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Recent lattice QCD results for the low-lying odd-parity excitations of the nucleon near theN�ð1535Þ and
N�ð1650Þ resonance positions have revealed that the lattice QCD states have magnetic moments consistent
with predictions from a constituent quark model. Using Hamiltonian effective field theory (HEFT) to
describe pion-nucleon scattering in the IðJPÞ ¼ 1

2
ð1
2
−Þ channel, we represent these two quark-model-like

states as two single-particle bare basis states, dressed and mixed by meson-baryon scattering channels.
By constraining the free parameters of the Hamiltonian with S11 pion-nucleon scattering data, we perform
the first calculation of the finite-volume spectrum using two bare-baryon basis states. By comparing this
spectrum to contemporary lattice QCD results at three lattice volumes, we analyze the eigenvectors of the
Hamiltonian to gain insight into the structure and composition of these two low-lying resonances. We find
that an interpretation of the two low-lying nucleon resonances as quark-model-like states dressed by
meson-baryon interactions is consistent with both the S11 scattering data and lattice QCD. We introduce a
novel HEFT formalism for estimating scattering-state contaminations in lattice QCD correlation functions
constructed with standard three-quark operators. Not only are historical lattice QCD results described with
excellent accuracy, but correlation functions with large scattering-state contaminations are identified.

DOI: 10.1103/PhysRevD.108.094519

I. INTRODUCTION

An analysis of the nature of pion-nucleon resonances is a
vital component of the quest to understand the nature of
nonperturbative QCD. The low-lying odd-parity nucleon
resonances, the N�ð1535Þ and N�ð1650Þ, are a subject of
particular interest, as the N�ð1535Þ sits above the first
positive-parity excitation of the nucleon, the N�ð1440Þ
(Roper resonance), contrary to simple quark-model pre-
dictions. There is now evidence for the Roper resonance as
primarily being dynamically generated by strong πN and
ππN rescattering, with only a small bare state contribution
[1–4]. The nature of the odd-parity nucleons, however, is

less clear. Both interpretations as being dynamically
generated [5,6] and as being primarily a three-quark state
dressed by πN and ηN interactions [7] have been argued.
Lattice QCD offers an alternate source of insight into

the nature of these resonances, providing a first-principles
approach to the nuances of hadron spectroscopy. In
particular, a recent lattice QCD study [8] of the odd-parity
nucleon states near these resonances found their magnetic
moments resemble constituent-quark-model predictions.
As such, a consideration of the N�ð1535Þ and N�ð1650Þ
as single-particle three-quark states dressed by meson-
baryon interactions is now well motivated.
Lattice QCD calculations are performed in a finite

volume under the evolution of Euclidean time, preventing
the direct calculation of resonance properties such as the
particle width, or scattering quantities such as the phase
shifts and inelasticities. Lüscher’s method [9–11] has
proven capable of bridging the finite-volume energy
eigenstates of lattice QCD with infinite-volume scattering
observables; however, generalizations of Lüscher’s method
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to multiple channels [12–18] and three particles [19–21]
require parametrizations of the scattering observables and
present additional technical difficulties.
As an alternative to traditional implementations of

Lüscher’s method, Hamiltonian effective field theory
(HEFT) is a nonperturbative extension of chiral effective
field theory also incorporating Lüscher’s formalism. Here,
the Hamiltonian is parametrized to describe scattering
interactions. Though demonstrated to be equivalent to
Lüscher’s formalism up to exponentially suppressed terms
in mπL [22], HEFT is readily generalizable to include
multiple two-particle scattering channels, as well as quark-
model-like single-particle states referred to as bare states.
By constraining the Hamiltonian with infinite-volume

scattering data, one can bring this information to finite
volume, where the eigenvalue equation for the
Hamiltonian is solved to predict the energy eigenstates
of lattice QCD. Most importantly for developing an
understanding into the nature of states formed through
QCD interactions, HEFT also provides insight into the
composition of these eigenstates through an analysis of
the Hamiltonian’s eigenvectors.
Previous studies [2,4,7,22–29] have utilized HEFT for a

variety of resonances; however, these have all been limited
to containing a single bare basis state in the Hamiltonian.
Only recently have two bare basis states been considered
in HEFT. While one study [30] focused on exotic meson
resonances, another study examined the interplay of two
bare-baryon states in an exploratory manner [31]. This is
the first quantitative analysis of a baryon system describing
two nearby single-particle basis states.
In Sec. II, we begin by constructing a Hamiltonian with

two bare basis states, representing the three-quark cores of
the odd-parity nucleons, dressed by interactions with πN,
ηN, and KΛ scattering states. From here, a brief overview
of both the infinite-volume and finite-volume formalisms
is provided. In Sec. III, we formulate the coupled-channel
scattering equations for this Hamiltonian, constraining the
free parameters of the Hamiltonian with S11 scattering data,
and predicting the positions of poles in the scattering
amplitude.
Section IV makes a connection with lattice QCD at

L ∼ 3 fm, where the pion mass dependence of the bare
basis states is constrained. This allows us to study the
structure of energy eigenstates observed in lattice QCD
calculations. By associating the lattice eigenstates with
HEFT energy eigenstates, we are able to analyze their
eigenvector composition and gain insight into their structure.
In Sec. V, predictions are made for the finite-volume

energy spectrum at L ∼ 2 fm, using constraints of the
L ∼ 3 fm analysis. An eigenvector analysis is performed
for the states to illustrate their composition. An analysis is
performed for an L ∼ 4 fm lattice in Sec. VI, where recent
lattice QCD results from the CLS consortium [32] are
compared with HEFT. Remarkably, the lattice QCD results

are described with excellent precision for the lattice results
at both 2 and 4 fm.
Section VII introduces a novel method for simulating

the scattering-state contaminations in lattice QCD corre-
lation functions constructed with standard three-quark
operators. The contamination functions are constructed
with both HEFT eigenvectors and lattice QCD correlation
matrix eigenvectors, with remarkable agreement between
them. We also consider the interplay between contami-
nation due to two-particle scattering-state contributions
and nearby eigenstates with significant single-particle
components.
Finally, Sec. VIII concludes the results presented herein.

II. HAMILTONIAN EFFECTIVE FIELD THEORY

A. Hamiltonian model

In the center-of-mass frame, the Hamiltonian for an
interacting system can be constructed as

H ¼ H0 þHI; ð1Þ

whereH0 is the free, noninteracting Hamiltonian, andHI is
the interaction Hamiltonian. In the HEFT formalism, we
allow for the presence of single-particle bare-baryon basis
states jB0i, which may be thought of as quark model states
(states in the P-space in the notation of Ref. [33]). With
coupled two-particle channels jαi, the free Hamiltonian H0

can be expressed as

H0 ¼
X
B0

jB0imB0
hB0j þ

X
α

Z
d3k

× jαðkÞi
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
Bα

þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Mα
þ k2

q �
hαðkÞj; ð2Þ

where mBα
and mMα

are the baryon and meson masses,
respectively, in channel α, and mB0

is the mass of each
bare basis state. For this study, the two-particle channels
considered are πN, ηN, and KΛ. In general,HI is governed
by two types of interactions, examples of which are given
in Fig. 1. The first, which is denoted by g, represents the
vertex interaction between the bare state B0 and the two-
particle basis states α,

g ¼
X
α;B0

Z
d3k

n
jB0iGB0

α ðkÞhαðkÞj þ jαðkÞiGB0
α

†ðkÞhB0j
o
;

ð3Þ

where GB0
α is the momentum-dependent strength of the

interaction between a bare state and each two-particle state.
The momentum dependence of these couplings is selected
to reproduce the established vertex functions of chiral
perturbation theory (χPT). The second type of interaction
represents the coupling between two different two-particle
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basis states α and β with momentum-dependent interaction
strength Vαβ, and is given by

v ¼
X
αβ

Z
d3k

Z
d3k0jαðkÞiVαβðk; k0Þhβðk0Þj: ð4Þ

The interaction Hamiltonian is therefore given by

HI ¼ gþ v: ð5Þ

B. Finite-range regularization

In order to work within a finite Hilbert space, we require
a renormalization scheme. One such renormalization
scheme is finite-range regularization (FRR), which has
been shown to reproduce other schemes, such as dimen-
sional regularisation, while in the power-counting regime
(PCR) of χPT (mπ ∼mphys) [34].
Finite-range regularization introduces a regulator,

uðk;ΛÞ, a function which cuts off the UV contributions
at a rate governed by the regulator parameter Λ. While, in
principle, regulators such as a sharp cutoff can be used, it is
desirable to have a smooth regulator which phenomeno-
logically respects the shape of the source. For this study, a
dipole regulator of the form

uðk;ΛÞ ¼
�
1þ k2

Λ2

�−2
ð6Þ

is considered. As illustrated in Ref. [28], both dipole and
Gaussian functional forms were able to describe similar
ranges of HEFT systems.
The FRR expansion contains a resummation of higher-

order terms that come into play as one works beyond the
PCR, extending the range of utility [34–36]. The resum-
mation ensures the FRR loop-integral contributions are
smooth and approach zero for large pion masses, providing
a natural explanation for the slow variation with increasing
quark mass observed in lattice QCD results. FRR provides
a mechanism to exactly preserve the leading nonanalytic
terms of chiral perturbation theory, including the values
of the model-independent coefficients of the nonanalytic
terms, even when working beyond the PCR. As one

addresses larger quark masses, Λ can take on a physical
role modeling the physical size of the particles [35].

