons) contributes little to the angular momentum of the
system, and taking gI as the observed value. With gI ¼ 1.38
as the observed nuclear g factor for 55Mn and σn ¼ 0;
σln ¼ 0, we obtain the spin contribution as σp ≈ 0.1;
σlp ≈ 0.9.
However, there are some uncertainties in the above

semiempirical estimation. One of them comes from the
deformed shell structure of the 55Mn nucleus [108,137],
which implies the collective rotation of the nucleus in
addition to the intrinsic state of nucleons. This can affect
the ratio of the spin and orbital contribution to nuclear spin.
In particular, concerning the z-direction contribution to the
magnetic moment, the nuclear magnetic moment is given
by [138,139]

μ ¼ I
I þ 1

hΩjμzjΩi þ
1

I þ 1
gRI: ðA7Þ

The first term is the magnetic moment from the angular
momentum of the proton in the state jΩi, while the second
term accounts for the collective rotation of nucleons with
the rotational g factor gR. Owing to the deformed configu-
ration of the 55Mn nucleus, particles experience axially
symmetric potential (with z being the axial direction),
and degenerate spherical shells split. Almost all nucleons
couple in pairwise contributing little to the angular momen-
tum, and the last odd proton occupies the Nilsson state
with the asymptotic quantum number ½312�5=2−. (For the
Nilsson state ½NnzΛ�Ωπ of a nucleon [138], N is the total
quantum number, nz the number of oscillator quanta in the
z direction, Λ the orbital angular momentum in the z
direction, Ω the total angular momentum in the z direction,

and π the parity.) This last odd proton and collective
rotation of nucleons contribute to the nuclear spin I ¼ 5=2.
For the ground state of 55Mn, the state of the last proton can
be approximated by jΩi ¼ jlz ¼ 2; Sz ¼ 1=2i. Since

hΩjμzjΩi ¼
1

2
gp þ 2glp; ðA8Þ

and the rotation g factor gR of the nucleus should not have a
contribution from the spin of the nucleons, we know that
σp ¼ 0.5=ðI þ 1Þ ≈ 0.14 is the proton-spin contribution
realizing the magnetic moment μ. The value of σp from
this deformed shell model is slightly higher than the one
obtained from the simple semiempirical model.
Another uncertainty is the neutron-spin contribution

which has been neglected so far. For the axion coupling to
the nuclear spin, the above two approximations imply that the
55Mn nucleus is sensitive to the axion-proton coupling
constant gapp, but not to the axion-neutron coupling gann.
However, in reality there might also be a significant spin
contribution from the core neutrons through its spin polari-
zation via the spin-spin interaction [140]. It may make the
55Mnnucleus also sensitive to the axion-neutron coupling. In
this paper, we neglect this effect for simplicity.
In this work, we use the value

σp ¼ 0.1; σn ¼ 0 ðA9Þ
to numerically estimate the magnitude of the axion-induced
magnetic field acting on the 55Mn nuclear spin.

APPENDIX B: DETAILED CALCULATION
OF MAGNETIC DYNAMICS IN MnCO3

In this Appendix we calculate the magnetic dynamics of
MnCO3 under the DM background. In Appendices B
and C, SI unit is adopted with vacuum permeability factor
μ0 is omitted in the formula for convenience.
To estimate the eigensystem of the magnetic system in

MnCO3, we first note that there is the orders-of-magnitude
relation of the effective fields and other constants:

HE → HE; Hn → Hn; γe → γe ðB1Þ

H0 → H0δ; HD → HDδ; HK → HKδ ðB2Þ

Ha → Haδ
2; HK0δ2; γn → γnδ

2; ðB3Þ

where δ ∼ 10−2 roughly accounts for the hierarchy among
these parameters. Below we will consider only the leading
order result in δ, while δ appearance is omitted for nota-
tional simplicity.
Recall that the potential of the system and equation of

motions are given by Eqs. (3.5) and (3.17). The dynamics
of the magnetic system concerning only in-phase modes
following Eqs. (3.20) and (3.22) reads as
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du⃗ðtÞ
dt

¼ Ωu⃗ðtÞ þ R⃗ðtÞ þ D⃗ðtÞ; ðB4Þ

where u⃗≡ ðMxþ;M
y
þ; mxþ; m

y
þÞT represents a collect of the perturbation of magnetization parameters defined by Eq. (3.18),

and at leading order

Ω ¼

0
BBB@

0 −2γeHE 0 γeHn

γ2eðH0ðH0 þHDÞ þ 2HEðHa þHK0 ÞÞ=2γeHE 0 −γeHn

0 −γnHa 0 γnHn

γnHa 0 −γnHn 0

1
CCCA: ðB5Þ

Term R⃗ represents relaxation of the magnetizations. D⃗ is
source term due to the oscillating magnetic field induced by
DM and is given by

