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We study a prediction on neutrino observables in a nonsupersymmetric renormalizable SOð10Þ grand
unified theory model that contains a 10 complex scalar field and a 126 scalar field whose Yukawa couplings
with 16 matter fields provide the quark and charged lepton Yukawa couplings, neutrino Dirac Yukawa
coupling and Majorana mass for the singlet neutrinos. The SOð10Þ breaking is achieved in two steps by a
Oð1015Þ GeV vacuum expectation value (VEV) of a 54 real scalar field and aOð1014Þ GeVVEVof the 126
field. First, we analyze the gauge coupling unification conditions and determine the VEVof the 126 field.
Next, we constrain the Yukawa couplings of the 10 and 126 fields at the scale of the 126 field’s VEV from
experimental data on quark and charged lepton masses and quark flavor mixings. Then we express the
active neutrino mass with the above Yukawa couplings and the 126 field’s VEV based on the Type-1
seesaw mechanism, and fit neutrino oscillation data, thereby deriving a prediction on poorly or not
measured neutrino observables. What distinguishes our work from previous studies is that we do not assign
Peccei-Quinn charges on visible sector fields so that the 10 scalar field and its complex conjugate both have
Yukawa couplings with 16 matter fields. From the fitting of neutrino oscillation data, we find that not only
the normal neutrino mass hierarchy, but also the inverted hierarchy can be realized. We also reveal that in
the normal hierarchy case, the Dirac CP phase of the neutrino mixing matrix δCP is likely in the ranges of
−2.4 < δCP < −1.2 and 1.2 < δCP < 2.4, and not in the region with δCP ∼ π, and that in the normal
hierarchy case, θ23 is likely in the upper octant and in the range of 0.50≲ sin2 θ23 ≲ 0.55.
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I. INTRODUCTION

The SOð10Þ grand unified theory (GUT) [1,2] is a
viable candidate for physics beyond the Standard Model
(SM), because it accounts for the origin of the hyper-
charge quantization, and it is automatically equipped with
the seesaw mechanism that naturally explains the tiny
neutrino mass [3–8]. There are four classes of SOð10Þ
GUT models which are either supersymmetric or non-
supersymmetric and either renormalizable or nonrenor-
malizable. In supersymmetric models, the gauge coupling
unification is achieved without intermediate scale,
whereas in nonsupersymmetric models, one or more
intermediate scales are necessary for the successful uni-
fication. In renormalizable models [9,10], one introduces
10 and 126þ 126 (and optionally 120) representation
fields from which the electroweak symmetry-breaking
Higgs field originates, and the renormalizable couplings
of 10 and 126 with 16 matter fields give rise to realistic

SM Yukawa couplings and neutrino Dirac Yukawa cou-
pling. Additionally, the renormalizable coupling of 126
and its vacuum expectation value (VEV) generate
Majorana mass for the singlet neutrinos. In nonrenorma-
lizable models, one introduces 10 and 16þ 16 fields (let
us denote the latter by 16H þ 16H to avoid confusion), and
the renormalizable coupling of 10 with 16 matter fields
and the nonrenormalizable couplings of two 16H’s with 16
matter fields, combined with the VEV of 16H, generate
realistic SM Yukawa couplings, neutrino Dirac Yukawa
coupling and Majorana mass for the singlet neutrinos. The
renormalizable models are attractive because the flavor
structures of the neutrino Dirac Yukawa coupling and
Majorana mass term can be constrained from experimental
data on quark and charged lepton masses and quark flavor
mixings, so that one can make a restrictive prediction on
the neutrino mass and mixings. However, the supersym-
metric renormalizable models confront a serious trouble
that the SOð10Þ gauge coupling becomes nonperturbative
near the unification scale because the Dynkin index of 126
representation is large and both scalar and fermionic
components contribute to the renormalization group
(RG) evolution of the gauge coupling. For the above
reasons, the nonsupersymmetric renormalizable models
are worth for scrutiny.
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In this paper, we study a nonsupersymmetric renorma-
lizable SOð10Þ GUT model with emphasis on its prediction
on the neutrino mass and mixings. Specifically, we consider
a nonsupersymmetric SOð10Þ GUT model containing a 10
complex scalar field and a 126 scalar field that couple with
16 matter fields. The GUT breaking is achieved by a high-
scale (Oð1015Þ GeV) VEV of a 54 real scalar field and an
intermediate scale (Oð1014Þ GeV) VEV of the 126 field
[11–15]. Our analysis proceeds as follows: First, we
analyze the gauge coupling unification conditions and
evaluate the intermediate-scale VEV. Next, we constrain
the Yukawa couplings of the 10 and 126� fields at the
intermediate scale from experimental data on the quark and
charged lepton masses and quark flavor mixings. Then we
express the neutrino Dirac Yukawa coupling and Majorana
mass for the singlet neutrinos with these Yukawa couplings
and the intermediate-scale VEV and calculate the neutrino
mass matrix based on the Type-1 seesaw model. Finally, we
fit experimental data on the neutrino mixing angles and
mass differences, and make a prediction on poorly or not
measured neutrino observables.
Previously, nonsupersymmetric renormalizable SOð10Þ