C. Infinite-volume framework

In order to constrain bare state masses and potential
coupling strengths, we can fit the scattering phase shifts
and inelasticities calculated via the T-matrix. This can be
obtained by solving the coupled-channel integral equations,

Tαβðk;k0;EÞ

¼ Ṽαβðk;k0;EÞþ
X
γ

Z
dqq2

Ṽαγðk;q;EÞTγβðq;k0;EÞ
E−ωγðqÞþ iϵ

;

ð7Þ

where ωγðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

Mγ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

Bγ

q
. We have also

defined the coupled-channel potential Ṽαβ, which considers
all bare states B0 as

Ṽαβðk; k0; EÞ ¼
X
B0

GB0†
α ðkÞGB0

β ðk0Þ
E −mB0

þ Vαβðk; k0Þ: ð8Þ

The phase shifts and inelasticity, however, are
extracted from the unitary S-matrix, which is related to
the T-matrix by

SαβðEÞ ¼ δαβ − 2iπ
ffiffiffiffiffiffiffiffiffi
ραρβ

p
Tαβðkon;α; kon;β;EÞ; ð9Þ

where kon;α is the on-shell momentum in channel α, and ρα
is the density of states, given by

ρα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2on;α þm2

Mα

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2on;α þm2

Bα

q
E

kon;α: ð10Þ

The inelasticity ηα and phase shift δα are then calculated
from

SααðEÞ ¼ ηα expð2iδαÞ: ð11Þ

In order to search for poles in the T-matrix, with a
negative imaginary component corresponding to a reso-
nance, we search for zeroes in the dressed propagator

AB0;B0
0
ðEÞ ¼ ½δB0;B0

0
ðE −mB0

Þ − Σ̄B0;B0
0
ðEÞ�−1: ð12Þ

Here, Σ̄B0;B0
0
ðEÞ is the sum of all self-energy contributions,

such as those in Fig. 1. In evaluating these self-energy
contributions, integrals over all k-space are rotated by
k → keiθ, where θ is chosen to be approximately −70°
for all scattering channels, such that all poles are found
in the correct Riemann sheet. Poles in the T-matrix
of complex energy Epole are therefore found such that
det ðAB0;B0

0
ðEpoleÞ−1Þ ¼ 0.

FIG. 1. Diagrammatic representations of the interactions
GB0

πNðkÞ (left) and VπNηNðk; k0Þ (right). Time flows from left to
right or vice versa to remain in the rest frame.
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D. Finite-volume matrix method

On a three-dimensional, cubic lattice of volume L3, the
allowed momentum is discretized to

kn ¼
2π

L
n; n ¼ ðnx; ny; nzÞ; ð13Þ

where nx, ny, and nz can take any integer values, which for
S-wave scattering give kmin ¼ 0. As a result of this, the
integrals over momentum in Eqs. (2)–(4) undergo discre-
tization of the form

Z
d3k →

X
n∈Z3

�
2π

L

�
3

: ð14Þ

For a sufficiently large lattice extent L, however, we can
approximate spherical symmetry and consider only the
degenerate momentum states, where the effect of this
approximation was discussed in Ref. [25]. These degen-
erate momentum states are labeled kn, where we have
defined the integer n ¼ n2x þ n2y þ n2z. The degeneracy of
these states is given by the function C3ðnÞ, which counts
the number of ways the squared integers n2x; n2y, and n2z can
sum to each n. Some example values of this function are
C3ð2Þ ¼ 12 and C3ð7Þ ¼ 0, as there are no combinations
of square integers that sum to 7. Using this definition in
Eq. (14), we therefore have the total transformation

4π

Z
k2dk ¼

Z
d3k →

�
2π

L

�
3X
n∈N

C3ðnÞ: ð15Þ

As our regulator parameter Λ provides a momentum
cutoff, the Hamiltonian matrix will have a finite extent.
Defining knmax

as the maximum momentum allowed in the
Hamiltonian, this value must be sufficiently high compared
to the regulator mass such that variation of knmax

does not
change the Hamiltonian solution. Such a momentum is
found as the solution of uðknmax

;ΛÞ ¼ umin for a given

regulator form factor and regulator parameter, where umin is
chosen as the regulator value which satisfies these criteria.
The value of umin is tuned such that the size of the matrix
Hamiltonian is minimized to reduce computational require-
ments, while also ensuring there are a sufficient quantity of
basis states such that the eigenvalues of the Hamiltonian
converge to fixed values. Avalue of umin ¼ 10−2 is selected
to balance these two requirements, and an exploration of
this choice is presented in Ref. [28].
Inserting umin into Eq. (6) and solving for the maximum

momentum gives knmax
¼ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u
−1
2

min − 1

q
. Given the quanti-

zation condition from Eq. (13), the size of the finite
Hamiltonian matrix is therefore given as

nmax ¼
�
knmax

L

2π

�
2

: ð16Þ

Given the maximum allowed momentum for this system, in
the S-wave the free Hamiltonian for this system takes the
finite matrix form of

H0¼diag
h
mð0Þ

N1
;mð0Þ

N2
;ωπNð0Þ;ωηNð0Þ;ωKΛð0Þ;

× ωπNðk1Þ;ωηNðk1Þ;ωKΛðk1Þ;…;ωKΛðknmax
Þ
i
: ð17Þ

Additionally, the potentials in Eqs. (3) and (4) undergo a
scaling due to finite-volume factors. These finite-volume
potentials are labeled as ḠB0

α ðkÞ and V̄αβðk; k0Þ, given by

ḠNi
α ðknÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞ
4π

r �
2π

L

�3
2

GNi
α ðknÞ;

V̄αβðkn; kmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞ
4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ðmÞ
4π

r �
2π

L

�
3

Vαβðkn; kmÞ: ð18Þ

In matrix form, the interaction Hamiltonian is therefore
written as

HI ¼

0
BBBBBBBBBBBBBBB@

0 0 ḠN1

πNð0Þ ḠN1

ηNð0Þ ḠN1

KΛð0Þ ḠN1

πNðk1Þ � � �
0 0 ḠN2

πNð0Þ ḠN2

ηNð0Þ ḠN2

KΛð0Þ ḠN2

πNðk1Þ � � �
ḠN1

πNð0Þ ḠN2

πNð0Þ V̄πNπNð0; 0Þ V̄πNηNð0; 0Þ V̄πNKΛð0; 0Þ V̄πNπNð0; k1Þ � � �
ḠN1

ηNð0Þ ḠN1

ηNð0Þ V̄ηNπNð0; 0Þ V̄ηNηNð0; 0Þ V̄ηNKΛð0; 0Þ V̄ηNπNð0; k1Þ � � �
ḠN1

KΛð0Þ ḠN1

KΛð0Þ V̄KΛπNð0; 0Þ V̄KΛηNð0; 0Þ V̄KΛKΛð0; 0Þ V̄KΛπNð0; k1Þ � � �
ḠN1

πNðk1Þ ḠN2

πNðk1Þ V̄πNπNðk1; 0Þ V̄ηNπNðk1; 0Þ V̄KΛπNðk1; 0Þ V̄πNπNðk1; k1Þ � � �
..
. ..

. ..
. ..

. ..
. ..

. . .
.

1
CCCCCCCCCCCCCCCA

: ð19Þ

Considering the full Hamiltonian H ¼ H0 þHI, we may solve the eigenvalue equation det ðH − EiIÞ ¼ 0 for
energies Ei. Associated with each energy Ei, we may solve for the eigenvectors of the Hamiltonian, labeled hBjjEii.
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These eigenvectors provide the contribution from each
basis state jBji to the interacting eigenstate jEii, providing
insight into the structure of each finite-volume eigenstate.