D⃗ðtÞ ¼

0
BBB@

hyeM0

hzeM0 sinψ

hynm0

hznm0 sinψ

1
CCCAðeiωDMt þ e−iωDMtÞ: ðB6Þ

In the case that R⃗ ¼ 0 and D⃗ ¼ 0, with the ansatz

u⃗ðtÞ ¼ u⃗eiωt; ðB7Þ

the equation of motion reads as iωu⃗ ¼ Ωu⃗ of which the
solution gives eigenvalues of the precession mode of
magnetization as

ω1;3 ¼ �ωñ;þ; ω2;4 ¼ �ωẽ;þ; ðB8Þ

where ωñ;þ and ωẽ;þ are given by Eqs. (3.32) and (3.31).
The corresponding eigenmodes are

u⃗1 ¼ u⃗�3 ¼
�
−

2iHEγ
2
eω

2
n

γnωñ;þω2
e;þ

;−
ωnð2HEγeωn − ω2

e;þÞ
2HEγnω

2
e;þ

;−
iωn

ω2

; 1

�T

; ðB9Þ

u⃗2 ¼ u⃗�4 ¼
�
iωe;þ
Haγn

;
ω2
e;þ

2HaHEγeγn
;−

ið2HEγeωn − ω2
e;þÞ

2HEγeωe;þ
; 1

�T

; ðB10Þ

up to an arbitrary normalization factor.
Now, we take into account the damping effect R⃗ and

source term D⃗. We adopt here for simplicity the relaxation
term of the form

R⃗ ¼ −ui=Ti; ðB11Þ

where T1;3 ¼ T2n and T2;4 ¼ T2e denoting the relaxation
timescale of the nuclear-dominated mode and electron-
dominated mode, respectively. With ansatz

u⃗ðtÞ ¼
X
i

ciu⃗ieiωDMt þ H:c:; ðB12Þ

the equation of motion reduces to the problem of finding
ci’s satisfying

P
i ðiðωDM − ωiÞ þ 1=TiÞciu⃗i ¼ D⃗.

The signal magnetization ðMsignal ≡Mz
totalÞ is then

given by

MsignalðtÞ ¼ sinψ
X
i

ciðu⃗iÞ1eiωDMt þ H:c: ðB13Þ

When ωDM ∼ ω1, the i ¼ 1 term is dominant with corre-
sponding steady-state solution of the form

c1 ∝
T2n

ðω1 − ωDMÞ2T2
2n þ 1

: ðB14Þ

It is approximately the solution at time t≳ T2n after begin
excited. On the other hand, when ωDM ∼ ω2 the i ¼ 2 term
is dominant with steady-state solution of the form

c2 ∝
T2e

ðω2 − ωDMÞ2T2
2e þ 1

; ðB15Þ

which is a good approximation for the solution at the time
t≳ T2e after being excited. That is the resonance occurs
when jωDM − ωñ;þj≲ 1=T2n or jωDM − ωẽ;þj≲ 1=T2e.
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Note that when t≲ τDM, the magnetization rotates with a
coherent phase with frequency ωDM, where τDM is the
coherence time of DM assumed to be larger than T2n;2e.
Owing to the velocity distribution of DM, the signal
spreads with bandwidth ΔωDM in the frequency space.
For the power estimation, we take into account the relevant
component of magnetization and use Eq. (3.40). The signal
susceptibility and power are listed in Tables II–V,
respectively.
If one uses the relaxation term R ¼ ð−1=τ2n;−=τ2n;

−=τ2e;−τ2eÞT of Bloch’s kind, the effective relaxation time
T2n; T2e can be expressed as

T2n ¼
τ2nτ2eðHaγeωnð2HEγeωn − ω2

e;þÞ þ ω4
e;þÞ

τ2eω
4
e;þ þHaτ2nγeωnð2HEγeωn − ω2

e;þÞ
; ðB16Þ

T2e ¼
τ2nτ2eðHaγeωnð2HEγeωn − ω2

e;þÞ þ ω4
e;þÞ

τ2nω
4
e;þ þHaτ2eγeωnð2HEγeωn − ω2

e;þÞ
: ðB17Þ

APPENDIX C: NUCLEAR MAGNON PICTURE

In this Appendix, we discuss the dynamics of the
magnetic system of MnCO3 using the quantum magnon
picture. Based on the following derivation, we check that
the response derived in the magnon picture is consistent
with that derived in the classical picture illustrated in the
main text (Sec. III).

