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Understanding the dynamics of bound state formation is one of the fundamental questions in confining
quantum field theories such as Quantum Chromodynamics (QCD). One hadronization mechanism that
has garnered significant attention is the breaking of a string initially connecting a fermion and an
antifermion. Deepening our understanding of real-time string-breaking dynamics with simpler, lower
dimensional models like the Schwinger model can improve our understanding of the hadronization
process in QCD and other confining systems found in condensed matter and statistical systems. In this
paper, we consider the string-breaking dynamics within the Schwinger model and investigate its
modification inside a thermal medium, treating the Schwinger model as an open quantum system coupled
to a thermal environment. Within the regime of weak coupling between the system and environment, the
real-time evolution of the system can be described by a Lindblad evolution equation. We analyze the
Liouvillian gaps of this Lindblad equation and the time dependence of the system’s von Neumann
entropy. We observe that the late-time relaxation rate decreases as the environment correlation length
increases. Moreover, when the environment correlation length is infinite, the system exhibits two steady
states, one in each of the sectors with definite charge-conjugation-parity (CP) quantum numbers. For
parameter regimes where an initial string breaks in vacuum, we observe a delay of the string breaking in
the medium, due to kinetic dissipation effects. Conversely, in regimes where an initial string remains
intact in vacuum time evolution, we observe string breaking (melting) in the thermal medium. We further
discuss how the Liouvillian dynamics of the open Schwinger model can be simulated on quantum
computers and provide an estimate of the associated Trotter errors.
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I. INTRODUCTION

Real-time simulations of lattice field theories have
recently received significant attention in fundamental nuclear
and particle physics. While these simulations pose computa-
tional challenges, especially in higher dimensions, recent
advancements in quantum computing and error correction
[1,2] offer the potential to eventually enable large-scale
simulations [3–8]. The real-time dynamics of field theories
can be simulated within the Hamiltonian formulation devel-
oped by Kogut and Susskind [9]. Different than in the path

integral formulation of lattice field theory that relies on a
spatial and temporal lattice discretization, time is kept as a
continuous variable within the Hamiltonian formulation,
and only the spatial directions are discretized. The need to
simulate exponentially large Hilbert spaces makes large-
scale classical simulations intractable. This necessitates the
development of quantum algorithms to simulate for example
high energy scattering processes [10–13] or field theories at
finite chemical potential, which are relevant to nuclear and
particle physics [14–34]. In particular, lower dimensional
lattice field theories that share features with quantum
chromodynamics (QCD) have received an increased atten-
tion recently. An example is the Schwinger model [35,36],
which corresponds to quantum electrodynamics (QED)
in 1þ 1 dimensions. This U(1) gauge theory coupled to
fermions exhibits confinement and chiral symmetry
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breaking. Besides the similarities with QCD, lower dimen-
sional field theories are an important testing ground for
developing simulation protocols in order to eventually build
up toward simulations of QCD. Recent work investigated
quantum and tensor network simulations of the U(1) gauge
theory and the Schwinger model [16,37–51] and studied
Hamiltonian dynamics of non-Abelian lattice field theories
[52–70], and in particular, several efforts aim to understand
the thermalization of non-Abelian lattice gauge theory as an
isolated quantum system [71–73].
One of the most intriguing aspects of the Schwinger

model is the string-breaking mechanism. This involves a
pair of fermion and antifermion at a certain distance,
connected by a string of electric flux. When the string is
sufficiently long, it breaks in real time, ultimately forming
two or more tightly bound fermion antifermion pairs,
analogous to mesons. The initial energy stored within
the string transforms into the kinetic energies of these
pairs, which thus separate with corresponding velocities.
Details of this mechanism largely depend on the fermion
mass and the coupling strength between fermions and the
gauge field.
The string-breaking process in the Schwinger model

presents fascinating parallels to quark confinement in
QCD, where quarks and gluons hadronize into baryons
and mesons. This is one of the universe’s most compelling
enigmas. The phenomenon of string breaking, viewed
as a model for hadronization, is also represented in the
simulations of high energy particle collisions carried
out by Monte Carlo event generators like PYTHIA [74].
Additionally, in Ref. [75], initial-state string dynamics and
string junctions were found to be necessary for describing
particle production in heavy ion collisions within a three-
dimensional dynamical initialization model.
Recently, high-energy collider measurements of jet sub-

structure [76,77] have facilitated the direct imaging of the
transition between the hadron and parton angular scaling
regions, providing a hint of how the confinement scale is set
within jets. This can be explicitly observed through mea-
surements of correlations as a function of angle, between
the asymptotic energy flux, and is further enhanced by
probing these intricate correlations between hadrons
with different quantum numbers [78–85]. Nevertheless,
the theoretical understanding of these measurements, espe-
cially in the transition from the universal parton scaling
region to the free hadron scaling region—a deeply non-
perturbative process—remains a challenging task.
Enhancing our grasp of real-time nonperturbative meth-

ods using simpler, lower dimensional models like the
Schwinger model could significantly improve our under-
standing of such real-world collider measurements. Such an
understanding could unravel the mystery of quark confine-
ment and has implications for precision measurements
of Standard Model parameters [86], studies of the quark-
gluon plasma (QGP) in heavy ion collisions [87–89],

and the investigation of cold nuclear matter effects at the
future Electron-Ion Collider [90]. Furthermore, an analo-
gous confinement process occurs in several quasi one-
dimensional compounds in condensed matter and statistical
systems [91–96]. Hence, studying real-time string-breaking
dynamics with the Schwinger model provides a more
realistic approach to understanding confinement dynamics
in these systems as well.
In this work, we explore the dynamics of the string-

breaking mechanism in vacuum and in the presence of a
medium, as illustrated in Fig. 1. The static string in the
Schwinger model has been studied at both finite temper-
ature and chemical potential [97–100] (different lattice field
theories at finite temperature and/or chemical potential
were also studied in Refs. [101–105]). It was observed that
the string tension decreases as temperature and/or chemical
potential increase. We extend these studies to the dynamical
case, where a thermal environment modifies the real-time
evolution of the string-breaking process. We find that
this environment delays the string-breaking process and
reduces the velocity at which the fermion antifermion pairs
separate. This behavior can be attributed to a quantum drag
force acting on the fermion pairs, aligning with findings
in the static case. To study real-time dynamics, we consider
the Schwinger model interacting with a thermal scalar field
via a Yukawa-type coupling. We work in the Brownian
motion limit where the environment temperature is high
compared to the system’s typical energy levels [106]. In
this limit, memory effects are negligible, and the dynamics
are Markovian, allowing us to express the evolution of the
Schwinger model as an open quantum system in terms of a
Lindblad equation [107–109]. The open quantum system
framework has been extensively studied for quarkonium
dynamics inside the QGP [110–128].
One key aspect of nonequilibrium physics in the open

quantum system is the late-time relaxation dynamics
toward equilibrium. These relaxation dynamics are gov-
erned by the Liouvillian gap, which is given by the
eigenvalue of the Liouvillian spectrum whose real part is
closest to 0. This gap is a fundamental quantity of the

FIG. 1. Illustration of the string breaking process for the
Schwinger model in a thermal medium.
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open quantum system analogous to the energy gap of a
Hamiltonian describing a closed quantum system. We
determine the Liouvillian spectrum and corresponding
eigenmodes of the open Schwinger model for different
choices of the environmental correlator (long and short-
range correlations), study its dependence on the system
size, and compare it to the free fermion model. We find
that a long-range correlated environment leads to slower
thermalization of the system since the energy and infor-
mation exchange between the system and environment is
slowed when long-range correlations are present in the
environment. Moreover, we find that special care needs
to be taken in the case of an infinitely long correlation
length. In this case, the Liouvillian dynamics of the open
quantum system preserve the charge conjugation and
parity (CP) symmetry of the system. We decompose
the Hilbert space into a CP-even and odd sector. Only
in the case of infinite environment correlation, the two
sectors evolve independently, and there exist two equi-
librium states, one in each sector. To study the impact of
the environment correlation length on the relaxation
dynamics, we study the von Neumann entropy of the
system that quantifies its decoherence due to the inter-
action with the environment. These results are closely
related to the study and classification of field-theoretical
dissipative phase transitions [129]. Our results provide a
starting point for more detailed studies in the future.
Finally, we study the resource requirements for quantum

simulations of the Schwinger model as an open quantum
system. For this case study, we focus on a quantum algo-
rithm that interleaves short time steps in the system’s
Hamiltonian evolution with a time evolution operator
comprising the Lindblad operators that act on the system
and an additional register of ancilla qubits. By using a first-
order Trotter decomposition for both unitary operators, we
find that, in practice, the Trotter errors associated with the
Lindblad evolution may not necessarily increase the total
error when compared to the vacuum calculation of the
Schwinger model. This is due to some cancellations of
errors in the quantum algorithm for simulating the Lindblad
evolution, which is an encouraging sign for quantum
simulations of open systems in the near to intermediate-
term future.
The remainder of this paper is organized as follows.

In Sec. II, we introduce the lattice formulation of the
Schwinger model as an open quantum system including the
decomposition into separate CP sectors. In Sec. III, we
present results for the Liouvillian spectrum and study its
relation to the decoherence of the system and relaxation
dynamics toward equilibrium. In Sec. IV, we present
numerical studies of the string breaking process in vacuum
and the medium and study its dependence on system
parameters. We estimate the Trotter errors of a quantum
algorithm for simulating open quantum systems in Sec. V,
and conclusions are drawn in Sec. VI.

II. THE SCHWINGER MODEL AS AN OPEN
QUANTUM SYSTEM

The Lagrangian of the Schwinger model is given by

L ¼ ψ̄ði=D −mÞψ −
1

4
FμνFμν; ð1Þ

with a two-component fermion field ψ , the covariant
derivative Dμ ¼ ∂μ − ieAμ, the U(1) gauge field Aμ,
and the field strength tensor Fμν ¼ ∂μAν − ∂νAμ. The
Hamiltonian of the Schwinger model can be discretized
on a spatial lattice in the axial gauge A0 ¼ 0 using the
staggered fermion formulation and the Jordan-Wigner
transform [9]

HS ¼
1

2a

XNf−2

n¼0

ðσþðnÞL−
nσ

−ðnþ 1Þ þ σþðnþ 1ÞLþ
n σ

−ðnÞÞ

þ 1

2
ae2

XNf−1

n¼1

l2
n þ

1

2
m

XNf−1

n¼0

ð−1ÞnσzðnÞ: ð2Þ

Here a denotes the lattice spacing, and n represents the
index of the lattice position x ¼ na. Throughout the paper,
we will quote parameter values of the Schwinger model
in units of a. Moreover, the (anti)fermion creation/
annihilation operators are given by σþ=σ− (σ−=σþ) on
even (odd) sites with σ� ¼ ðσx � iσyÞ=2. Due to the U(1)
nature of the theory, we will use electrons interchangeably
for fermions and positrons for antifermions. Here L�

n
correspond to the raising and lowering operators associated
with the states of the electric field that lives on the links
between lattice sites n and nþ 1. The states of the electric
field are labeled by their eigenvalues e2l2

n, which are
obtained by acting on these states with the electric field
operator squared e2E2ðnÞ at site n. We assume open
boundary conditions, which lead to an unambiguous
definition of the environment correlator in the Lindblad
equation that will be introduced below. Under open
boundary conditions, the upper limit of the first sum in
HS is Nf − 2, where Nf is the number of fermion sites.
This is twice the number of physical sites N in the
stagger fermion formulation so that Nf ¼ 2N is an even
number. In the case of open boundary conditions, Nf − 1

gauge links are needed to connect nearest neighbors for Nf

fermion sites.
Physical states have to satisfy Gauss’s law, which can be

written as

lnþ1 − ln ¼ −σþðnÞσ−ðnÞ − ð−1Þn − 1

2
: ð3Þ

For the n ¼ 0 and n ¼ Nf − 1 sites, imposing Gauss’s law
requires information about l0 and lNf