GUTmodels and their implication on neutrino physics have
been studied in a number of papers [11–34]. Our work
differs from them in that we consider a more general model
where the 10 complex scalar field and its complex conjugate
both have Yukawa couplings with 16 matter fields, as
Peccei-Quinn charges [35] are not assigned to these fields.
As a result, the fitting of neutrino data becomes easier andwe
obtain an interesting finding that the SOð10Þ GUT model
can be consistent with not only the normal hierarchy but also
the inverted hierarchy of the neutrinomass.1 Another feature
of our study is that we include information on theVEVof the
126 field in the fitting of neutrino data, which allows us to
determine the portions of the SMHiggs field in the 126 field
[c3, c4 defined in Eq. (8)].
This paper is organized as follows: In Sec. II, we describe

the nonsupersymmetric renormalizable SOð10ÞGUTmodel
we consider. In Sec. III, we analyze the gauge coupling
unification conditions and evaluate the intermediate-scale
VEV of the 126 scalar field. In Sec. IV, we constrain the

Yukawa couplings of the 10 and 126 scalar fields at the
intermediate scale from experimental data on the quark and
charged lepton masses and quark flavor mixings, express the
neutrino mass matrix with these Yukawa couplings and the
intermediate-scale VEV, and fit neutrino oscillation data to
derive a prediction on neutrino observables. In Sec. V, we
inspect the validity of approximations made in Secs. III and
IV. Section VI summarizes the paper.

II. NONSUPERSYMMETRIC RENORMALIZABLE
SOð10Þ GUT MODEL

The model is a nonsupersymmetric SOð10Þ gauge theory
with the following field content. Three generations of left-
handed Weyl spinors in 16 representation, denoted by 16i

with i the flavor index, a complex scalar field in 10 denoted
by 10H, a complex scalar field in 126 denoted by 126H, and
a real scalar field in 54, denoted by 54H. The Yukawa
couplings are given by

−LYukawa ¼ ðY10Þij16i10H16j þ ðZ10Þij16i10�H16j
þ ðY126Þij16i126�H16j þ H:c: ð1Þ

The gauge symmetry breaking proceeds as follows: The
component of 54H with charge (1, 1, 1) in the SUð4Þ ×
SUð2ÞL × SUð2ÞR subgroup develops a VEV and breaks
SOð10Þ. We write the SOð10Þ-breaking scale as μ ¼ μGUT.
The effective theory below scale μ ¼ μGUT is a Pati-Salam
model with SUð4Þ × SUð2ÞL × SUð2ÞR gauge group [36].
We assume that the (1, 2, 2) component of 10H and the
ð10; 1; 3Þ þ ð10; 3; 1Þ þ ð15; 2; 2Þ components of 126H
have mass much smaller than μGUT and remain in the
effective Pati-Salam model. The ð10; 1; 3Þ and (10, 3, 1)
components have the same mass as a consequence of
D-parity [37,38]. We write the fields of these components
as ð1; 2; 2ÞH; ð10; 1; 3ÞH; ð10; 3; 1ÞH; ð15; 2; 2ÞH, respec-
tively, and write the fields of the ð4; 2; 1Þ þ ð4̄; 1; 2Þ
components of 16i fermions as ð4; 2; 1Þi þ ð4̄; 1; 2Þi. The
effective Pati-Salam model contains the following Yukawa
couplings:

−LYukawa ⊃ ðY1Þijð4; 2; 1Þið1; 2; 2ÞHð4̄; 1; 2Þj þ ðZ1Þijð4; 2; 1Þið1; 2; 2Þ�Hð4̄; 1; 2Þj þ ðY15Þijð4; 2; 1Þið15; 2; 2Þ�Hð4̄; 1; 2Þj

þ 1

2
ðYNÞijð4̄; 1; 2Þið10; 1; 3Þ�Hð4̄; 1; 2Þj þ

1

2
ðYNÞijð4; 2; 1Þið10; 3; 1Þ�Hð4; 2; 1Þj þ H:c:; ð2Þ

where the Yukawa couplings satisfy the following match-
ing conditions at scale μ ¼ μGUT at tree level [39]:

Y1 ¼ −2
ffiffiffi
2

p
Y10; ð3Þ

Z1 ¼ −2
ffiffiffi
2

p
Z10; ð4Þ

Y15 ¼ 8
ffiffiffi
2

p
Y126; ð5Þ

1There is a recent report [34] that a model with a 10 and a 120
real scalar fields and a 126 complex scalar field can also fit the
inverted neutrino mass hierarchy.
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YN ¼ 8Y126: ð6Þ

Next, the component of the ð10; 1; 3ÞH field with charge
(1, 1, 0) in the SUð3ÞC × SUð2ÞL × Uð1ÞY subgroup
develops a VEV, vPS, as

hð10; 1; 3ÞHi ¼ vPS ð7Þ

and breaks SUð4Þ × SUð2ÞR. We write the SUð4Þ×
SUð2ÞR-breaking scale as μ ¼ μPS. The effective theory
below scale μ ¼ μPS is the SM with SUð3ÞC × SUð2ÞL ×
Uð1ÞY gauge group. The pair of ð1; 2;� 1

2
Þ components in

the ð1; 2; 2ÞH field, denoted by Hu, Hd, and the pair of
ð1; 2;� 1

2
Þ components in the ð15; 2; 2ÞH field, denoted by

Φu,Φd, gain a mass matrix and theHu; ϵH�
d;Φu; ϵΦ�

d fields
mix with each other [ϵ denotes the antisymmetric tensor in
SUð2ÞL space]. This mass matrix is assumed to have one
negative eigenvalue at the electroweak scale and three
positive eigenvalues atOðv2PSÞ. The eigenstate belonging to
the negative eigenvalue is identified with the SM Higgs
field, denoted by H. We express the H component of each
field as