1. Hamiltonian in the magnon picture

The following is the Hamiltonian for the spin of MnCO3

in the antiferromagnetic phase [63,96,102,103]:

H¼ 2J
X
i;j≠i

S⃗i · S⃗jþ2
X
i;j≠i

S⃗j · ðS⃗i× e⃗yDÞ

þK
2

�X
i

ðSyi Þ2þ
X
j

ðSyjÞ2
�
−
K0

2

�X
i

ðSzi Þ2þ
X
j

ðSzjÞ2
�

þ γeℏ

�X
i

S⃗iþ
X
j

S⃗j

�
· ðH⃗þ h⃗eÞ

− γnℏ

�X
i

I⃗iþ
X
j

I⃗j

�
· ðH⃗þ h⃗nÞ

þ Ãhy

�X
i

S⃗i · I⃗iþ
X
j

S⃗j · I⃗j

�
; ðC1Þ

where i and j represent lattice sites in two sublattices;
J; K;K0, and Ãhy are positive constants; and γn, γe are
gyromagnetic ratios for nuclear and electron spin, respec-
tively. The Hamiltonian includes (1) isotropic exchange
interaction between electron spins of nearest sites between
S⃗i and S⃗j; (2) Dzyaloshinskii–Moriya interactions;
(3) easy-plane anisotropy; (4) in-plane uniaxial anisotropy;

(5) Zeeman effects for electron spins S⃗ and nuclear spins I⃗;
and (6) hyperfine interaction between electron spins S⃗ and
nuclear spins I⃗. Here, we discuss the situation where there
are static fields

H⃗ ¼ H0e⃗x ðC2Þ

applied in the x direction and an exotic oscillating field
induced by DM of which h⃗eðtÞ is interacting with electron
spin, and h⃗nðtÞ is interacting with nuclear spin. The
coordinate is set to coincide with the situation discussed
in the main text using classical theory. The relations
between spins and magnetizations are given by
Eqs. (3.2) and (3.3). It reduces to the classical
Hamiltonian (3.5) when all the spins in each sublattice
are aligned, which gives the relation

HE ¼ 2JzS
γeℏ

; HD ¼ 2DzS
γeℏ

; HK0 ¼ K0S
γeℏ

;

HK ¼ KS
γeℏ

; AhyM0 ¼
ÃhyS

γnℏ
: ðC3Þ

Note that the direction between magnetization and spin of
electron is opposite while we take gyromagnetic ratio
parameter γe, γn to be positive.
In the ground state, electron spins align in the xz plane

pointing (almost in) to þz and −z direction for each
sublattice due to easy-plane and in-plane anisotropy.
They slightly tilt toward the −x direction due to the applied
static field H0 and the Dzyaloshinskii–Moriya interactions.
For nuclear spins, they align opposite to the electron spin of
the same Mn due to hyperfine interaction. The configura-
tion (of magnetizations) is shown in Fig. 2.
For convenience to consider fluctuation around ground

state, we rotate our spin parameters for each sublattice:

Sxi ¼ Sx1i cosψ þ Sz1i sinψ ; ðC4aÞ

Szi ¼ −Sx1i sinψ þ Sz1i cosψ ; ðC4bÞ

Sxj ¼ −Sx2j cosψ þ Sz2j sinψ ; ðC4cÞ

Szj ¼ −Sx2j sinψ − Sz2j cosψ ; ðC4dÞ

where the ground state expectation value gives hSz1i i¼
hSz2j i¼−S¼−5=2 and hSx1;2;yi;j i ¼ 0. The coordinate trans-
formation is shown in Fig. 3. Owing to hyperfine inter-
action, at ground state nuclear spins lie in the opposite
direction to the electron spins of the same sites and
similarly form two sublattices. We perform the same
coordinate transformation for nuclear spins I⃗ [Eq. (C4)
but with S ↔ I]. In this case, the thermal expectation value
for nuclear spin temperature T is
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hIz1i i ¼ hIz2j i ¼ hIi ðC5Þ

given by Eq. (3.11), and hIx1;2;yi;j i ¼ 0. The function hIi=I is
shown in Fig. 4. Now the hyperfine interaction can be
written in the form