, which are not part
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of the links that we keep track of for dynamics but are
determined by the open boundary conditions:

l0 ¼ 0; lNf
¼ 0: ð4Þ

Other boundary conditions can also be studied, which
correspond to cases where the system has a nonzero total
charge and/or a uniform background electric field. In one
spatial dimension, one can completely integrate out the
electric fields by repeatedly using Eq. (3), starting at one
end, which leads to nonlocal interactions between fer-
mions. We will not pursue this here and simply truncate the
electric field flux at jlnjmax ¼ 1 for all sites n. Studies with
higher truncation or electric fields completely integrated
out are left for the future.
The discretized Hamiltonian has a CP symmetry

given by

σ�ðnÞ⟶CP σ∓ðNf − 1 − nÞ;
σzðnÞ⟶CP − σzðNf − 1 − nÞ;
L�
n ⟶

CP
L�
Nf−2−n;

ln ⟶
CP

lNf−2−n: ð5Þ

Under the CP operator, physical states of the theory
transform as illustrated in Fig. 2.
Next, we consider the Schwinger model coupled to an

environment, which is described by a scalar field theory
at thermal equilibrium, as in Ref. [130]. The total
Hamiltonian takes the form

H ¼ HS þHE þHI; ð6Þ

where the three terms describe the system, the environment,
and their interaction, respectively. The system Hamiltonian
HS is given in Eq. (23). The environment Hamiltonian
describes a thermal scalar field theory. The interaction
Hamiltonian HI describes the coupling between the
Schwinger model and the scalar field theory. Different

models of the scalar field interaction terms may be
considered. Here we consider a Yukawa-type interaction

HI ¼ λ

Z
dxϕðxÞψ̄ðxÞψðxÞ: ð7Þ

While the system and environment can be strongly coupled,
we assume that the interaction between them is sufficiently
weak such that the time evolution of the Schwinger model
itself is Markovian and a Lindblad equation can be used
to describe its time evolution. We consider the quantum
Brownian motion limit valid at high temperatures,
which allows us to assume that the total density matrix
factorizes as ρðtÞ ¼ ρSðtÞ ⊗ ρE, where ρS denotes the
density matrix of the Schwinger model, and ρE ¼
e−βHE=Trðe−βHEÞ is the density matrix of the environment
at thermal equilibrium. The Lindblad master equation for
ρS can be written as [106,130]

dρSðtÞ
dt

¼ −i½HS;ρSðtÞ� þ a2
X
x1;x2

Dðx1 − x2Þ

×

�
Lðx2ÞρSL†ðx1Þ−

1

2
fL†ðx1ÞLðx2Þ;ρSg

�
: ð8Þ

Here x1 ¼ n1a and x2 ¼ n2a are discrete spatial coordi-
nates. The environment correlator DðxÞ only depends
on the relative distance between x1 and x2. It can be
expressed as

Dðx1 − x2Þ ¼ λ2
Z þ∞

−∞
dðt1 − t2ÞTr½ϕðt1; x1Þϕðt2; x2ÞρE�;

ð9Þ

where ϕðt; xÞ denotes the scalar field in the interaction
picture at thermal equilibrium. The Lindblad operators are
LðxÞ ¼ ψ̄ψðxÞ − 1

4T ½HS; ψ̄ψðxÞ� whose notation should be
distinguished from the symbol L�

n for the raising and
lowering operator of the electric field introduced earlier. On
a discrete lattice, we have

LðnaÞ ¼ OðnÞ − 1

4T
½HS;OðnÞ�

OðnÞ ¼ ð−1Þn σzðnÞ þ 1

2a
: ð10Þ

In principle, the environment correlator DðxÞ can be
calculated, which depends on the model for the scalar
field theory. For example, for small-size quarkonium inside
the QGP, the relevant environment correlator has been
formulated [114,122] and studied in both the weak cou-
pling [131,132] and strong coupling limits [133,134]. Here
instead of calculating the correlator DðxÞ for a specific
scalar field theory model, we directly model the functional
form of the correlator. In order to test the dependence of our

FIG. 2. Example of how physical states transform under the CP
operator. Green (blue) dots are unoccupied (occupied) fermion
sites. Fermions (electrons) only live on even sites, while anti-
fermions (positrons) only live on odd sites. The left and right
arrows on the links indicate negative and positive electric fluxes,
respectively.
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results on the correlation length of the environment, we use
three different models for the correlator:
(1) For short-range correlations, we use a delta function:

DδðxÞ ¼ D0δ0x, where D0 is a constant and x is
discrete.

(2) For various intermediate-range correlations, we use
a Gaussian1:

DGðxÞ ¼ D0 exp

�
−

x2

2σ2

�
≡D0Gðx; σÞ ð11Þ

(3) For long-range correlations, we use a constant
function DcðxÞ ¼ D0.

The normalizations of these three types of correlators are
chosen such that they agree at x ¼ 0. By considering these
different choices, we can assess the numerical impact of the
environmental correlation length on our results below.
Under the CP transformation, the operators OðnÞ that

appear in the Lindblad operators in Eq. (10) transform as

OðnÞ⟶CP ð−1Þn σzðNf − 1 − nÞ − 1

2a
; ð12Þ

where we have used the fact thatNf is an even number. One
can then show that if the environment correlator DðxÞ is
constant, the Lindblad equation given in Eq. (8) preserves
the CP symmetry. As a result, if an initial state ρSð0Þ is
CP-even (odd), the state will remain CP-even (odd)
throughout the time evolution. In this case, one can
construct two invariant subspaces of the entire Hilbert
space: One sector is CP-even, and the other one is CP-odd.
The construction can be done as follows: We consider each
state in the entire Hilbert space. If the state is invariant
under the CP transformation, then the state is CP-even.
Otherwise, a symmetric linear combination of the original
state and the state after the CP transformation leads to a
CP-even state while an antisymmetric linear combination
yields a CP-odd state. The CP-even and -odd sectors
decouple in the time evolution when the environment
correlator is constant and thermalize independently.
However, we would like to emphasize this is not the case
if the environment correlator DðxÞ is Gaussian or a delta
function. An intuitive explanation is as follows: Individual
Lindblad operator LðxÞ is notCP invariant. However, when
Dðx1 − x2Þ is constant in the Lindblad equation (8), the two
sums over x1 and x2 can be performed independently and
then

P
x LðxÞ is CP invariant.

III. DECOHERENCE AND RELAXATION
DYNAMICS

The characterization and classification of the relaxation
dynamics of open quantum systems to the steady/thermal
state has received significant interest in recent years
[135–145]. A common approach entails considering either
the short or long time nonequilibrium dynamics. At short
timescales, the Lindblad evolution can be approximated by
a non-Hermitian Hamiltonian. In this paper, we primarily
focus on long-time relaxation dynamics. The relevance of
characterizing these dynamics extends to investigations
of nonequilibrium and dissipative phase transitions. For
example, while no such transitions occur in the equilibrium
state, a phase transition could occur in the decay modes of
the Liouvillian. Moreover, the study of dissipative dynam-
ics contributes to understanding phenomena like topologi-
cal phases, domain walls, nontrivial boundary modes, and
exceptional points. While a comprehensive exploration of
these aspects within the quantum field theory limit of the
Schwinger model is beyond the purview of our current
work, we hope this section will provide a valuable starting
point for more in-depth future studies.

A. Liouvillian eigenmodes and relaxation dynamics

We start by rewriting the Lindblad master equation in
Eq. (8) in terms of a Liouvillian superoperator L, which
operates on the density matrix ρ as

dρ
dt

≡ Lρ: ð13Þ

As expected from the open quantum system, the density
matrix diagonalizes over time due to thermalization when
expressed in terms of the energy eigenstate basis. With our
reexpression of the Lindblad equation as a Liouvillian
superoperator acting on this density matrix, we are also able
to understand how the system approaches the thermal state,
i.e., the nonequilibrium and relaxation dynamics by carry-
ing out a spectral analysis. That is, we expand the density
matrix describing the open quantum system dynamics in
terms of eigenmodes of the Liouvillian. The right and left
eigenmodes ρR;Lj are defined as

LρRj ¼ λjρ
R
j ; L†ρLj ¼ λ�jρ

L
j ; ð14Þ

where the subscript j ¼ 1; � � �d2 indexes the jth eigenmode
with the eigenvalue λj, and d is the size of the Hilbert space.
The left and right eigenmodes are orthogonal

hρLi jρRj i ∼ δij: ð15Þ

Here we define the inner product as hAjBi ¼ Tr½A†B�. The
dimensionality of the Liouvillian is d2 × d2, acting on a
vectorized density matrix of length d2. In Fig. 3, we plot the
eigenvalues for the open Schwinger model using an N ¼ 4

1The Gaussian function decreases much faster at large x than
polynomial and exponential functions, which are common func-
tional forms of correlation functions. Studies using polynomial
and exponential correlation functions are left for future work.
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lattice with Nf ¼ 8 fermion sites for different types of
interactions that we introduced in Sec. II. In order to
facilitate the visual comparison, we limit the range of
ReðλjÞ to ½−8.5; 0�, although the case with a constant
environment correlator has a few eigenvalues at much
smaller (more negative) real values. These spectra of
eigenvalues clearly demonstrate that the nonequilibrium
dynamics are nontrivially modified for different types of
interactions with the medium. For example, in the case
where the interaction corresponds to a delta function for the
environment correlator, we observe the emergence of a
vertical band structure. This indicates that different sub-
spaces of the Hilbert space decay at separate stages; see
also Ref. [136] for example.
Assuming, for now, that there is no degeneracy for the

steady state, we can order the eigenvalues such that their
real parts are sorted in descending order 0 ¼ Reðλ0Þ >
Reðλ1Þ ≥ … ≥ Reðλd2−1Þ. The time evolution of the gen-
eral density matrix can then be written, for instance, with
respect to the right eigenmodes, as

ρðtÞ ¼ ρ0 þ
Xd2−1
j¼1

cjeλjtρRj : ð16Þ

The coefficients cj are obtained by calculating the overlap
of the left eigenmodes with the initial state and including an
appropriate normalization factor

cj ¼
hρLj jρðt ¼ 0Þi

hρLj jρRj i
: ð17Þ

This result is obtained by diagonalizing the Liouvillian in
Eq. (13). Since the eigenvalues satisfy Reðλj≥1Þ < 0, the
density matrix ρðtÞ eventually relaxes to ρ0, which is
referred to as the (nonequilibrium) steady state, which
can be shown to be 1 − HS

