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We present a lattice calculation of the K → ππ matrix elements and amplitudes with both the ΔI ¼ 3=2
and 1=2 channels and ε0, the measure of direct CP violation. We use periodic boundary conditions (PBC),
where the correct kinematics of K → ππ can be achieved via an excited two-pion final state. To overcome
the difficulty associated with the extraction of excited states, our previous work [Z. Bai et al., Standard
Model prediction for direct CP violation in K → ππ decay, Phys. Rev. Lett. 115, 212001 (2015); R. Abbott
et al., Direct CP violation and the ΔI ¼ 1=2 rule in K → ππ decay from the Standard Model, Phys. Rev. D
102, 054509 (2020).] successfully employed G-parity boundary conditions, where pions are forced to have
nonzero momentum enabling the I ¼ 0 two-pion ground state to express the on shell kinematics of the
K → ππ decay. Here instead we overcome the problem using the variational method which allows us to
resolve the two-pion spectrum and matrix elements up to the relevant energy where the decay amplitude is
on shell. In this paper we report an exploratory calculation of K → ππ decay amplitudes and ε0 using PBC
on a coarser lattice size of 243 × 64 with inverse lattice spacing a−1 ¼ 1.023 GeV and the physical pion
and kaon masses. The results are promising enough to motivate us to continue our measurements on finer
lattice ensembles in order to improve the precision in the near future.
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I. INTRODUCTION

K → ππ decay is an ideal probe to search for new physics
beyond the StandardModel (SM) as it containsCP-violating
decay processes. The amount of CP violation in the SM is
believed to be too small to explain the dominance of matter
over antimatter in the current universe. Particularly ε0, the
measure of direct CP violation in K → ππ decay, is very
sensitive to potential new sources of CP violation. The
experimental measurements were performed by the NA48
[1] and KTeV [2,3] Collaborations and their average is
quoted as Reðε0=εÞexp ¼ 16.6ð2.3Þ × 10−4 [4], where ε is the
measure of indirect CP violation jεj ¼ 2.228ð11Þ × 10−3.

Since the decay processes receive considerable non-
perturbative QCD effects, lattice QCD should play a key
role in giving a SM prediction of ε0=ε and, in fact, the RBC
and UKQCD Collaborations have achieved the first ab ini-
tio SM prediction of this quantity [5,6]. Our most recent
result [6] is Reðε0=εÞ2020 ¼ 21.7ð2.6Þð6.2Þð5.0Þ × 10−4 [6].
The first two errors are statistical and systematic, respec-
tively, but excluding the systematic error due to electro-
magnetic and isospin-breaking corrections, which is listed
as the third error. While consistent with the experimental
result, the relatively large uncertainty motivates further
refinement of the calculation especially since the current
error in the lattice calculation is a lot bigger than in the two
decades old experimental determination.
In the isospin limit ε0=ε is determined by

ε0

ε
¼ iωeiðδ2−δ0Þffiffiffi

2
p

ε

�
ImðA2Þ
ReðA2Þ

−
ImðA0Þ
ReðA0Þ

�
; ð1Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 094517 (2023)

2470-0010=2023=108(9)=094517(52) 094517-1 Published by the American Physical Society

https://orcid.org/0000-0002-2866-7689
https://orcid.org/0000-0002-5457-657X
https://orcid.org/0000-0002-6724-6203
https://orcid.org/0000-0003-0118-7703
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.094517&domain=pdf&date_stamp=2024-05-30
https://doi.org/10.1103/PhysRevLett.115.212001
https://doi.org/10.1103/PhysRevD.102.054509
https://doi.org/10.1103/PhysRevD.102.054509
https://doi.org/10.1103/PhysRevD.108.094517
https://doi.org/10.1103/PhysRevD.108.094517
https://doi.org/10.1103/PhysRevD.108.094517
https://doi.org/10.1103/PhysRevD.108.094517
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


where δI is the S-wave two-pion scattering phase shift
with isospin I at the energy of the kaon mass, and AI ¼
hðππÞIjHW jK0i is the K → ππ decay amplitude defined
with the weak Hamiltonian HW , kaon initial state jK0i and
two-pion final state hðππÞIj with the definite isospin I. The
normalization of these states is clarified and the relations
between the K → ππ amplitudes and decay rates are
explicitly given in Appendix A. In Eq. (1) we also define
ω ¼ ReðA2Þ=ReðA0Þ. We employ the three-flavor effective
weak Hamiltonian with the form [7,8]

HW ¼ GFffiffiffi
2

p V�
usVud

X
i

½ziðμÞ þ τyiðμÞ�QiðμÞ; ð2Þ

where we define the Fermi constant GF, Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements Vq0q con-
necting up-type (q0) and down-type (q) quarks, their ratio
τ ¼ −V�

tsVtd=V�
usVud, the Wilson coefficients ziðμÞ and

yiðμÞ that encompass the effects of heavy particle fields that
are integrated out, and the effective four-quark operators
QiðμÞ renormalized in the same scheme and scale, μ, as the
Wilson coefficients. The effective operators Qi relevant for
K → ππ have the strangeness-changing nature, ΔS ¼ 1,
and the dominant contributions are associated with the
four-quark electroweak operators given in Eqs. (25)–(34).
The matrix elements hðππÞIjQijK0i depend on nonpertur-
bative QCD properties in the low-energy regime. Lattice
QCD is the only known approach to computing non-
perturbative physics that is systematically improvable,
i.e., for which all of the systematic errors can be quantified
and improved with sufficient computational effort.
One long-standing obstacle in this subject, originally

described in Ref. [9], is that it is not straightforward to
extract the unique energy-conserving on shell matrix
elements from Euclidean correlation functions at large
time separations. In fact, in a periodic box and in the rest
frame, the ground two-pion state in the rest frame com-
prises two pions at rest and has an energy near twice the
pion mass, 2mπ , which is not equal to the initial kaon state
energy mK. While using periodic boundary conditions
(PBC) and extracting signals of the ground states in the
rest frame is the most common approach to lattice calcu-
lations, the K → ππ matrix elements obtained in this way
do not correspond to the energy-conserving on shell matrix
elements. In early attempts to compute K → ππ on the
lattice, chiral perturbation theory (ChPT) was utilized to
relate the on shell K → ππ matrix elements to some other
matrix elements with unphysical kinematics that were
accessible to numerical calculations at that time [10–16].
More recently, lattice calculations of K → ππ matrix

elements with (nearly) on shell kinematics have employed a
different approach. The ΔI ¼ 3=2 process with the I ¼ 2
two-pion final state was computed with physical pion and
kaon masses at a finite-lattice spacing [17,18] and in the
continuum limit [19]. In these works, the matrix elements

of Kþ → πþπþ, which are related to A2 by the Wigner-
Eckart theorem and isospin symmetry, were computed by
imposing antiperiodic boundary conditions (APBC) for
spatial directions on the down quark field. This results in
the πþ states also satisfying APBC in those directions, and
therefore having momenta discretized in odd-integer multi-
ples of π=L, where L is the lattice size. As a result, by
tuning L, the energy of the πþπþ ground state matching the
kaon mass mK was realized.
Calculation of the ΔI ¼ 1=2 process with the I ¼ 0

two-pion final state is much more complicated due to the
presence of many more diagrams, including noisy, dis-
connected contributions, possible mixing of the quark
bilinear operators with the effective four-quark operators
causing a power divergence, and so on. In addition, the
APBC procedure is not applicable for this isospin channel
because it only makes πþ and π− antiperiodic but π0, which
is also essential for the ΔI ¼ 1=2 channel, is still periodic.
Importantly, it also breaks isospin. For ΔI ¼ 3=2, this is
circumvented because πþπþ cannot mix with other two-
pion states due to charge conservation. For ΔI ¼ 1=2 there
is no way to avoid this issue. For our previous calculations
of the I ¼ 0 decay, we resolved this difficulty through the
use of G-parity boundary conditions (GPBC) [20,21],
which employ a combined charge-conjugation and isospin
rotation to induce APBC on both charged and neutral
pion states, while preserving the isospin symmetry. With
this approach we were successfully able to calculate the
ΔI ¼ 1=2 process and ε0.
Besides the works by the RBC and UKQCD

Collaborations summarized above, a moving frame was
employed to realize the physical kinematics with the
ground two-pion final state by Ishizuka et al. [22]. They
reported the ΔI ¼ 1=2 and 3=2 channels of K → ππ
amplitudes near on shell and Re(ε0=ε) computed with
Wilson fermions at unphysical pion and kaon masses.
They utilized CPS symmetry [23–25], which is the
symmetry under CP transformation followed by an inter-
change of the strange quark (S) with the down quark, to
ensure the absence of four-quark operator mixing with
wrong chirality even with the Wilson fermion action.
In this work, we aim to avoid the complexities of

manipulating the boundary conditions and of moving
frames, by employing PBC on an appropriately sized lattice
such that the on shell decay can be obtained via an excited
two-pion state with energy Eππ ≈mK. We extract signals
from an excited two-pion statewith the energy near the kaon
mass, Eππ ≈mK using the generalized eigenvalue problem
(GEVP) method [26–28], which provides a convenient
method for isolating the contributions of individual low-
lying states to Euclidean correlation functions. The GEVP
method has been used for several calculations of matrix
elements, for example for nucleon structure [29–35], B
physics [36–39], light-meson radiative transitions [40,41]
and form factors [42].We can utilize thismethod not only for
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removing excited-state contamination from the ground-state
signal but also for extracting signals from low-lying excited
states. The latter is an important goal of this work and we
have reported our successful extractions of a few excited
two-pion states in the companion two-pion scattering
paper [43]. The method also enables us to extract these
signals at relatively short Euclidean times, where the signals
of excited states could be still resolved, with the truncated
excited-state contamination under control.
Our previous GPBC work [6] also employed multiple

two-pion interpolation operators to remove the excited-
state contamination using multistate fits. In our first GPBC
calculation of K → ππ [5], we only used a single ππ-like
operator, a product of two single-pion operators projected
to I ¼ 0. In Ref. [6] we additionally introduced an
isosinglet scalar bilinear operator, which we call a σ-like
operator, and another ππ-like operator with the same total
momentum but different constituent pion momenta. We
then observed a significant change in the two-pion phase
shift, K → ππ matrix elements and ε0=ε relative to our
earlier calculation [5], which we attribute to excited-state
contamination that was not formerly resolvable from the
rapidly growing statistical noise when measured with a
single operator and lower statistics. The σ-like operator in
particular was shown to play a significant role in removing
the excited-state contamination. For the three-operator
basis employed in Ref. [44], this fit-based approach was
found to be equivalent in its resolution as the GEVP, but,
unlike GEVP, also offered the flexibility to use a different
number of states than operators to describe the two-pion
correlation function in the region in which the excited-state
contamination cannot be resolved from the noise. This
ultimately proved important to obtain a result with minimal
excited-state contamination. In our companion paper [43]
we describe a “rebasing” strategy that also allows the
GEVP approach to consider a lower number of state than
operators. We believe that the GEVP will offer improved
stability over a fit-based approach for larger numbers of
operators and states, for which the covariance matrix may
become ill-conditioned.
While computing ε0=ε with a different setup is itself

interesting as there have been very few lattice results
despite its phenomenological importance, we expect some
further benefits of using PBC for K → ππ calculation. To
discuss this we here remark on two major systematic errors
on ε0 estimated in our previous GPBC work [6]; the finite-
lattice spacing error, and electromagnetic and isospin-
breaking corrections. The first resulted from computing
ε0 on a single, rather coarse lattice spacing of 1.38 GeV.
Work is underway to repeat the GPBC calculation on two
finer ensembles in order to take the continuum limit and
remove this error [45,46]. The necessity of generating
ensembles for the specific purpose of K → ππ calculation
is requires an extra computational cost. With PBC,
on the other hand, we have already generated finer

ensembles [47,48] with domain wall fermions at physical
masses up to the inverse lattice spacing of 2.69 GeV, which
have been used for other various projects. We can use these
ensembles for K → ππ calculation once the approach in the
present work is found to be feasible. One potential obstacle
to using these ensembles is that, since these ensembles were
generated without tuning the volume for K → ππ calcu-
lation, physical kinematics cannot be precisely achieved
with a two-pion state allowed in the given volume.
Even though electromagnetic and isospin-breaking cor-

rections are typically of orderOð1%Þ, they are significant for
ε0=ε because of theΔI ¼ 1=2 rule. TheΔI ¼ 1=2 process is
enhanced relative to ΔI ¼ 3=2 (ReðA0Þ=ReðA2Þ ≈ 22.5)
because Re(A2) is suppressed by a factor of 10 due to
nonperturbative dynamics [6] anda further factor of two from
higher-energy kinematics. This results in a strong suppres-
sion of ε0 through the coefficient ω ¼ ReðA2Þ=ReðA0Þ in
Eq. (1) and a corresponding 20× enhancement in the relative
size of electromagnetic and isospin-breaking effects. These
effects were estimated to be Oð20%Þ based on ChPT and
the large-Nc expansion of QCD [49], and while a direct
prediction from Lattice QCD would certainly be useful, it is
still inaccessible due to lack of a full formalism. This requires
an extension of the formalism given by Lüscher [50] and
Lellouch-Lüscher (LL) [51] that deals with two-hadron
systems in finite volumes. While there are related studies
on-going [52–54], we expect PBC is more suitable than
GPBC to accomplish it because GPBC mixes the up and
down quarks violating charge conservation.
In this paper we present our first PBC results for the

ΔI ¼ 3=2 and ΔI ¼ 1=2 channels of K → ππ amplitudes
and Re(ε0=ε) on a 243 × 64 ensemble with 2þ 1-flavors of
domain wall fermions with physical pion and kaon masses
and an inverse lattice spacing of a−1 ¼ 1.023ð2Þ GeV. We
employ the all-to-all (A2A) propagator method [55] with
2,000 low modes for the light quark and spin-color-time
diluted random noise for both the light and strange quarks.
The all-mode averaging (AMA) technique [56,57] is also
employed to accelerate the sampling. With the A2A
procedure, AMA is implemented by reducing the number
of configurations for exact calculations rather than the
number of propagator sources [43]. A preparatory study of
two-pion scattering with the same setup and GEVP was
recently reported [43]. For two-pion interpolation operators
we employ four ππ-like operators, products of two single
pion operators, with different relative momenta for both the
I ¼ 2 and I ¼ 0 channels and additionally one σ-like scalar
quark-bilinear operator for the I ¼ 0 channel. We employ a
single kaon operator expecting the contamination from
kaon excited states is less significant. We apply the
Lellouch-Lüscher method [51] to relate the two-pion
state in the finite box with that in infinite volume. We
use the RI-SMOM renormalization procedure [58] with
step scaling [59] up to the renormalization scale of 4 GeV.
In general these details are similar to the previous GPBC