III. INFINITE-VOLUME SCATTERING

To describe the interactions between the basis states
in this system, we use standard S-wave parametrizations
for the two potentials. For some channel α and bare state
Ni, the interaction hαðkÞjgjNii takes the heavy-baryon
χPT-motivated form [22]

GNi
α ðkÞ ¼

ffiffiffi
3

p
gNi
α

2πfπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωMα

ðkÞ
q

uðkÞ; ð20Þ

where the label Mα refers to the meson in channel α, giving

ωMα
ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

Mα

q
, fπ ¼ 92.4 MeV, and gNi

α is the

dimensionless coupling strength of this interaction. The
interaction hβðk0ÞjvjαðkÞi takes the form

Vαβðk; k0Þ ¼
3vαβ
4π2f2π

ũðkÞũðk0Þ; ð21Þ

with coupling strength vαβ. For all interactions between
scattering channels, the regulator gains a low-energy
enhancement in order to better fit the low-energy phase
shifts [7],

ũðkÞ ¼ ωπðkÞ þmphys
π

ωπðkÞ
uðkÞ: ð22Þ

Using standard numerical techniques, we are able to fit
the πN phase shifts and inelasticities solved from the
T-matrix formalism in Sec. II C to the S11 WI08 solution
from Refs. [37,38]. As the N�ð1535Þ lies approximately
100 MeV below the KΛ threshold, the coupling gN1

KΛ was
held fixed at zero. With the remaining coupling strengths,
bare state masses, and regulator parameters, there are a
total of 21 free parameters present in this system. A χ2

may be calculated by comparing the HEFT phase shifts
and inelasticities with the WI08 solution. Using Powell’s
derivative-free optimization procedure [39] to minimize the
χ2, the resultant set of parameters is presented in Table I.
The resultant S11 phase shift and inelasticity are illus-

trated in Fig. 2. Using this parameter set, we are able to
characterize the S11 phase shifts in the energy range
considered. This fit results in a χ2 of 604, and with
78 − 21 ¼ 57 degrees of freedom (d.o.f.), a χ2=d:o:f: of
10.6. While this χ2=d:o:f: is large, it can be attributed to

TABLE I. HEFT fit parameters constrained by the WI08
solution [37,38] for S11 scattering, up to 1.75 GeV.

Parameter Value Parameter Value

mð0Þ
N1
=GeV 1.6301 mð0Þ

N2
=GeV 1.8612

gN1

πN
0.0898 gN2

πN
0.2181

gN1

ηN
0.1525 gN2

ηN
0.0009

gN1

KΛ
0.0000 gN2

KΛ
−0.2367

ΛN1

πN=GeV 1.2335 ΛN2

πN=GeV 1.4000

ΛN1

ηN=GeV 1.2642 ΛN2

ηN=GeV 0.9521

ΛN1

KΛ=GeV � � � ΛN2

KΛ=GeV 0.7283

vπN;πN −0.0655 vηN;ηN −0.0245
vπN;ηN 0.0388 vηN;KΛ 0.0320

vπN;KΛ −0.0757 vKΛ;KΛ 0.1371

Λv;πN=GeV 0.6000 Λv;ηN=GeV 0.9036

Λv;KΛ=GeV 0.6060

FIG. 2. Phase shift and inelasticity for the parameters in Table I. The solid (blue) lines are the theoretical calculations from HEFT,
while the data points are the SAID WI08 solution [37,38]. The dashed vertical lines denote the ηN and KΛ thresholds.
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missing three-particle ππN threshold effects, as can be
seen in the tension in the inelasticity predictions near
1.4 GeV. Difficulties describing the inelasticities above
the N�ð1650Þ region may also be attributed to a sizable
contribution from ππN states, or additional hyperon chan-
nels such as KΣ. While this χ2=d:o:f: is not directly
comparable with similar studies of S11 scattering [5] due
to the use of the WI08 solution versus single-energy values,
visually the fit of Ref. [5] and that presented here produce a
similar quality of fit. Alternatively, quantities such as the
positions of poles corresponding with the two odd-parity
resonances may prove to be a better source of comparison.
In the Particle Data Group (PDG) tables [40], the poles

for the two low-lying odd-parity nucleon resonances are
given as

EN�ð1535Þ ¼ 1510� 10 − ð65� 10Þi MeV;

EN�ð1650Þ ¼ 1655� 15 − ð67� 18Þi MeV: ð23Þ

With the set of parameters in Table I, and searching in
the second Riemann sheet, using HEFT, two poles are
found at energies

E1 ¼ 1500 − 50i MeV;

E2 ¼ 1658 − 56i MeV; ð24Þ

in excellent agreement with the PDG pole positions. These
were found by searching for solutions of det ðAðEÞ−1Þ ¼ 0,
as described in Sec. II C.
By comparing phase shifts and inelasticities calculated

in HEFT with those from resources such as SAID, and
T-matrix poles with PDG values, it is clear that an
interpretation of the low-lying odd-parity nucleon reso-
nances as quark-model-like states is consistent with experi-
ment. By moving to a finite volume and comparing with
results from lattice QCD, however, we are able to gain a
larger degree of understanding and further test this
interpretation.

IV. FINITE-VOLUME HEFT AT 3 fm

A. Pion mass dependence

By varying the pion mass mπ , and the lattice extent L,
one can solve for the eigenvalues and eigenvectors of the
Hamiltonian to obtain the finite-volume energy spectrum,
the results of which can be compared with lattice QCD. As
the pion mass is increased, the masses of the other hadrons
are also increased proportionally, as to match the hadron
masses calculated by PACS-CS [41]. As the pion-mass
extrapolations for the bare states are unknown, we give
them a simple expansion of the form

mNi
ðm2

πÞ ¼ mð0Þ
Ni

þ αNi
ðm2

π −m2
πjphysÞ; ð25Þ

where the mass slopes αNi
are varied to fit 10 lattice QCD

data points at L ∼ 3 fm and a pion mass varying from
169 to 623 MeV in the Sommer scheme. It was found that
as the bare mass slope only has an impact at significantly
larger than physical pion masses, fitting to the lattice QCD
energies at the lightest pion mass had little effect on the
mass slope. As such, the fitting procedure focused on
minimizing the distance between the lattice QCD data at
the three heaviest pion masses and HEFT energy eigen-
values. While there is precise data available at L ∼ 2 fm
which could also be used for the fitting procedure, it is
desirable to confront the spectrum at 2 fm as a prediction
from the 3 fm analysis. As the parameters of the
Hamiltonian are constrained by experiment, the key input
from the 3 fm analysis is the quark-mass slope of the bare
masses, αN1

and αN2
.

The 3 fm fitting procedure gives mass slopes

αN1
¼ 0.944 GeV−1;

αN2
¼ 0.611 GeV−1: ð26Þ

The differences in the slope parameters are in accord with
quark model expectations. The lower state is dominated
by hyperfine attraction in spin-1=2 components of the
wave function. The strength of the hyperfine attraction is
inversely proportional to the product of the constituent
quark masses. Thus, as the constituent quark mass
increases, the hyperfine attraction is lost, and the baryon
mass increases rapidly. On the other hand, the second state
is dominated by spin-3=2 components contributing to
hyperfine repulsion. For the second state, repulsion is lost
as the constituent quark masses increase, and thus the
baryon mass rises more slowly.