Hu ¼ c1H þ � � � ;
ϵH�

d ¼ c2H þ � � � :;
Φu ¼ c3H þ � � � ;
ϵΦ�

d ¼ c4H þ � � � :; ð8Þ

where c1, c2, c3, c4 are numbers satisfying jc1j2 þ
jc2j2 þ jc3j2 þ jc4j2 ¼ 1, and “� � �” is an abbreviation for
other mass eigenstates. The ð4; 2; 1Þi and ð4̄; 1; 2Þi fermions
are decomposed into the isospin-doublet quarks, isospin-
singlet up-type quarks, isospin-singlet down-type quarks,
isospin-doublet leptons, isospin-singlet charged leptons
and singlet neutrinos, denoted by qi, uci, dci, li, eci, νci,
respectively. This effective theory contains the following
Yukawa couplings:

−LYukawa ⊃ ðYuÞijqiϵHucjþðYdÞijqiH�dcj

þðYeÞijliH�ecjþðYDÞijliϵHνcjþH:c:; ð9Þ

where the Yukawa couplings satisfy the following match-
ing conditions at scale μ ¼ μPS at tree level:

Yu ¼ c1Y1 − c2Z1 −
1

2
ffiffiffi
3

p c4Y15; ð10Þ

Yd ¼ −c�2Y1 þ c�1Z1 þ
1

2
ffiffiffi
3

p c�3Y15; ð11Þ

Ye ¼ −c�2Y1 þ c�1Z1 −
ffiffiffi
3

p

2
c�3Y15; ð12Þ

YD ¼ c1Y1 − c2Z1 þ
ffiffiffi
3

p

2
c4Y15: ð13Þ

The singlet neutrinos gain Majorana mass term below,

−LYukawa ⊃
1

2
ffiffiffi
2

p vPSðYNÞijνciνcj þ H:c:; ð14Þ

and are integrated out at scale μ ¼ μPS. Then the Weinberg
operator is derived as

−Leff ¼
1

2
ðCνÞijliϵHljϵH þ H:c:; ð15Þ

where Cν satisfies at scale μ ¼ μPS at tree level,

Cν ¼ −
ffiffiffi
2

p

vPS
YDY−1

N YT
D: ð16Þ

The Yukawa coupling 1
2
ðYNÞijð4; 2; 1Þið10; 3; 1Þ�Hð4; 2; 1Þj

and the quartic couplings involving ð10; 1; 3ÞH, ð10; 3; 1ÞH
and ð1; 2; 2ÞH or ð15; 2; 2ÞH in the effective Pati-Salam
model also generate the Weinberg operator, after
ð10; 1; 3ÞH develops VEV vPS and after ð10; 3; 1ÞH field
is integrated out. Namely, there also are Type-2 seesaw
contributions to the tiny neutrino mass. In the current study,
we assume that such quartic couplings are sufficiently small
that the Type-2 seesaw contributions are negligible com-
pared to the Type-1 seesaw ones, for the sake of predictive
power of the model.
We comment that in the present model, the Hu; ϵH�

d
fields and the Φu; ϵΦ�

d fields are allowed to have mixing
terms because quartic terms in the SOð10Þ gauge theory
below,

−L ⊃ λ126�H126
2
H10H þ λ0126H126�2H 10H þ H:c:; ð17Þ

give rise to quartic terms in the effective Pati-Salam model
below,

λ̃ð10; 1; 3Þ�Hð10; 1; 3ÞHð15; 2; 2ÞHð1; 2; 2ÞH
þ λ̃0ð10; 1; 3Þ�Hð10; 1; 3ÞHð15; 2; 2Þ�Hð1; 2; 2ÞH
þ H:c: ð18Þ

When the (1, 1, 0) component of the ð10; 1; 3ÞH field
develops the VEV vPS, Eq. (18) yields mixing terms for the
Hu; ϵH�

d fields and the Φu; ϵΦ�
d fields. Remarkably, these

mixing terms are Oðv2PSÞ and of the same order as the mass
terms of the ð1; 2; 2ÞH and ð15; 2; 2ÞH fields. As a result,
large mixings of Hu; ϵH�

d and Φu; ϵΦ�
d can be realized.

We comment on the number of parameters of the current
SOð10Þ GUT model. The parameters relevant to the current
study are as follows: The three Yukawa coupling matrices
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Y10, Z10, Y126 in Eq. (1). The mass terms for the 10H; 126H
fields, m2

10; μ
2; m2

126, defined as

−L ⊃ m2
1010

�
H10H þ μ2102H þ μ�210�2H

þm2
126126

�
H126H: ð19Þ

The coupling constants for the 10H; 126H fields λ; λ0 in
Eq. (17). The VEV of the (1, 1, 0) component of the
ð10; 1; 3ÞH field in the 126H field, vPS. The number of real
degrees of freedom of the above parameters is counted as
follows: By fixing the phase of the 10H field such that μ2 is
real and that of the 126H field such that vPS is real,
m2

10; μ
2; m2

126, λ, λ
0, vPS respectively have 1, 1, 1, 2, 2, 1 real

degrees of freedom. By further fixing the flavor basis of the
16i fields such that Y10 is diagonal and real, Y10 has 3 real
degrees of freedom, and Z10, Y126 each has 12 real degrees
of freedom. In total, there are 35 real degrees of freedom for
the parameters relevant to the current study.
Prior to the fitting analysis of Sec. IV, vPS is fixed by the

gauge coupling unification conditions. Also, in the fitting
analysis, only specific combinations of m2