Hhy ¼ Hk þHmix; ðC6Þ

where

Hk ¼ Ãhy

X
i

ðSz1i Iz1i Þ þ
X
j

ðSz2j Iz2j Þ; ðC7Þ

Hmix¼ Ãhy

X
i

ðSx1i Ix1i þSyi I
y
i Þþ

X
j

ðSx2j Ix2j þSyjI
y
jÞ: ðC8Þ

The term Hk represents the hyperfine interaction in the
direction of spin alignment in the ground state, which makes
both the eigenfrequency of nuclear- and electron-spin pre-
cession higher. On the other hand, the termHmix causes the
mixing between the nuclearand electron-spin precession
modes. Then we perform the Holstein-Primakoff transfor-
mation for expressing perturbations in terms of magnons:

ð−Sz1i Þ ¼ S − a†i ai; Iz1i ¼ hIi − c†i ci ðC9aÞ

Sþi ¼ ð−Sx1i Þþ iSyi ¼
ffiffiffiffiffiffi
2S

p
ai; Iþi ¼ Ix1i þ iIyi ¼

ffiffiffiffiffiffiffiffiffi
2hIi

p
ci;

ðC9bÞ

S−i ¼ ð−Sx1i Þ− iSyi ¼
ffiffiffiffiffiffi
2S

p
a†i ; I−i ¼ Ix1i − iIyi ¼

ffiffiffiffiffiffiffiffiffi
2hIi

p
c†i

ðC9cÞ

for the first sublattice, where a; a† and c; c† are magnon
annihilation, creation operators satisfying bosonic commu-
tation relation. Here, we consider only a small perturbation,
and hence the higher order of creation/annihilation in the
Holstein–Primakoff is neglected. We perform the same
transformation for the other sublattice by using bj and dj
representing the electron and nuclear magnon operators
respectively. We also perform the Fourier transformation:

ai ¼
ffiffiffiffi
1

N

r X
k⃗

eik⃗r⃗iak; bj ¼
ffiffiffiffi
1

N

r X
k⃗

eik⃗r⃗jbk;

ci ¼
ffiffiffiffi
1

N

r X
k⃗

eik⃗r⃗ick; dj ¼
ffiffiffiffi
1

N

r X
k⃗

eik⃗r⃗jdk; ðC10Þ

with N denoting the number of spin sites in each sublattice.
However, we focus only on the k⃗ ¼ 0 mode since it is
dominantly excited by DM which is assumed to be almost
spatially uniform. As long as only the k ¼ 0 mode is
considered, we simply omit the subscript k for the annihi-
lation and creation operators.

2. Diagonalization

The quadratic terms in the Hamiltonian can be divided
into several terms as

H ¼ He þHn þHmix þHDM; ðC11Þ

where He is the electron-magnon term including the Hk
part of the hyperfine interaction, Hn is the nuclear-magnon
term, Hmix is the mixing term given by Eq. (C8), and HDM
is the interaction term between the spin and DM. The
electron-magnon Hamiltonian He reads as

He=ℏ¼Aeða†aþb†bÞþBeðabþa†b†Þ

þ1

2
CeðaaþbbþH:c:ÞþDeðab†þa†bÞ; ðC12Þ

with

Ae ¼ γe

�
HE −

H2
0 −H2

D

2HE
þHK0 þH0 sinψ þHa þ

HK

2

�
;

Be ¼ γe

�
−HE þ 1

2

H2
0 −H2

D

2HE

�
; Ce ¼ −γe

HK

2
;

De ¼ γe
1

2

H2
0 −H2

D

2HE
:

The nuclear-magnon Hamiltonian Hn reads as

Hn=ℏ ¼ ωnðc†cþ d†dÞ; ðC13Þ

where

ωn ¼ ÃhyS=ℏ: ðC14Þ

The interaction Hamiltonian between the DM and spin is

HDM ¼ γeℏ

�X
i

S⃗i þ
X
j

S⃗j

�
· h⃗eðtÞ

− γnℏ

�X
i

I⃗i þ
X
j

I⃗j

�
· h⃗nðtÞ; ðC15Þ

with h⃗n ¼ h⃗axionn and h⃗axione given by Eqs. (2.15) and (2.16)

for the case of axion DM, and h⃗n ¼ h⃗e ¼ h⃗γ
0
given by

Eq. (2.26) for the case of dark photon DM.
We can diagonalize He with the following generalized