B. Finite-volume energy spectrum

We are now able to calculate the full finite-volume
energy spectrum for this system. In the Sommer scheme,
the physical volume varies with the quark mass. At the
physical point, the lattice extent is 2.99 fm, corresponding
with the lattice size at the lightest lattice QCD point. As the
pion mass is increased, the lattice size is linearly interpo-
lated between each lattice QCD point, giving a final lattice
size of 3.27 fm. The results of this can be seen in Fig. 3,
where the noninteracting basis states have been displayed
as dashed lines and the interacting energies displayed as
solid lines. Here we observe a significant shift from the
noninteracting states, as well as the presence of many
avoided level crossings in the excited states of the spec-
trum, demonstrating the complexity of the system. The
HEFT spectrum is compared to available lattice QCD
results at approximately 3 fm. We find that all eigenstates
from lattice QCD correspond with at least one HEFT
energy eigenvalue.
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One of the biggest advantages of HEFT, however, is the
ability to extract the eigenvectors of the Hamiltonian.
The eigenvector jhBjjEiij2 denotes the contribution from
the basis state jBji to the eigenstate jEii, the results of

which are shown in Fig. 4 for the first six eigenvalues at
L ∼ 3 fm. Here it can be seen that initially at the physical
point, it is difficult to interpret a single state as representing
one of the odd-parity resonances. The contributions from
the two bare states, denoted by red and blue lines,
respectively, are instead distributed over the second to
the sixth eigenstates. However, the contributions from the
bare states seem to be concentrated around the masses of
the bare states. At this point, it is only the lowest-lying state
which can be definitively interpreted as a πN state.
As one moves away from the physical pion mass,

contributions from the two bare states become concentrated
increasingly in the lower-lying eigenstates, and both the
lowest-lying state and next state contain approximately
equal amounts of each bare state. In other words, the bare
states mix to form the energy eigenstates. The situation is
similar to the mixing of the two spin-1=2 negative parity
interpolators which mix to form the lattice eigenstates.
In order to better view how the contributions from the

bare states are distributed, we overlay colored lines on the
energy spectrum of Fig. 3. Here, we consider the eigen-
states at each pion mass with large bare basis state
eigenvector components, as seen in Fig. 4. As an example,
it can be seen in Fig. 4 that at the heaviest quark mass the
two eigenstates with the largest eigenvector component for
the first bare basis states are the first and second eigen-
states. This information is displayed on the spectrum of
Fig. 3 by solid and dashed red highlighting. The eigenstates

FIG. 3. Finite-volume energy spectrum for L ∼ 3 fm. The
vertical dashed line represents the physical points, while the
remaining dashed lines correspond to noninteracting basis states
for each channel. The solid curves are the finite-volume eigene-
nergies calculated in HEFT. Lattice QCD data from CSSM [1,8,42]
and the Cyprus Collaboration [43] are overlaid for comparison.

FIG. 4. Pion mass dependence of the basis state contributions for the six lowest eigenstates from the 3 fm spectrum shown in Fig. 3.
Markers on each plot correspond with the five PACS-CS masses [41]. Contributions for the sum of all momentum states in the πN, ηN,
and KΛ channels are illustrated.
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with the largest and second largest contributions from the
second bare basis state are illustrated in the same manner
but in blue. The results are illustrated in Fig. 5.
Utilizing this method of identifying states with a large

bare basis state component, it becomes easier to understand
which states are likely to be observed in the CSSM and
Cyprus lattice QCD calculations. Because they used three-
quark operators to form the basis of their correlation matrix,
it follows that the states excited in their analysis will
contain a large single-particle bare basis state component.
Thus, we expect each of their lattice QCD results to be
associated with a colored energy eigenstate from HEFT.
The exception to this is the lowest-lying CSSM state at
m2

π ∼ 0.08 GeV2, which was obtained from a five-quark
operator [1].
Of particular note, as we move to larger quark masses,

the contributions from each bare state become primarily
concentrated in only two eigenstates, which strongly
correspond with the states from lattice QCD. This is in
agreement with the results from Ref. [8], where the
magnetic moments of the two resonances become quark-
model-like as the pion mass increases. In addition, the three
results from the Cyprus Collaboration [43], which were
constructed using only three-quark operators, correspond
with eigenstates dominated by contributions from the
lower-lying bare state.

V. FINITE-VOLUME HEFT AT 2 fm

Lattice QCD results are available for lattice sizes of
approximately 2 fm from Lang and Verduci [44], as well as

the Hadron Spectrum Collaboration (HSC) [45,46]. As
Lang and Verduci’s correlation matrix analysis was not
large enough to remove excited-state contaminations from
their second and third states, we focus on their lowest-lying
state obtained from a nonlocal momentum-projected pion-
nucleon interpolating field. While, in principle, we could
use these data for fitting the bare mass slopes, in Ref. [28] it
was found that by calculating the bare mass slopes at only
one lattice size, the lattice QCD data for other sizes could
be described. As such, we continue to use the bare mass
slopes from Eq. (26) for this L ∼ 2 fm calculation and thus
make predictions for the finite-volume energy eigenvalues
at various quark masses.
The HSC Collaboration sets their lattice spacing in a

scheme where the physical Ω− baryon mass is taken to be
independent of the sea-quark mass. As a result, the lattice
spacing varies with quark mass. Here, an identical approach
to the 3 fm calculation is taken. At the physical point, the
lattice extent is 1.95 fm, corresponding with the lattice size
at the Lang and Verduci lattice QCD mass. As the pion
mass is increased, the lattice size is linearly interpolated
between each lattice QCD point, giving a final lattice size
of 2.12 fm. The hadron masses are also varied as described
in Eq. (25). The result for this process is illustrated in
Fig. 6, where similarly to the L ∼ 3 fm case, significant
shifts in the energy eigenvalues from the noninteracting
energies are observed. Comparing to the lattice QCD data
from HSC and Lang and Verduci, we observe that all data
points correspond with an energy eigenvalue, with the
exception of a single point from HSC, which sits between

FIG. 5. Finite-volume energy spectrum for L ∼ 3 fm. The solid
and dashed red lines represent the states with the largest and
second largest contributions from the lower bare basis state.
Similarly, the solid and dashed blue lines represent the contri-
butions from the second bare basis state. Lattice QCD data from
CSSM [1,8,42] and the Cyprus Collaboration [43] are overlaid
for comparison.

FIG. 6. Finite-volume energy spectrum for L ∼ 2 fm. The
vertical dashed line represents the physical point, while the
remaining dashed lines correspond with noninteracting basis
states for each channel. We overlay lattice QCD results from
Lang and Verduci [44] using momentum-projected meson-
baryon operators and from the Hadron Spectrum Collaboration
(HSC) [45,46] using three-quark operators.
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the two lowest-lying states we predict. By investigating
the eigenvector composition of these states, we are able to
better analyze the consistency of these data with the two-
bare-state analysis.
Due to the lower density of states, we only consider the

eigenvector composition of the four lowest-lying states
in Fig. 7, as opposed to the six eigenstates in Sec. IV. For
the 2 fm spectrum, we observe a similar behavior in the
eigenvectors as in the 3 fm spectrum. Initially, the lowest-
lying state consists almost purely of the πN basis state,
while the two bare basis states are concentrated in the
higher excited states. As the pion mass increases, however,
a significantly larger portion of the eigenvectors becomes
more concentrated in the lowest-lying state. As such, at
larger pion masses we expect to see lattice QCD states
constructed from three-quark operators to correspond with
the lower-lying states in the spectrum.
Returning to Fig. 6, it is immediately clear that the

lowest-lying high-precision point from Lang and Verduci is
very well described by HEFT. Because this is a low-lying
state in the spectrum, it is protected by the Lüscher relation
embedded within the HEFT formalism. Moreover, because
the point is calculated at a relatively small value of the
pion mass, it is relatively insensitive to the quark mass

interpolation. In short, this confrontation between lattice
QCD and HEFT is also predominantly a confrontation
between lattice QCD and experiment. While this state is
composed primarily of the zero momentum πN basis state,
the other basis state contributions are vital to generating the
significant shift in the eigenstate energy down from the
noninteracting basis state energy.
To better compare with lattice QCD, we overlay the

contributions from these bare states onto the energy
spectrum, which can be seen in Fig. 8. Considering the
data from HSC, we observe their six points correspond with
states consisting primarily of bare basis states. The lowest-
lying points correspond with the lighter bare state, while
their excited states correspond with the eigenstate domi-
nated by the second bare basis state. This further supports
the interpretation of the two odd-parity nucleon resonances
as being quark-model-like.
It is impressive that five of the six HSC results sit

precisely on the HEFT states dominated by bare basis
state components. It is a testament to the precision of their
lattice QCD analysis and the rigor with which HEFT
can link different volumes and quark masses within a
single formalism. The notable exception is the lowest-lying
state at the largest quark mass where a nearby scattering

FIG. 7. Pion mass dependence of the basis state contributions for the four lowest eigenstates from the 2 fm spectrum shown in Fig. 6.
Markers on each plot correspond with the single Lang and Verduci mass [44] and three HSC masses [45,46]. Contributions for the sum
of all momentum states in the πN, ηN, and KΛ channels are illustrated.
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state provides a scattering-state contamination in their
correlation-matrix analysis. Of course the authors were
completely aware of this possibility and discussed the
importance of future calculations, including both three-
quark interpolators and a complete set of nonlocal
momentum-projected multihadron operators. In Sec. VII,
a novel HEFT formalism is introduced to quantify the
extent of this scattering-state contribution.