10; μ
2; m2

126, λ, λ
0

are used for the fitting. These combinations are defined as
follows. Parameters m2

10; μ
2; m2

126, λ, λ
0 determine the mass

matrix of Hu, Hd, Φu, Φd. After diagonalizing this mass
matrix, we find, by assumption, one negative eigenvalue.
The eigenstate belonging to this eigenvalue H is contained
inHu,Hd, Φu, Φd as Eq. (8), and among the coefficients in
Eq. (8), only jc3j and c4=c�3 are used for the fitting. In total,
the three Yukawa couplings Y10, Z10, Y126 and jc3j; c4=c�3
are used in the fitting analysis of Sec. IV. The real degrees of
freedom of Y10, Z10, Y126, jc3j; c4=c�3 are respectively 3, 12,
12, 1, 2, which sum to 30. Hence, we use 30 real degrees of
freedom to fit the six quark masses, three charged lepton
masses, three Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing angles, one Kobayashi-Maskawa phase, three neutrino
mixing angles, and two neutrino mass-squared differences.
It should be noted that although the number of free
parameters is larger than the number of observables to
be fit, the fitting is nontrivial because the observables
depend on the free parameters nonlinearly, in a way
involving singular value decompositions.
(The quartic couplings involving four 126H fields or two

10H and two 126H fields contribute to the mass matrix of
Hu, Hd, Φu, Φd after the 126H field develops VEV vPS.
However, these contributions can be absorbed by a redefi-
nition of m2

10; μ
2; m2

126, and so we do not regard these
quartic couplings as independent free parameters.)
We comment on the strong CP problem and dark matter

in the present model. Unlike previous models of non-
supersymmetric SOð10Þ GUT, we do not assign Uð1Þ
Peccei-Quinn charges [35] to the 16i matter fields and the
10H; 126H scalar fields. Nevertheless, we can implement
the Peccei-Quinn mechanism by introducing new 16 and 16

Weyl fermions and 1 complex scalar and assigning Uð1Þ
Peccei-Quinn charge þ1 to 16; 16 and −2 to 1. Then a
Kim-Shifman-Vainshtein-Zakharov axion [40,41] emerges
and can solve the strong CP problem. It can also be a dark
matter candidate.

III. GAUGE COUPLING UNIFICATION

In this section and the next section, we adopt the following
experimental values of the gauge coupling constants, quark
and charged lepton masses and quark flavor mixings. The
QCD and QED gauge coupling constants in 5-quark-flavor

QCD × QED theory are fixed as αð5Þs ðMZÞ ¼ 0.1181 and
αð5ÞðMZÞ ¼ 1=127.95. The lepton pole masses and W, Z,
Higgs boson pole masses are taken from Particle Data Group
[42]. We use the results of lattice calculations of the
individual up and down quark masses, the strange quark
mass, the charm quark mass, and the bottom quark mass
in MS scheme reviewed in Ref. [43], which read
muð2 GeVÞ ¼ 2.14ð8Þ MeV, mdð2 GeVÞ ¼ 4.70ð5Þ MeV
[44,45], msð2 GeVÞ ¼ 93.40ð57Þ MeV [44,46–48],
mcð3 GeVÞ ¼ 0.988ð11Þ GeV [44,46,48–50], mbðmbÞ ¼
4.203ð11Þ GeV [44,48,51–54]. We use the top quark
pole mass measured by CMS in Ref. [55], which reads
Mt ¼ 170.5ð8Þ GeV. We calculate the CKMmixing angles
and CP phase from the Wolfenstein parameters in Ref. [56].
The above data are translated into the values of the quark and
lepton Yukawa coupling matrices and the gauge coupling
constants at scale μ ¼ MZ inMS schemewith the help of the
code [57] based on Refs. [58–62].
We analyze the gauge coupling unification conditions

and evaluate the SUð4Þ × SUð2ÞR-breaking VEV vPS. To
this end, we solve the two-loop renormalization group (RG)
equations [63–65] of SM, and match the theory with the
SUð4Þ × SUð2ÞL × SUð2ÞR gauge theory containing three
generations of Weyl fermions ð4; 2; 1Þi; ð4̄; 1; 2Þi and com-
plex scalars ð1; 2; 2ÞH; ð10; 1; 3ÞH; ð10; 3; 1ÞH; ð15; 2; 2ÞH
at scale μ ¼ μPS. Then we calculate the two-loop RG
equations of the SUð4Þ × SUð2ÞL × SUð2ÞR gauge theory,
and match the theory with the SOð10Þ gauge theory at scale
μ ¼ μGUT. From the above matching conditions, we evalu-
ate vPS. Additionally, we evaluate the mass of the SOð10Þ
gauge boson that gains mass along the breaking of SOð10Þ
to SUð4Þ × SUð2ÞL × SUð2ÞR.
We make two approximations. First, we approximate

that the scalar particles decoupled at scale μ ¼ μPS have a
common mass MHPS

. This has little impact on the evalu-
ation of vPS because the power of MHPS

in the equation
determining vPS Eq. (27) is relatively small. Second, when
solving the two-loop RG equations of the gauge couplings
of the SUð4Þ × SUð2ÞL × SUð2ÞR gauge theory, we omit
two-loop contributions involving the Yukawa couplings.
Later in Sec. V we will check that this approximation does
not affect the result.
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Given the approximation on the scalar particle masses, the matching conditions around scale μ ∼ μPS in MS scheme are
given by