ΔI ¼ 3=2 AND ΔI ¼ 1=2 CHANNELS OF K → ππ DECAY AT THE … PHYS. REV. D 108, 094517 (2023)

094517-3



calculation [6]. We employ the same Möbius domain wall
formalism and Iwasakiþ DSDR gauge action as the GPBC
calculation of the I ¼ 0 matrix element, and our physical
volume is the same to within a percent. Besides the lattice
spacing, the choice of boundary condition and two-pion
operators, and the inclusion of the ΔI ¼ 3=2 matrix
element, the calculation is largely the same as the GPBC
measurement, differing only in minor details such as the
number of low-eigenmodes, the modifications to the A2A
approach required in the G-parity case to treat the explicit
flavor structure, and the use of cost-reduction techniques
such as AMA and zMöbius (cf. below). However, the
differing finite-volume effects resulting from the change in
boundary conditions result in an I ¼ 0 two-pion energy
that does not as closely match the kaon energy, requiring
an interpolation to on shell kinematics. We use the lattice
results for the matrix elements with the ground and first-
excited two-pion final states for the interpolation and
estimate the corresponding systematic error.
For the convenience of the reader we summarize the

primary results of this work in Table I. We estimate various
systematic errors. The systematic error due to electromag-
netic and isospin-breaking corrections is listed for Re(ε0=ε)
as the third error. We inherit most of the systematic errors
from Ref. [6] with a few exceptions, which need a new
estimation for the setup in the present work and are
discussed in Sec. VI D. Table I also shows the correspond-
ing experimental values for comparison, except ImðAIÞ,
which are not accessible from experiments.
The paper is organized as follows. Section II briefly

explains the lattice ensemble of gauge fields used in this
study and measurement details. Section III gives results
for two-point functions including the kaon mass, a brief
summary of the two-pion spectrum study in Ref. [43],
and the corresponding Lellouch-Lüscher factors. In Sec. IV
we present theK → ππ three-point functions and the results
for the matrix elements obtained by combining the three-
point correlation functions with the results given in Sec. III.
Section V is devoted to the operator renormalization
procedure and results. In Sec. VI we present the remainder

of analysis to obtain the K → ππ amplitudes and Re(ε0=ε),
including the interpolation of the renormalized matrix
elements to physical kinematics. Section VII concludes
the present work and discusses future prospects.

II. LATTICE ENSEMBLE AND OVERALL
MEASUREMENT PROCEDURE

In this paper we present our lattice calculation carried out
on a 243 × 64 lattice ensemble. We employ Iwasakiþ
DSDR (dislocation suppressing determinant ratio) gauge
action [60] and 2þ 1-flavor Möbius domain wall fermions
[61,62] with the extent for the fifth direction Ls ¼ 24, the
Möbius scale bþ c ¼ 4, b − c ¼ 1 and the domain-wall
heightM5 ¼ 1.8. We choose β ¼ 1.633, which corresponds
to the inverse lattice spacing a−1 ¼ 1.023ð2Þ GeV and
hence spatial extent L ¼ 4.639ð9Þ fm and time extent
LT ¼ 12.34ð2Þ fm. We tune the input light quark mass to
aml ¼ 0.00107 and the strange quarkmass toams ¼ 0.0850
so that the pion and kaon masses have (nearly) their physical
values. The pion mass is amπ ¼ 0.13944ð17Þ and the
kaon mass is, as quoted in the following subsection,
amK ¼ 0.50189ð36Þ. See Ref. [63] for more details on
the ensemble.
We use the A2A quark propagator method [55], which

combines exact low-mode solutions with a stochastic
approximation to the high-mode contribution, with low-
mode deflation for acceleration of the conjugate gradient
(CG) inversions. We calculate 2,000 lowmodes for the light
quarks via the local coherent Lanczos algorithm [64] with
the zMöbius action [65,66] with Ls ¼ 12, while the strange
quark propagators are calculated without low modes. The
high(all)-mode contributions to light (strange) quark propa-
gators are computed with one random source for each spin,
color, and time slice (spin-color-time dilution). This requires
64 × 12 ¼ 768 CG inversions per configuration for each of
the light and strange quarks. Since different random sources
are generated for different configurations.
We perform measurements on 258 configurations, which

are separated by 10 or 20 molecular dynamics time units,

TABLE I. A summary of the primary results of this work shown in the middle column. The values in parentheses
give the statistical and systematic errors, respectively. For the last entry the systematic error associated with
electromagnetic and isospin breaking effects is listed separately as the third error, which we inherit from the
estimation in Ref. [6] based on the large-Nc expansion of QCD and ChPT [49]. The corresponding experimental
values are shown in the right column if applicable.

Quantity This work Experiment

ReðA2Þ 1.74ð15Þð48Þ × 10−8GeV 1.479ð4Þ × 10−8 GeV
ImðA2Þ −5.91ð13Þð1.75Þ × 10−13GeV � � �
ReðA0Þ 2.84ð57Þð87Þ × 10−7GeV 3.3201ð18Þ × 10−7 GeV
ImðA0Þ −8.7ð1.2Þð2.6Þ × 10−11GeV � � �
ReðA0Þ/ReðA2Þ 16.3(3.7)(6.7) 22.45(6)
ω ¼ ReðA2Þ=ReðA0Þ 0.061(14)(25) 0.04454(12)
Reðϵ0=ϵÞ 29.4ð5.2Þð11.1Þð5.0Þ × 10−4 16.6ð2.3Þ × 10−4
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with which we do not see apparent autocorrelation in the
correlation functions discussed below. We implement the
AMA technique [56,57] to save computational time. Since
the A2A prescription as used in this calculation naturally
requires sampling on all time slices, we perform an exact
calculation on a small subset of configurations with the
same A2A contraction strategy as for the approximate
(sloppy) calculations and combine the results using the
superjackknife approach. A detailed description was given
in Ref. [43]. In this work we have performed the exact
calculations on 14 configurations. For the approximate part,
the CG is stopped at 400 iterations and the light quark
propagators are calculated with the zMöbius fermion action
[65,66], which well-approximates quantities obtained with
the Möbius action and tighter CG stopping residual, but
with smaller Ls ¼ 12 and hence with smaller cost.
The χ2 fits presented in the paper are all performed with a

fixed covariance matrix for all (super)jackknife samples
and the errors are estimated by the standard jackknife
method.

III. TWO-POINT FUNCTIONS

A. Kaon correlation function

We calculate the two-point function of kaon interpola-
tion operators in the rest frame

CKðtÞ ¼ hOKðtÞOKð0Þ†i: ð3Þ

Here the bracket represents ensemble average and the kaon
operator is defined by

OKðtÞ ¼
X
x⃗;y⃗

frðjjx⃗ − y⃗jjÞd̄ðt; x⃗Þiγ5sðt; y⃗Þ; ð4Þ

where a 1S hydrogenlike wave function smearing

frðjjx⃗ − y⃗jjÞ ¼ expð−jjx⃗ − y⃗jj=rÞ ð5Þ

is employed with the radius r ¼ 2.0a and with Coulomb
gauge fixing. Here we define the periodic modulus
jjx⃗ − y⃗jj, the length of the shortest straight path from y⃗
to x⃗ in the periodic box.
To calculate the kaon two-point function we take

advantage of A2A propagators which allow us to calculate
the two-point function for every time translation of the
source and sink operators and thereby perform an average
to improve the statistical precision.
The kaon two-point function at sufficiently large values

of t and LT − t behaves as

CKðtÞ → AKA�
Kðe−mKt þ e−mKðLT−tÞÞ ð6Þ

with the ground-state kaon mass mK and AK ¼
h0jOKjKðmKÞi.

We define an effective kaon mass based on the first term
in Eq. (6),

meff
K ðtÞ ¼ − ln

CKðtÞ
CKðt − 1Þ ; ð7Þ

which is valid for time slices well below LT=2 ¼ 32a.
Figure 1 shows the effective kaon mass along with the
result from a fit to Eq. (6) using a fixed covariance matrix
with range 13 ≤ t=a ≤ 20. The fit result reads

amK ¼ 0.50189ð36Þ;
AKA�

K ¼ 1.5604ð76Þ × 106;

χ2=d:o:f: ¼ 0.55;

which corresponds to about 513 MeV.

B. Two-pion correlation functions and energies

In this subsection we summarize the results for the two-
pion correlators and energies obtained in our companion
paper, Ref. [43].
To construct two-pion operators, we first define single

pion operators with specific momenta, (0, 0, 0), ð0; 0; 2πL Þ,
ð0; 2πL ; 2πL Þ, ð2πL ; 2πL ; 2πL Þ and permutations with respect to
cubic symmetry. As for the kaon, Coulomb gauge fixed
hydrogenlike wave functions are used for single pion
interpolating operators but with radius r ¼ 1.5a, which
well matches with the smearing radius for single pion
operators used in the GPBC calculation in physical units
[6]. Next two-pion operators are formed by multiplying two
single-pion operators together with opposite momenta so
that the total momentum is zero. Since the SO(3) symmetry
of angular momentum is broken down to a discrete
symmetry in a finite box, we use the simplest irreducible
representation that couples to the S-wave state, the A1
representation. In addition we perform isospin projection of

FIG. 1. Effective kaon mass and a band of fit result with the fit
function in Eq. (6). The fit range is 13 ≤ t=a ≤ 20.
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the two-pion operators to the I ¼ 2 and I ¼ 0 representa-
tions. We separate the two single-pion operators by 3 time
slices in order to reduce the vacuum state contribution to the
I ¼ 0 channel [5,6]. The same separation in physical units
were employed in the GPBC calculation [6].
For the I ¼ 0 channel, we also introduce a σ-like

operator, an isosinglet scalar bilinear of the up and down
quarks since it was previously found to play an important
role in controlling contamination from excited states [6,67].
The σ-like operator is also smeared in the same way as the
single pion operators.
Thus, we employ four two-pion operators for the I ¼ 2

channel and five for the I ¼ 0 channel. In order to
distinguish the σ-like operator from the other two-pion
operators we refer to the latter as ππ-like operators. It is also
convenient to denote them as ππð000Þ, ππð001Þ, ππð011Þ,
ππð111Þ and σ, where the three-digit number in the
parentheses represents the three-dimensional momentum,
in units of 2π=L, of a single pion interpolation operator.
The single pion and σ operators, which are dimension-3,
are summed over three-dimensional space to project onto a
certain momentum and are therefore dimensionless.
We compute the following two-point correlation functions

C2pt;I
ab ðtÞ ¼ hOI

aðtÞOI
bð−ΔbÞ†i − hOI

aihOI
b
†i; ð8Þ

where OI
a is a two-pion operator labeled by the operator

index að¼ 1; 2;…; NÞ and isospin I. Δb is 0 when b
corresponds to the σ operator and otherwise 3a so that the
time variable t indicates the separation between the “inner”,
or nearer, pions or σ operator of the source and sink. The
second term on the rhs corresponds to the vacuum sub-
traction relevant for the I ¼ 0 channel. In what follows we
omit the superscript I for simplicity.
These two-pion correlation functions behave as

C2pt
ab ðtÞ ¼

X
n

An;aA�
n;be

−Ent þ thermal effects; ð9Þ

where En (n ¼ 0; 1;…) is the energy of the nth two-pion
state of the corresponding isospin channel and An;a ¼
h0jOajππðEnÞi. Here the thermal effect is significant,
and its leading contribution is an around-the-world propa-
gation effect of the ground-state pion in the time direction
which is independent of t. In order to eliminate this
contribution we perform a subtraction and obtain the
following behavior:

C2pt
ab ðt; δtÞ ¼ C2pt

ab ðtÞ − C2pt
ab ðtþ δtÞ

¼
X
n

ð1 − e−EnδtÞAn;aA�
n;be

−Ent þ… ð10Þ

with an arbitrary time shift δt. The ellipsis represents time-
dependent thermal effects, which are invisible in the results
shown below and in Ref. [43] with the given statistical

precision and therefore neglected in this work. While this
subtraction cancels the vacuum subtraction term in Eq. (8),
we find a minor statistical improvement by continuing to
apply the vacuum subtraction in a time-dependent manner,
i.e., by replacing the second term on the right-hand side
of Eq. (8) with hOaðtÞihObð−ΔbÞ†i, where the vacuum
expectation values are taken at a specific time slice
indicated in the parentheses. The time-translation average
is taken after the modified vacuum subtraction.
To decompose the correlation functions into contribu-

tions from individual states we employ the variational
method [26], where we solve the generalized eigenvalue
problem (GEVP) for a given N × N correlator matrix,
C2ptðt; δtÞ,

C2ptðt; δtÞVnðt; t0; δtÞ ¼ λnðt; t0; δtÞC2ptðt0; δtÞVnðt; t0; δtÞ:
ð11Þ

From the original operators and the eigenvectors
Vn;aðt; t0; δtÞ we can construct an operator,

Oðt;t0;δtÞ
n ¼

X
a

Vn;aðt; t0; δtÞOa; ð12Þ

which couples well to the state labeled by n but not with
any of the other N low-lying states. We can thus calculate
the state-specific correlation functions:

C2pt
n ðt; δt; t0; t0Þ ¼ Vnðt0; t0; δtÞ†Cðt; δtÞVnðt0; t0; δtÞ

¼ ð1 − e−EnδtÞBðt0;t0;δtÞ
n Bðt0;t0;δtÞ

n
�e−Ent þ…;

ð13Þ

where the state index n is not summed over, and we define

Bðt;t0;δtÞ
n ¼ h0jOðt;t0;δtÞ

n jππðEnÞi: ð14Þ

The ellipsis in Eq. (13) represents minor contributions
from higher states with energies larger than EN−1 and the
remaining thermal effects.
The (generalized) eigenvalues λnðt; t0; δtÞ obtained by

solving the GEVP (11) provide the effective two-pion
energies

Eeff
n ðt; t0; δtÞ ¼ ln

λnðt; t0; δtÞ
λnðtþ a; t0; δtÞ

; ð15Þ

which should be independent of t; t0 and δt at sufficiently
large time separations (t) where the higher-state contami-
nation is invisible. Ref. [27] demonstrated that the higher-
state contamination in the energy of the nth state defined
by (15) is Oðe−ðENþ1−EnÞtÞ in the region t0 ≥ t=2. In this
work we choose t0 ¼ t − a, which satisfies the inequality
for t0 ≥ a. In Ref. [43] we tuned the value of δt and found
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the statistical precision can be optimized by choosing δt ¼
5a for I ¼ 2 and δt ¼ 8a for I ¼ 0, with which we quote
the results throughout this paper.
In practice, there is a significant correlation between

two-pion correlation functions with and without inter-
actions between two pions. We utilize this correlation to
improve the statistical and systematic precision of the two-
pion energies. We compute the difference between the
fully-interacting and noninteracting two-pion energies