T for our Lindblad equation (8).
It is nothing but the thermal state e−HS=T in the high-
temperature limit, up to corrections of the order ðHS=TÞ2
(recall that the quantum Brownian motion approximation
involves an expansion in HS=T [106]). We note that ρ0 is
the only eigenmode with a trace equal to 1, while all the
other eigenmodes have vanishing traces. Thus none of the

other eigenmodes satisfy the condition to be a density
matrix by themselves.
Analyzing the behavior of the open quantum system in

terms of the eigenmodes provides means to interpret the
nonequilibrium and relaxation dynamics. For example, the
approach of the general ρðtÞ to ρ0 will be dominated by
the first few Liouvillian eigenvalues λj and the correspond-

ing eigenmodes ρRj . In particular, for a given observable Ô,

the expectation value hÔiρðtÞ ≡ Tr½ÔρðtÞ�will approach the
thermal expectation given by the steady-state eigenmode
hÔiρ0 , and its long time rate of approach will be bounded
by the real eigenvalue of the first nonstationary eigenmode
with smallest i such that hÔiρRi ≠ 0, as eλit ≥ eλjt for i < j.
In general, the relaxation dynamics toward the stationary

state cannot last longer than the rate of decay of the
eigenmode ρR1 . For this reason, it is common to define
the Liouvillian or spectral gap Δ1, which dominates the
asymptotic long time decay rate of the Liouvillian, as

Δ1 ≡ jReðλ1Þj: ð18Þ

The Liouvillian gap Δ1 is one of the primary features that
characterize and are used to classify the dynamics of open
quantum systems. In many ways, it is analogous to the
spectral gap of closed quantum system Hamiltonians and is
associated with the longest lived eigenmode [136].
On the other hand, the relaxation time τR is defined as the

maximum time at which the following inequality is
satisfied [141]

maxðτÞ∶jhÔiρðt¼τÞ−hÔiρ0 j≥e−1jhÔiρðt¼0Þ−hÔiρ0 j; ð19Þ

where the maximization operation is over arbitrary density
matrices ρðtÞ. Then, from Eq. (16), one naively expects

τR ∼
1

Δ1

: ð20Þ

This expectation is not always met, and Liouvillian skin
effects from boundary conditions are a potential source of

FIG. 3. Scatter plots of the Liouvillian eigenvalues of the open Schwinger model for N ¼ 4 lattice sites (Nf ¼ 8) with e ¼ 0.8,
m ¼ 0.5, β ¼ 0.1, and D0 ¼ 1 for different types of environmental correlators.
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deviation from this relation, which were discussed for
different quantum mechanical systems in the literature
[138,141,144,146]. In our case, we do not observe such
skin effects, but it would be interesting to study systems
with Liouvillian skin effects in the context of quantum field
theories as well.
As discussed in Sec. II, the Lindblad equation with a

constant environment correlator preserves CP symmetry,
leading to the existence of two distinct CP sectors. This
implies a degeneracy in the spectrum unless we separate the
system into these distinct CP sectors. Therefore, we have
two stationary states, ρeven0 and ρodd0 . That is, our evolution
equation in Eq. (16) is now modified to

ρðtÞ ¼ ce0ρ
even
0 þ co0ρ

odd
0

þ
XNe−1

j¼1

ceje
λej tρR;evenj þ

XNo−1

k¼1

coke
λoktρR;oddk : ð21Þ

Here Ne and No are the dimensions of the Hilbert spaces of
the CP-even and CP-odd sectors, respectively. They must

satisfy the condition Ne þ No ¼ d2, where d is the dimen-
sionality of the total Hilbert space. While the division
between the twoCP sectors is clear when theCP symmetry
is exact, resulting, for example, in separate Liouvillian
gaps in each sector, it is anticipated that this case will
be approximated by a Gaussian environment correlator
DGðxÞ as its width σ increases, even without satisfying the
exact CP symmetry. This is illustrated in Fig. 4, where the
constant correlator case DcðxÞ depicts the situation before
the decomposition into definite CP sectors. As the figure
illustrates, the Liouvillian gap denoted by Δ1 that is present
in the case of a delta function and Gaussian correlator
reduces as the correlation length of increases. An analytic
explanation of this dependence is given in the Appendix.
Eventually, the Liouvillian gap vanishes when the corre-
lation length becomes infinite. The vanishing of Δ1

corresponds to the emergence of two degenerate steady
states, one in each CP sector. Consequently, the decay rate
toward the global stationary state for ρR1 becomes so slow
for a Gaussian correlator with a very wide width that its
relaxation dynamics at an earlier timescale are primarily
dominated by the next gap in the Liouvillian spectrum,

Δ2 ≡ jReðλ2Þj; ð22Þ

which corresponds to the eigenmode ρR2 . As the width
continues to increase, it eventually reaches the limit of a
constant environment correlator, where ρR1 itself becomes
the stationary state in the CP-odd sector. In Fig. 5, we study
the behavior of the first Liouvillian gap, Δ1, and the second
gap, Δ2, as functions of the environment correlation length.
The Gaussian correlator smoothly connects the cases of a
delta function and constant correlator, which have zero
and infinite widths, respectively. We found that both
gaps demonstrate a smooth behavior while interpolating

FIG. 4. Illustration of the gap sizes for different environmental
correlators.

FIG. 5. The first two Liouvillian gaps, Δ1 and Δ2, as functions of the Gaussian width in the environment correlator. We apply the
arctan function to the width to smoothly map both zero and infinite widths onto a finite domain. As indicated in the figure, when the
Gaussian width σ is zero, the correlator reduces to a delta function, and when σ is infinite, the correlator becomes a constant. The σ
dependence of the relaxation rate is explained in the Appendix.
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between the two limits. In particular, we observe that the
Lindblad equation with a large-width Gaussian correlator
has an approximate CP symmetry, signaled by the vanish-
ing gap Δ1, which plays an important role in its relaxation
dynamics as we will see. We also note that in the infinite
correlation length limit, Δ2 reaches a nonzero value.
A further intriguing aspect to explore is the relationship

between the Liouvillian gap and system size. With the
lattice spacing a fixed, it is expected that the size of the
Liouvillian gap decreases as the number of lattice sites
increases. This results in a slower thermalization rate since
there are more excited modes to equilibrate. However, to
obtain the QFT in the continuum limit, one needs to first
take a → 0 with the system volume fixed, which we leave
for future studies. Here we only focus on the case with a
fixed. In Fig. 6, we illustrate this phenomenon by plotting
the Liouvillian gapΔ1 for the open Schwinger model with a
delta function environment correlator. The figure demon-
strates how the gap decreases as the system size increases,
which is explained in the Appendix. Also, for comparison,
we include the case of a 1þ 1D free fermion theory
coupled with a thermal environment with the same delta
function correlator. The free fermion theory can be dis-
cretized by using the stagger fermion formalism and the
Jordan-Wigner transform, which is the noninteracting
limit e → 0 of the discretized Schwinger model. The free
fermion model Hamiltonian can be mapped onto a spin
system analogous to the Schwinger model, which gives

Hff ¼
1

2a

XNf−2

n¼0

ðσþðnÞσ−ðnþ 1Þ þ σþðnþ 1Þσ−ðnÞÞ

þ 1

2
m

XNf−1

n¼0

ð−1ÞnσzðnÞ: ð23Þ

In order to achieve a direct comparison with the Schwinger
model where the total net charge is fixed to zero as a result
of the open boundary condition with vanishing electric
flux outside the lattice, we also constrain the free fermion
system to the sector with zero net charge. The result of Δ1

for the free fermion case is shown in red in Fig. 6, where the
dashed line represents an exact ∝ N−2 function. The four
red points are well described by this function, indicating the
first gap Δ1 in the open free fermion model with a delta
environment correlator decreases quadratically with the
system size. We note that for other choices of environment
correlators, the dependence on N is more complicated than
a simple monomial in N, but it remains monotonically
decreasing with N.
Since we truncate the maximum electric flux at magni-

tude 1 for the open Schwinger model, we also need to
include a similar constraint for the free fermion model to
make a direct comparison. To this end, we only consider
states where two neighboring occupied lattice sites
cannot both be electrons or positrons. For example,
j0; eþ; e−; eþ; e−; 0i (where 0 denotes an unoccupied
fermion site) is included in both the constrained and
full free fermion models for an Nf ¼ 6 lattice, whereas
je−; 0; e−; eþ; 0; eþi is only included in the full free
fermion model, as this state would create electric field
flux value 2 > jlnjmax ¼ 1 at some sites in our constrained
Schwinger case. In the second example, the two electrons
are on two occupied neighboring sites even though they are
separated by one fermion lattice site that is unoccupied. The
results for this constrained free fermion model are shown
by the green line in Fig. 6. We see that as the coupling in the
Schwinger model decreases, the gap results approach those
in the constrained free fermion case. The black, blue, and
green dashed lines are fits of the form ∝ N−α. The fitted
parameter values are 1.316, 1.422, and 1.443 for the black,
blue, and green cases. We see that a monomial in N can
approximately describe the N dependence of Δ1, but not
exactly. Given the smooth transition from the constrained
Schwinger model to the constrained, free fermion case,
we predict that as e decreases, removing the constraint will
lead to a convergence toward the free fermion case with the
exponent approaching −2.
While there are several studies that discuss boundary

dissipative systems with bounds on the decay rate of the
first Liouvillian gap as a function of the system
size [136,147], a more detailed examination of this phe-
nomenon for the open Schwinger model is left for future
work. We now examine the von Neumann entropy of the
system, which illustrates that the Liouvillian gap discussed
here plays a significant role in describing the relaxation
dynamics.

B. Decoherence and von Neumann entropy

The entropy of quantum systems is frequently studied in
the literature. In order to quantify the decoherence of the

FIG. 6. The first Liouvillian gap Δ1 as a function of the number
of lattice sites N for the Schwinger model with different
couplings e and the free fermion model with the environment
correlator described by a delta function in all cases. The N
dependence is explained in the Appendix.
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open Schwinger model, we are going to consider the von
Neumann entropy SvN, which is given by

SvN ¼ −tr½ρ log ρ�: ð24Þ

The von Neumann entropy vanishes for a pure state where
ρ2 ¼ ρ, and a finite value for SvN measures the deviation
from a pure state. In our case, the decoherence results from
the interaction with the thermal environment. The von
Neumann entropy is a generalization of the Gibbs (and
Shannon) entropy of thermodynamic systems to the quan-
tum case. The phenomenon of decoherence in the density
matrix language is frequently discussed in the literature of
high energy heavy ion collisions [110,117,148], and the
concept of entropy has also been discussed in the context
of parton distribution functions in Refs. [149–151] and jet
physics in Ref. [152].
In the Schwinger model as an open quantum system, the

pure initial state of a string (or analogously the fully
unoccupied vacuum state) decoheres due to the interaction
with the thermal environment, which is described by the
Lindblad equation. Therefore, we obtain a finite value for the
vonNeumannentropy for t > 0,which increases as a function
of time due to the continued interaction with the environment
until the system reaches its steady state. Once the system
is in a thermal state, the von Neumann entropy reaches its
maximum value, indicating the initial state fully decoheres.
The von Neumann entropy is generally bounded by