VI. FINITE-VOLUME HEFT AT 4 fm

Recent lattice QCD calculations of the πN scattering
process were performed by the CLS consortium [32] and
included momentum-projected two-particle interpolating
fields. In particular, we are interested in the zero-
momentum I ¼ 1=2, G1uð0Þ results from Fig. 4a of
Ref. [32]. These calculations were done for a pion mass
of 200 MeV, with a spatial lattice extent of L ¼ 4.05 fm.
By altering the nucleon mass at mπ ¼ 200 MeV in the
HEFT formalism to mN ¼ 0.959 GeV, to match the non-
interacting πNðk ¼ 0Þ state in Fig. 4a of Ref. [32], we are
able to compare the eigenenergies from HEFT with the
lattice QCD calculations from the CLS consortium.
Using the fit parameters from Sec. III, and the bare basis

state slopes from Sec. IV, this comparison is illustrated
in Fig. 9. HEFT predicts a small amount of attraction in
the scattering-state energies relative to the noninteracting
two-particle πN basis state energies for k ¼ 0 and k ¼ 1.
The CLS results are in excellent agreement with these
HEFT predictions, showing effects of a similar magnitude
and direction. Considering the eigenvectors of these two

eigenstates from HEFT, the ground state consists of 99.6%
πNðk ¼ 0Þ, resulting in the minimal shift away from the
noninteracting state. Similarly, 96% of the first excited
state is from the πNðk ¼ 1Þ state, with a majority of the
remaining contributions coming from the two bare states.
As the majority of the lower mass bare state is concentrated
in the fourth excited state, the bare basis states have a
limited impact on the eigenstates considered in this energy
range. Nonetheless, it is useful to see that the HEFT
formalism correctly extends to the L ¼ 4.05 fm results
from the CLS consortium, as in the L ∼ 2 fm case in Sec. V.

VII. SCATTERING-STATE CONTAMINATIONS
IN LATTICE CORRELATION FUNCTIONS

A. Contamination function formalism

In this section we introduce a novel HEFT formalism
for estimating scattering-state contaminations in lattice
QCD correlation functions constructed with standard
three-quark operators. The analysis draws on the extensive
information available in the finite-volume eigenvectors of
the Hamiltonian.
We commence with the consideration of a single bare

basis state. Given a three-quark operator χðx; tÞ with
quantum numbers corresponding to a baryonic state of
interest, the correlation function [47,48] is given by

Gχðt; pÞ ¼
X
x

e−ip·xhΩ̄jχðx; tÞχ̄ð0; 0ÞjΩi;

GχðtÞ ¼
X
i

jhΩjχjEiij2e−Eit; ð27Þ

FIG. 9. Comparison between the energy eigenvalues calculated
in HEFT at a lattice size of L ¼ 4.05 fm (solid black lines) and
the lattice QCD calculations from the CLS consortium (data
points) using the D200 ensemble [32]. Dashed lines indicate the
noninteracting two-particle πN energies for k ¼ 0 and k ¼ 1.

FIG. 8. Finite-volume energy spectrum for L ∼ 2 fm. The solid
and dashed red lines represent the states with the largest and
second largest contributions from the lower bare basis state.
Similarly, the solid and dashed blue lines represent the contri-
butions from the second bare basis state. Lattice QCD results
from Lang and Verduci [44] and the HSC [45,46] are overlaid for
comparison.
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where a complete set of energy eigenstates I ¼ P
i jEiihEij

has been introduced, and zero momentum has been taken.
In Ref. [49], Bär and co-workers provided a χPT

estimate of the coupling between a smeared nucleon
interpolating field and a noninteracting pion-nucleon basis
state as

3

16

1

ðfπLÞ2EπL

�
EN −mN

EN

�
≈ 10−3; ð28Þ

where Eπ and EN are on-shell pion and nucleon energies.
The numerical estimate is based on a 3 fm lattice and the
lowest nontrivial momentum contribution where the cou-
pling is largest. Here the 1=L3 dependence of the coupling
is manifest as the noninteracting two-particle momentum
state is spread uniformly throughout the lattice volume.
Noting the small magnitude of the overlap between the

local interpolating field and the two-particle basis states,
one concludes that the state excited by the local interpolat-
ing field is the only local state in the Hamiltonian basis, the
bare-baryon basis state. As such, we associate the three-
quark nucleon interpolating field χ̄ acting on the nontrivial
QCD vacuum, jΩi, with the bare basis state of HEFT, via
χ̄ð0ÞjΩi ¼ jB0i. Inserting this into Eq. (27) gives

GB0
ðtÞ ¼

X
i

jhB0jEiij2e−Eit: ð29Þ

Drawing on the eigenvector components hB0jEii, and
eigenenergies Ei of HEFT, we can simulate the scattering-
state contaminations in lattice QCD correlation functions.
We define the “contamination function” CB0

ðtÞ for the bare
basis state jB0i as

CB0
ðtÞ ¼ 1

GB0
ðtÞ

X
i≠B0

jhB0jEiij2e−Eit; ð30Þ

where the sum over all i ≠ B0 is found by considering all
energy eigenstates, barring the eigenstate with the largest
contribution from the bare state. We label this eigenstate
jEB0

i. If this eigenstate is the ground state, for sufficiently
large Euclidean time evolution, the contamination function
will tend to zero, where all excited states have exponen-
tially decayed through the Euclidean time evolution. If
jEB0

i is not the ground state, we expect a minimum in the
contamination function at some time, where the state has
the least scattering-state contamination, before becoming
completely dominated by the lowest-lying scattering state.
We may extend these definitions to a system with

two bare basis states. This time, states are excited from
the vacuum with three-quark operators χ1 and χ2.
For example, the odd-parity proton interpolators χ1 ¼
ϵabcðuTaCγ5dbÞγ5uc and χ2 ¼ ϵabcðuTaCdbÞuc are both
Oðp=EÞ in a nonrelativistic reduction and mix strongly
in a correlation matrix analysis to isolate the eigenstates.

Each of these interpolating fields acting on the QCD
vacuum will create a bare basis state, jN1i and jN2i,

ðα�χ1 þ β�χ2ÞjΩi ¼ α�jN1i þ β�jN2i; ð31Þ

which are mixed in forming the energy eigenstates, jEii.
Where previously we had a single eigenstate with the
largest bare state contribution, labeled jEB0

i, in the two
bare state system there will be a corresponding Hamiltonian
eigenstate for each bare state. We label these states jEN1

i
and jEN2

i. As these eigenstates are a mixture of each bare
state, they will be constructed for different combinations of
α and β, given by αj and βj, where j ¼ 1, 2 corresponds
with N1 and N2, respectively. With this in mind, correlation
functions optimized for these two eigenstates are con-
structed as

Gjðp; tÞ ¼
X
x

e−ip·xhΩ̄jðαjχ1ðx; tÞ þ βjχ2ðx; tÞÞ

× ðα�j χ̄1ð0Þ þ β�j χ̄2ð0ÞÞjΩi: ð32Þ

Inserting a complete set of states, setting p ¼ 0, and
applying Eq. (31), we obtain

GjðtÞ ¼
X
i

ðαjhN1j þ βjhN2jÞjEiihEij

× ðα�j jN1i þ β�j jN2iÞe−Eit;

¼
X
i

jαjhN1jEii þ βjhN2jEiij2e−Eit: ð33Þ

We note that αj and βj can be made real [50], and the
eigenvector components hNjjEii are real.
The mixing parameters for each of the two eigenstates,

labeled αj and βj, may be obtained either through the
eigenvectors of correlation matrices from lattice QCD or
through the Hamiltonian eigenvectors from HEFT.
Importantly, however, the lattice QCD correlation matrix
eigenvectors must be normalized to Oð1Þ, as described in
Ref. [42]. In the case of HEFT, the eigenvector components
areOð1Þ via the standard normalization with the sum of the
squares of the components equal to one. Given that strength
is localized within the spectrum, the values are insensitive
to the size of the Hamiltonian matrix.
The scattering-state contamination to each of the eigen-

state-optimized correlation functions of Eqs. (32) and (33)
is obtained by removing the two energy eigenstates whose
composition is dominated by the bare basis states (labeled
jEN1

i and jEN2
i). The idea is that the lattice correlation

matrix will be effective in isolating two states which couple
strongly to the three-quark operators, but it lacks the
additional information to isolate the scattering states.
While the lattice QCD calculations of Ref. [42] isolate
states in an 8 × 8 correlation matrix, appropriate orthogon-
ality is evident in the optimized correlation function for
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each state, GiðtÞ. For example, the contribution of jEN2
i to

the optimized correlator G1ðtÞ, governed by α1hN1jEN2
i þ

β1hN2jEN2
i, is small. Similarly, the contribution of EN1

to the optimized correlator G2ðtÞ, governed by
α2hN1jEN1

i þ β2hN2jEN1
i, is also small. At most, contri-

butions from jEN2
i and jEN2

i to G1ðtÞ and G2ðtÞ, respec-
tively, are of order 5%, though typically take values
closer to 1%.
The optimized contamination functions for these two

bare-dominated states are therefore written as

CjðtÞ ¼
1

GjðtÞ
X

i≠N1;N2

ðαjhN1jEii þ βjhN2jEiiÞ2e−Eit: ð34Þ

Here, the notation of i ≠ N1; N2 denotes that we avoid
summing over the energy eigenstates labeled jEN1

i
and jEN2

i.