ΔEeff
n ðt; t0; δtÞ ¼ Eeff

n ðt; t0; δtÞ − E0;eff
n ðt; t0; δtÞ; ð16Þ

where the noninteracting two-pion effective energy
E0;eff
n ðt; t0; δtÞ is calculated by the same procedure as the

interacting one but using noninteracting two-pion correla-
tors, i.e., a product of two single-pion correlators, ensemble-
averaged separately, with pion operators placed at the
same time slices as the ones for the interacting two-pion
correlators. Then we add back the noninteracting two-pion
energy obtained by using the continuum dispersion relation
to obtain the improved effective energy,

Eeff0
n ðt; t0; δtÞ ¼ ΔEeff

n ðt; t0; δtÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ
4nπ2

L2

r
: ð17Þ

Figure 2 shows the improved effective two-pion energies
for the I ¼ 2 and I ¼ 0 channels. We omit the I ¼ 0 fourth
excited-state energy because it is unresolved. The figure
indicates that we can well extract the signal from the four
lowest states of the I ¼ 2 channel and three lowest ones of
the I ¼ 0 channel.
We perform constant fits to each two-pion effective

energy considering the correlation among the data points
at different time slices. The results are summarized in
Tables II and III for the I ¼ 2 and I ¼ 0 channels,
respectively. In the I ¼ 2 channel, the first excited-state

energy is closest to the kaon mass, amK ¼ 0.50189ð36Þ,
but is 21% larger, hence a somewhat sizeable interpolation
will be required to obtain physical kinematics as we will
discuss in Sec. VI B. For the I ¼ 0 channel the difference is
only 5%, requiring a much more modest interpolation to be
performed.
As noted in the beginning of this subsection more

detailed and sophisticated discussion on two-pion correla-
tors and energies was presented in Ref. [43].

C. Lellouch-Lüscher factor

Because of the interaction between two pions in a finite
box, the normalization for the two-pion states is not the
same as in the infinite-volume limit. We need to correctly
normalize the two-pion states in order to obtain theK → ππ
amplitudes in infinite volume. The prescription to deter-
mine the normalization factor F, the LL factor, was

FIG. 2. Effective two-pion energies for I ¼ 2 (left) and I ¼ 0 (right) obtained from GEVP analysis and the improvement (17) using the
continuum dispersion relation. Here we solve GEVP using the four two-pion operators for I ¼ 2 and five operators including the σ-like
operator for I ¼ 0. The results are shown in lattice units.

TABLE II. Results for the I ¼ 2 two-pion energies obtained
from a constant fit to the effective two-pion energies shown with
the corresponding fit range and corresponding Lelloch-Lüscher
factors.

Fit range aEn F

4–10 0.28128(34) 32.09(15)
5–9 0.60789(31) 28.686(22)
3–9 0.81743(56) 26.242(15)

TABLE III. The same as Table II but for the I ¼ 0 channel.

Fit range aEn F

4–8 0.27060(40) 38.38(46)
3–6 0.5349(34) 29.184(68)
3–5 0.7242(65) 31.56(33)
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provided in Ref. [51]. With a given two-pion energy Eππ in
a finite box, the normalization factor can be determined as

F2 ¼ 4πmKE2
ππ

k3

�
k
dδ0
dk

þ q
dϕ
dq

�
; ð18Þ

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Eππ

2

�
2

−m2
π

s
; q ¼ Lk

2π
ð19Þ

and δ0 is the two-pion phase shift and ϕ is a known
function,

tanϕðqÞ ¼ −
π3=2q

Z00ð1; q2Þ
ð20Þ

for periodic boundary conditions defined with the Lüscher
zeta function,

Z00ðs; q2Þ ¼
1ffiffiffiffiffiffi
4π

p
X
n⃗

ðjn⃗j2 − q2Þ−s: ð21Þ

Equation (21) is valid for ReðsÞ ≥ 3=2. For ReðsÞ < 3=2 its
analytic continuation is used. We employ the efficient
numerical implementation given in Ref. [68] to evaluate it
at s ¼ 1. In this work, the phase shift term, the first term
in the parentheses on the right-hand side of Eq. (18), is
calculated via dispersion theory based on the Roy
equation [69] with inputs from chiral perturbation theory
(ChPT) and experimental data, which is consistent with
results from lattice QCD using the Lüscher finite volume
method [26], both near the two-pion threshold [70–73] and
at larger two-pion energies [43,44,74–76]. In practice, we
use Eqs. (17.1)–(17.3) of Ref. [77] with the pion mass on
our lattice ensemble to compute the phase shift.
The formula (18) is valid up to the exponentially sup-

pressed corrections [78], Oðe−mπLÞ, in the elastic region,
2mπ < Eππ < 4mπ in the case of the rest frame. In the
inelastic region above the four-pion threshold, Eππ ≥ 4mπ ,
and there are extra states that are not accounted for by the
Lüscher prescription. The systematic effect slightly above
the inelastic threshold is expected to be small since the
effects of four-pion states appear at next-to-next-to-leading
order (NNLO) in ChPT [74]. In addition, some pion-
scattering studies have found that the systematic effects
appear to be substatistical slightly above the inelastic
threshold [43,74–76]. Since the LL factor (18) is derived
using the Lüscher formula for the phase shift, the system-
atic error on the LL factor slightly above the inelastic
threshold is expected to be small. In this section, we
calculate the LL factor up to the second excited state with
an energy slightly above 800 MeVand 700 MeV for I ¼ 2
and I ¼ 0, respectively. For calculations of K → ππ

amplitudes in Sec. VI B we only use the ground and
first-excited two-pion states for the interpolation to obtain
the physical kinematics. Out of these states, only the I ¼ 2
first excited state is above (but close to) the threshold.
Since the I ¼ 0 two-pion ground state energy in the rest

frame is smaller than 2mπ due to the attractive interaction in
this channel, the corresponding value of k2 is negative, and
the formulas above needs to be analytically continued.
While this kind of analytic continuation for I ¼ 0 was
implicitly performed for the calculation of the scattering
length by a number of works as emphasized in Ref. [71],
here we give the formulas for the LL factor below the two-
pion threshold,

F2 ¼ −
4πmKE2

ππ

k03

�
k0
dδ00
dk0

þ q0
dϕ0

dq0

�
; ð22Þ

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π −
�
Eππ

2

�
2

s
; q0 ¼ Lk0

2π
; ð23Þ

tanhϕ0ðq0Þ ¼ −
π3=2q0

Z00ð1;−q02Þ
; ð24Þ

where δ00ðk0Þ is obtained by replacing tan with tanh, k2 with
−k02 and the kinematic factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

with 2k0=Eππ ,
for the case of rest frame, in Eq. (17.1) of Ref. [77] (k in our
convention is denoted by “q” in [77]).
While this is primarily a prescription for accounting for a

finite-volume two-pion state, it also contains some extra
factors such asmK and Eππ due to the difference in the state
normalization; states on the lattice are normalized to unity,
whereas a relativistic normalization is employed in infinite
volume. The factor mK is associated with the difference
in the convention of the kaon state normalization. Thus the
LL factor (18) gives the relation between the K → ππ
amplitudes on finite lattice with those in infinite volume;
AI ¼ FAFV

I .
The results for the LL factor F for the lowest three

energy states are summarized in Tables II and III for I ¼ 2
and I ¼ 0, respectively, along with the corresponding two-
pion energies En discussed in the previous subsection.

IV. K → ππ THREE-POINT FUNCTIONS
AND MATRIX ELEMENTS

A. Four-quark operators

K → ππ decay is well-described by the ΔS ¼ 1 weak
Hamiltonian in Eq. (2). In this work, theΔS ¼ 1 four-quark
operators in the three-flavor theory are employed as
effective operators Qi, which we define following the
convention in Refs. [7,8],

Q1 ¼ s̄αγμð1 − γ5Þuβ · ūβγμð1 − γ5Þdα; ð25Þ
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Q2 ¼ s̄αγμð1 − γ5Þuα · ūβγμð1 − γ5Þdβ; ð26Þ

Q3 ¼ s̄αγμð1 − γ5Þdα
X
q

q̄βγμð1 − γ5Þqβ; ð27Þ

Q4 ¼ s̄αγμð1 − γ5Þdβ
X
q

q̄βγμð1 − γ5Þqα; ð28Þ

Q5 ¼ s̄αγμð1 − γ5Þdα
X
q

q̄βγμð1þ γ5Þqβ; ð29Þ

Q6 ¼ s̄αγμð1 − γ5Þdβ
X
q

q̄βγμð1þ γ5Þqα; ð30Þ

Q7 ¼
3

2
s̄αγμð1 − γ5Þdα

X
q

eqq̄βγμð1þ γ5Þqβ; ð31Þ

Q8 ¼
3

2
s̄αγμð1 − γ5Þdβ

X
q

eqq̄βγμð1þ γ5Þqα; ð32Þ

Q9 ¼
3

2
s̄αγμð1 − γ5Þdα

X
q

eqq̄βγμð1 − γ5Þqβ; ð33Þ

Q10 ¼
3

2
s̄αγμð1 − γ5Þdβ

X
q

eqq̄βγμð1 − γ5Þqα; ð34Þ

where the sums over q run for all the active quarks; up,
down and strange in three-flavor theory. The sum over the
Lorentz index μ is implicitly taken for each operator. The
color indices are explicitly shown by α and β, while the spin
indices are omitted as they are always contracted in the
trivial manner. The electric charge of a quark q is expressed
by eq for the electroweak penguin operators Q7−10. Here,
the current-current operators, Q1 and Q2, dominate the
physics of the real parts of the amplitudes; the QCD
penguin operators, Q3–6, dominate that of ImðA0Þ and
the electroweak penguin operators, Q7–10, that of ImðA2Þ.
Note, while the lattice calculation does not include electro-
magnetic effects, we do include the effective operators
resulting from short-distance photonic propagation due to
the significant role they play in the I ¼ 2 channel decay.
As is well known, a lattice calculation preserves all

dimension-4 Fierz relations, while these are broken in
dimensional regularization approaches to perturbation
theory for which the dimension-dependence of γ5 breaks
certain Fierz relations leading. Fierz symmetry gives rise to
three relations among the four-quark operators. We there-
fore use them to reduce the operator basis to seven
operators, fQ0

jgj¼1;2;3;5;6;7;8 defined in [13], in our lattice
calculation, which we call the chiral basis, as well as the
ten-operator basis above. The linear independence of the
chiral basis is convenient to renormalize the four-quark
operators as it requires only a minimum number of
independent renormalization conditions, and the inverse

renormalization matrix needed for step scaling is well-
defined. It should also be noted that each operator in the
chiral basis transforms as a specific representation of
SUð3ÞL × SUð3ÞR chiral symmetry so that the mixing
among the operators is minimal, while the current-current
(Q1;2) and electroweak penguin (Q7–10) operators are
composed of multiple representations. This property is
convenient especially when fermions with good chiral
symmetry such as domain wall fermions are employed.
The basis enlargement from the chiral basis to the ten-
operator basis after renormalization only has nontriviality
in the perturbative matching from a nonperturbative scheme
to MS, which was well-discussed in Ref. [79] and is taken
into account in Sec. VI.
Alternative definitions of Q1 and Q2 can be formed by

applying the Fierz identities [13,79], Q̃1 ¼ s̄αγμð1 − γ5Þdα ·
ūβγμð1 − γ5Þuβ and Q̃2 ¼ s̄αγμð1 − γ5Þuβ · ūβγμð1 − γ5Þdα.
These definitions give rise to identical numerical results on
the lattice and simplify the structure of the contractions by
making all four-quark operators with an odd (even) index
have a color-diagonal (color-mixed) structure. However,
the Wilson coefficients in the MS scheme depend on the
definitions of Q1 and Q2 since dimensional regularization
is employed. We use the definitions in Eqs. (25) and (26)
for computing the Wilson coefficients based on the for-
mulas given in Refs. [7,8].
While these operators are all relevant for the ΔI ¼ 1=2

channel, the QCD penguin operators Q3–6 and four
operators Q0

2;3;5;6 in the chiral basis are purely in the
(8,1) representation and do not contribute to the ΔI ¼
3=2 channel. As a result the number of independent
operators is three for this channel. Our earlier works on
the ΔI ¼ 3=2 channel [17–19] employed a three-operator
basis that is purely made of ΔI ¼ 3=2 operators, Qð27;1Þ,
Qð8;8Þ and Qð8;8Þmix. In this work we employ the ten
operators in Eqs. (25)–(34) and the chiral basis of the
seven operators for both the ΔI ¼ 3=2 and ΔI ¼ 1=2
channels to apply the same numerical analysis, although
the matrix elements of the QCD penguin operators are
always zero for the ΔI ¼ 3=2 channel.