0 ≤ SvN ≤ logd; ð25Þ

where d is the dimension of the Hilbert space. As mentioned
above, the lower limit is obtained for a pure state, whereas the
upper limit is realized for a maximally mixed state propor-
tional to the identity matrix ρmm ¼ 1

d 1. The thermal state
generated at late times of the Lindblad evolution approx-
imates the maximally mixed state in the limit T → ∞. Here
we explore numerically the real-time dependence of the von
Neumann entropy in the Schwinger model as an open
quantum system.
In Fig. 7, we plot the von Neumann entropy starting from

an initial pure state as a function of time for N ¼ 4 lattice
sites with parameters e ¼ 0.8, m ¼ 0.5, β ¼ 0.1. In the left
panel, we study the time evolution in the full Hilbert space
of the Schwinger model (which includes both CP-even and
odd sectors) by starting from the bare vacuum state that is
CP-even and show the results for different environmental
correlators. We observe that the relaxation dynamics
significantly depend on the different environment correla-
tion lengths. The von Neumann entropy reaches its maxi-
mal value fastest for a delta function correlator Dδ, i.e.,
for a short-range correlated environment that allows for
an efficient exchange of momentum and information
between the system and environment. For the Gaussian
case DG ∼ GðσÞ, we observe that it smoothly approximates
the result of a delta function correlator in the limit
σ → 0. On the other hand, as the correlation length is
increased, SvN reaches its maximum value at a much
later time. This observation is generally in line with the
hierarchy of the gaps for different interactions with N ¼ 4,
as illustrated in Fig. 5. Interestingly, we find that for a
constant environmental correlator Dc, the von Neumann

FIG. 7. The von Neumann entropy SvN of the open Schwinger model for N ¼ 4 lattice sites with e ¼ 0.8, m ¼ 0.5, β ¼ 0.1, and
D0 ¼ 1. Left: SvN for different environmental correlators starting from the bare vacuum state in the full Hilbert space as the initial state,
which is CP-even. Right: SvN for the constant Dc ¼ D0 environment correlator where the CP sectors are studied separately. In each
individual sector, we choose appropriate pure states as the initial states. Since the size of the Hilbert space of each sector is smaller than
that of the whole system, the maximal von Neumann entropy of each sector depicted as dashed lines on the right is smaller than the
dashed line on the left.
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entropy asymptotes to a lower value. This is due to the
decoupling of the two distinct CP sectors in the Liouvillian
dynamics. Given that our initial state is CP-even, the
thermal state to which it relaxes to is also a CP-even state.
The reduction of the Hilbert space for a definite CP sector
decreases the final entropy value. We also find that the
Gaussian case with a large width does not smoothly
approximate the result for a constant correlator Dc.
While it does approximate it for early times, it eventually
deviates and asymptotes to the larger value of SvN, as
shown by the green line. This is because the Lindblad
evolution in this case only approximately preserves the CP
symmetry and eventually the entire Hilbert space thermal-
izes. In this sense, we find a discontinuity of the late time
dynamics in the limit σ → ∞.
These results illustrate the nontrivial roles of Δ1 and Δ2

as the environment correlation length changes. For in-
stance, the early dynamics of the large Gaussian width case
(σ ¼ 100) closely follow the constant environment corre-
lator case, a similarity that can be attributed to the very
closeΔ2 values in both cases. On the other hand, in the case
of large Gaussian width, the Δ1 value is very small, yet
nonzero. This contrasts with the constant case, where Δ1

vanishes, leading to a second stationary state. The small but
nonzero Δ1 value in the large Gaussian width case causes
very slow decay, which results in a deviation from the
constant case behavior in the large time region. Physically
the system quickly thermalizes in the CP-even sector (since
the initial state is CP-even), which is governed by Δ2. The
small Δ1 determines the much slower thermalization
between the two CP sectors, which eventually leads to a
global thermalization in the whole Hilbert space. This
example further demonstrates that nonequilibrium dynam-
ics cannot, in general, be described solely by the first few
Liouvillian eigenstates in the full time region. In fact,
our example highlights the significant role played by the
second gapped state, establishing a principle that can be
generalized to higher gapped states in other instances.
Nonequilibrium dynamics can display nontrivial behaviors
across various timescales, with these behaviors being
influenced by multiple eigenstates. For instance, our
example clearly exemplifies the type of behaviors that
can be expected when a set of eigenvalues are hierarchically
separated, i.e., � � � ≫ Δ3 ≫ Δ2 ≫ Δ1.
In the right panel of Fig. 7, we study the Liouvillian

dynamics in each CP sector individually and show the
individual von Neumann entropy as a function of time
for Dc. This clearly demonstrates that initial states from
different sectors each relax to their respective thermal states
within their sector, which are given by e−He=T and e−Ho=T

for the even and odd sectors, respectively (He and Ho are
the corresponding Hamiltonians). In each CP sector, the
Hilbert space is smaller than the total Hilbert space with
two CP sectors, so the maximum entropy is smaller than
the left panel. In addition, we find that the dimensionality of

the CP-even Hilbert space is larger compared to the
CP-odd case leading to a larger asymptotic value for
SvN. If one studies the time evolution of an initial state
that contains both CP-even and odd parts

ρð0Þ ¼ cρevenð0Þ þ ð1 − cÞρoddð0Þ; ð26Þ

the entropy at late times will be a combination of the two
asymptotic entropy values of each CP sector

SvN;asym ¼ cSevenvN;asym þ ð1 − cÞSoddvN;asym

− c log c − ð1 − cÞ logð1 − cÞ; ð27Þ

where Seven=oddvN;asym is the asymptotic entropy value in the
CP-even/odd sector.

IV. STRING DYNAMICS IN A THERMALMEDIUM

In this section, we study the real-time dynamics of
the string breaking process in the Schwinger model. As
mentioned above, the evolution of the string in the
Schwinger model can be considered as a model of
deconfinement and hadronization in QCD where a quark
and an antiquark are separated by a color string; see, for
example, the Lund string model [153]. The in-medium
string evolution of the Schwinger model can also be
thought of as a model of the quarkonium dynamics in
the QGP, where dissociation and recombination of quar-
konium occur. String breaking in the Schwinger model has
been studied numerically in the vacuum in several previous
studies [38,42,46]. We will consider both the vacuum case
within our setup as well as for the first time the medium
modification to the string breaking dynamics.

A. Vacuum

To begin, we study the string breaking process in vacuum
in our setup. We consider an initial configuration where an
electron-positron pair separated by some distance is located
in the middle of the one-dimensional lattice, connected
by a string of electric field links. In order to focus on the
dynamics of this string, we will subtract from this con-
figuration the results when a configuration without any
fermion and electric flux is initialized, i.e. the bare vacuum
state (fully unoccupied). We choose suitable values of m, e
where string breaking occurs in the vacuum. In particular,
we choose: mass m ¼ 0, electric charge e ¼ 0.5, and
lattice spacing a ¼ 1. Other parameter values will be
discussed further in Sec. IV C. Since the numerical sim-
ulation of the medium case is computationally very
expensive, we limit ourselves to N ¼ 6 lattice sites
(Nf ¼ 12 fermion sites) corresponding to 11 electric field
links throughout this section unless stated otherwise. Other
numerical approaches such as the quantum trajectory
method will allow us to study bigger systems, which will
be explored in the future. We note that our initial state

LEE, MULLIGAN, RINGER, and YAO PHYS. REV. D 108, 094518 (2023)

094518-10



corresponds to a bare state where effectively two fermion
creation operators are applied to the bare vacuum. It is
possible to extend this description and smear the relevant
states into wave packets. In this work, we do not pursue
this direction further but instead, refer the reader to
Refs. [154–156]. Another extension is to first prepare
the interacting vacuum state (i.e., ground state in energy)
and use the state created by applying the fermion creation
operators onto the interacting vacuum as the initial state;
see, e.g., Ref. [157]. This is also left for future work.
We quantify the presence of the string by measuring the

electric field expectation value in units of e as a function
of position and real time, i.e., hEðx; tÞi (the electric field
operator is eE). The initial configuration can be seen at
t ¼ 0 on the left end of Fig. 8. The string is shown in blue,
whereas green corresponds to no electric field. In our
convention, we choose the electric fields pointing upward
in the figure to have negative values such that the initial
nonvanishing electric fields are hEni ¼ −1. If it is pointing
in the opposite direction, it will take positive values up
to hEni ¼ þ1.
As time evolves, the string breaks2 and hadronizes into

two spatially separated electron-positron pairs (“mesons”)
that move away from each other with a certain velocity.
These bound meson states can be seen in Fig. 8(a) as small
blue regions moving toward the upper and lower edges
of the spatial lattice until t ∼ 6. Eventually, when the two
meson states reach the boundary of the lattice, they
rescatter and start moving back toward the center of the
lattice, as shown by the yellow regions after t ¼ 8. This is
an artifact of the finite size of our setup. With tensor

networks, it is possible to simulate significantly larger
lattices [42], which we do not pursue in this work.

B. Medium

As a starting point, we will first explore how the string
breaking process described in Fig. 8 is modified in a
thermal medium. The real-time evolution of the string is
described by the Lindblad equation given in Eq. (8). For
our numerical simulations, we choose the delta function
environment correlatorDδ ¼ D0δ0x with different values of
the prefactor D0. Similar to the vacuum case, we again
subtract the result of the Lindblad evolved bare vacuum
state from the result obtained from an initial string
configuration. When t ≫ 1

jΔ1j, the initial bare vacuum state

also thermalizes, and the subtraction gives zero. Therefore,
we focus on the time region t≲ 1

jΔ1j.
The open quantum system evolution of the string is

shown for an N ¼ 6 lattice in Fig. 9. The constant
D0 ¼ 0.01, 0.15, 0.3 is increased from left to right. As
D0 increases, the system is more significantly modified.
Additionally, we investigate whether a delay of the string
breaking mechanism is observed as D0 is increased.
In order to quantify this effect, we determine the time
t�ðxÞ at which each site x ¼ na reaches its maximum
electric field value,

t�ðxÞ ¼ argmax
t

jhEðx; tÞij: ð28Þ

Here t is chosen in an interval t∈ ½0; tmax�, where tmax is
determined by the onset of boundary effects due to the
finite size of the lattice and is roughly t ≃ 6 as shown in
Fig. 8. The results are shown in Fig. 10, where we plot t� as
a function of the site x ¼ na with the index n∈ ½0; 1; 2; 3�

FIG. 8. String breaking in vacuum for Nf ¼ 12 fermion lattice sites, corresponding to 11 electric field links. (a) numerical simulation
where the electric field value at each link is used as a measure of the location of the string. (b) schematic diagram of the string-breaking
process. In both cases, the y axis shows the fermion/antifermion lattice sites, and the x axis shows the time evolution.

2Again, we will discuss other parameter choices, including a
case where the string does not break, in Sec. IV C.
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(we excluded the middle sites where the string is initial-
ized). We see that in the limit of small D0 (D0 ¼ 0.01), the
open system behavior approaches the vacuum behavior. We
also find that t�ðxÞ is larger for all x in the open system,
with a longer delay observed for a largerD0. This delay can
be understood from the medium dissipation effect, which is
already known in the quarkonium dynamics in a thermal
medium [119,120]. When the initial pair of the electron and
positron is broken into two mesons, the energy stored in the
initial electric string is converted into the masses of the
extra two fermions and the kinetic energies of the two
mesons. The initial kinetic energies are the same as in the
vacuum evolution. The dissipative term, i.e., theHS=T term
in the Lindblad operators shown in Eq. (10), reduces the
kinetic energy of the system and plays a crucial role for
the system to approximately thermalize. As a result of the
kinetic dissipation, the velocities at which the two mesons
move away from each other decrease, and the separation of
the two mesons is delayed.

We also note that for a sufficiently long time, the string
magnitude at every site tends to zero. This is because we
take the difference between the result obtained from an
initial bare string state and that from an initial bare vacuum
state. After a long time, the system reaches the approximate
equilibrium state, which is the same for different initial
conditions in the case of the delta function environment
correlator. We would like to point out that if the initial state
was prepared by applying two fermion creation operators
on the interacting vacuum state, the subtraction performed
here would not be necessary.