1

g22RðμÞ
−

2

48π2
¼ 5

3

�
1

g21ðμÞ
−

1

8π2
28

5
ln
MGð3;1;2

3
Þ

μ
−

1

8π2
21

5
ln
MGð1;1;1Þ

μ
þ 1

8π2
67

6
ln
MHPS

μ

�

−
2

3

�
1

g23ðμÞ
−

1

8π2
7

2
ln
MGð3;1;2

3
Þ

μ
þ 1

8π2
67

6
ln
MHPS

μ
−

3

48π2

�
; ð20Þ

1

g22LðμÞ
−

2

48π2
¼ 1

g22ðμÞ
þ 1

8π2
71

6
ln
MHPS

μ
−

2

48π2
; ð21Þ

1

g24ðμÞ
−

4

48π2
¼ 1

g23ðμÞ
−

1

8π2
7

2
ln
MGð3;1;2

3
Þ

μ
þ 1

8π2
67

6
ln
MHPS

μ
−

3

48π2
; ð22Þ

and those around scale μ ∼ μGUT in MS scheme are given by

1

g210ðμÞ
−

8

48π2
¼ 1

g22RðμÞ
−

1

8π2
21 ln

MGð6;2;2Þ
μ

þ 1

8π2
ln
MHð1;3;3Þ

μ
−

2

48π2
; ð23Þ

1

g210ðμÞ
−

8

48π2
¼ 1

g22LðμÞ
−

1

8π2
21 ln

MGð6;2;2Þ
μ

þ 1

8π2
ln
MHð1;3;3Þ

μ
−

2

48π2
; ð24Þ

1

g210ðμÞ
−

8

48π2
¼ 1

g24ðμÞ
−

1

8π2
14 ln

MGð6;2;2Þ
μ

þ 1

8π2
1

3
ln
M2

Hð6;1;1ÞM
4
Hð200;1;1Þ

μ6
−

4

48π2
; ð25Þ

where g3, g2, g1 denote the gauge couplings of
the SUð3ÞC × SUð2ÞL × Uð1ÞY gauge theory (g1 is in
the GUT normalization), g4; g2L; g2R denote those of the
SUð4Þ × SUð2ÞL × SUð2ÞR gauge theory, and g10 denotes
that of the SOð10Þ gauge theory. MGð3;1;2

3
Þ, MGð1;1;1Þ denote

the masses of the gauge bosons that become massive along
the SUð4Þ × SUð2ÞR breaking (subscripts display the
charges in SUð3ÞC × SUð2ÞL ×Uð1ÞY), and MGð6;2;2Þ
denotes the mass of the gauge boson that becomes massive
along the SOð10Þ breaking into SUð4Þ × SUð2ÞL×
SUð2ÞR. MHPS

denotes the common mass of the scalar
particles decoupled at scale μ ¼ μPS, and MHð6;1;1Þ,
MHð200;1;1Þ, MHð1;3;3Þ denote the masses of the scalar
particles decoupled at scale μ ¼ μGUT [subscripts display
the charges in SUð4Þ × SUð2ÞL × SUð2ÞR]. There are two
complex scalar particles with the same charge (6, 1, 1), and
MHð6;1;1Þ should be regarded as the geometric mean of their
masses. The scalar particles with charge ð200; 1; 1Þ and
(1, 3, 3) are real.
From Eqs. (23) and (24) and the particle content of the

SUð4Þ × SUð2ÞL × SUð2ÞR gauge theory, we see that
g2R ¼ g2L holds at any scale, even if the Yukawa couplings
are not neglected when solving the RG equations of the
gauge couplings of the SUð4Þ × SUð2ÞL × SUð2ÞR gauge
theory. This is in accord with the fact that D-parity is
unbroken when the VEV of 54H breaks SOð10Þ. From

Eqs. (20) and (21), and the fact that g2R ¼ g2L, we obtain
the one-loop relation

M21
Gð3;1;2

3
ÞM

21
Gð1;1;1Þ

μ42
M2

HPS

μ2

¼ exp
�
8π2

�
5

g21ðμÞ
−

3

g22ðμÞ
−

2

g23ðμÞ
�
þ 2

�
: ð26Þ

We solve the two-loop RG equations of SM and insert the
result into Eq. (26), thereby obtaining

M21
Gð3;1;2

3
ÞM

21
Gð1;1;1ÞM

2
HPS

¼ e2ð1013.70 GeVÞ44: ð27Þ

From the above relation, we evaluate vPS. We note
M2

Gð3;1;2
3
Þ ¼ g24v

2
PS, M

2
Gð1;1;1Þ ¼ g22Rv

2
PS. The value of MHPS

has little impact on the evaluation of vPS because of its
comparably small power of 2. IfMHPS

lies in a natural range
of 0.3vPS > MHPS

> 0.03vPS, we get

vPS ¼ 1014.0 GeV: ð28Þ

From Eqs. (24) and (25), and the fact that g2R ¼ g2L, we
obtain the one-loop relation
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μ