B. K → ππ three-point functions

With the kaon and two-pion interpolation operators
described in Sec. III and local four-quark operators in
Eqs. (25)–(34), we compute the K → ππ three-point
functions

C3pt
ai ðt1; t2Þ ¼ hOaðt1 þ t2ÞQiðt1ÞOKð0Þ†i: ð35Þ

Again the isospin index I is suppressed for simplicity and
we discuss the three-point function in general for both the
ΔI ¼ 3=2 and 1=2 channels corresponding the I ¼ 2 and 0
two-pion operators on the right-hand side, respectively. The
subscript a labels a two-pion operator, including the quark
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bilinear σ. As mentioned in the previous section the source
and sink operators are dimensionless as each bilinear of
these operators is summed over three-dimensional space.
The dimension-6 operator Qi is also summed over three-
dimensional space for the measurements and thus these
correlation functions are dimension-3. The time indices t1
and t2 stand for the time separations between the four-quark
and kaon operators, and between the two-pion and four-
quark operators, respectively. We calculate the K → ππ
three-point functions with several time separations between
the kaon source and two-pion sink operators. We choose
ðt1 þ t2Þ=a ¼ 6, 7, 9, 10, 11, 13 in this work. Counting the
parity of the two-pion and kaon operators one can recog-
nize that the three-point functions are contributed by the
parity-odd part of the four-quark operators. The parity-even
part of the four-quark operators only increases statistical

error on the three-point functions and is therefore excluded
from the measurements.
The Wick contractions for these correlation functions

yield four classes of diagram, which are summarized in
Fig. 3 for the case whereOa is a ππ-like operator and Fig. 4
for the case where Oa is a σ-like operator. The ΔI ¼ 3=2
channel contains contributions from only type1 diagrams,
whereas the ΔI ¼ 1=2 channel receives contributions from
all the diagrams. While the contraction formulas with a
ππ-like sink operator for PBC were given in Ref. [80],
the formulas with a σ-like operator were not presented.
We summarize the contraction formulas for both K → ππ
three-point functions including those with a σ-like operator
in Appendix B.
Since type3 and type4 diagrams, which are needed for

the ΔI ¼ 1=2 channel, include a quark loop, the correlation

FIG. 3. Diagrams for theK → ππ three-point functions with four-quark and ππ-like sink operators. A line connecting the kaon (K) and
the four-quark operator (Qi) is a strange-quark propagator. The quark loop in type3 and type4 diagrams is either a light- or strange-
quark propagator. All other lines represent a light-quark propagator.

FIG. 4. Same as Fig. 3 but with a σ-like sink operator.
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functions in this channel contain a power divergence ∼a−2
that needs to be removed. For the rest of the article, we
distinguish the subtracted (Qi) and unsubtracted (Q̂i) four-
quark operators and relate them by

Qi ¼ Q̂i − αis̄γ5d; ð36Þ

where we determine the subtraction coefficients αi
by imposing the following condition on the two-point
functions:

hQiðt1ÞOKð0Þ†i ¼ 0: ð37Þ

While the coefficients αi do not have to depend on the time
separation t1 between the kaon and four-quark operators,
we choose this approach because it is found to offer a minor
statistical improvement [6]. The contribution of this pseu-
doscalar operator vanishes for on shell matrix elements,
but the power divergence still afflicts the measurements
described here because the kinematics are not energy
conserving. It should also be noted that the subtraction
condition (37) ensures the absence of the vacuum contri-
bution to the K → ππ three-point function

h0jOaj0ih0jQiðt1ÞOKð0Þ†j0i ¼ 0 ð38Þ

as long as we neglect thermal effects like
∼hπjQiðt1ÞOKð0Þ†jπie−mπðLT−t1Þ, which are negligible as
seen below. Therefore, we do not perform a subtraction of
this vacuum effect. From the condition (37) we obtain

αiðt1Þ ¼
hQ̂iðt1ÞOKð0Þ†i
hs̄γ5dðt1ÞOKð0Þ†i : ð39Þ

These correlation functions are averaged over all time
translations with the A2A quark propagators.
Figure 5 shows the results for α2 and α6. The stable

plateau seen up to t1 ¼ 12a indicates that the thermal
effect, which contributes to the numerator of Eq. (39) in the
form ∼hπjQiðt1ÞOKð0Þ†jπie−mπðLT−t1Þ, is not significant.
While the values of αi on the plateau correspond to the
subtraction condition h0jQijKi ¼ 0, the other data points
also remove the power divergence from the quark loop of
type3 and type4 diagrams but lead to different values of
K → ππ matrix elements with energy-nonconserving kin-
ematics. In this work, the ΔI ¼ 1=2 matrix elements are
determined from the region of large enough t1 where
h0jQijKi ¼ 0 is satisfied.
To implement this subtraction for theK → ππ three-point

functions we need to calculate additional diagrams,
which are summarized in Figs. 6 and 7 for ππ-like and
σ-like sink operators, respectively. The contraction formulas

FIG. 5. Subtraction coefficients α2 (left) and α6 (right) obtained by Eq. (39).

FIG. 6. Diagrams for the K → ππ three-point functions with the bilinear and a ππ-like sink operators needed for the subtraction of
power divergence arising from the loop diagrams in Fig. 3. A line connecting the kaon (K) and bilinear operator (γ5) represents a
strange-quark propagator, while the all other lines correspond to a light-quark propagator.
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for the correlation functions are also summarized in
Appendix B.
While the A2A quark propagator method allows us to

take the average of three-point functions over all space-time
translations, the cost of performing contractions on every
space-time translation is comparable to, or even larger than,
the cost of generating the A2A quark propagators. However
the diagrams that require a large fraction of the contraction
cost are type1 and type2, which are fully connected and
can be calculated precisely with relatively fewer measure-
ments. In our previous GPBC calculation [6] we calculated
type1 and type2 diagrams for every translation of eight time
slices and type3 and type4 diagrams every time-slice with
a full three-dimensional volume average for all diagrams.
We observed that the type4 diagram still dominated the
statistical error while the cost for type1 and type2 diagrams
was significant.
In this work we reduce the number of measurements of

type1 and type2 diagrams in the spatial directions as well as
for the time direction by calculating these diagrams on a
uniform grid of 83 sites, for eight time translations for the
four-quark operator, while type3 and type4 diagrams are
calculated for all space-time translations.
Figure 8 shows the breakdown of the ΔI ¼ 1=2 K → ππ

three-point functions into contributions from each diagram
at t1 þ t2 ¼ 10a. We show the results with Q2 and Q6

operators, which provide the dominant contribution to
ReðA0Þ and ImðA0Þ, respectively, and with the ππð000Þ,
ππð001Þ and σ operators, which strongly couple with either
the ground or first-excited two-pion state. While the type4
diagrams, which are disconnected, are expected to domi-
nate the statistical error, that is not always the case at small
time separations t2 ≤ 3a between the two-pion and four-
quark operators, where the errors on the type2 diagrams are
comparable or even larger that on type4. In addition to the
intrinsic signal restoration of disconnected diagrams at
short times, this should also be because of the reduction in
the number of measurements for the type1 and type2
diagrams. Note that we do not extract the matrix elements
at such short time separations, where the contamination
from higher excited states is still significant. At larger time
separations, t2 > 3a, on the other hand, the type4 diagram
dominates the statistical error. This indicates that the cost
reduction with less number of measurements of type1 and
type2 diagrams does not significantly impact the total
statistical precision of the correlation functions at time

separations where the K → ππ matrix elements are
extracted.

C. K → ππ matrix elements

Using the eigenvectors obtained by solving the GEVP
(11), we can extract the three-point functions with the
contribution from a specific two-pion state labeled by n:

C3pt
n;i ðt1; t2;δt; t; t0Þ¼

X
a

Vn;aðt; t0;δtÞC3pt
ai ðt1; t2Þ

¼Bðt;t0;δtÞ
n Mn;iA�

Ke
−mKt1−Ent2 þ…; ð40Þ

where the ellipsis represents the contamination from
excited states and potential thermal effects, and

Mn;i ¼ hππðEnÞjQijKi: ð41Þ

We define the effective matrix elements [28],

Meff
n;iðt1; t2; δt; t; t0Þ
¼ C3pt

n;i ðt1; t2; δt; t; t0ÞRKðt1ÞRnðt2; δt; t; t0Þ; ð42Þ

with

RKðt1Þ ¼ em
eff
K ðt1Þt1=2½CKðt1Þ�−1=2; ð43Þ

Rnðt2; δt; t; t0Þ ¼ ð1 − e−E
eff
n ðt;t0;δtÞδtÞ1=2eEeff

n ðt;t0;δtÞt2=2

× ½C2pt
n ðt2; δt; t; t0Þ�−1=2: ð44Þ

The factor ð1 − e−E
eff
n ðt;t0;δtÞδtÞ1=2 is associated with the

matrix subtraction of two-pion correlation functions in
Eq. (13). Here we use the effective two-pion energy Eeff

n

defined in Eq. (15) rather than the improved one Eeff0
n given

in Eqs. (17) to compensate the exponential time depend-
ence of the three-point functions. Following the discussion
in Ref. [28], we choose t0 ¼ t − a ¼ t2 and then one can
reduce the number of time arguments and simplify the
state-projected correlation functions,

C3pt
n;i ðt1; t2; δtÞ ¼ C3pt

n;i ðt1; t2; δt; t2 þ a; t2Þ; ð45Þ

FIG. 7. Same as Fig. 6 but for the subtraction of power divergence arising from the loop diagrams in Fig. 4 with a σ-like sink operator.
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and the effective matrix elements

Meff
n;iðt1; t2; δtÞ ¼ Meff

n;iðt1; t2; δt; t2 þ a; t2Þ: ð46Þ

We also limit our discussion to δt ¼ 5a and 8a for the
ΔI ¼ 3=2 and 1=2 channels, respectively These are the best
choices, according to the discussion in our two-pion
scattering companion paper [43]. We do not expect any

significant error reduction from further tuning of δt as the
main source of statistical errors is the K → ππ three-point
functions themselves, which are independent of δt. Most of
the results for the matrix elements we show below are
obtained by using the four two-pion operators ππð000Þ,
ππð001Þ, ππð011Þ and ππð111Þ for the ΔI ¼ 3=2 channel
and the five operators including the additional σ-like
operator for the ΔI ¼ 1=2 channel. Sets with fewer

FIG. 8. Breakdown of the ΔI ¼ 1=2 channel of K → ππ three-point functions at t1 þ t2 ¼ 10a into contributions from each diagram.
Results withQ2 (left) andQ6 (right) operators, and with ππð000Þ (upper), ππð001Þ (middle) and σ (lower) are shown in lattice units. The
power divergence of type3 and type4 diagrams is removed.
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two-pion operators are also employed when discussing
systematic effects due to excited two-pion states.
Figure 9 shows the ΔI ¼ 3=2 effective K → ππ matrix

elements Meff
0;i with the ground two-pion final state and

with the four-quark operators labeled by i ¼ 2 and i ¼ 8.
We do not see significant dependence on t2. The lack of
t2-dependence at small separations t2 between the four-
quark and two-pion operators implies small contamination
from two-pion excited states excluded from the GEVP.
Similarly, the plateau at large t2 with a fixed separation t1
between the kaon and four-quark operators, indicates that
the thermal effects are negligible. Throughout the paper, we
do not see significant thermal effects. The band represents
the result for a correlated constant fit with the range
explained in the caption. To visually distinguish the fit
range, filled colored symbols denote data points that are
used in the fit while unfilled gray points are not.
Figure 10 shows the results for a correlated constant fit

to the effective matrix elements Meff
0;2, M

eff
0;7 and Meff

0;8 with
various fit ranges t1 ≥ tmin

1 and t2 ≥ tmin
2 plotted in lattice

units along with the corresponding values of χ2=d:o:f.
Despite the wide plateau forMeff

0;2 appearing in the left panel
of Figs. 9 and 10 indicates that enlarging the (correlated) fit
range of t1 significantly decreases the statistical error while
increasing the value of χ2=d:o:f. This may indicate that the
results with wider-fit ranges could still receive significant
excited-state contamination. In order to minimize such
systematic errors, only the four data points that satisfy
t1 ≥ 5a and t2 ≥ 6a are used for the fit to quote the final
result. On the other hand Meff

0;8 in Fig. 9 has a significant
dependence on the time separation t1 between the kaon and
four-quark operators, while much smaller dependence on
the separation t2 between the pion and four-quark operators
is observed for each value of t1. The group of points with
t1 ¼ a deviates significantly from groups with t1 > a,
and smaller deviations are observed for larger values

of t1. This indicates that the contamination from kaon
excited states is quite significant. For t1 þ t2 ¼ 13a the
consecutive data points at ðt1=a; t2=aÞ ¼ ð10; 3Þ, (9,4) and
(8,5) appear consistent within statistical precision. We
therefore choose a fit range that satisfies t1 ≥ 8a and
t2 ≥ 3a. The same trend is observed in Fig. 10 for M0;7

and thereforewe choose the same fit range forM0;7 andM0;8.
Figure 11 shows the ΔI ¼ 3=2 effective K → ππ matrix

elementsMeff
1;i with the first-excited two-pion state and with

the four-quark operators labeled by i ¼ 2 and i ¼ 8 along
with the result (band) for a correlated constant fit with the
range indicated in the caption. The fit results forM1;2,M1;7

and M1;8 with various fit ranges and the corresponding
values of χ2=d:o:f: are shown in Fig. 12. Similar to the
matrix elements with the ground two-pion final state, the fit
range for M1;2 needs to be limited to have a reasonably
small value of χ2=d:o:f: despite an apparent wider plateau
observed in the left panel of Fig. 11. The contamination
from excited kaon states in Meff

1;8 appears less than that
in Meff

0;8.
To investigate the contamination from neglected excited

two-pion states, we perform the same analyses with fewer
two-pion operators. Figure 13 shows the fit results for the
ΔI ¼ 3=2 matrix elements with various GEVP sizes N for
the ground and first-excited two-pion final states at fixed
value of tmin

1 specified in the caption. We observe somewhat
noticeable deviation at large tmin

2 such as the difference of
M1;2 between tmin

2 ¼ 4a and 5a. While 1 − 2σ deviation
can be caused by either or both of statistical and systematic
effects and it is not trivial to distinguish, here we demon-
strate that such ‘tmin

2 dependence’ is not due to two-pion
excited states but likely caused by a statistical fluctuation.
Note that the results with N ¼ 3 and 4 are mostly
consistent, while the GEVP up to N ¼ 4 successfully
decomposes N two-pion states for the I ¼ 2 channel up
to t0ð¼ t2Þ ∼ 6a as seen in Fig. 2. Because of the

FIG. 9. Effective matrix elements of ΔI ¼ 3=2 K → ππ decay with the ground two-pion state for Q2 (left) and Q8 (right) plotted in
lattice units. The band represents the result for constant fit with the fit range t1 ≥ 5a and t2 ≥ 6a forQ2 and t1 ≥ 8a and t2 ≥ 3a forQ8.
The data points in the fit range are plotted as filled colored points, while unfilled gray points are out of the fit range.
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consistency between N ¼ 3 and 4 elsewhere and the well-
resolved signal of the N ¼ 4 state, it is natural to expect the
contamination from excited two-pion states is negligible
and some deviation of the data points seen at large tmin

2

should be due to a statistical fluctuation.
Since we did not perform measurements with multiple

kaon operators, we are not able to investigate potential

contamination from excited kaon states in the same way as
for excited two-pion states. In Fig. 12 we see fluctuations
with varying tmin