C. Dependence on system parameters

The real-time dynamics of the string breaking depend on
the fermion mass m and coupling e. In the vacuum, there
are three different regimes [38,42], which are quantified in
Fig. 11(a) with a metric Ē defined as the average expect-
ation value of the electric fields in units of e at the three
central sites over a specified time window:

Ē≡ 1

3ðt2 − t1Þ
Z

t2

t1

dt
X

n∈ ½4;5;6�
hEðna; tÞi: ð29Þ

The three regimes are as follows:
(i) In the parameter region where m ∼ e2 ≲ 1, the

fermion mass, the electric energy stored in the
electric fields, and the kinetic energy are all on
the same order, and string breaking can happen in
real-time dynamics. The electric flux between an
electron-positron pair will break to release enough
energy to create another electron-positron pair to
form two charge-neutral mesons that move away
from each other. This process can only happen when
the electric energy stored in the electric flux is
comparable to the sum of the typical kinetic energy
and twice the fermion mass. In Fig. 11(a), we
observe that at small m and e the string breaks,
corresponding to large (i.e., less negative) Ē. The
typical vacuum real-time dynamics in this regime are

FIG. 9. String breaking in the medium for Nf ¼ 12 fermion lattice sites for three different values of D0 with the delta function
environment correlator.

FIG. 10. The time t�ðxÞ at which each site x ¼ na reaches the
maximum electric field value. We find that t�ðxÞ is larger for all x
in the open system (excluding the trivial central three sites), with
a larger delay observed for stronger D0.
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plotted in Fig. 12(a). We predict that states with long
initial strings would undergo multiple string break-
ings, as anticipated from string fragmentation, re-
sulting in the creation of multiple mesons. For
instance, if the initial string is 7a long, the string
can break in three places to produce four mesons.

The phenomenon of multiple breakings requires the
initial string to be long, which is not considered here.

(ii) In the region where 2m ≈ e2 ≫ 1, the string cannot
really break in real-time dynamics since the energy
released from the breaking of the electric flux is
exactly equal or very close to twice the fermion

FIG. 11. String breaking in vacuum (a) and the medium (b) for different values of the massm and coupling e. We show the expectation
value of the electric fields in units of e averaged over the three central lattice links and averaged over all the times between t ¼ 3 and
t ¼ 4 with an initial string located at the three central links. We use a delta function environment correlator withD0 ¼ 0.15 and β ¼ 0.1
for N ¼ 6 sites.

FIG. 12. Real-time string dynamics in both vacuum (a, b, c) and the medium (d, e, f) with three different sets of parameters of the
Schwinger model. For the in-medium evolution, we use the delta correlator with D0 ¼ 1 and β ¼ 0.1.
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mass, leaving little kinetic energy for the two
mesons to carry. The two mesons stay together,
and after a certain time, the fermion and antifermion
next to each other convert back into a string. The
real-time dynamics is just an oscillation between
these two states; i.e., fermion pairs are created and
annihilated but the string effectively stays in place,
and the created mesons do not move away from each
other, behaving like a molecule state. The typical
vacuum real-time dynamics in this regime are
plotted in Fig. 12(b). This regime corresponds to
the “wing” structure in Fig. 11(a). It appears as light
blue in the plot, corresponding to an intermediate
value of Ē ≈ 0.6 due to configurations where the
electric field values on central sites oscillate and the
fermion pair is created and annihilated. The period
of these oscillations depends on the values of m, e
which give rise to a varying magnitude of Ē due to
the fixed time window we examine.

(iii) In the region where m ≫ e2; 1 or e2 ≫ m; 1, the
string stays intact since the energy released from the
breaking of one unit electric flux is either too small
to create an electron-positron pair in the case with
m ≫ e2; 1, or too large to have kinetic energies of
mesons sustainable on the current finite lattice setup
in the case with e2 ≫ m; 1. Processes that signifi-
cantly violate energy conservation cannot occur at
any nonzero time in real-time dynamics. The first case
arises due to the inability to create a new electron-
positron pair, while the second case is the result of the
inability to access states of higher momentum. This
regime corresponds to Ē ≈ −1 (the dark blue region)
in Fig. 11(a), and its typical vacuum real-time
dynamics are plotted in Fig. 12(c), where the string
stays intact during the time evolution. We expect that
the string remaining intact in the e2 ≫ m; 1 region is
an artifact of the finite lattice setup that we are
studying, which imposes a cutoff on the highest
(lowest) momentum state available as ∼1=a
(∼1=ðNaÞ). In the continuum and infinite volume
limits, the system can sustain arbitrary momentum,
and the energy being released from the string break-
ing can be converted into kinetic energies.

The modification of these three regimes due to medium
effects is shown in Fig. 11(b), where Ē is obtained from the
Lindblad equation as a function of e,m. We choose β ¼ 0.1
and the environment correlator to be a delta function
with D0 ¼ 0.15. While we observe the same three regimes
as in vacuum, their behaviors are significantly modified. At
small m and e, we observe a regime of string breaking with
slightly larger magnitude of the string flux than in vacuum,
due to the delayed breaking effect discussed above. In
Fig. 12(d), we plot the real-time dynamics in this regime
for the medium case with the delta correlator, D0 ¼ 1 and
β ¼ 0.1. We clearly see the quantum dissipation effect

caused by the medium, which damps the kinetic energies
of the mesons and protects the string from completely
breaking. This phenomenon has already been noted in
open quantum system studies for quarkonium inside the
QGP [119,120] and may be partially interpreted as quar-
konium recombination, a phenomenon known for a long
time in the heavy ion community [158–160]. At thermal
equilibrium, quarkonium dissociation and recombination
reach detailed balance [161,162]. Similarly, the significant
kinetic dissipation observed here can be interpreted as
string reconnection in the medium. States with different
string configurations in the Schwinger model reach detailed
balance when the system thermalizes, driven by the
interaction with the thermal environment.
Next, we consider the case where the string does not

break in vacuum, i.e., it is a bound state, which happens at
larger values of e, m. The medium can induce melting of
the string, no matter whether the string is oscillating or
stable in vacuum, as shown in Figs. 12(e) and 12(f), where
we use the delta environment correlator again with D0 ¼ 1
and β ¼ 0.1. The evidence of the medium-induced string
breaking can be seen from the lighter blue regions at late
times in the center of the lattice. This scenario is analogous
to quarkonium dissociation inside a QGP. The medium-
induced string breaking rate depends on the parameters of
the Schwinger model, as well as the environment correlator.
Here we see the string breaking rate is larger for e ¼ 2,
m ¼ 1 than e ¼ 0.8, m ¼ 3.0.

V. TOWARD QUANTUM SIMULATIONS:
ESTIMATION OF TROTTER ERRORS

Lindblad dynamics can be simulated with a quantum
algorithm based on the Stinespring dilation theorem [163].
The nonunitary evolution of the open quantum system can
be achieved by including an ancillary register, which allows
for the embedding of the evolution in an enlarged Hilbert
space. In this larger Hilbert space, the evolution is step-wise
unitary and repeated reset operations of the ancillary qubit
register lead to a time irreversible and non-unitary evolu-
tion. Following Ref. [164], we can simulate the Lindblad
evolution in terms of small time steps δt ¼ t=Ncyl, where t
is the final time we evolve to, and Ncyl is the number of
time steps or cycles. The simulation protocol illustrated
in Fig. 13 proceeds by alternating between the application
of the unitary evolution operator associated with the
system UHS

¼ expð−iHSδtÞ and the evolution operator

FIG. 13. Quantum algorithm to simulate Lindblad evolution
based on the Stinespring dilation theorem [163]. Here jψSð0Þi
denotes the initial state of the system.
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UJ ¼ expð−iJ ffiffiffiffi
δt

p Þ, where J is a block matrix that contains
the Lindblad operators in the first row and column

J ¼

0
BBBBB@

0 L†
1 … L†

m

L1 0 … 0

..

. ..
. . .

. ..
.

Lm 0 … 0

1
CCCCCA
: ð30Þ

Here we limit ourselves to the case where the environ-
mental correlator is given by DδðxÞ ¼ δ0x, as in the
discussion around Eqs. (8) and (11) above. The evolution
operator UJ acts on the system and the ancillary register of
qubits. The ancillas are reset after every time step δt, which
leads to a nonunitary evolution. In the limit Ncyl → ∞, the
exact Lindblad evolution is recovered. The error associated
with the decomposition of the Lindblad evolution in terms
of UHS

and UJ operators scales as δt1.5. To illustrate the
numerical size of the error that is introduced by using a
finite number of Ncyl time steps, we show the evolution
of the Schwinger model as an open quantum system for
Ncyl ¼ 1–4 in Fig. 14 along with the full result based on the
fourth order Runge-Kutta (RK4) method. As an example,
we consider the expectation value of the electric field in
units of e summed over all links of the lattice

�X
n

Eðx ¼ naÞ
�
; ð31Þ

with the bare vacuum as the initial state. The same quantum
algorithm considered in this section can also be directly
used to simulate string breaking or the von Neumann

entropy studied in previous sections. All numerical results
presented in this section are based on an N ¼ 2 spatial
lattice with e ¼ 0.8, m ¼ 0.5, a ¼ 1, and β ¼ 0.1.
As the number of steps Ncyl is increased, the agreement

with the full result improves. Here we assumed that bothUJ
and UHS

can be mapped exactly to elementary quantum
gates, without considering shot noise and gate errors. In
general, the mapping of the unitary evolution operators UJ
and UHS

to elementary quantum gates requires further
approximations. In Refs. [130,165], an efficient compila-
tion method [166] was used to approximately map the
unitary operatorsUJ andUHS

to elementary quantum gates.
However, for unitary operators acting on a larger number of
qubits this compilation process can become computation-
ally expensive. Instead, to implement the evolution oper-
ators UHS

and UJ on a quantum computer, a Trotter-Suzuki
decomposition [167,168] can be employed for both oper-
ators. This decomposition will introduce additional errors,
besides the errors arising due to a finite number of cycles,
as shown in Fig. 13. In this section, we will quantitatively
assess both types of errors.
We can write any Hamiltonian acting on n qubits, in our

case HS and J, as

H ¼
X
j

Hj ¼ ajPj; ð32Þ

where Pj∶ f1; X; Y; Zg⊗n
are strings of n Pauli operators

(and the identity). The relevant coefficients aj can be
obtained as

aj ¼
1

2n
tr½PjH�: ð33Þ

The unitary evolution with any of the terms in Eq. (32),
i.e., e−iHjt, can be directly mapped to elementary quantum
gates without further approximations [168]. We can imple-
ment the evolution of the full Hamiltonian H in Eq. (32),
using a first order Trotter decomposition

U1ðtÞ ¼
Y
j

e−iHjt: ð34Þ

The upper bound for the error of this approximation, i.e.,
the difference between U1ðtÞ and e−iHt, is given by [169]

ke−iHt − U1ðtÞk ≤
1

2

X
j>k

k½Hj;Hk�kt2; ð35Þ

where k · k denotes the spectral norm. The error bound of
the first order Trotter decomposition is proportional to the
square of the time t, and the size of the prefactor depends
on the number of noncommuting terms in Eq. (32).