MHð1;3;3Þ

M2=3
Hð6;1;1ÞM

4=3
Hð200;1;1Þ

μ2
M7

Gð6;2;2Þ
μ7

¼ exp

�
8π2

�
1

g22LðμÞ
−

1

g24ðμÞ
�
þ 1

3

�
: ð29Þ

We solve the two-loop RG equations of the SUð4Þ ×
SUð2ÞL × SUð2ÞR gauge theory and insert the result into
Eq. (29), thereby obtaining

M2=3
Hð6;1;1ÞM

4=3
Hð200;1;1Þ

MHð1;3;3Þ
M7

Gð6;2;2Þ ¼ e1=3ð1015.04 GeVÞ8: ð30Þ

If we assume a mild hierarchy among the scalar particle
masses as

MHð6;1;1Þ ¼ MHð200;1;1Þ ≃ 1013.5 GeV; ð31Þ

MHð1;3;3Þ ≃ 1016.5 GeV; ð32Þ

then we get MGð6;2;2Þ ≃ 6 × 1015 GeV and the current
bound on the p → eþπ0 partial lifetime as well as those
of other nucleon decay modes are satisfied.

IV. FITTING OF NEUTRINO DATA

We constrain the Yukawa couplings of the SUð4Þ ×
SUð2ÞL × SUð2ÞR gauge theory Y1; Z1; Y15; YN at scale
μ ¼ μPS, from experimental data on the quark and charged
lepton masses and quark flavor mixings. Then we express
the neutrino mass matrix with Y1; Z1; Y15; YN , and vPS in
Eq. (28) based on the Type-1 seesaw mechanism. Finally,
we fit experimental data on the neutrino mixing angles and
mass differences with Y1; Z1; Y15; YN under the above
constraints.
First, we calculate the up-type quark, down-type quark

and charged lepton Yukawa couplings in SM at scale
μ ¼ μPS by solving the SM two-loop RG equations. We
take μPS ¼ 1013.7 GeV, in accordance with Eq. (27). The
result is presented in Table I in the form of the singular
values of the Yukawa coupling matrices and the parameters
of the CKM matrix at scale μ ¼ μPS.
Due to D-parity, Y1, Z1, Y15 at scale μ ¼ μPS have

symmetric flavor indices. Therefore, in the flavor basis
where the isospin-doublet down-type quarks have a diago-
nal Yukawa coupling, the up-type quark, down-type quark
and charged lepton Yukawa coupling matrices Yu, Yd, Ye at
scale μ ¼ μPS can be written as

Yu ¼ VT
CKM

0
B@

yu 0 0

0 yce2id2 0

0 0 yte2id3

1
CAVCKM; ð33Þ

Yd ¼

0
B@

yd 0 0

0 ys 0

0 0 yb

1
CA; ð34Þ

Ye ¼ UT
e

0
B@

ye 0 0

0 yμ 0

0 0 yτ

1
CAUe; ð35Þ

where yu; yc; yt; yd; ys; yb; ye; yμ; yτ are given in Table I,
VCKM is the CKM matrix whose parameters are given in
Table I, d2, d3 are unknown phases and Ue is an unknown
unitary matrix. d2; d3; Ue are not constrained experimen-
tally. Using Eqs. (10)–(12), we can write Y1, Z1, Y15 at
scale μ ¼ μPS as

Y1 ¼
1

4c�3ðjc1j2 − jc2j2Þ
f4c�1c�3Yu þ ðc�1c4 þ 3c2c�3ÞYd

þ ð−c�1c4 þ c2c�3ÞYeg; ð36Þ

Z1 ¼
1

4c�3ðjc1j2 − jc2j2Þ
f4c�2c�3Yu þ ðc�2c4 þ 3c1c�3ÞYd

þ ð−c�2c4 þ c1c�3ÞYeg; ð37Þ

Y15 ¼
ffiffiffi
3

p

2

1

c�3
ðYd − YeÞ ð38Þ

with Yu, Yd, Ye given by Eqs. (33)–(35). YN is related to
Yd − Ye in the following way: Eqs. (5) and (6) give that

TABLE I. The singular values of the Yukawa coupling matrices
and the CKM mixing angles and CP phase in SM at scale
μ ¼ μPS ¼ 1013.7 GeV. Also shown are the errors of the quark
Yukawa couplings, propagated from the experimental errors of
the corresponding masses, and maximal errors of the CKM
parameters, obtained by assuming maximal correlation of ex-
perimental errors of the Wolfenstein parameters.

Value

yu 2.98ð11Þ × 10−6

yc 0.001519(17)
yt 0.4458(42)

yd 6.729ð72Þ × 10−6

ys 0.00013369(82)
yb 0.006402(20)

ye 2.732 × 10−6

yμ 0.0005767
yτ 0.009803

cos θckm13 sin θckm12
0.22503(24)

cos θckm13 sin θckm23
0.04576(77)

sin θckm13
0.00403(22)

δkm (rad) 1.148(33)
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YN ¼ Y15=
ffiffiffi
2

p
at scale μ ¼ μGUT. Then YN and Y15 evolve

from μ ¼ μGUT to lower-energy scales through different RG
equations in the SUð4Þ × SUð2ÞL × SUð2ÞR gauge theory.
At scale μ ¼ μPS, Y15 is proportional to Yd − Ye as
Eq. (38). Hence, to relate YN to Yd − Ye, we have to solve
the RG equations of YN and Y15 in the SUð4Þ × SUð2ÞL ×
SUð2ÞR gauge theory. Unfortunately, this is not possible
because the RG equations depend on the Yukawa couplings
Y1, Z1, Y15 that are undetermined before the fitting analysis
is finished. Therefore, we approximate YN ¼ Y15=

ffiffiffi
2

p
at

scale μ ¼ μPS. Later in Sec. V we will assess the impact of
this approximation after Y1, Z1, Y15 are determined.
Given the above approximation, we can express the
coefficient of the Weinberg operator at scale μ ¼ μPS using
Eqs. (36)–(38) and Eqs. (13), (16) as