B. Contamination function at 3 fm

1. Two-particle scattering-state contamination

To determine the degree of scattering-state contamina-
tion in the lattice QCD correlation functions of Eq. (33),
which have been optimized for the states jEN1

i and jEN2
i,

we consider the contamination functions as defined in
Eq. (34), eliminating the contribution from the states which
are identified as corresponding to the lattice QCD results.
As can be seen in Fig. 5, at each lattice QCD mass

there is not necessarily only a single corresponding HEFT
eigenstate. Taking the second heaviest mass from Fig. 5 as
an example, we see that both the first and second states
have approximately equal contributions from mN1

. Indeed,
there is no single eigenstate corresponding with the single-
particle, three-quark core, but rather both eigenstates may
be described as quark-model-like, corresponding with the
lattice QCD state associated with the N�ð1535Þ. For the
L ∼ 3 fm analysis, this effect can be seen at all but
the heaviest lattice QCD masses. As a result, to remove
the bare basis state contributions from the correlation
functions as described in the previous section, we must
remove not only the contribution from the two eigenstates
with the largest bare basis state eigenvector components but
also the contribution from the two eigenstates with the
second largest bare basis state components. In the context
of Fig. 5, we remove the contributions from all highlighted
eigenstates from the correlation functions. This method will
allow a proper determination of the level of two-particle
dominated scattering-state contributions, having removed
all significant sources of single-particle contributions.
In calculating these contamination functions, we com-

pare two sources of values for αj and βj. From Ref. [42],
the eigenvectors of the correlation matrix were calculated in
lattice QCD for an 8 × 8 correlation matrix, with four sets
of smearings at both the source and sink. Here, we consider

the 100 sweep smearings from Fig. 11a of Ref. [42], which
dominate the eigenvalue components. Coefficients for α1
and α2 are taken from the 100-sweep χ1 (u5) component of
the eigenvectors for states 1 and 2, respectively. Similarly,
β1 and β2 are taken from the 100-sweep χ2 (u6) component
of the eigenvectors for states 1 and 2. We note the important
sign change in βi as one moves from state 1 to 2.
We compare these lattice QCD results for αj and βj with

the corresponding quantities calculated from the eigenvec-
tors of the Hamiltonian in HEFT. In this case, these mixing
factors are given by

α1 ¼ hN1jEN1
i; β1 ¼ hN2jEN1

i;
α2 ¼ hN1jEN2

i; β2 ¼ hN2jEN2
i: ð35Þ

The eigenstates jEN1
i and jEN2

i correspond with the states
illustrated in Fig. 5 with solid red and solid blue lines,
respectively.
In Fig. 10, these two schemes for determining αj and βj

are compared by calculating contamination functions as
defined in Eq. (34) at each PACS-CS pion mass. Here, due
to the normalization of our contamination function by
GjðtÞ, the contamination CjðtÞ serves as a simulation of
the percentage contamination from two-particle scattering
states. As described above, we remove not only the
contribution from the two eigenstates with the largest bare
basis state eigenvector component but also the contribution
from the eigenstates with the second largest bare basis state
component.
Broadly considering these two-particle contamination

functions, we observe two situations. At lighter pion
masses, where the bare-dominated states jEN1

i and jEN2
i

sit above the lower-lying eigenstates, we observe a scatter-
ing-state contamination which has a minimum in the
vicinity of 1–2 fm. At the heavier pion masses, where
these bare-dominated states are found in the lower-lying
eigenstates, the contamination tends to zero as time
increases, as all excited states become exponentially sup-
pressed. There is a remarkable similarity between the
contamination functions constructed from the correlation
matrix eigenvectors from lattice QCD and the Hamiltonian
eigenvectors from HEFT.
Considering specific pion masses, at the two largest

masses (corresponding with the lower two rows in Fig. 10),
we observe a strong decay in the contamination, where all
scattering-state contaminations are at the 5%–10% range at
Euclidean times 1≲ t≲ 2 fm where one would expect to
observe an effective-mass plateau in lattice QCD simula-
tions [8,51]. At the third heaviest mass (given by the middle
row of Fig. 10), we observe a minimum contamination
in the plateau region of 7% for N1, which is in line with
the prediction from Ref. [8] of approximately 5%. As
described in Ref. [8], we observe a larger degree of
scattering-state contamination in the correlation function
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corresponding with N2 for the second lightest mass. For
the two lightest masses, some degree of scattering-state
contamination is to be expected, as they fall near the ηN
and KΛ thresholds.

2. Single-particle and two-particle contamination

In the previous section, we analyzed the two-particle
scattering-state contamination by removing contributions
to the correlation functions from all eigenstates with a

FIG. 10. Contamination functions from Eq. (34) at the five pion masses considered by the PACS-CS Collaboration [41], where the
pion mass increases as one moves down the columns. Contributions from all eigenstates with a large single-particle component have
been removed from the correlation functions (all highlighted eigenstates in Fig. 5). Values for αj and βj are taken from lattice QCD
correlation matrix eigenvectors for the two leftmost columns and from HEFT eigenvectors as defined in Eq. (35) for the two rightmost
columns. The first and third columns (red lines) correspond with the eigenstates dominated by contributions from jN1i, while the second
and fourth columns (blue lines) correspond with the eigenstates dominated by contributions from jN2i. The relevant eigenstate to which
the contamination function applies (the eigenstate with the largest bare basis state contribution most likely to be observed in lattice QCD
simulations) is labeled by Ej in the upper-right corner of each plot.
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significant single-particle bare basis state eigenvector
component. There, the two-particle scattering-state con-
taminations for the three heaviest quark masses consid-
ered were found to be typically small, the order of 10% in
the Euclidean time range where masses and form factors
are extracted.
Here, we explore a different problem where the bare

basis state becomes significantly associated with more than
one energy eigenstate. The extent of this distribution over
eigenstates is directly related to the volume of the lattice
which governs the number of eigenstates within a given
energy range, i.e., the density of energy eigenstates. As the
volume increases, the density of eigenstates increases and
the bare basis state spreads over several states.
However, lattice QCD aims to isolate a single energy

eigenstate. In the absence of two-particle interpolating
fields, this is done via Euclidean time evolution to allow
the higher state to become exponentially suppressed while
the uncertainties in the correlation function grow to the
point that the errors are sufficient to encompass the
behavior of a single propagating state.
Drawing on the information available in the HEFT

eigenvectors, we are able to quantify the contamination
from both the two-particle scattering states and the dis-
tribution of significant single-particle strength across multi-
ple energy eigenstates. This time, only the two energy
eigenstates having the dominant bare basis state compo-
nents, jN1i and jN2i, are eliminated. In cases where the
strength is almost equal, the lower-lying state is considered
isolated and eliminated from the contamination function.
Using Eq. (34) the scattering-state contaminations for the

three heaviest PACS-CS masses are illustrated in Fig. 11.
Here, the label Ei on each contamination function refers
to the eigenstate associated with each lattice QCD energy
level. In the case where a lattice QCD mass sits on an
avoided level crossing, where two different eigenstates
have approximately equal large bare basis state eigenvector
components, the state with lower eigenenergy is chosen.
Under Euclidean time evolution, excited states in the
spectrum decay more quickly, and thus it is expected that
the lower eigenenergy is isolated.
Comparing the contamination functions in Fig. 11 with

those in the previous section, we observe a significantly
higher degree of contamination. For the heaviest PACS-
CS mass, we still observe a decaying contamination
for large Euclidean time. As a vast majority of the bare
basis state eigenvector components are concentrated in
the two lowest-lying finite-volume eigenstates, we do
not expect any scattering-state contamination following
Euclidean time evolution. At the second and third
heaviest masses, however, we observe a significantly
larger level of contamination.
Consider the positions of the second and third heaviest

masses on the finite-volume spectrum from Fig. 5. For the
lower-lying lattice QCD mass at the second-heaviest pion

mass, this sits directly on an avoided level crossing in the
eigenvector component for N1. As a result, whether E1 or
E2 is chosen as the state corresponding with this lattice
QCD mass, and removed from the correlation function,
a significant single-particle component will remain in the
correlation function. This effect is seen to a greater degree
in the larger lattice QCD mass at the third heaviest pion
mass. This mass sits at an avoided level crossing in N2,
where the eigenvector component for N2 is significantly
spread over four nearby eigenstates. In the context of Fig. 5,
both the solid blue and dashed blue lines are moving
between HEFT eigenstates at this position. At the position
of the middle pion mass, the eigenstate with the largest N2

component only contains approximately 15% of the con-
tribution from N2. This is illustrated in Fig. 4 where the
blue curve under the middle black bullet indicates the
percentage contribution of N2 to each eigenstate. For states
one through six, the percentage contributions are 2%, 12%,
13%, 10%, 17%, and 14%, respectively. As such, removing
only a single N2-dominated eigenstate from the correlation