FIG. 14. Upper panel: comparison of the full Lindblad evolu-
tion (RK4) and results from the (noiseless) quantum simulation
using different numbers of cycles Ncyl, as shown in Fig. 13.
Lower panel: ratio of the different approximate results to the full
RK4 solution.
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By decomposing the interval t into r time steps, the error
can be reduced to

ke−iHt −Ur
1ðt=rÞk ≤

1

2

X
j>k

k½Hj;Hk�k
t2

r
: ð36Þ

Here Ur
1ðt=rÞ denotes r applications of the Trotter decom-

posed unitary U1 with each time step being t=r.
This implies that the value that needs to be chosen for r
and the computational cost to perform the simulations
within spectral-norm error ϵ scales as Oðt2=ϵÞ. To further
reduce the cost, higher order Trotter formulas can be
used [169–171]. Here we limit ourselves to first-order
Trotter decompositions since we are primarily interested
in the difference between the closed and open system
evolution.
In the following, we present numerical results for the

Lindblad evolution of the Schwinger model using different
numbers of Trotter steps. For comparison, we start by
considering the error induced by the Trotter decomposition
for the vacuum evolution (i.e. Ncyl ¼ 1) of the Schwinger
model, which was also considered in Ref. [40]. The results
are shown in Fig. 15, where we choose exemplary values
for the number of Trotter steps r ¼ 3, 5, 10. As expected,
the error increases for late times in comparison to the full
result, which is labeled as r ¼ ∞. Next, we consider the
Trotter error for the Lindblad evolution. Our numerical
results are shown in Fig. 16. For all results, we choose
Ncyl ¼ 4, which provides a good approximation of the full
result for the time values shown here, as demonstrated in
Fig. 14. We denote the number of Trotter steps for UHS

and
UJ by rH;J, respectively. These Trotter steps correspond to a
further decomposition of the time interval of each cycle of

time length δt. In other words, here, rH;J ¼ 1 is analogous
to a Trotter decomposition of the vacuum result in Fig. 15
with r ¼ 4. Interestingly, we observe that the error induced
by the Trotter decomposition for the open quantum system
evolution is smaller compared to the time evolution of the
closed system. This holds even though more qubits, and
gates have to be applied to realize the Lindblad evolution
due to the unitaries UJ. For the closed system evolution,
we use three qubits, and for the open system, we need twice
as many. From the upper bound for the Trotter error in
Eq. (36) and the sequential application of quantum gates,
one might have expected an increased error for the open
quantum system evolution as there are significantly more
noncommuting terms that contribute to the total error
when UJ is included. While these results may not be
universally applicable, they suggest the presence of
interesting error cancellation effects in the Trotter decom-
position of field-theoretical open quantum systems,
which motivates further detailed studies in future work.
Furthermore, we note that the Trotterization errors asso-
ciated with UJ are much smaller than those associated
with UHS

, as shown in Fig. 16.

VI. CONCLUSIONS

In this work, we considered the Schwinger model as an
open quantum system and studied its Liouvillian dynamics
focusing in particular on the string breaking mechanism.
This was achieved by coupling the Schwinger model to a
thermal environment, and in the quantum Brownian motion
limit, its time evolution is described by a Lindblad

FIG. 15. Numerical results for the time evolution of the
Schwinger as a closed system. Results with a different number
of Trotter steps r are shown in comparison to the full result, which
is labeled as r ¼ ∞.

FIG. 16. Upper panel: Lindblad evolution of the Schwinger
model using the quantum algorithm shown in Fig. 13 forNcyl ¼ 4
as in Fig. 14. We show the result for different numbers of Trotter
steps of the operators UHS

and/or UJ indicated by rH;J, respec-
tively. Lower panel: difference between the different Trotter
approximations and the result without further Trotter decom-
position rH;J ¼ ∞.
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evolution equation. We were thus able to extend previous
studies of the static string tension in a thermal medium to
the dynamical case and observed a delay in the breakup
process with a lower relative velocity of the fragments due
to kinetic dissipation. We explored the dependence of this
effect on system parameters, and we also identified regions
of medium-induced breaking and reconnection of the
string. Due to similarities of the string breaking process
in the Schwinger model and QCD hadronization, our
results may provide guidance for constructing hadroniza-
tion models with or without medium [90,172,173] and help
us to decipher real-world collider events. With also sig-
nificant developments in real-time simulation of scatterings
in quantum field theories [10,11,174] and simulation of jet
production in the Schwinger model [29,157,175,176], we
hope these advancements combined with our work will
provide a promising outlook to simulate and study real-time
hadronization processes using simulations of real collider
scattering. In addition, we studied Liouvillian eigenvalues
and eigenmodes for short- and long-range correlated
environments. In particular, we studied the late time
relaxation dynamics in terms of the von Neumann entropy,
which is governed by the Liouvillian gap. We observed that
the CP symmetry of the Lindblad equation plays a critical
role when the environmental correlator is taken to be a
constant. These results set the stage for future investiga-
tions such as nonequilibrium phase transitions in quantum
field theories. Lastly, we estimated Trotter errors relevant
to quantum simulations of open quantum systems.
These errors turned out to be relatively small, making
simulations of open quantum systems an attractive candi-
date for the intermediate-term future application of quan-
tum computing.
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APPENDIX: DEPENDENCE OF THE
THERMALIZATION RATE ON THE
ENVIRONMENT CORRELATION

AND SYSTEM SIZE

In the numerical studies presented in the main text, we
observe the first Liouvillian gap Δ1 decreases as the width
of the Gaussian environment correlation function increases,
and it also decreases with the system size (when the
environment correlation is a delta function). Here we
provide an analytic explanation.
We perform Fourier transforms in the Lindblad equa-

tion (8) by introducing

Dðx1 − x2Þ ¼
1

Nf

XNf−1

k¼0

DðkÞei2πkðx1−x2Þ=Nf ;

LðkÞ ¼
XNf−1

k¼0

LðxÞe−i2πkx=Nf ; ðA1Þ

and then obtain

dρSðtÞ
dt

¼ −i½HS; ρSðtÞ� þ
a2

Nf

XNf−1

k¼0

DðkÞ

×

�
LðkÞρSL†ðkÞ − 1

2
fL†ðkÞLðkÞ; ρSg

�
: ðA2Þ

The anticommutator part of the Liouvillian operator can be
thought of as an imaginary Hamiltonian. We can use it to
estimate the relaxation rate of the system:

Γ ∼
a2

2Nf

XNf−1

k¼0

DðkÞL†ðkÞLðkÞ: ðA3Þ

The operator L†ðkÞLðkÞ is positive semidefinite. As a
result, the relaxation rate is increased when the values of
DðkÞ are larger with fixed Nf. For example, if we consider
a Gaussian environment correlation with width σ in
position space, which corresponds to another Gaussian
with width 1=σ in momentum space, the contributions to Γ
from terms with nonzero k are more suppressed as σ
increases. This is why the Liouvillian gaps characterizing
the relaxation rates decrease as the width σ becomes larger
in Fig. 5.
Next, we consider DδðxÞ ¼ δ0x and discuss why the first

Liouvillian gap decreases with the system size Nf. With
this delta correlation function, we have DδðkÞ ¼ 1 for all k.
Whether Eq. (A3) decreases with Nf is not obvious, since
each value of k in the summation contributes and there is an
overall prefactor 1=Nf. To understand the Nf dependence
of the Liouvillian gaps, we need to analyze the dissipation
rate on a deeper level. We consider how an arbitrary
eigenstate jEni of the system with eigenenergy En
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dissipates by setting ρS ¼ jEnihEnj and sandwiching the
right hand side of Eq. (A3) between hEnj and jEni. The
dissipation rate of this eigenstate is roughly given by

Γn ∼
a2

Nf

XNf−1

k¼1

DðkÞ

× ðhEnjL†ðkÞLðkÞjEni − jhEnjLðkÞjEnij2Þ

¼ a2

Nf

XNf−1

k¼1

DðkÞ
X
m≠n

hEnjL†ðkÞjEmihEmjLðkÞjEni; ðA4Þ

where we have inserted a complete set of eigenstates (for
simplicity, we assume no degeneracy in the following). It is
worth noting that for each value of k, diagonal matrix
elements of LðkÞ do not contribute to Eq. (A4). The typical
absolute value of the off-diagonal matrix element

jhEmjLðkÞjEnij is expected to decrease exponentially with
the system size for our system (e.g., as in the eigenstate
thermalization hypothesis for nonintegrable systems).
On the other hand, the number of terms in the summation
of Eq. (A4) is also exponential in the system size, i.e.,
∼ecNf for some constant c. However, not all of them are
nonvanishing. In fact, only eigenstates jEmi whose
momenta differ from that of jEni exactly by k contribute.
Their number is still exponential in the system size, by only
a fraction of the total number of eigenstates, i.e., ∼ 1

Nf
ecNf ,

since this fraction is roughly given by the inverse of the
number of momentum sectors in the system, which is Nf.
This explains why the relaxation rate decreases with Nf,
but it does not explain why the first Liouvillian gap
decreases in a specific power law N−α

f . It is expected that
details of the system may influence the power exponent,
and we leave a more complete explanation to future work.

[1] R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M.
Ansmann, F. Arute, K. Arya, A. Asfaw et al., Suppressing
quantum errors by scaling a surface code logical qubit,
Nature (London) 614, 676 (2023).

[2] V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, I.
Tsioutsios, S. Ganjam, A. Miano, B. L. Brock, A. Z.
Ding, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and
M. H. Devoret, Real-time quantum error correction beyond
break-even, Nature (London) 616, 50 (2023).

[3] M. Devoret and R. Schoelkopf, Superconducting circuits
for quantum information: An outlook, Science (N.Y.) 339,
1169 (2013).

[4] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz,
J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, Super-
conducting qubits: Current state of play, Annu. Rev.
Condens. Matter Phys. 11, 369 (2020).

[5] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M.
Sage, Trapped-ion quantum computing: Progress and
challenges, Appl. Phys. Rev. 6, 021314 (2019).

[6] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A.
Buell et al., Quantum supremacy using a programmable
superconducting processor, Nature (London) 574, 505
(2019).

[7] M. Aghaee, A. Akkala, Z. Alam, R. Ali, A. Alcaraz
Ramirez, M. Andrzejczuk, A. E. Antipov et al. (Microsoft
Quantum Collaboration), InAs-Al hybrid devices passing
the topological gap protocol, Phys. Rev. B 107, 245423
(2023).

[8] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg,
S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme,
and A. Kandala, Evidence for the utility of quantum
computing before fault tolerance, Nature (London) 618,
500 (2023).

[9] J. B. Kogut and L. Susskind, Hamiltonian formulation of
Wilson’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).

[10] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum
computation of scattering in scalar quantum field theories,
Quantum Inf. Comput. 14, 1014 (2014).

[11] S. P. Jordan, H. Krovi, K. S. M. Lee, and J. Preskill, BQP-
completeness of scattering in scalar quantum field theory,
Quantum 2, 44 (2018).

[12] C. W. Bauer, Z. Davoudi, N. Klco, and M. J. Savage,
Quantum simulation of fundamental particles and forces,
Nat. Rev. Phys. 5, 420 (2023).

[13] J. D. Martin, D. Neill, A. Roggero, H. Duan, and J.
Carlson, Equilibration of quantum many-body fast neu-
trino flavor oscillations, arXiv:2307.16793.