Bogoliubov transformation [141,142]:

X ¼ QZ; ðC16Þ

where X ≡ ða; b; a†; b†ÞT ,Z≡ ðα; β;α†; β†ÞT , and
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Q ¼
�
Q1 Q2

Q�
2 Q�

1

�
; Q1 ¼

�
Q11 Q12

−Q11 Q12

�
;

Q2 ¼
�

Q13 Q14

−Q13 Q14

�
; ðC17Þ

with the following elements:

Q11 ¼ −
�ðAe −DeÞ þ ωe;−

4ωe;−

�
1=2

;

Q12 ¼
�ðAe þDeÞ þ ωe;þ

4ωe;þ

�
1=2

;

Q13 ¼
�ðAe −DeÞ − ωe;−

4ωe;−

�
1=2

;

Q14 ¼
�ðAe þDeÞ − ωe;þ

4ωe;þ

�
1=2

: ðC18Þ

Note that the matrix Q ensures the canonical quantization
properties of α and β through the relation

Q

�
I2 0

0 −I2

�
Q† ¼

�
I2 0

0 −I2

�
: ðC19Þ

The diagonalized Hamiltonian is written as

He=ℏ ¼ ωe;−α
†αþ ωe;þβ†β; ðC20Þ

where ωe;− and ωe;þ are equal to those given by Eqs. (3.26)
and (3.27), respectively. Magnons α and β correspond to
the out-phase and in-phase mode of electron-spin preces-
sion, respectively (see Sec. III B). Because the eigenenergy
of the out-phase mode is far from that of the nuclear
magnon, its mixing with the nuclear magnon is expected to
be small. We then focus only on the in-phase mode β.
Nuclear magnons and electron magnons mix with each

other by the precession component of hyperfine interaction:

Hmix ¼ −Ãhy

ffiffiffiffiffiffiffiffiffi
ShIi

p
ðacþ a†c† þ bdþ b†d†Þ: ðC21Þ

When we focus only on the in-phase mode β of the electron
magnon, we obtain

Hmix¼−Ãhy

ffiffiffiffiffiffiffiffiffi
ShIi

p
½ðQ12βþQ14β

†ÞηþðQ12β
†þQ14βÞη†�;

ðC22Þ

where

η≡ ðcþ dÞ=
ffiffiffi
2

p
: ðC23Þ

Let us focus on the in-phase magnons. First neglecting
the DM part, the Hamiltonian of interest is given by

H0=ℏ ¼ ωe;þβ†β þ ωnη
†ηþHmix=ℏ

¼ Aβ†β þ A0η†ηþ Bðβηþ β†η†Þ
þDðβη† þ β†ηÞ ðC24Þ

with

A ¼ ωe;þ; A0 ¼ ωn ðC25Þ

B ¼ −Ãhy

ffiffiffiffiffiffiffiffiffiffiffi
2hIiS

p
Q12=ℏ;

D ¼ −Ãhy

ffiffiffiffiffiffiffiffiffiffiffi
2hIiS

p
Q14=ℏ: ðC26Þ

We can diagonalize it by the transformation

Y ¼ RW; ðC27Þ

where Y ≡ ðβ; η; β†; η†ÞT and W ≡ ðβ̃; η̃; β̃†; η̃†ÞT . We find
that matrix R that preserves canonical quantization of
magnon operators is in the form

R ¼
�

U V

V� U�

�
; ðC28Þ

with the elements given by

U ¼ ðu1u2Þ; ui ¼ ki

� ⊕i

2AD

�
;

⊕i ¼ ω2
i þ ðA − A0Þωi − ðAA0 þD2 − B2Þ; ðC29Þ

V ¼ ðv1v2Þ; vi ¼ Ciki

� ⊖i

2AD

�
;

⊖i ¼ ω2
i − ðA − A0Þωi − ðAA0 þD2 − B2Þ; ðC30Þ

where

Ci ¼ −
D
B

�ðωi − AÞðωi − A0Þ − ðD2 − B2Þ
ðωi − AÞðωi þ A0Þ − ðD2 − B2Þ

�
; ðC31Þ

k1 ¼
1

2AD

�
C2ω2

−C1ω1 þ C1C2
2ω1 þ C2ω2 − C2

1C2ω2

�
1=2

;

ðC32Þ

k2 ¼
1

2AD

�
−C1ω1

−C1ω1 þ C1C2
2ω1 þ C2ω2 − C2

1C2ω2

�
1=2

;