FIG. 11. Contamination functions from Eq. (34) at the three
heaviest pion masses considered by PACS-CS [41]. The pion
mass increases as one moves down the columns. Contributions
from the eigenstate with the largest eigenvector component for
each bare basis state have been removed in calculating the
contamination functions (solid highlighted state in Fig. 5). Values
for αj and βj are taken from the HEFT eigenvectors as defined in
Eq. (35). The relevant eigenstate to which the contamination
function applies is labeled by Ej.
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function will leave a significant degree of single-particle-
based contamination in the estimate of the scattering-state
contamination. This effect is further exaggerated in the two
lightest masses. Due to the high density of states at this
point, the eigenvector components for the two bare basis
states are further spread to nearby energy eigenstates.
In the context of exploratory lattice QCD calculations

seeking to identify the nature of quark-model-like states in
the spectrum, the level of scattering-state contaminations
illustrated in Fig. 11 is encouraging, in that for five of the
six states considered the correlation functions are domi-
nated by the state of interest at the level of 75% or better
where the signal is extracted. In other words, for all but the
top rightmost plot of Fig. 11, the scattering-state contami-
nation given by CjðtÞ is at most 25% in the typical
Euclidean time region of 1≲ t≲ 2 fm used to observe
an effective-mass plateau. Moreover, Fig. 10 illustrates that
the majority of the contamination comes from a nearby
state in the spectrum having the same bare basis state.
On the other hand, it is clear that next generation lattice

QCD calculations seeking quantitative comparison with
experimental measurements will need to have a complete
set of two-particle interpolating fields to complement the
single-particle three-quark interpolating fields considered
in the leading exploratory calculations. Only then can one
couple to the complete set of energy eigenstates illustrated
in Figs. 3 and 5 and isolate them in the solution to the
generalized eigenvalue equation for the correlation matrix.

C. Contamination functions at 2 fm

As for the 3 fm analysis, we can utilize the correlation
functions as defined in Sec. VII A to calculate the degree of
scattering-state contamination in the correlation functions
corresponding with the lattice QCD results. Due to the
lower density of states, we explore contamination functions
calculated as defined in Eq. (34), where only the eigenstate
with largest bare basis state eigenvector component is
removed. In particular, we calculate contamination func-
tions for the six lattice QCD results from the HSC [45,46],
as these are calculated using three-quark interpolating
fields and correspond with bare-dominated states. As the
eigenvectors from both the lattice QCD correlation matrix
and the HEFT Hamiltonian were found to produce equiv-
alent contamination functions in Sec. VII B, we utilize the
HEFT eigenvectors for this section.
In Fig. 12, results for the six contamination functions

corresponding to the six lattice QCD results reported by the
HSC are illustrated. These curves can be compared with the
first two rows of Fig. 11 reporting results at similar pion
masses on a 3 fm lattice.
While the large contamination reported in the top-right

plot of Fig. 11 does not appear, broad improvement is
not observed. The second state at the HSC middle mass
and the first state at their heaviest mass both show
scattering-state contamination at 40%. As discussed in

further detail below, both of these states sit in the midst of
avoided level crossings.
Focusing first on the middle mass, the contributions from

the second bare state are roughly equally spread between
two eigenstates as illustrated in the lower two panels of
Fig. 7 for the third and fourth states of the spectrum. At
m2

π ∼ 0.2 GeV2, the blue curves indicate a 35% and 25%
contribution of jN2i to the third and fourth states, respec-
tively. If the third state is removed in calculating the
contamination function, the first, second, and fourth eigen-
states contain approximately 35% of the second bare state
in the remaining correlation function.
Interestingly, the C1ðtÞ contamination function for the

heaviest pion mass in the lower-left plot of Fig. 12 is
significantly greater than the contamination functions for
the two lighter pion masses. This may provide an explan-
ation for why the lower-energy HSC state sits at an energy
lower than that predicted by HEFT. The HSC correlation
function has a significant contamination from the lower-
lying scattering state, and the mass obtained in their

FIG. 12. Contamination functions from Eq. (34) at the three
pion masses considered by the HSC [45,46]. The pion mass
increases as one moves down the columns. Contributions from
the eigenstate with the largest eigenvector component for each
bare basis state have been removed from the correlation functions
(solid highlighted states in Fig. 5). Values for αj and βj are taken
from the HEFT eigenvectors as defined in Eq. (35). The relevant
eigenstate to which the contamination function applies is labeled
by Ej.
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analysis likely corresponds to a superposition of these two
eigenstate energies.

VIII. CONCLUSION

In this study, we consider a HEFTanalysis of the two low-
lying odd-parity nucleon resonances in the IðJPÞ ¼ 1

2
ð1
2
−Þ

channel, theN�ð1535Þ and theN�ð1650Þ. This is done using
a novel Hamiltonian consisting of two bare basis states,
representing a three-quark core for the two resonances. Two-
particle πN, ηN, and KΛ channels are also considered. In
HEFT, the interactions between the basis states are para-
metrized such that by solving the scattering equations for
the system, we are able to obtain a good description of the
experimental scattering data and pole positions.
In Sec. III, the parameters of the Hamiltonian are con-

strained to S11 scattering data. These parameters include the
masses of the two bare basis states, the coupling strengths of
the interactions between the basis states, and the strengths of
the dipole regulators for each channel. In doing so, we are
able to obtain a description of the scattering data up to a
center-of-mass energy of 1.75 GeV. By solving for the pole
positions in the T-matrix, we obtain a pole for each
resonance, consistent with the PDG values.
By taking the constrained Hamiltonian and extending

it to a finite-volume formalism, we are able to make a
connection to lattice QCD results. Using lattice QCD
results from an L ∼ 3 fm lattice, in Sec. IV we constrain
the mass slopes of the bare basis states, allowing a pion-
mass interpolation of the energy eigenvalues. Here, we find
that the interpretation of the two resonances as three-quark
cores dressed by scattering-state dynamics is consistent
with the L ∼ 3 fm lattice calculations.
Using the parameters constrained by both experimental

data and the 3 fm lattice QCD data, we also consider lattice
QCD results at L ∼ 2 fm in Sec. V. Without any further
variation of the Hamiltonian, we find that the HEFT
eigenstates with large bare state components are also
consistent with these lattice QCD results. Similarly, in
Sec. VI we find that HEFT is in agreement with the new
L ¼ 4.05 fm lattice QCD results from the CLS consortium.
At this lattice size, the two lattice QCD states excited from
momentum-projected five-quark operators correspond with
HEFT states primarily composed of πN basis states, with
only small contributions from the bare basis states.
In Sec. VII, we create novel HEFT simulations of the

correlation functions for the two states observed in lattice
QCD. These correlators are constructed from the

eigenvectors of the Hamiltonian and are used to construct
two-particle scattering-state contamination functions.
These provide insight into the degree of scattering-state
contamination in lattice QCD correlation functions for
each lattice QCD energy reported. Contamination function
analysis was also performed for the 2 fm lattice QCD
results, where it was found that avoided level crossings
induce large scattering-state contaminations.
By comparing the Hamiltonian from HEFT with both

experimental scattering data and lattice QCD data at L ∼ 2,
3, and 4 fm, it is clear that we are able to interpret both the
N�ð1535Þ and N�ð1650Þ resonances as three-quark cores
dressed by πN, ηN, and KΛ scattering-state contributions.
In addition, by constructing HEFT simulations of the
two-particle scattering-state contamination functions at
each lattice QCD mass, it becomes clear that two-particle
interpolators in lattice QCD are required to gain control
over the essential features of the spectrum, particularly as
one approaches the physical point. Future work may be
able to apply this multiple bare state formalism to other
scattering channels such as the positive-parity nucleon
and Δ systems.