[14] S. Chandrasekharan and U. J. Wiese, Quantum link mod-
els: A discrete approach to gauge theories, Nucl. Phys.
B492, 455 (1997).

[15] E. A. Martinez et al., Real-time dynamics of lattice gauge
theories with a few-qubit quantum computer, Nature
(London) 534, 516 (2016).

[16] E. Ercolessi, P. Facchi, G. Magnifico, S. Pascazio, and F. V.
Pepe, Phase transitions in Zn gauge models: Toward
quantum simulations of the Schwinger-Weyl QED, Phys.
Rev. D 98, 074503 (2018).

[17] E. Dumitrescu, A. McCaskey, G. Hagen, G. Jansen, T.
Morris, T. Papenbrock, R. Pooser, D. Dean, and P.
Lougovski, Cloud quantum computing of an atomic
nucleus, Phys. Rev. Lett. 120, 210501 (2018).

[18] H. Lamm and S. Lawrence, Simulation of nonequilibrium
dynamics on a quantum computer, Phys. Rev. Lett. 121,
170501 (2018).

[19] I. Raychowdhury and J. R. Stryker, Solving Gauss’s law on
digital quantum computers with loop-string-hadron digi-
tization, Phys. Rev. Res. 2, 033039 (2020).

LEE, MULLIGAN, RINGER, and YAO PHYS. REV. D 108, 094518 (2023)

094518-18

https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-023-05782-6
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1063/1.5088164
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevB.107.245423
https://doi.org/10.1103/PhysRevB.107.245423
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.26421/QIC14.11-12-8
https://doi.org/10.22331/q-2018-01-08-44
https://doi.org/10.1038/s42254-023-00599-8
https://arXiv.org/abs/2307.16793
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1103/PhysRevD.98.074503
https://doi.org/10.1103/PhysRevD.98.074503
https://doi.org/10.1103/PhysRevLett.120.210501
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1103/PhysRevResearch.2.033039


[20] A. Roggero, A. C. Li, J. Carlson, R. Gupta, and G. N.
Perdue, Quantum computing for neutrino-nucleus scatter-
ing, Phys. Rev. D 101, 074038 (2020).

[21] N. Mueller, A. Tarasov, and R. Venugopalan, Deeply
inelastic scattering structure functions on a hybrid quantum
computer, Phys. Rev. D 102, 016007 (2020).

[22] A. Avkhadiev, P. Shanahan, and R. Young, Accelerating
lattice quantum field theory calculations via interpolator
optimization using noisy intermediate-scale quantum com-
puting, Phys. Rev. Lett. 124, 080501 (2020).

[23] M. Kreshchuk, W.M. Kirby, G. Goldstein, H. Beauchemin,
and P. J. Love, Quantum simulation of quantum field theory
in the light-front formulation, Phys. Rev. A 105, 032418
(2022).

[24] Z. Davoudi, I. Raychowdhury, and A. Shaw, Search for
efficient formulations for Hamiltonian simulation of non-
Abelian lattice gauge theories, Phys. Rev. D 104, 074505
(2021).

[25] R. A. Briceño, J. V. Guerrero, M. T. Hansen, and A. M.
Sturzu, Role of boundary conditions in quantum compu-
tations of scattering observables, Phys. Rev. D 103,
014506 (2021).

[26] M. G. Echevarria, I. L. Egusquiza, E. Rico, and G. Schnell,
Quantum simulation of light-front parton correlators, Phys.
Rev. D 104, 014512 (2021).

[27] T. D. Cohen, H. Lamm, S. Lawrence, and Y. Yamauchi,
Quantum algorithms for transport coefficients in gauge
theories, Phys. Rev. D 104, 094514 (2021).

[28] J. Barata and C. A. Salgado, A quantum strategy to
compute the jet quenching parameter q̂, Eur. Phys. J. C
81, 862 (2021).

[29] J. Barata, X. Du, M. Li, W. Qian, and C. A. Salgado,
Medium induced jet broadening in a quantum computer,
Phys. Rev. D 106, 074013 (2022).

[30] T. Li, X. Guo, W. K. Lai, X. Liu, E. Wang, H. Xing, D.-B.
Zhang, and S.-L. Zhu, Partonic structure by quantum
computing, Phys. Rev. D 105, L111502 (2022).

[31] D. E. Kharzeev and Y. Kikuchi, Real-time chiral dynamics
from a digital quantum simulation, Phys. Rev. Res. 2,
023342 (2020).

[32] C. W. Bauer, M. Freytsis, and B. Nachman, Simulating
collider physics on quantum computers using effective
field theories, Phys. Rev. Lett. 127, 212001 (2021).

[33] J. Barata, X. Du, M. Li, W. Qian, and C. A. Salgado,
Quantum simulation of in-medium QCD jets: Momentum
broadening, gluon production, and entropy growth, Phys.
Rev. D 108, 056023 (2023).

[34] F. Turro et al., A quantum-classical co-processing protocol
toward simulating nuclear reactions on contemporary
quantum hardware, arXiv:2302.06734.

[35] J. S. Schwinger, Gauge invariance and mass. 2., Phys. Rev.
128, 2425 (1962).

[36] S. R. Coleman, R. Jackiw, and L. Susskind, Charge
shielding and quark confinement in the massive Schwinger
model, Ann. Phys. (N.Y.) 93, 267 (1975).

[37] P. Hauke, D. Marcos, M. Dalmonte, and P. Zoller,
Quantum simulation of a lattice Schwinger model in a
chain of trapped ions, Phys. Rev. X 3, 041018 (2013).

[38] T. Pichler, M. Dalmonte, E. Rico, P. Zoller, and S.
Montangero, Real-time dynamics in U(1) lattice gauge

theories with tensor networks, Phys. Rev. X 6, 011023
(2016).

[39] C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler,
B. Vogell, M. Dalmonte, P. Hauke, R. Blatt, and P. Zoller,
U(1) Wilson lattice gauge theories in digital quantum
simulators, New J. Phys. 19, 103020 (2017).

[40] N. Klco, E. Dumitrescu, A. McCaskey, T. Morris, R.
Pooser, M. Sanz, E. Solano, P. Lougovski, and M. Savage,
Quantum-classical computation of Schwinger model
dynamics using quantum computers, Phys. Rev. A 98,
032331 (2018).

[41] D. B. Kaplan and J. R. Stryker, Gauss’s law, duality, and
the Hamiltonian formulation of U(1) lattice gauge theory,
Phys. Rev. D 102, 094515 (2020).

[42] G. Magnifico, M. Dalmonte, P. Facchi, S. Pascazio, F. V.
Pepe, and E. Ercolessi, Real time dynamics and confine-
ment in the Zn Schwinger-Weyl lattice model for 1þ 1

QED, Quantum 4, 281 (2020).
[43] N. Butt, S. Catterall, Y. Meurice, R. Sakai, and J. Unmuth-

Yockey, Tensor network formulation of the massless
Schwinger model with staggered fermions, Phys. Rev. D
101, 094509 (2020).

[44] B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi, and A.
Tomiya, Classically emulated digital quantum simulation
of the Schwinger model with a topological term via
adiabatic state preparation, Phys. Rev. D 105, 094503
(2022).

[45] A. F. Shaw, P. Lougovski, J. R. Stryker, and N. Wiebe,
Quantum algorithms for simulating the lattice Schwinger
model, Quantum 4, 306 (2020).

[46] M. Honda, E. Itou, Y. Kikuchi, L. Nagano, and T. Okuda,
Classically emulated digital quantum simulation for
screening and confinement in the Schwinger model with
a topological term, Phys. Rev. D 105, 014504 (2022).

[47] C. W. Bauer and D. M. Grabowska, Efficient representa-
tion for simulating U(1) gauge theories on digital quantum
computers at all values of the coupling, Phys. Rev. D 107,
L031503 (2023).

[48] L. Nagano, A. Bapat, and C.W. Bauer, Quench dynamics
of the Schwinger model via variational quantum algo-
rithms, Phys. Rev. D 108, 034501 (2023).

[49] R. Belyansky, S. Whitsitt, N. Mueller, A. Fahimniya, E. R.
Bennewitz, Z. Davoudi, and A. V. Gorshkov, High-energy
collision of quarks and hadrons in the Schwinger model:
From tensor networks to circuit QED, arXiv:2307.02522.

[50] L. Funcke, K. Jansen, and S. Kühn, Exploring the
CP-violating Dashen phase in the Schwinger model with
tensor networks, Phys. Rev. D 108, 014504 (2023).

[51] T. Angelides, L. Funcke, K. Jansen, and S. Kühn,
Computing the mass shift of Wilson and staggered
fermions in the lattice Schwinger model with matrix
product states, Phys. Rev. D 108, 014516 (2023).

[52] E. Zohar, J. I. Cirac, and B. Reznik, Cold-atom quantum
simulator for SU(2) Yang-Mills lattice gauge theory, Phys.
Rev. Lett. 110, 125304 (2013).

[53] E. Zohar, J. I. Cirac, and B. Reznik, Simulating (2þ 1)-
dimensional lattice QED with dynamical matter using
ultracold atoms, Phys. Rev. Lett. 110, 055302 (2013).

[54] D. Spitz and J. Berges, Schwinger pair production
and string breaking in non-Abelian gauge theory from

LIOUVILLIAN DYNAMICS OF THE OPEN SCHWINGER MODEL: … PHYS. REV. D 108, 094518 (2023)

094518-19

https://doi.org/10.1103/PhysRevD.101.074038
https://doi.org/10.1103/PhysRevD.102.016007
https://doi.org/10.1103/PhysRevLett.124.080501
https://doi.org/10.1103/PhysRevA.105.032418
https://doi.org/10.1103/PhysRevA.105.032418
https://doi.org/10.1103/PhysRevD.104.074505
https://doi.org/10.1103/PhysRevD.104.074505
https://doi.org/10.1103/PhysRevD.103.014506
https://doi.org/10.1103/PhysRevD.103.014506
https://doi.org/10.1103/PhysRevD.104.014512
https://doi.org/10.1103/PhysRevD.104.014512
https://doi.org/10.1103/PhysRevD.104.094514
https://doi.org/10.1140/epjc/s10052-021-09674-9
https://doi.org/10.1140/epjc/s10052-021-09674-9
https://doi.org/10.1103/PhysRevD.106.074013
https://doi.org/10.1103/PhysRevD.105.L111502
https://doi.org/10.1103/PhysRevResearch.2.023342
https://doi.org/10.1103/PhysRevResearch.2.023342
https://doi.org/10.1103/PhysRevLett.127.212001
https://doi.org/10.1103/PhysRevD.108.056023
https://doi.org/10.1103/PhysRevD.108.056023
https://arXiv.org/abs/2302.06734
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1016/0003-4916(75)90212-2
https://doi.org/10.1103/PhysRevX.3.041018
https://doi.org/10.1103/PhysRevX.6.011023
https://doi.org/10.1103/PhysRevX.6.011023
https://doi.org/10.1088/1367-2630/aa89ab
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevD.102.094515
https://doi.org/10.22331/q-2020-06-15-281
https://doi.org/10.1103/PhysRevD.101.094509
https://doi.org/10.1103/PhysRevD.101.094509
https://doi.org/10.1103/PhysRevD.105.094503
https://doi.org/10.1103/PhysRevD.105.094503
https://doi.org/10.22331/q-2020-08-10-306
https://doi.org/10.1103/PhysRevD.105.014504
https://doi.org/10.1103/PhysRevD.107.L031503
https://doi.org/10.1103/PhysRevD.107.L031503
https://doi.org/10.1103/PhysRevD.108.034501
https://arXiv.org/abs/2307.02522
https://doi.org/10.1103/PhysRevD.108.014504
https://doi.org/10.1103/PhysRevD.108.014516
https://doi.org/10.1103/PhysRevLett.110.125304
https://doi.org/10.1103/PhysRevLett.110.125304
https://doi.org/10.1103/PhysRevLett.110.055302


real-time lattice improved Hamiltonians, Phys. Rev. D 99,
036020 (2019).