1 for the matrix elements with the I ¼ 2
two-pion first excited state. However these fluctuations are
of marginal statistical significance and occur in both
directions. These may not necessarily be due to kaon
excited states but could also be due to limited statistics

FIG. 10. Results for the ΔI ¼ 3=2 matrix elements (left)M0;2 (upper),M0;7 (middle) andM0;8 (lower) with the ground two-pion final
state obtained by correlated constant fits with various fit ranges indicated by ðtmin

1 ; tmin
2 Þ. The corresponding values of χ2=d:o:f: are

shown on the right panels.
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similar to the aforementioned example with two-pion
states. Most of the fit results for the matrix elements at
fixed tmin

2 in Figs. 10 and 12 display smooth behavior at
small values of tmin

1 consistent with excited-state contami-
nation which should smoothly decrease to zero, but
transition to fluctuating at a larger tmin

1 more consistent
with statistical fluctuation. Excited-state contamination is
unlikely to be the cause of these fluctuations at larger t1,
and we conclude these are merely statistical fluctuations.
Table IV summarizes the fit results for the ΔI ¼ 3=2

channel of K → ππ matrix elements Mn;i with n ¼ 0, 1, 2
and the current-current and electroweak penguin four-quark
operators. Because of the significantly different trends of
the excited-state contamination in the matrix elements with
the ground two-pion state (n ¼ 0) between i ¼ 2 and i ¼ 7,
8 described above, we quote the results with different fit
ranges depending on the four-quark operator for the ground
two-pion final state. For excited two-pion states, it is not
necessary to tune the fit range depending on four-quark
operator, and we choose a common fit range for each final
state for simplicity. The results for i ¼ 1, 2, 9 and 10 are
linearly dependent for this isospin channel. The difference
between Mn;1 and Mn;2 is caused by the slight violation of
the Fierz symmetry due to the use of the stochastic A2A
method, which approximates the quark propagators in the
given gauge configuration. Since three-point functions
before and after Fierz transformation are calculated by
taking the spin and color contractions quite differently, the
difference between the exact and approximated quark
propagators can cause the difference between the three-
point functions and hence the corresponding matrix ele-
ments. The quark propagator becomes exact in the large-hit
or large-ensemble limit. Both results are thus correct within
the statistical error, e.g., we observe the jackknife average
of the difference a3ðM0;1 −M0;2Þ ¼ −5.7ð5.7Þ × 10−6 and
a3ðM1;1 −M1;2Þ ¼ −1.6ð1.5Þ × 10−6. We gain a minor

improvement in the statistical precision by taking the
average. However, the matrix elements with i ¼ 9 and
10 are exactly the same as those with i ¼ 1 and 2,
respectively, up to the overall factor of 3=2 as the identical
contractions are used for computing the three-point func-
tions for these pairs (see Appendix B).
Figure 14 shows the ΔI ¼ 1=2 effective K → ππ matrix

elements Meff
0;i with the ground two-pion state and the four-

quark operators labeled by i ¼ 2 and i ¼ 6 along with
the result for a correlated constant fit with the range
ðtmin

1 ; tmin
2 Þ ¼ ð5a; 4aÞ. The fit results with other various

fit ranges and the corresponding values of χ2=d:o:f: are
shown in Fig. 15. Unlike the case of the ΔI ¼ 3=2 channel
the values of χ2=d:o:f: are reasonably small for most of the
fit ranges and less dependent on fit range. In addition we do
not see a significant difference in the trend of the fit range
dependence for different four-quark operators. For sim-
plicity we choose a common fit range for all four-quark
operators when we quote the final results.
Figure 16 shows the ΔI ¼ 1=2 effective K → ππ matrix

elementsMeff
1;i with the first-excited two-pion state and with

the four-quark operators labeled by i ¼ 2 and i ¼ 6 along
with the result for a correlated constant fit with the range
ðtmin

1 ; tmin
2 Þ ¼ ð4a; 4aÞ. The fit results with other various fit

ranges and the corresponding values of χ2=d:o:f: are shown
in Fig. 17. These matrix elements are the main targets of this
work as they correspond to ΔI ¼ 1=2 channel of near on
shell K → ππ matrix elements, which are necessary to
calculate the measure ε0 of direct CP violation and require
considerable effort to compute. Similar to the case of the
ground two-pion final state, the χ2=d:o:f: is fairly stable for
various fit ranges. One noticeable difference from the
ground-state case is that the contamination from kaon
excited states is less significant so that we can choose a
wider fit rangewith a smaller tmin

1 . Again we use the same fit
range for all four-quark operators to quote the final result.

FIG. 11. Effective matrix elements of ΔI ¼ 3=2 K → ππ decay with the first-excited ππ state for Q2 (left) and Q8 (right). The band
represents the result for constant fit with the fit range t1 ≥ 6a and t2 ≥ 5a for Q2 and t1 ≥ 6a and t2 ≥ 4a for Q8. The data points in the
fit range are plotted as filled colored points, while unfilled gray points are out of the fit range.
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Figure 18 shows the fit results for ΔI ¼ 1=2 matrix
elements obtained through the GEVP analyses with various
sets of two-pion sink operators with and without the σ-like
operator. The upper panels indicate that, while the results for
the matrix elements with the two-pion ground state are
mostly independent of the ππ-like operators with a nonzero
relative momentum, adding the σ-like operator makes a
significant impact up to tmin

2 ¼ 4a forM0;2 and tmin
2 ¼ 3a for

M0;6. The benefit of including the σ-like operator is quite

apparent inM0;6, which shows a plateau beginning at tmin
2 ¼

2a with the σ-like operator, whereas the values differ by
more than 50% in this low time region when the σ-like
operator is excluded. A similar trend is observed for the
matrix elements with the first-excited two-pion state shown
on the lower panels. The only difference in the trend between
the ground- and first-excited two-pion final states is observed
for “N ¼ 2 w σ,” the results with the two operators ππð000Þ
and σ, where the matrix elements with the first-excited state

FIG. 12. Same as Fig. 10 but results with the first-excited two-pion final state.
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are too noisy to be in the lower panels. This may result
from insufficient coupling between the first excited state
and these two operators. We observe that the precision is
significantly improved by including the ππð001Þ operator.
The ππð001Þ operator is the most naïve operator for
creating a two-pion state with an energy close to the kaon
mass. It plays a similar role to the ‘ππð111Þ’ operator in the
GPBC work, which comprised two single-pion operators

with back-to-back momenta of π=L in each spatial direc-
tion. The ‘ππð111Þ’ operator was the only two-pion
operator included in the original GPBC work, but was
shown in Ref. [6] to be insufficient to reliably isolate the
required two-pion state. Our PBC results appear to verify
this behavior. The lower panels indicate that, while the
σ-like operator plays an important role in removing excited-
state contamination, including the ππð001Þ operator is also

FIG. 13. Fit results forΔI ¼ 3=2matrix elements with different GEVP sizesN ¼ 2, 3 and 4. Results forM0;2 (upper/left) at tmin
1 ¼ 5a,

M0;8 (upper/right) at tmin
1 ¼ 8a,M1;2 (lower/right) andM1;8 (lower/left) at tmin

1 ¼ 6a are shown. The operators with one of the smallestN
relative momenta are included in each analysis. The results with a single two-pion operator ππð000Þ without GEVP (N ¼ 1) are also
shown in the upper panels.

TABLE IV. Fit results for the ΔI ¼ 3=2 channel of the K → ππ matrix elements with the ground (M0;i), first-excited (M1;i) and
second-excited (M2;i) two-pion states and with the four-quark operators relevant for this isospin channel. The fit range is indicated by
ðtmin

1 ; tmin
2 Þ, which means data points that satisfy t1 ≥ tmin

1 and t2 ≥ tmin
2 are used for the fit. For the ground-state matrix elements we

choose different fit ranges depending on four-quark operator. The values of χ2=d:o:f: are shown in the square brackets.

i ðtmin
1 ; tmin

2 Þ a3M0;i ðtmin
1 ; tmin

2 Þ a3M1;i ðtmin
1 ; tmin

2 Þ a3M2;i

1 ð5a; 6aÞ 0.0002885ð93Þ½0.9� ð6a; 4aÞ 0.001005ð97Þ½1.4� ð5a; 4aÞ 0.00209ð27Þ½1.0�
2 ð5a; 6aÞ 0.000294ð11Þ½0.9� ð6a; 4aÞ 0.001006ð97Þ½1.4� ð5a; 4aÞ 0.00210ð26Þ½1.0�
7 ð8a; 3aÞ 0.015397ð99Þ½1.3� ð6a; 4aÞ 0.01217ð19Þ½1.8� ð5a; 4aÞ 0.01319ð61Þ½1.0�
8 ð8a; 3aÞ 0.04979ð30Þ½0.5� ð6a; 4aÞ 0.04375ð41Þ½0.7� ð5a; 4aÞ 0.0479ð10Þ½1.8�
9 ð5a; 6aÞ 0.000433ð14Þ½0.9� ð6a; 4aÞ 0.00151ð15Þ½1.4� ð5a; 4aÞ 0.00314ð40Þ½1.0�
10 ð5a; 6aÞ 0.000441ð16Þ½0.9� ð6a; 4aÞ 0.00151ð15Þ½1.4� ð5a; 4aÞ 0.00315ð40Þ½1.0�
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important to obtain a well-resolved signal for the first
excited state.
The fit result for M1;6, which provides the dominant

contribution to ImðA0Þ and therefore plays a crucial role in

determining ε0, appears to depend on tmin
2 still around our

choice of tmin
2 ¼ 4a as seen in Fig. 17. The consistency

between “N ¼ 4 w σ” and “N ¼ 5 w σ” seen in Fig. 18
may not necessarily rule out the possibility of further

FIG. 14. Effective matrix elements of ΔI ¼ 1=2 K → ππ decay with the ground two-pion state for Q2 (left) and Q6 (right). The band
represents the result for a correlated constant fit with the fit range t1 ≥ 5a and t2 ≥ 4a for bothQ2 andQ6. The data points in the fit range
are plotted as filled colored points, while unfilled gray points are out of the fit range.

FIG. 15. Same as Fig. 10 but the results for the ΔI ¼ 1=2 matrix elements M0;2 (upper) and M0;6 (lower) with the ground two-pion
state.
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excited-state contamination because the fourth excited state
that can in principle be extracted by including the fifth
operator, ππð111Þ, is unresolved in our data and adding this
operator might not play a role in isolating excited-state

effects. It is therefore valuable to demonstrate there is no
evidence of further excited-state contamination for tmin

2 ¼ 4a.
We find the difference between the fit results for M1;6 from
“N ¼ 5 w σ” with tmin

2 ¼ 4a and tmin
2 ¼ 3a under jackknife

FIG. 16. Effective matrix elements of I ¼ 0 K → ππ decay with near on shell kinematics for Q2 (left) and Q6 (right). The band
represents the result for constant fit with the fit range t1 ≥ 4a and t2 ≥ 4a for bothQ2 andQ6. The data points in the fit range are plotted
as filled colored points, while unfilled gray points are out of the fit range.

FIG. 17. Same as Fig. 10 but the results for the ΔI ¼ 1=2 matrix elements M1;2 (upper) and M1;6 (lower) with the first-excited
two-pion state.
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is consistent with zero, 0.0056(63) in lattice units. The
Oð1σÞ difference between “N ¼ 3 w σ” and “N ¼ 4 w σ,”
noticeable in M1;6 may indicate a removal of the contami-
nation from the third excited state realized by additionally
including the ππð011Þ operator. Because this difference is
roughly equal to the statistical error in the region tmin

2 ¼ 4a,
the remaining contamination from the fourth and higher
excited states is expected to be smaller than the statistical
error. Our choice of tmin

2 ¼ 4a for the I ¼ 0 first-excited two-
pion final state roughly corresponds to 0.8 fm in physical
units. A similar trend in the tmin

2 -dependence of the fit result
for the matrix element of Q6 was observed at roughly equal
values of tmin

2 in physical units in our earlier work with
GPBC [6], where we concluded, after a serious investigation
of systematic errors, it is not due to contamination from
excited two-pion states but a simple statistical effects.
Table V summarizes the fit results for the ΔI ¼ 1=2

channel of K → ππ matrix elements Mn;i with n ¼ 0, 1, 2
and i ¼ 1–10. Compared with the ΔI ¼ 3=2 channel most
of the fits are stable and χ2=d:o:f: is fairly small despite the

wider fit ranges. It is interesting to observe the accuracy of
ΔI ¼ 1=2 matrix elements for the ground, first excited and
second excited states. For the ground state, which corre-
sponds to two pions at rest, the matrix elements appear the
most precise among the three. For the first-excite state,
which is the closest among the three to the physical kine-
matics, the matrix elements are well-determined. For the
second excited state, the matrix elements are also somewhat
resolved for several four-quark operators. These observa-
tions suggest that the states have been successfully disen-
tangled by the GEVP. It is thus remarkable that we have
succeeded in extracting the matrix elements with excited
two-pion final states with well-resolved signals.