ðC33Þ

and
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ω2
1;2¼D2−B2þA2þA02

2

�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA−A0Þ2½ðAþA0Þ2þ4ðD2−B2Þ�þ16AA0D2

q
:

ðC34Þ

Note that ω1 ¼ ωẽ;þ and ω2 ¼ ωñ;þ, which are equal to
those given by Eqs. (3.31) and (3.32), respectively. At last,
a diagonalized full Hamiltonian of electron and nuclear
magnon is given in the form

H0=ℏ ¼ ωẽ;þβ̃†β̃ þ ωñ;þη̃†η̃: ðC35Þ

For the convenience of later discussion, we define the
following mixing angle matrix ϕ�:

�
β† � β

η† � η

�
¼

�ϕ�
ββ̃

ϕ�
βη̃

ϕ�
ηβ̃

ϕ�
ηη̃

��
β̃† � β̃

η̃† � η̃;

�
ðC36Þ

which can be obtained from matrix R defined in Eq. (C28).

3. Response

Next, we discuss the magnetization response due to the
DM-induced magnetic field. As defined in Eq. (3.35), the
magnetization signal Msignal is defined by the total mag-
netization in the z direction Mz

total which is the oscillation
component in this setup. We can write it in terms of the
magnon operator β̃; η̃ as

MsignalV ¼ hMz
totaliV ¼ −γeℏ

	X
i

Szi þ
X
j

Szj




¼ −γeℏ sinψ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NtotalS

p
ðQ12 þQ14Þ

× ðϕþ
βη̃hη̃þ η̃†i þ ϕþ

ββ̃
hβ̃ þ β̃†iÞ; ðC37Þ

where Ntotal ¼ 2N is the number of total spin sites. On the
other hand, the Hamiltonian interaction between DM-
induced field and magnon β̃; η̃ reads as

HDM ¼ −iγnℏh
y
nðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NtotalhIi=2

p
ðϕ−

ηη̃ðη̃† − η̃Þ þ ϕ−
ηβ̃
ðη̃† − η̃ÞÞ

þ γnℏhznðtÞ sinψ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NtotalhIi=2

p
ðϕþ

ηη̃ðη̃† þ η̃Þ þ ϕþ
ηβ̃
ðβ̃† þ β̃ÞÞ

þ γeℏhzeðtÞ sinψ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NtotalS

p
ðQ12 þQ14Þðϕþ

βη̃ðη̃þ η̃†Þ þ ϕþ
ββ̃
ðβ̃ þ β̃†ÞÞ

þ iγeℏh
y
eðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NtotalS

p
ðQ12 −Q14Þðϕ−

βη̃ðη̃† − η̃Þ þ ϕ−
ββ̃
ðβ̃† − β̃ÞÞ: ðC38Þ

One can then apply the linear excitation theory to find the
expectation value of operators in Eq. (C37), and hence the
magnetization signal. Focusing on one particular mode
ζ ¼ β̃; η̃, the Hamiltonian is

H ¼ H0 þHDM; ðC39Þ

H0 ¼ ℏωζζ
†ζ; HDM ¼ ½gζζeiωDMt þ H:c:�; ðC40Þ

wheregζ is the coupling constant depending on the amplitude

of the DM-induced field h⃗e; h⃗n [see Eqs. (2.15), (2.16),
and (2.26)], while ωDM is equal to the axion mass ma or
dark photon mass mγ0 . The Heisenberg equation of motion
reads as

dζ
dt

¼ −iωζζ −
1

T2ζ
ζ −

i
ℏ
g�ζe

−iωDMt; ðC41Þ

with T2ζ representing the relaxation time of the precession
mode ζ which is twice a value of the magnon lifetime.

The stationary steady-state solution for this system is
given by

hζi ¼ g�ζ=ℏ
ðωDM − ωζÞ þ ið1=T2ζÞ

e−iωDMt; ðC42Þ

which is a good approximation for the solution at t≳ T2ζ.
Substituting the expectation value to the expression of
magnetization signal [Eq. (C37)], one can derive the
response of the system to DM. Owing to the velocity
distribution of DM, the magnetization signal spreads
with width ΔωDM determined by that of the DM field.
We find that the response of the system derived from the
quantum magnon picture is consistent with that of
classical theory given in Tables II and III. On the other
hand, the power of the system can be derived from the
relation P ¼ ℏωζhnζi2=T2ζ where nζ ¼ ζ†ζ is the number
operator.
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