[55] N. Klco, J. R. Stryker, and M. J. Savage, SU(2) non-
Abelian gauge field theory in one dimension on digital
quantum computers, Phys. Rev. D 101, 074512 (2020).

[56] S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell,
SU(2) lattice gauge theory on a quantum annealer, Phys.
Rev. D 104, 034501 (2021).

[57] A. Ciavarella, N. Klco, and M. J. Savage, Trailhead for
quantum simulation of SU(3) Yang-Mills lattice gauge
theory in the local multiplet basis, Phys. Rev. D 103,
094501 (2021).

[58] A. N. Ciavarella and I. A. Chernyshev, Preparation of the
SU(3) lattice Yang-Mills vacuum with variational quantum
methods, Phys. Rev. D 105, 074504 (2022).

[59] X. Yao, Quantum simulation of light-front QCD for jet
quenching in nuclear environments, arXiv:2205.07902.

[60] J. Y. Araz, S. Schenk, and M. Spannowsky, Toward a
quantum simulation of nonlinear sigma models with a
topological term, Phys. Rev. A 107, 032619 (2023).

[61] S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, Self-
mitigating trotter circuits for SU(2) lattice gauge theory on
a quantum computer, Phys. Rev. D 106, 074502 (2022).

[62] R. C. Farrell, I. A. Chernyshev, S. J. M. Powell, N. A.
Zemlevskiy, M. Illa, and M. J. Savage, Preparations for
quantum simulations of quantum chromodynamics in
1þ 1 dimensions: (II) single-baryon β-decay in real time,
Phys. Rev. D 107, 054513 (2023).

[63] R. C. Farrell, I. A. Chernyshev, S. J. M. Powell, N. A.
Zemlevskiy, M. Illa, and M. J. Savage, Preparations for
quantum simulations of quantum chromodynamics in
1þ 1 dimensions: (I) axial gauge, Phys. Rev. D 107,
054512 (2023).

[64] Z. Davoudi, A. F. Shaw, and J. R. Stryker, General quan-
tum algorithms for Hamiltonian simulation with applica-
tions to a non-Abelian lattice gauge theory, arXiv:2212
.14030.

[65] A. N. Ciavarella, S. Caspar, H. Singh, and M. J. Savage,
Preparation for quantum simulation of the 1þ 1D O(3)
non-linear σ-model using cold atoms, Phys. Rev. A 107,
042404 (2023).

[66] T. V. Zache, D. González-Cuadra, and P. Zoller, Quantum
and classical spin network algorithms for q-deformed
Kogut-Susskind gauge theories, Phys. Rev. Lett. 131,
171902 (2023).

[67] T. Hayata and Y. Hidaka, Breaking new ground for
quantum and classical simulations of SU(3) Yang-Mills
theory, J. High Energy Phys. 09 (2023) 123.

[68] B. Müller and X. Yao, Simple Hamiltonian for quantum
simulation of strongly coupled 2þ 1D SU(2) lattice gauge
theory on a honeycomb lattice, arXiv:2307.00045.

[69] G. Cataldi, G. Magnifico, P. Silvi, and S. Montangero,
ð2þ 1ÞD SU(2) Yang-Mills lattice gauge theory at finite
density via tensor networks, arXiv:2307.09396.

[70] C. W. Bauer, I. D’Andrea, M. Freytsis, and D. M.
Grabowska, A new basis for Hamiltonian SU(2) simula-
tions, arXiv:2307.11829.

[71] T. Hayata and Y. Hidaka, Thermalization of Yang-Mills
theory in a (3þ 1) dimensional small lattice system, Phys.
Rev. D 103, 094502 (2021).

[72] T. Hayata, Y. Hidaka, and Y. Kikuchi, Diagnosis of
information scrambling from Hamiltonian evolution under
decoherence, Phys. Rev. D 104, 074518 (2021).

[73] X. Yao, SU(2) non-Abelian gauge theory on a plaquette
chain obeys eigenstate thermalization hypothesis, Phys.
Rev. D 108, L031504 (2023).

[74] T. Sjostrand, S. Mrenna, and P. Z. Skands, A brief introduc-
tion to PYTHIA 8.1, Comput. Phys.Commun.178, 852 (2008).

[75] C. Shen and B. Schenke, Longitudinal dynamics and
particle production in relativistic nuclear collisions, Phys.
Rev. C 105, 064905 (2022).

[76] A. J. Larkoski, I. Moult, and B. Nachman, Jet substructure
at the Large Hadron Collider: A review of recent advances
in theory and machine learning, Phys. Rep. 841, 1 (2020).

[77] S. Marzani, G. Soyez, and M. Spannowsky, Looking Inside
Jets: An Introduction to Jet Substructure and Boosted-
Object Phenomenology (Springer, New York, 2019),
Vol. 958, 10.1007/978-3-030-15709-8.

[78] M. Jaarsma, Y. Li, I. Moult, W. J. Waalewijn, and H. X.
Zhu, Energy correlators on tracks: Resummation and
nonperturbative effects, arXiv:2307.15739.

[79] K. Lee and I. Moult, Energy correlators taking charge,
arXiv:2308.00746.

[80] K. Lee and I. Moult, Joint track functions: Expanding the
space of calculable correlations at colliders, arXiv:2308
.01332.

[81] K. Lee, B. Meçaj, and I. Moult, Conformal colliders meet
the LHC, arXiv:2205.03414.

[82] P. T. Komiske, I. Moult, J. Thaler, and H. X. Zhu, Analyz-
ing N-point energy correlators inside jets with CMS open
data, Phys. Rev. Lett. 130, 051901 (2023).

[83] K. Devereaux, W. Fan, W. Ke, K. Lee, and I. Moult,
Imaging cold nuclear matter with energy correlators,
arXiv:2303.08143.

[84] S. Acharya et al., Measurement of the angle between jet
axes in Pb−Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV,
arXiv:2303.13347.

[85] A. Tamis, Measurement of Two-Point Energy Correlators
Within Jets in pp Collisions at

ffiffiffi
s

p
= 200 GeV at STAR,

arXiv:2309.05761.
[86] H. S. Hannesdottir, A. Pathak, M. D. Schwartz, and I. W.

Stewart, Prospects for strong coupling measurement at
hadron colliders using soft-drop jet mass, J. High Energy
Phys. 04 (2023) 087.

[87] H. Elfner and B. Müller, The exploration of hot and dense
nuclear matter: Introduction to relativistic heavy-ion phys-
ics, J. Phys. G 50, 103001 (2023).

[88] W. Busza, K. Rajagopal, and W. van der Schee, Heavy ion
collisions: The big picture, and the big questions, Annu.
Rev. Nucl. Part. Sci. 68, 339 (2018).

[89] J. Berges, M. P. Heller, A. Mazeliauskas, and R.
Venugopalan, QCD thermalization: Ab initio approaches
and interdisciplinary connections, Rev. Mod. Phys. 93,
035003 (2021).

[90] R. Abdul Khalek et al., Science requirements and detector
concepts for the electron-ion collider: EIC yellow report,
Nucl. Phys. A1026, 122447 (2022).

[91] M. Kormos, M. Collura, G. Takács, and P. Calabrese, Real-
time confinement following a quantum quench to a non-
integrable model, Nat. Phys. 13, 246 (2016).

LEE, MULLIGAN, RINGER, and YAO PHYS. REV. D 108, 094518 (2023)

094518-20

https://doi.org/10.1103/PhysRevD.99.036020
https://doi.org/10.1103/PhysRevD.99.036020
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1103/PhysRevD.104.034501
https://doi.org/10.1103/PhysRevD.104.034501
https://doi.org/10.1103/PhysRevD.103.094501
https://doi.org/10.1103/PhysRevD.103.094501
https://doi.org/10.1103/PhysRevD.105.074504
https://arXiv.org/abs/2205.07902
https://doi.org/10.1103/PhysRevA.107.032619
https://doi.org/10.1103/PhysRevD.106.074502
https://doi.org/10.1103/PhysRevD.107.054513
https://doi.org/10.1103/PhysRevD.107.054512
https://doi.org/10.1103/PhysRevD.107.054512
https://arXiv.org/abs/2212.14030
https://arXiv.org/abs/2212.14030
https://doi.org/10.1103/PhysRevA.107.042404
https://doi.org/10.1103/PhysRevA.107.042404
https://doi.org/10.1103/PhysRevLett.131.171902
https://doi.org/10.1103/PhysRevLett.131.171902
https://doi.org/10.1007/JHEP09(2023)123
https://arXiv.org/abs/2307.00045
https://arXiv.org/abs/2307.09396
https://arXiv.org/abs/2307.11829
https://doi.org/10.1103/PhysRevD.103.094502
https://doi.org/10.1103/PhysRevD.103.094502
https://doi.org/10.1103/PhysRevD.104.074518
https://doi.org/10.1103/PhysRevD.108.L031504
https://doi.org/10.1103/PhysRevD.108.L031504
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1103/PhysRevC.105.064905
https://doi.org/10.1103/PhysRevC.105.064905
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1007/978-3-030-15709-8
https://arXiv.org/abs/2307.15739
https://arXiv.org/abs/2308.00746
https://arXiv.org/abs/2308.01332
https://arXiv.org/abs/2308.01332
https://arXiv.org/abs/2205.03414
https://doi.org/10.1103/PhysRevLett.130.051901
https://arXiv.org/abs/2303.08143
https://arXiv.org/abs/2303.13347
https://arXiv.org/abs/2309.05761
https://doi.org/10.1007/JHEP04(2023)087
https://doi.org/10.1007/JHEP04(2023)087
https://doi.org/10.1088/1361-6471/ace824
https://doi.org/10.1146/annurev-nucl-101917-020852
https://doi.org/10.1146/annurev-nucl-101917-020852
https://doi.org/10.1103/RevModPhys.93.035003
https://doi.org/10.1103/RevModPhys.93.035003
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://doi.org/10.1038/nphys3934


[92] R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska,
D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and
K. Kiefer, Quantum criticality in an Ising chain: Exper-
imental evidence for emergent E8 symmetry, Science 327,
177 (2010).

[93] B. Lake, A. M. Tsvelik, S. Notbohm, D. A. Tennant, T. G.
Perring, M. Reehuis, C. Sekar, G. Krabbes, and B.
Büchner, Confinement of fractional quantum number
particles in a condensed-matter system, Nat. Phys. 6, 50
(2009).

[94] C. Morris, R. V. Aguilar, A. Ghosh, S. Koohpayeh,
J. Krizan, R. Cava, O. Tchernyshyov, T. McQueen,
and N. Armitage, Hierarchy of bound states in the
one-dimensional ferromagnetic Ising chain CoNb2O6

investigated by high-resolution time-domain terahertz
spectroscopy, Phys. Rev. Lett. 112, 137403 (2014).

[95] B. Grenier, S. Petit, V. Simonet, E. Canévet, L.-P.
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