Cν ¼
2

ffiffiffi
2

p
ffiffiffi
3

p c�3

ffiffiffi
2

p

vPS

�
Yu þ

c4
c�3

ðYd − YeÞ
�
ðYd − YeÞ−1

×

�
Yu þ

c4
c�3

ðYd − YeÞ
�

at μ ¼ μPS: ð39Þ

The fitting analysis is performed as follows. First, we
evaluate Eq. (39) with the central values in Table I and the
estimate of vPS ¼ 1014.0 GeV in Eq. (28). At this stage,
phases d2, d3, unitary matrix Ue and complex numbers c3,
c4 are free parameters except that the latter two satisfy

jc3j2 þ jc4j2 < 1: ð40Þ

Next, we solve the one-loop RG equation for the Wilson
coefficient of the Weinberg operator Cν from scale μ ¼ μPS
to μ ¼ MZ, and evaluate the neutrino mass matrix as

Mν ¼
v2

2
CνðMZÞ ð41Þ

with v ¼ 246 GeV. From Mν above, we derive the three
neutrino mixing angles and the two neutrino mass
differences. Finally, we fit the neutrino oscillation data
in NuFIT5.1 (with Super-Kamiokande atmospheric data)
[66,67] with the free parameters d2; d3; Ue; jc3j; c4=c�3. We
consider both the normal hierarchy and the inverted
hierarchy of the neutrino mass. We perform the fitting
repeatedly and collect multiple fitting results in which two
mixing angles sin2 θ12; sin2 θ13 and the ratio of the neutrino
mass differences Δm2

21=jΔm2
31j are within the 2σ ranges

and mixing angle sin2 θ23 is within the 3σ range of the
NuFIT5.1 data.
We plot the fitting results on the plane of jc3j versus jc4j

in Fig. 1. Recall that c3, c4 quantify the portions of
ð1; 2;� 1

2
Þ components of ð15; 2; 2ÞH field in the SM

Higgs field as defined in Eq. (8). The left panel is for
the case of the normal neutrino mass hierarchy and the right
panel is for the case of the inverted hierarchy.
We see from Fig. 1 that jc3j is Oð0.01Þ in both normal

and inverted hierarchy cases. jc4j isOð10Þ times larger than
jc3j in the normal hierarchy case, while it is on the same
order or smaller than jc3j in the inverted hierarchy case.
This implies that from the point of view of naturalness of
the mass matrix of ð1; 2;� 1

2
Þ components of ð15; 2; 2ÞH

field, the inverted hierarchy is favored because jc3j and jc4j
can be on the same order. Also, Fig. 1 and Eq. (39) indicate
that the normal hierarchy is realized when the neutrino
Dirac Yukawa coupling is dominated by the term propor-
tional to Yd − Ye, whereas the inverted hierarchy is realized

FIG. 1. Fitting results on the plane of jc3j versus jc4j, where c3, c4 quantify the portions of ð1; 2;� 1
2
Þ components of ð15; 2; 2ÞH field

in the SM Higgs field as defined in Eq. (8). The left panel is for the case of the normal neutrino mass hierarchy and the right panel is for
the case of the inverted hierarchy.
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when the term proportional to Yu is dominant or compa-
rable to that proportional to Yd − Ye.
We examine the prediction of the model on neutrino

observables, by plotting the fitting results on the planes of
neutrino mixing angle sin2 θ23 versus the DiracCP phase of
the neutrino mixing matrix δCP, the effective neutrino mass
for neutrinoless double beta decay jmeej, and the neutrino
mass sum

P
3
i¼1mi in Fig. 2. The left-side panels are for the

case of the normal neutrino mass hierarchy and the right-
side panels are for the case of the inverted hierarchy. The
reason that we focus on sin2 θ23 is that it still has large

uncertainty and further improvement of its measurement is
anticipated.
An interesting finding in Fig. 2 is that in the normal

hierarchy case, the Dirac CP phase δCP is mostly in the
ranges of −2.4 < δCP < −1.2 and 1.2 < δCP < 2.4, and it
is unlikely that δCP ∼ π. This is in clear contrast with the
inverted hierarchy case, where δCP is equally distributed in
the whole range. Also, in the normal hierarchy case, mixing
angle θ23 is likely in the upper octant and in a narrow range
of 0.50≲ sin2 θ23 ≲ 0.55. The predictions on the effective
neutrino mass for neutrinoless double beta decay jmeej and

FIG. 2. Panels in the first row: Fitting results on the plane of neutrino mixing angle sin2 θ23 versus the Dirac CP phase of the neutrino
mixing matrix δCP. Panels in the second row: Those on the plane of sin2 θ23 versus the effective neutrino mass for neutrinoless double
beta decay jmeej. Panels in the third row: Those on the plane of sin2 θ23 versus the neutrino mass sum

P
3
i¼1 mi. The left-side panels are

for the case of the normal neutrino mass hierarchy and the right-side panels are for the case of the inverted hierarchy.
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the neutrino mass sum
P

3
i¼1 mi are less interesting,

since these predictions simply correspond to the situation
with small lightest neutrino mass (m1 ≪ Δm2

21 in the
normal hierarchy case and m3 ≪ Δm2

21 in the inverted
hierarchy case).
We further study the correlations between the predic-

tions, by plotting the fitting results on the planes of δCP
versus jmeej; δCP versus

P
3
i¼1mi; jmeej versus

P
3
i¼1mi in

Fig. 3 in the Appendix. Unfortunately, we do not observe
clear correlations among the predictions on δCP, jmeej
and

P
3
i¼1 mi.