V. RENORMALIZATION OF FOUR-QUARK
OPERATORS

Renormalization of composite operators is an essential
step for the lattice calculation of weak processes to remove
unphysical divergences, as is the case in general for
quantum field theory, before we can remove the regulator,

FIG. 18. Fit results for ΔI ¼ 1=2 matrix elements M0;2 (upper/left) and M0;6 (upper/right) at tmin
1 ¼ 5a, M1;2 (lower/left) and M1;6

(lower/right) at tmin
1 ¼ 4a with various sets of two-pion operators used for the GEVP procedure. N stands for the number of two-pion

operators in the set of operators and “w σ” indicates the set includes the σ-like operator, while the operator sets indicated by “w/o σ” do
not. Besides the σ-like operator the ππð000Þ operator is always included, while the ππð001Þ, ππð011Þ and ππð111Þ are added to the
operator set in this order until the number of operators reaches N.
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i.e., take the continuum limit a → 0. While the lattice
operators are usually renormalized in a nonperturbative
scheme, the correspondingWilson coefficients are computed
in the MS scheme [7,8]. In order to appropriately construct
the weak Hamiltonian (2) and obtain the corresponding
decay amplitudes, we need to convert the nonperturbatively
renormalized matrix elements to the MS scheme.
As mentioned in Sec. IVAwe use the chiral basis of the

seven four-quark operators Q0
i [13], which has two advan-

tages in nonperturbative renormalization (NPR). First, the
linear independence of operators minimizes the number of
renormalization conditions and gives well-defined inverse
renormalization matrices, which are useful for step scaling
[59]. Second, each operator in this basis transforms as a
specific representation of SUð3ÞL × SUð3ÞR chiral sym-
metry, while the operators Qi in the ten-operator basis in
general combine multiple representations. Out of the seven
operators, one transforms as the (27, 1) representation, four
as (8, 1) and two as (8, 8). The operators in the same
representations still mix with each other but not with the
other operators. As a result, the corresponding renormal-
ization matrices are block diagonal.
We employ a common momentum-space procedure

using the regularization independent symmetric momentum
(RI-SMOM) schemes, in which renormalization conditions
are imposed nonperturbatively. Since the perturbative
matching between the RI-SMOM and MS schemes is
available to the one-loop level [79], RI-SMOM gives
convenient intermediate schemes to obtain the matrix
elements in the MS scheme. We also perform step scaling
as we previously observed a significant, three times
improvement in the estimated systematic errors associated

with the truncation of the perturbative matching to the MS
scheme when raising the renormalization scale from
1.53 GeV to 4 GeV through the step-scaling procedure [6].
This procedure is more important for the present calcu-
lation due to the much coarser 1.0 GeV inverse lattice
spacing versus 1.4 GeV in the previous calculation,
restricting the range of usable energy scales even further.
Since the RI-SMOM renormalization conditions do not
obey the equations of motion and require gauge fixing, we
need to take into account the mixing with extra operators
that vanish by the equations of motion or are gauge variant.
In this work we take the mixing with only quark bilinears
into account since the mixing with irrelevant operators
with higher dimensions such as G1 ¼ s̄γνð1 − γ5ÞDμGμνd,
where Dμ is a covariant-derivative operator and Gμν the
gluon field strength and the space-time indices μ and ν are
summed over, were found to be less significant than other
systematic errors [6].
In this section we give a summary for the renormaliza-

tion procedure and then show the results for the renorm-
alization and step-scaling matrices. The more detailed
procedure is presented in Refs. [6,81].

A. Determination of renormalization matrix

Because of mixing with lower dimensional operators
the four-quark operators are power divergent, and this
needs to be subtracted before a multiplicative renormaliza-
tion condition to remove the remaining logarithmic diver-
gence can be imposed. We consider three bilinear operators

S1 ¼ s̄γ5d, S2 ¼ s̄ =⃗D γ5d and S3 ¼ s̄ =⃖D γ5d, where the
arrow indicates the direction of the discrete covariant
derivative D. The subtracted four-quark operators are
written as

Q0sub;lat
i ¼ Q0lat

i þ
X
j∈ C

bi;jSlatj ; ð47Þ

where we have added the superscript ‘lat’ to indicate
bare operators and the sum over j runs over the set
C ¼ f1; 2; 3; 5; 6; 7; 8g. The subtraction coefficients bi;j
are determined by the condition

Pβα
2;jðp1; p2Þhsð−p1Þd̄ðp2ÞQ0sub;lat

i ðqÞiαβamp ¼ 0; ð48Þ

where the indices α and β are combined spin and color
indices and the projection operators P2;j are given in
Sec. 7.2.6 of Ref. [81]. The conditions (48) to determine
the subtraction coefficients depend on external momenta
p1, p2 and their difference q ¼ p1 − p2. We use these
momenta for the multiplicative renormalization condition
as well, and they determine the renormalization scale μ. In
the case of RI-SMOM schemes they satisfy

p2
1 ¼ p2

2 ¼ q2 ≡ μ2: ð49Þ

TABLE V. Fit results for the ΔI ¼ 1=2 channel of the K → ππ
matrix elements with the three lowest energy two-pion states and
with each four-quark operator. For the ground state (n ¼ 0) we
choose the fit range ðtmin

1 ; tmin
2 Þ ¼ ð5a; 4aÞ for each four-quark

operator. For the first excited state (n ¼ 1) we choose the fit range
ðtmin

1 ; tmin
2 Þ ¼ ð4a; 4aÞ for each four-quark operator. For the

second excited state (n ¼ 2) we choose the fit range ðtmin
1 ; tmin

2 Þ ¼
ð3a; 4aÞ for each four-quark operator. The first error is statistical
and the following error represents the systematic error due to the
potential contamination from kaon excited states. The values of
χ2=d:o:f: are shown in the square brackets.

i a3M0;i a3M1;i a3M2;i

1 0.00120(20)[1.2] 0.0024(13)[1.2] −0.0017ð29Þ[0.7]
2 −0.00161ð22Þ[0.5] −0.0061ð13Þ[0.7] −0.0070ð25Þ[0.4]
3 0.00021(58)[0.7] −0.0045ð38Þ[0.4] −0.0124ð78Þ[0.4]
4 −0.00268ð62Þ[0.4] −0.0118ð40Þ[0.6] −0.0157ð67Þ[0.3]
5 0.00582(52)[1.1] 0.0134(34)[0.5] −0.0007ð83Þ[0.2]
6 0.0175(10)[0.8] 0.0597(66)[0.3] 0.045(14)[0.7]
7 −0.02863ð24Þ[0.9] −0.0367ð13Þ[0.6] −0.0232ð34Þ[0.8]
8 −0.08944ð50Þ[1.6] −0.1115ð28Þ[0.6] −0.0565ð93Þ[1.9]
9 0.00158(22)[0.4] 0.0049(14)[1.1] 0.0057(24)[0.8]
10 −0.00118ð19Þ[1.0] −0.0037ð12Þ[0.3] −0.0007ð29Þ[0.6]

THOMAS BLUM et al. PHYS. REV. D 108, 094517 (2023)

094517-22



After the subtractions we renormalize the four-quark
operators

Q0RI
i ðμÞ ¼

X
j∈ C

ZRI←lat
ij ðμÞQ0sub;lat

j ; ð50Þ

where the superscript ‘RI’ is a generic expression of an
RI-SMOM scheme. The renormalized operators Q0RI

i ðμÞ
are defined by the conditions

ZqðμÞ−2Pβαδγ
4;m ½ΓRI

im�αβγδðp1; p2Þ ¼ Fim; ð51Þ

½ΓRI
im�αβγδðp1; p2Þ ¼

�
Em

X
x

e2iqxQ0RI
i ðxÞ

�
αβγδ

amp

; ð52Þ

where Zq is the quark field renormalization factor, and Fim

is the free-field expression corresponding to the left-hand
side. Em denotes a product of external quark fields,

E1;2;4;5 ¼ sð−p1Þd̄ðp2Þuð−p1Þūðp2Þ; ð53Þ

E3;6;7 ¼ sð−p1Þd̄ðp2Þ
X

q¼u;d;s

qð−p1Þq̄ðp2Þ: ð54Þ

We consider two different schemes by employing differ-
ent projection operators, which have the following spin
structure:

γμ scheme∶ P4;m ∼�γμ ⊗ γ5γμ − γ5γμ ⊗ γμ;

=q scheme∶ P4;m ∼�=q ⊗ γ5=q − γ5=q ⊗ =q;

for the renormalization procedure with the parity-odd part
of the four-quark operators. The sign � and color structure
depend on m. The explicit forms of these projection
operators are given in Sec. 3.3.2 of Ref. [82].
To calculate ZqðμÞ, we first compute ZA=Zq from the

RI-SMOM renormalization condition for the local axial
current. We can thus obtain ZqðμÞ using ZA computed from
the ratio of the pion-to-vacuum matrix elements of the local
and conserved currents. While we can also use the SMOM
renormalization ZV of the vector current to determine Zq,
we use ZA ¼ 0.73457ð11Þ [63] in this work because of an
advantage in the statistical precision.
Here we can consider the γμ and =q schemes for determi-

nation ofZq andZRI
ij .We define the SMOMðA;BÞ scheme as

the scheme that employs the A scheme for the projectors
P4 and the B scheme for the projector to determine Zq.
While there are four combinations, we only consider the
SMOMðγμ; γμÞ and SMOMðq; qÞ schemes because we have
observed that the nonperturbative running in these schemes is
better described by perturbation theory than in the other two
schemes [83].
On the 243 ensemble, we calculate the vertex functions at

the SU(3) symmetric valence quark mass amq ¼ 0.01.
While renormalization schemes are usually defined in the
chiral limit, the vertex functions were found to depend on
the quark mass very little for SMOM ΔF ¼ 2 operators
[84]. Therefore we calculate NPR at the single finite
quark mass. We choose two renormalization scales μ ¼
μ1 ≈ 1.3 GeV and μ ¼ μ2 ≈ 1.5 GeV. Table VI shows a
summary of these scales and the corresponding renormal-
ization factors Zq for quark fields in the γμ and =q schemes.
The higher scale μ2 corresponds to the intermediate scale
chosen in Ref. [6] in physical units.
Table VII shows the 7 × 7 renormalization matrix for the

SMOMðq; qÞ scheme at μ ¼ μ1. While the sea light and
strange quark masses on the 243 ensemble are 0.0017 and
0.085 in lattice units, respectively, we set the valence quark
mass to 0.01 for both. While the renormalization matrix

TABLE VI. Summary for chosen renormalization scales and
corresponding renormalization factors of the quark field with
both γμ and =q schemes on the 243 ensemble.

μ1 μ2

1.2825 1.4810

Lattice units [GeV] 1.312ð3Þ 1.515ð3Þ
p1 × ð L

2πÞ (2, 2, 4, 0) (0, 4, 4, 0)
p2 × ð L

2πÞ ð−2; 4; 2; 0Þ (4, 4, 0, 0)

Z
γμ
q 0.79232ð12Þ 0.79600ð12Þ

Zq
q 0.88660ð16Þ 0.88459ð15Þ

TABLE VII. Renormalization matrix with the chiral basis on the 243 ensemble at the renormalization scale μ1 in
the SMOMðq; qÞ scheme.

1 2 3 5 6 7 8

1 0.52424 (16) 0 0 0 0 0 0
2 0 0.3937 (58) −0.3691 ð60Þ −0.0056ð25Þ 0.0042 (13) 0 0
3 0 0.196 (12) 1.022 (12) 0.0024 (48) −0.0055ð27Þ 0 0
5 0 −0.018 ð35Þ −0.025 ð31Þ 0.576 (13) −0.1015ð63Þ 0 0
6 0 −0.051 ð14Þ −0.089 ð16Þ −0.0727ð43Þ 0.4768 (33) 0 0
7 0 0 0 0 0 0.56587 (17) −0.104786ð41Þ
8 0 0 0 0 0 −0.078889ð57Þ 0.46935 (19)
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should in principle be extrapolated to the chiral limit, we
neglect the systematic error due to these finite masses
because the renormalization scales are relatively large and
the mass effect is expected to be small. The results with
different pairs of the scheme and scale are given in
Table XXVIII in Appendix D.

B. Step scaling

Since our lattice ensemble is coarse, the renormalization
window problem needs to be addressed; the renormaliza-
tion scales μ1 and μ2 used in the present work are not high
enough to perform a precise perturbative matching but
renormalizing at higher scales may lead to significant
discretization errors. To bypass this problem we employ
the step-scaling technique [59] using a finer 323 × 64
lattice ensemble which we call the 32Ifine ensemble.
Details are given in Ref. [47], but we note that the inverse
lattice spacing and pion mass on this ensemble are
3.148(17) GeV and 371(5) MeV, respectively. We choose
the valence quark mass amq ¼ 0.0047, which is the same
as the sea light quark mass. As noted above we expect the
systematic error due to the finite mass is small since it was
found to be the case for the ΔF ¼ 2 four-quark operators in
the SMOM schemes [84].
On this fine lattice we calculate the step-scaling matrix

ΣRIðμ0; μÞ ¼ ZRI←latðμ0ÞZRI←latðμÞ−1; ð55Þ

where the indices for the matrices are suppressed, and we
suppose μ0 > μ and obtain the four-quark operators renor-
malized at a higher scale,

Q0RI
i ðμ0Þ ¼

X
j∈ C

ΣRI
ij ðμ0; μÞQ0RI

j ðμÞ: ð56Þ

While the step-scaling matrix in principle needs to be
extrapolated to the continuum limit, we use a single lattice
ensemble. In Ref. [84], bilinear and VV þ AA step-scaling
functions have displayed modest discretization effects at
similar scales in lattice units. We therefore anticipate these
nonremoved discretization errors are not dominant.
Table VIII shows a summary of the scales used for the

calculation of the renormalization matrices on the 32Ifine
lattice ensemble. The corresponding Zq=ZA is also shown
for each scheme and scale. The reason for showing Zq=ZA

instead of Zq shown in Table VI is that the purpose of using
the 32Ifine ensemble is to calculate the step-scaling matrix,
which is independent of ZA, and that Zq=ZA is calculated
more directly without inputting ZA separately. Note that
although the fourth elements of the external momenta p1

and p2 are for the time direction and their actual unit is
hence 2π=LT ¼ π=L, they are shown in units of 2π=L in
the table. Note also that we identify the lower two scales as
μ1 and μ2, although they are not identical to the ones listed
in Table VI for the 243 ensemble. Namely we intend to
perform the step scaling (56) with μ ¼ μ1; μ2 and μ0 ¼ μh
neglecting the impact of the difference in these scales
between the two ensembles. The difference in μ1 is larger
by about 6%, which would only cause a systematic error of
Oðαs

2π × 6%Þ on the renormalized matrix element after the
step scaling because evolution from μ to μ0 scales like
1þOðαs

4π lnðμ
0
μÞ2Þ.

Table IX shows the result for the step-scaling matrix
from μ1 to μh in the SMOMðq; qÞ scheme calculated on the
32Ifine lattice. We also show the corresponding renorm-

alization matrix ΣSMOMð=q;=qÞðμh; μ1ÞZSMOMð=q;=qÞ←latðμ1Þ after
the step scaling in Table X. The results with different pairs
of the scheme and lower scale are shown in Table XXIX for
the step-scaling matrix and in Table XXX for the renorm-
alization matrix multiplied with the step-scaling matrix.

TABLE VIII. Summary for chosen renormalization scales and
corresponding renormalization factors of the quark field with
both γμ and =q schemes divided by ZA on the 32Ifine ensemble.