ACKNOWLEDGMENTS

This research was supported by the Australian
Government Research Training Program Scholarship,
and with supercomputing resources provided by the
Phoenix HPC service at the University of Adelaide. This
research was undertaken with the assistance of resources
from the National Computational Infrastructure (NCI),
provided through the National Computational Merit
Allocation Scheme, and supported by the Australian
Government through Grant No. LE190100021 and the
University of Adelaide Partner Share. This research was
supported by the Australian Research Council through
ARC Discovery Project Grants No. DP190102215 and
No. DP210103706 (D. B. L.). J.-J. W. was supported by the
National Natural Science Foundation of China under
Grants No. 12175239 and No. 12221005, and by the
National Key R&D Program of China under Contract
No. 2020YFA0406400, and by the Chinese Academy of
Sciences under Grant No. YSBR-101. Z.-W. L. was sup-
ported by the National Natural Science Foundation of
China under Grants No. 12175091, No. 12335001,
No. 12047501, and No. 12247101, and the 111 Project
under Grant No. B20063.

ABELL, LEINWEBER, LIU, THOMAS, and WU PHYS. REV. D 108, 094519 (2023)

094519-16



[1] Adrian L. Kiratidis, Waseem Kamleh, Derek B. Leinweber,
and Benjamin J. Owen, Lattice baryon spectroscopy with
multi-particle interpolators, Phys. Rev. D 91, 094509
(2015).

[2] Zhan-Wei Liu, Waseem Kamleh, Derek B. Leinweber,
Finn M. Stokes, Anthony W. Thomas, and Jia-Jun Wu,
Hamiltonian effective field theory study of the N�ð1440Þ
resonance in lattice QCD, Phys. Rev. D 95, 034034
(2017).

[3] C. B. Lang, L. Leskovec, M. Padmanath, and S. Prelovsek,
Pion-nucleon scattering in the Roper channel from lattice
QCD, Phys. Rev. D 95, 014510 (2017).

[4] Jia-junWu, Derek B. Leinweber, Zhan-wei Liu, and Anthony
W. Thomas, Structure of the Roper resonance from lattice
QCD constraints, Phys. Rev. D 97, 094509 (2018).

[5] Peter C. Bruns, Maxim Mai, and Ulf G. Meissner, Chiral
dynamics of the S11(1535) and S11(1650) resonances
revisited, Phys. Lett. B 697, 254 (2011).

[6] P. C. Bruns and A. Cieply, Coupled channels approach to
ηN and η0N interactions, Nucl. Phys. A992, 121630 (2019).

[7] Zhan-Wei Liu, Waseem Kamleh, Derek B. Leinweber,
Finn M. Stokes, Anthony W. Thomas, and Jia-Jun Wu,
Hamiltonian effective field theory study of the N�ð1535Þ
resonance in lattice QCD, Phys. Rev. Lett. 116, 082004
(2016).

[8] Finn M. Stokes, Waseem Kamleh, and Derek B. Leinweber,
Elastic form factors of nucleon excitations in lattice QCD,
Phys. Rev. D 102, 014507 (2020).

[9] M. Lüscher, Volume dependence of the energy spectrum
in massive quantum field theories I. Stable particle states,
Commun. Math. Phys. 104, 177 (1986).

[10] M. Lüscher, Volume dependence of the energy spectrum
in massive quantum field theories II. Scattering states,
Commun. Math. Phys. 105, 153 (1986).

[11] Martin Lüscher, Two-particle states on a torus and their
relation to the scattering matrix, Nucl. Phys. B354, 531
(1991).

[12] Song He, Xu Feng, and Chuan Liu, Two particle states and
the S-matrix elements in multi-channel scattering, J. High
Energy Phys. 07 (2005) 011.

[13] Michael Lage, Ulf-G. Meissner, and Akaki Rusetsky, A
method to measure the antikaon-nucleon scattering length in
lattice QCD, Phys. Lett. B 681, 439 (2009).

[14] V. Bernard, M. Lage, U. G. Meissner, and A. Rusetsky,
Scalar mesons in a finite volume, J. High Energy Phys. 01
(2011) 019.

[15] Peng Guo, Jozef Dudek, Robert Edwards, and Adam P.
Szczepaniak, Coupled-channel scattering on a torus, Phys.
Rev. D 88, 014501 (2013).

[16] B. Hu, R. Molina, M. Döring, and A. Alexandru, Two-flavor
simulations of the ρð770Þ and the role of the KK̄ channel,
Phys. Rev. Lett. 117, 122001 (2016).

[17] Ning Li and Chuan Liu, Generalized Lüscher formula in
multi-channel baryon-meson scattering, Phys. Rev. D 87,
014502 (2013).

[18] Maxwell T. Hansen and Stephen R. Sharpe, Multiple-
channel generalization of Lellouch-Luscher formula, Phys.
Rev. D 86, 016007 (2012).

[19] M. Döring, H.-W. Hammer, M. Mai, J.-Y. Pang, A.
Rusetsky, and J. Wu, Three-body spectrum in a finite

volume: The role of cubic symmetry, Phys. Rev. D 97,
114508 (2018).

[20] Maxwell T. Hansen and Stephen R. Sharpe, Lattice QCD
and three-particle decays of resonances, Annu. Rev. Nucl.
Part. Sci. 69, 65 (2019).

[21] Tyler D. Blanton, Fernando Romero-López, and Stephen R.
Sharpe, I ¼ 3 three-pion scattering amplitude from lattice
QCD, Phys. Rev. Lett. 124, 032001 (2020).

[22] Jia-Jun Wu, T.-S. H. Lee, A.W. Thomas, and R. D. Young,
Finite-volume Hamiltonian method for coupled channel
interactions in lattice QCD, Phys. Rev. C 90, 055206 (2014).

[23] J. M. M. Hall, A. C. P. Hsu, D. B. Leinweber, A. W.
Thomas, and R. D. Young, Finite-volume matrix Hamilto-
nian model for a Δ → Nπ system, Phys. Rev. D 87, 094510
(2013).

[24] Jonathan M.M. Hall, Waseem Kamleh, Derek B.
Leinweber, Benjamin J. Menadue, Benjamin J. Owen,
Anthony W. Thomas, and Ross D. Young, Lattice QCD
evidence that the Λð1405Þ resonance is an antikaon-nucleon
molecule, Phys. Rev. Lett. 114, 132002 (2015).

[25] Yan Li, Jia-Jun Wu, Curtis D. Abell, Derek B. Leinweber,
and Anthony W. Thomas, Partial wave mixing in
Hamiltonian effective field theory, Phys. Rev. D 101,
114501 (2020).

[26] Zhan-Wei Liu, Jia-Jun Wu, Derek B. Leinweber, and
Anthony W. Thomas, Kaonic hydrogen and deuterium in
Hamiltonian effective field theory, Phys. Lett. B 808,
135652 (2020).

[27] Yan Li, Jia-jun Wu, Derek B. Leinweber, and Anthony W.
Thomas, Hamiltonian effective field theory in elongated or
moving finite volume, Phys. Rev. D 103, 094518 (2021).

[28] Curtis D. Abell, Derek B. Leinweber, Anthony W. Thomas,
and Jia-Jun Wu, Regularization in nonperturbative exten-
sions of effective field theory, Phys. Rev. D 106, 034506
(2022).

[29] Dan Guo and Zhan-Wei Liu, Pion photoproduction off
nucleon with Hamiltonian effective field theory, Phys. Rev.
D 105, 114039 (2022).

[30] Zhi Yang, Guang-Juan Wang, Jia-Jun Wu, Makoto Oka, and
Shi-Lin Zhu, Novel coupled channel framework connecting
the quark model and lattice QCD for the near-threshold Ds
states, Phys. Rev. Lett. 128, 112001 (2022).

[31] Curtis D. Abell, Derek B. Leinweber, Anthony W. Thomas,
and Jia-Jun Wu, Effects of multiple single-particle basis
states in scattering systems, Ann. Phys. (Berlin) 459,
169531 (2023).

[32] John Bulava, Andrew D. Hanlon, Ben Hörz, Colin
Morningstar, Amy Nicholson, Fernando Romero-López,
Sarah Skinner, Pavlos Vranas, and André Walker-Loud,
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