We comment that if 10H field has only one coupling to
16i matter fields, i.e., if Z10 ¼ 0, it is not possible to write
Y1 with Yu, Yd, Ye like Eq. (36) and thus the fitting
becomes more difficult. In fact, we have numerically found
that the fitting is impossible if Z10 ¼ 0 and if the tiny
neutrino mass is generated solely from the Type-1 seesaw
mechanism. The fitting analysis with Z10 ¼ 0 and in
the presence of Type-2 seesaw contributions is left for
future work.

V. VALIDITY OF THE APPROXIMATIONS

We have made two approximations: First, in Sec. III,
we have neglected the contribution of the Yukawa cou-
plings to the two-loop RG equations of the gauge couplings
in the SUð4Þ × SUð2ÞL × SUð2ÞR gauge theory. Second, in
Sec. IV, we have neglected the RG evolutions of Yukawa
couplings Y15; YN in the SUð4Þ × SUð2ÞL × SUð2ÞR gauge
theory from scale μ ¼ μGUT to μ ¼ μPS.
Now we inspect the validity of the above approxima-

tions. For this purpose, we solve the full RG equations of
the SUð4Þ × SUð2ÞL × SUð2ÞR gauge theory including the
Yukawa couplings Y1; Z1; Y15; YN . Here the initial con-
ditions of Y1, Z1, Y15 at scale μ ¼ μPS are given by
Eqs. (36)–(38) and Eqs. (33)–(35) with the fitting results
of Sec. IV inserted into d2; d3; Ue; c3; c4. Parameters c1, c2
have not been determined in the analysis of Sec. IV and so
we take c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jc3j2 − jc4j2

p
and c2 ¼ 0 to minimize

the magnitudes of Y1, Z1. We approximate YN ¼ Y15=
ffiffiffi
2

p
at scale μ ¼ μPS (which should hold exactly at scale
μ ¼ μGUT, not at μ ¼ μPS) and study the relation between
YN and Y15=

ffiffiffi
2

p
at scale μ ¼ μGUT under the above

approximation.
By solving the full RG equations of the SUð4Þ ×

SUð2ÞL × SUð2ÞR gauge theory, we find that the estimate
of 1015.04 GeV in Eq. (30) is valid even if the two-loop
contributions of the Yukawa couplings are included in the
gauge coupling running. We also find that the components
of Y15=

ffiffiffi
2

p
and YN at scale μ ¼ μGUT differ by at most

0.1%, which implies that the approximation of taking

YN ¼ Y15=
ffiffiffi
2

p
at scale μ ¼ μPS (instead of at scale

μ ¼ μGUT) has negligible impact compared to errors of
the NuFIT5.1 data used in the fitting analysis.

VI. SUMMARY

We have studied a prediction on neutrino observables in
a nonsupersymmetric renormalizable SOð10Þ GUT model
that contains a 10 complex scalar field and a 126 scalar
field. The 10 field and its complex conjugate and the
complex conjugate of the 126 field have Yukawa couplings
with the 16 matter fields Y10, Z10, Y126, which give rise to
the SM Yukawa couplings and neutrino Dirac Yukawa
coupling. The SOð10Þ is broken into SUð4Þ × SUð2ÞL ×
SUð2ÞR by the VEVof a 54 real scalar field, and it is broken
into the SM gauge groups by the VEVof the 126 field. The
latter VEVand Y126 generate Majorana mass for the singlet
neutrinos. For the above model, we have determined the
VEV of the 126 field from the gauge coupling unification
conditions. We have constrained the Yukawa couplings of
the 10 and 126 fields at the scale of the 126 VEV from
experimental data on the quark and charged lepton masses
and quark flavor mixings, expressed the neutrino mass
matrix with the above Yukawa couplings and the 126 VEV
based on the Type-1 seesaw mechanism, fit the neutrino
oscillation data, and derived a prediction on neutrino
observables.
We have found that both the normal hierarchy and the

inverted hierarchy of the neutrino mass can be fit and that
the inverted hierarchy is favored from the point of view of
naturalness of the mass matrix of ð1; 2;� 1

2
Þ components of

ð15; 2; 2ÞH field. Also, in the normal hierarchy case, the
Dirac CP phase of the neutrino mixing matrix δCP is
predicted to be likely in the ranges of −2.4 < δCP < −1.2
and 1.2 < δCP < 2.4, and not in the range of δCP ∼ π. In the
normal hierarchy case, mixing angle θ23 is predicted to be
likely in the upper octant and in a narrow range of
0.50≲ sin2 θ23 ≲ 0.55.
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APPENDIX

To study the correlations between the predictions on
neutrino observables, we plot the fitting results of Sec. IV
on the planes of δCP versus jmeej, δCP versus

P
3
i¼1mi,

jmeej versus
P

3
i¼1 mi in Fig. 3.
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