μ1 μ2 μh

0.39270 0.48096 1.2725

Lattice units [GeV] 1.236(7) 1.514(8) 4.006(22)

p1 × ð L
2πÞ (1, 1, 1, 1) (1, 1, 2, 0) (4, 4, 3, 1)

p2 × ð L
2πÞ (0, 0, 0, 2) (0, 1, 1, 2) (0, 1, 4, 5)

Z
γμ
q =ZA 1.03455(36) 1.03518(21) 1.03258(3)

Zq
q=ZA 1.16074(96) 1.14096(55) 1.07070(7)

TABLE IX. Step-scaling matrix from μ1 to μh in the SMOMðq; qÞ scheme calculated on the 32Ifine ensemble.

1 2 3 5 6 7 8

1 0.87586(45) 0 0 0 0 0 0
2 0 1.33(12) 0.09(12) −0.004ð39Þ 0.055(30) 0 0
3 0 −0.536ð77Þ 0.468(78) −0.000ð26Þ −0.002ð23Þ 0 0
5 0 0.03(42) −0.48ð42Þ 0.92(13) 0.42(10) 0 0
6 0 0.15(23) 0.07(25) 0.039(69) 1.921(61) 0 0
7 0 0 0 0 0 0.97336(57) 0.2804(13)
8 0 0 0 0 0 0.1047(22) 1.9670(61)
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C. Perturbative matching

While the nonperturbative renormalization procedure
described above removes the ultraviolet divergences of
four-quark operators, and we can take the continuum limit
of matrix elements of the renormalized four-quark operators,
it is also necessary to convert them into the MS scheme in
order to appropriately construct the weak Hamiltonian and
obtain the K → ππ amplitudes because the corresponding
Wilson coefficients are calculated in the MS scheme.
We perform the perturbative matching from RI-SMOM

schemes to the MS scheme

Q0MS
i ðμÞ ¼

X
j∈ C

RMS←RI
ij ðμÞQ0RI

j ðμÞ; ð57Þ

where we suppose μ to be the high-scale μh after the step
scaling.
We use the one-loop matching matrices between the MS

and RI-SMOM schemes given in Ref. [79]. We use the
strong coupling constant

α
Nf¼3
s ðμh ≈ 4.0 GeVÞ ¼ 0.2167ð31Þ; ð58Þ

which is determined as follows. We first input the Particle

Data Group (PDG) value α
Nf¼5
s ðMZÞ ¼ 0.1179ð9Þ [4]

given at the Z pole in the five-flavor theory and perform
its scale evolution with the four-loop β function [85,86],
changing the number Nf of active quark flavors from 5 to 4
at the bottom threshold. From this procedure, we obtain the

four-flavor ΛNf¼4

QCD parameter. Using this parameter as input,
we use two-loop scale evolution to the charm threshold
withNf ¼ 4 and, again, two-loop evolution withNf ¼ 3 to

obtain α
Nf¼3
s given in Eq. (58) which is consistent with

the order of the perturbative calculation of the Wilson
coefficients.
Table XI shows the perturbative matching matrices from

the SMOMðγμ; γμÞ and SMOMðq; qÞ schemes to the MS
scheme.

TABLE X. Renormalization matrix with the chiral basis on the 243 ensemble at the renormalization scale μh in the
SMOMðq; qÞ scheme calculated by applying the step-scaling matrix in Table IX to the renormalization matrix at
lower scale μ1 in Table VII.

1 2 3 5 6 7 8

1 0.45916(28) 0 0 0 0 0 0
2 0 0.539(68) −0.409ð89Þ −0.014ð23Þ 0.032(15) 0 0
3 0 −0.119ð45Þ 0.676(56) 0.004(15) −0.006ð12Þ 0 0
5 0 −0.12ð24Þ −0.56ð30Þ 0.498(79) 0.110(52) 0 0
6 0 −0.03ð14Þ −0.16ð19Þ −0.118ð41Þ 0.912(32) 0 0
7 0 0 0 0 0 0.52867(38) 0.02963(61)
8 0 0 0 0 0 −0.0959ð15Þ 0.9123(30)

TABLE XI. Perturbative matching matrix from the SMOMðγμ; γμÞ (upper) and SMOMðq; qÞ (lower) schemes to
the MS scheme in the chiral basis calculated at one-loop level. The error from the uncertainty of αs in Eq. (58) is
omitted because the truncation uncertainty, whose effect on the K → ππ amplitudes is considered in Sec. VI D, is
expected to be more significant.

1 2 3 5 6 7 8

1 1.00365 0 0 0 0 0 0
2 0 0.99817 0.00548 0 0 0 0
3 0 0.00165 0.98923 0.00128 −0.00383 0 0
5 0 0 0 1.00074 −0.00223 0 0
6 0 −0.02874 −0.06706 −0.01825 1.04878 0 0
7 0 0 0 0 0 1.00074 −0.00223
8 0 0 0 0 0 −0.02783 1.07752

1 0.99216 0 0 0 0 0 0
2 0 1.04531 0.08480 0 0 0 0
3 0 −0.07768 0.85013 0.00128 −0.00383 0 0
5 0 0 0 1.00074 −0.00223 0 0
6 0 −0.02874 −0.06706 −0.00100 0.99705 0 0
7 0 0 0 0 0 1.00074 −0.00223
8 0 0 0 0 0 −0.01058 1.02579
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D. Systematic uncertainty

These renormalization processes can create systematic
errors because of the mixing with excluded operators, the
discretization error on the renormalization condition and
the truncation of perturbative matching. It was found in the
previous work [6] that these sources of systematic errors
are less significant than some major ones such as Wilson
coefficients. However it should be noted that the inves-
tigation on the systematic errors was done on a finer lattice
with the inverse lattice spacing of a−132ID ≈ 1.38 GeV, where
the subscript ‘32ID’ denotes the ensemble used in Ref. [6],
and that one of the intermediate scales we employ in this
work is the same as the one used in the previous work in
physical units, μ2 ≈ 1.48a−1 ≈ 1.11a−132ID. This is because
we need to match the momenta p1 and p2 in the
renormalization conditions to ensure the renormalized
matrix elements on both ensembles are on the same scaling
trajectory for the continuum extrapolation. While we do not
take the continuum limit at this stage, it is important to
verify whether μ2 is a good choice for the continuum limit,
since we plan to take it in the near future. In summary the
renormalization conditions in this work are imposed at
relatively high scales in lattice units and therefore it is
important to revisit the investigation of the systematic error
from NPR.
Since the systematic error considered in this context is a

discretization effect in the renormalization conditions, it is
reasonable to isolate the various components from con-
tinuum perturbation theory. Thus, we analyze the matrix

IRIðμ2; μ1Þ ¼ ZRI←latðμ2Þ−1ΣRIðμ2; μ1ÞZRI←latðμ1Þ; ð59Þ

which is computed purely on the lattice. Here the Z
matrices are computed on the 243 lattice and the step-
scaling matrix Σ on the 32Ifine lattice. Table XII shows
the results for IRIðμ2; μ1Þ for the SMOMðγμ; γμÞ and

SMOMðq; qÞ schemes. The difference between this matrix
and the 7 × 7 unit matrix should represent the systematic
error in the nonperturbative renormalization. While most
of the off-diagonal elements are consistent with zero, many
of the diagonal elements significantly deviate from one.

Especially I
SMOMðγμ;γμÞ
66 and I

SMOMðγμ;γμÞ
88 show almost 30%

deviations from unity. If the systematic errors on the Z
matrix at μ1 and μ2 are similar, the corresponding renorm-
alization matrix would have roughly a 15% systematic
error. However, we expect the systematic error at μ2 could
be significantly larger than at μ1 ≈ 1.28a−1 because a
similar investigation made in Sec. VII. G in Ref. [6]
indicates a much smaller systematic error at μ2 ≈
1.11a−132ID. We discuss the actual impact of this difference
on the K → ππ amplitudes and quote the corresponding
systematic error in the following section.

VI. K → ππ AMPLITUDES AND ε0

The K → ππ amplitudes AI ¼ hðππÞIjHW jKi with
isospin-I two-pion final state and the weak Hamiltonian
given in Eq. (2) can be calculated by

AI ¼
X10
i¼1

CMS
i ðμhÞMMS

I;i ðμhÞ; ð60Þ

where we define

CMS
i ðμhÞ ¼

GFffiffiffi
2

p V�
usVud½zMS

i ðμhÞ þ τyMS
i ðμhÞ� ð61Þ

with the Wilson coefficients zMS
i ðμhÞ and yMS

i ðμhÞ in the
MS scheme at the scale μh in the three-flavor theory [7,8].

The MS matrix elements MMS
I;i ðμhÞ with the ten-operator

basis can be expressed in terms of the chiral-basis RI matrix

TABLE XII. Matrix IRIðμ2; μ1Þ for both the SMOMðγμ; γμÞ (upper) and SMOMðq; qÞ (lower) schemes. These
matrices should be the unit matrix if no systematic errors exist.

1 2 3 5 6 7 8

1 1.11947(41) 0 0 0 0 0 0
2 0 1.05(12) −0.11ð11Þ 0.046(54) 0.019(36) 0 0
3 0 −0.040ð57Þ 1.138(55) 0.031(27) −0.000ð19Þ 0 0
5 0 −0.15ð35Þ −0.11ð34Þ 1.20(16) 0.12(12) 0 0
6 0 0.07(15) 0.05(15) −0.001ð59Þ 1.291(47) 0 0
7 0 0 0 0 0 1.11215(69) 0.0694(11)
8 0 0 0 0 0 −0.0058ð11Þ 1.2851(34)

1 0.89666(48) 0 0 0 0 0 0
2 0 1.05(24) −0.29ð25Þ 0.001(77) 0.036(52) 0 0
3 0 0.03(12) 0.82(12) 0.020(40) −0.002ð27Þ 0 0
5 0 0.16(72) −0.84ð74Þ 0.97(22) 0.13(15) 0 0
6 0 0.07(30) −0.25ð31Þ 0.024(91) 1.034(58) 0 0
7 0 0 0 0 0 0.89855(64) 0.0534(11)
8 0 0 0 0 0 −0.0029ð19Þ 1.0228(37)
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elements M0RI
I;kðμhÞ and the perturbative matching matrix

RMS←RI
jk ðμhÞ,

MMS
I;i ðμhÞ¼

X
j;k∈C

ðTijþΔTMS
ij ÞRMS←RI

jk ðμhÞM0RI
I;kðμhÞ; ð62Þ

where the 10 × 7 matrices T and ΔTMS are the leading-
order (LO) and next-to-leading order (NLO) contributions
to the conversion matrix from the chiral seven-operator
basis to the physical ten-operator basis in the MS scheme
and were given in Eqs. (59) and (65) of Ref. [79],
respectively. We use the strong coupling constant given

in Eq. (58) to evaluate ΔTMS. The indices j and k run over
the set C ¼ f1; 2; 3; 5; 6; 7; 8g. Although the ΔI ¼ 3=2
(I ¼ 2) channel is not contributed from the four QCD
penguin operators, and the chiral seven-operator basis is not
required, we put zero in the corresponding irrelevant matrix
elements and keep the formula consistent with the ΔI ¼
1=2 (I ¼ 0) channel.
Note that the above formulas are valid for the on shell

matrix elements, while none of the two-pion states on our
lattice ensemble has the same energy as the kaon mass.
Thus, our lattice results for matrix elements need to be
interpolated to the physical kinematics. We spend the first
two subsections for the calculation of the renormalized on
shell matrix elements using the results obtained in former
sections. Then we quote our results for the on shellK → ππ
amplitude and test theΔI ¼ 1=2 rule after briefly providing

the numerical values of Wilson coefficients zMS
i ðμhÞ and

yMS
i ðμhÞ. Lastly we quote our result for Re(ε0=ε).

A. Matrix elements in the chiral basis
with unphysical kinematics

We now explicitly introduce the isospin index I of the
final two-pion state to express the matrix elementsMlat

I;n;i on
the lattice, although it was omitted in Sec. IV. Here we also
introduce the superscript ‘lat’ indicating the unrenormal-
ized matrix elements. In this subsection we convert these
matrix elements obtained in Sec. IV to those in the chiral
seven-operator basis, M0lat

I;n;j.
We follow the procedure applied in Ref. [6] to optimize

the statistical precision of the chiral-basis matrix elements.
While the matrix elements in the ten-operator basis are
uniquely expressed in terms of those in the chiral basis,

Mlat
I;n;i ¼

X
j∈ C

TijM0lat
I;n;j ð63Þ

with the known matrix T, the inverse problem to determine
M0lat

I;n;j is ill-defined. In other words, there are infinite
number of combinations of the matrix elements in the
ten-operator basis to express those in the chiral basis.
Because of the violation of the Fierz symmetry due to the

stochastic A2A method, the statistical precision of the
chiral-basis matrix elements depends on the combinations
of the ten matrix elements and can be optimized by a
correlated χ2 fit to Eq. (63). We perform the fit for each
isospin channel and each two-pion final state labeled by n
individually. For the ΔI ¼ 1=2 channel, we use the ten
values of matrix elements, i ¼ 1; 2;…; 10, for the fit to
determine the seven values ofM0lat

0;n;j for j∈ C. For the ΔI ¼
3=2 channel there is no contribution from the QCD penguin
operators. Out of the remaining six matrix elements with
the relevant operators, Mlat

ðI¼Þ2;n;9 and Mlat
2;n;10 are obtained

from the identical contractions as Mlat
2;n;1 and Mlat

2;n;2,
respectively, as seen in Appendix B, and these pairs of
matrix elements are therefore 100% correlated. We hence
use only four matrix elements, Mlat

2;n;1, M
lat
2;n;2, M

lat
2;n;7 and

Mlat
2;n;8, for the fit to determine the three linearly indepen-

dent matrix elements M0lat
2;n;j for j ¼ 1, 7, 8.

The results are summarized in Table XIII for the both
I ¼ 2 and 0 two-pion final states of the three lowest energy
levels n ¼ 0, 1, 2.

B. Renormalized matrix elements
with physical kinematics

We renormalize these chiral-basis matrix elements non-
perturbatively to the RI-SMOM schemes and perform a
step scaling,

M0RI
I;n;jðμhÞ ¼

X
k;l∈ C

ΣRI
jkðμh; μÞZRI←lat

kl ðμÞFI;nM0lat
I;n;l: ð64Þ

In Sec. V we obtained the results for the renormalization
matrix ZRI←lat

kl ðμÞ and the step-scaling matrix ΣRI
jkðμh; μÞ for

μ ¼ μ1; μ2 and for two RI schemes, SMOMðγμ; γμÞ and
SMOMðq; qÞ. We also perform a finite-volume correction
using the LL factors FI;n obtained in Sec. III. Here the
isospin and state indices I and n, respectively, which are
now explicitly added to the LL factor, are not summed over.

TABLE XIII. Unrenormalized matrix elements a3M0lat
I;n;i with

the three lowest two-pion states (n ¼ 0, 1, 2) and the four-quark
operators in the chiral basis.

I i a3M0 lat
I;0;i a3M0 lat

I;1;i a3M0 lat
I;2;i

1 0.001444(46) 0.00504(49) 0.0105(13)
2 7 0.015392(99) 0.01218(19) 0.01319(61)

8 0.04979(30) 0.04378(41) 0.0480(10)

1 −0.00002ð42Þ 0.0029(26) 0.0030(59)
2 −0.00120ð16Þ −0.0028ð11Þ −0.0004ð24Þ
3 0.00164(19) 0.0057(12) 0.0059(19)

0 5 −0.00589ð52Þ −0.0136ð34Þ −0.0019ð80Þ
6 −0.0175ð10Þ −0.0596ð66Þ −0.049ð14Þ
7 0.02861(23) 0.0368(13) 0.0232(34)
8 0.08940(50) 0.1112(28) 0.0555(91)

ΔI ¼ 3=2 AND ΔI ¼ 1=2 CHANNELS OF K → ππ DECAY AT THE … PHYS. REV. D 108, 094517 (2023)

094517-27



Now we interpolate these results to the physical kin-
ematics and determine the on shell matrix elements
M0RI

I;j ðμhÞ, which are expressed without a state index. For
the ΔI ¼ 3=2 channel the behavior of the K → ππ matrix
elements in the unphysical-kinematics region encompass-
ing the Eππ-dependence was investigated using ChPT
in Ref. [14], which indicates the matrix elements in the
rest frame receive the same order of contributions from
Eππ-independent, Eππ and E2

ππ terms in units of mK .
Because of many unknown low-energy constants, the
coefficients for these terms are not known. Ideally, we
would perform this interpolation with at least three data
points in order to account for these different contributions.
However we expect involving the second excited two-pion
state with the energy 700 MeV for I ¼ 0 and 800 MeV for
I ¼ 2 in the interpolation would unnecessarily increase the
systematic error mainly because this energy level is well
beyond the range that any ChPT-inspired interpolation
function might be expected to be reliable. Also this energy
region is above the four-pion threshold where the LL factor
is not a strictly accurate factor to normalize the finite-
volume two-pion state to the infinite-volume one. For these
reasons we only use the off shell matrix elements with the
ground [M0RI

2;0;jðμhÞ] and first-excited [M0RI
2;1;jðμhÞ] two-pion

final states to determine the matrix elements at the on shell
point. While the energy of the first excited state is also
above the four-pion threshold for this isospin channel,
some earlier works suggest that the systematic error on the
Lüscher formalism for scattering phase shifts, which is
closely related to the LL factor, is not significant when the
energy is slightly above the four-pion threshold [43,74–76].
While further comments on the ΔI ¼ 1=2 channel are

given in the next paragraph, we perform two interpolations
with the following functions for both ΔI ¼ 3=2 and
ΔI ¼ 1=2 channels:

M0RI
I;n;jðμhÞ ¼ M0RI;lin

I;j ðμhÞ þ cRI;linI;j
EI;n −mK

mK
; ð65Þ

M0RI
I;n;jðμhÞ ¼ M0RI;quad

I;j ðμhÞ þ cRI;quadI;j

E2
I;n −m2

K

m2
K

; ð66Þ

where we input the kaon mass mK and isospin-I two-pion
energies EI;n obtained in Sec. III and the off shell matrix
elements M0RI

I;n;jðμhÞ obtained in Eq. (64) to determine

the parameters M0RI;lin=quad
I;j ðμhÞ and clin=quadI;j . We use

M0RI;lin
I;j ðμhÞ as our primary result for M0RI

I;j ðμhÞ for calcu-

lation of the MS matrix elements MMS
I;i ðμhÞ in Eq. (62),

while M0RI;quad
I;j ðμhÞ is used to estimate the systematic error

from the interpolation (see Appendix C). We quote the
systematic error due to the assumption of the somewhat
incomplete functions (65) and (66) by taking the difference
between M0RI;lin

I;j ðμhÞ and M0RI;quad
I;j ðμhÞ.

For the ΔI ¼ 1=2 channel, since the mixing contribu-
tion from lower-dimensional operators that vanish by the
equations of motion is subtracted in a different way for
determining the unrenormalized matrix elements in
Sec. IV C and for calculating the renormalization matrix
in Sec. V, multiplying the renormalization matrix with the
matrix elements may not eliminate the logarithmic diver-
gence. This remaining divergence depends on the two-
pion energy and vanishes at the on shell point. Therefore
the on shell K → ππ amplitude is still physical as long
as the interpolation to the on shell point is successfully
done. We perform the interpolations based on the same
assumptions as for the ΔI ¼ 3=2 channel using Eqs. (65)
and (66).
Figure 19 shows some results for the linear interpolation

(65) of the matrix elements in the SMOMðq; qÞ scheme at
μh to the physical kinematics. As noted above the only
ground and first-excited two-pion final states are used for
the interpolation. The systematic error due to the inter-
polation is estimated as the difference from the quadratic
interpolation (66) and expressed by the yellow band. For
the ΔI ¼ 1=2 channel since the energy E0;1 of the first-
excited two-pion state is close to mK and the disconnected
diagram increases the statistical error, the systematic error
due to the interpolation in this isospin channel is small
compared to the statistical error (green band). Table XIV
summarizes the results for all interpolation parameters
in Eqs. (65) and (66) for the SMOMðq; qÞ and the
SMOMðγμ; γμÞ schemes with step scaling performed from
μ ¼ μ1; μ2 to μh before the interpolations.
Table XV shows the MS matrix elements MMS

I;i ðμhÞ
obtained through various intermediate schemes and scales.
The result should in principle be independent of the
intermediate scheme and scale and the difference seen
for different intermediate schemes or scales is because of
the systematic error discussed in Sec. V D. We see
significant difference in well-resolved matrix elements
obtained through the SMOMðγμ; γμÞ scheme at μ2 from
those through different scheme or scale. We attribute this
deviation to finite-lattice spacing errors in Sec. V D. For the
ΔI ¼ 1=2 channel, we also show the earlier results
obtained from the GPBC calculation [6] carried out on a
smaller lattice spacing a−132ID ≈ 1.38 GeV for comparison.
Ignoring the results through the SMOMðγμ; γμÞ scheme at
μ2, which may have significant systematic error as men-
tioned above, most of the results are consistent between
PBC and GPBC but somewhat significant difference is
observed in the matrix element of Q6. While the difference
could be due to the finite-lattice spacing error, the statistical
error is not small enough to conclude at this stage. We
choose the matrix elements obtained through the
SMOMðq; qÞ scheme at μ1 to calculate the central value
of the amplitudes. The corresponding covariance matrix is
tabulated in Tables XVI and XVII for the ΔI ¼ 3=2 and
ΔI ¼ 1=2 channels, respectively.
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C. Wilson coefficients

We follow the procedure explained in Ref. [6] for comput-
ing the Wilson coefficients using the NLO perturbative
expansiongiven inRef. [7,8]. TheWilson coefficients depend
on many Standard-Model parameters that accommodate the
effects of higher-energy physics and were summarized in
Table XI of Ref. [6]. Since some of the values of these
parameters have been updated [4], we update the Wilson
coefficients accordingly employing the latest values of these
parameters. Table XVIII summarizes theWilson coefficients.
Here we use the value of αs given in Eq. (58).
Some of the CKM matrix elements have also been

updated [4], and we therefore use their updated values
and the parameter τ ¼ −V�

tsVtd=V�
usVud in Eq. (61). The

new value of τ ¼ 0.001473ð67Þ − 0.000640ð33Þi is deter-
mined by using the Wolfenstein parametrization expanded
to the eighth order with the parameters given in Ref. [4].

D. K → ππ amplitudes

We use Eq. (60) to determine the K → ππ amplitudes AI

with the Wilson coefficients and the MS matrix elements
given in the previous subsections. It is known that the
matrix elements of different four-quark operators contribute
in different ways to ReðAIÞ and ImðAIÞ. In this subsection
we discuss these different compositions as well as the final
results for each ReðAIÞ and ImðAIÞ.
The contributions from each MS matrix element at μh to

A2 [the summands on the right-hand side of Eq. (60) for
I ¼ 2] and their total value are summarized in Table XIX
for the real part and in Table XX for the imaginary part. The
results obtained through multiple intermediate schemes and
scales are presented. Re(A2) receives the dominant con-
tribution from Q2 with 20% cancellation from the sub-
dominant contribution of Q1. Im(A2) is contributed mainly
by Q8 with 30% cancellation from Q7 and Q9.

FIG. 19. Examples of interpolation results for the SMOMðq; qÞmatrix elements to the physical kinematics. The renormalization scale
is nonperturbatively raised from μ1 to μh by a step scaling. Matrix elements of Q0

1 (upper/left) and Q0
8 (upper/right) are shown for the

ΔI ¼ 3=2 channel, while those ofQ0
1 (lower/left) andQ

0
6 (lower/right) are shown for the ΔI ¼ 1=2 channel. We use the matrix elements

with the ground and first-excited two-pion states (filled circles) for the interpolation, while those with the second excited two-pion state
(unfilled circle) are excluded because of the expected inaccuracy of the LL factor at the energy level far above the four-pion threshold.
The solid red line, green band and diamond represent the result for the linear interpolation in Eq. (65), while the systematic uncertainty
from this assumption is estimated as the difference from the quadratic interpolation in Eq. (66) and expressed by the yellow band, which
is totally hidden behind the green band of statistical error for the ΔI ¼ 1=2 channel.

ΔI ¼ 3=2 AND ΔI ¼ 1=2 CHANNELS OF K → ππ DECAY AT THE … PHYS. REV. D 108, 094517 (2023)

094517-29



The same breakdowns for the I ¼ 0 two-pion final state
are tabulated in Tables XXI and XXII for ReðA0Þ and
ImðA0Þ, respectively. ReðA0Þ receives the dominant con-
tribution from the matrix element of Q2. It is interesting to
observe that Q2, which accounts for most of ReðA0Þ, is the
original operator for weak interaction, i.e., s → uW−

followed by W− → ūd. Thus, what was required to quan-
titatively understand ReðA0Þ was a proper nonperturbative
framework for calculating the K → ππ matrix element of
Q2. As in the previous lattice calculation [6] we again find
the QCD penguin operator Q6 [87] only plays a subdomi-
nant (∼20%) role in ReðA0Þ, which is significantly can-
celed by another subdominant contribution of Q1. On the
other hand, ImðA0Þ is dominated by the matrix element
of Q6. The contributions from the other operators shift
the result by 15%. This observation about ImðA0Þ is also
consistent with our previous GPBC calculation [6].
There is a significant dependence on the intermediate

renormalization procedure as observed in the NPR study
(Sec. V D) and in the renormalized matrix elements
(Sec. VI B). Such a large difference was not observed in
the GPBC work [6] on a finer lattice of a−132ID ≈ 1.38 GeV

and is likely due to finite-lattice spacing error as it appears
more significant for μ2 ≈ 1.5 GeV. The difference is taken
into account as a part of systematic uncertainty dis-
cussed below.
We choose the results obtained through the SMOMðq; qÞ

intermediate scheme and scale μ1 as the central value of our
final results, which read

ReðA2Þ ¼ 1.74ð15Þð48Þ × 10−8 GeV; ð67Þ

ImðA2Þ ¼ −5.91ð13Þð1.75Þ × 10−13 GeV; ð68Þ

ReðA0Þ ¼ 2.84ð57Þð87Þ × 10−7 GeV; ð69Þ

ImðA0Þ ¼ −8.7ð1.2Þð2.6Þ × 10−11 GeV; ð70Þ

and are consistent with our earlier works, Ref. [19] for A2

and Ref. [6] for A0. The first error is statistical, while the
second error is the combined systematic error, whose
breakdown is summarized in Table XXIII. The NPR error
is estimated as half of the maximum difference from the
other sets of intermediate scheme and scale. The reason for

TABLE XIV. Results for interpolations of infinite-volume matrix elements in the chiral basis to the physical kinematics. Results
renormalized in the multiple renormalization schemes, SMOMðγμ; γμÞ and SMOMðq; qÞ, after a step scaling from the low scales
μ ¼ μ1 ≈ 1.3 GeV and μ2 ≈ 1.5 GeV to the high scale μh ≈ 4.0 GeV are shown in units of GeV3. The superscript X specifies the
interpolation procedure, Eq. (65) for X ¼ lin and Eq. (66) for X ¼ quad. Errors are statistical, only.

RI
SMOMðγμ; γμÞ SMOMðq; qÞ

μ
μ1 μ2 μ1 μ2

X Lin Quad Lin Quad Lin Quad Lin Quad

M0RI;X
2;1

0.0541(45) 0.0503(39) 0.0484(40) 0.0450(35) 0.0554(46) 0.0515(40) 0.0617(51) 0.0574(45)

M0RI;X
2;7

0.2748(26) 0.2824(24) 0.2033(21) 0.2093(19) 0.2676(26) 0.2751(24) 0.2470(26) 0.2543(24)

M0RI;X
2;8

1.2104(85) 1.2345(82) 0.9445(64) 0.9633(62) 1.2942(95) 1.3199(92) 1.2689(88) 1.2941(85)

cRI;X2;1
0.072(11) 0.0409(60) 0.0647(95) 0.0365(54) 0.074(11) 0.0418(61) 0.083(12) 0.0466(68)

cRI;X2;7
−0.1455(63) −0.0821(36) −0.1140(52) −0.0644ð29Þ −0.1425ð62Þ −0.0804ð35Þ −0.1390ð63Þ −0.0785ð36Þ

cRI;X2;8
−0.460ð22Þ −0.260ð13Þ −0.358ð18Þ −0.2023ð99Þ −0.490ð24Þ −0.277ð14Þ −0.480ð24Þ −0.271ð13Þ

M0RI;X
0;1

0.036(34) 0.035(32) 0.032(30) 0.031(29) 0.037(34) 0.036(33) 0.041(38) 0.040(37)

M0RI;X
0;2

−0.107ð25Þ −0.105ð24Þ −0.069ð18Þ −0.067ð18Þ −0.162ð36Þ −0.159ð35Þ −0.116ð26Þ −0.114ð25Þ
M0RI;X

0;3
0.109(23) 0.106(23) 0.093(20) 0.091(19) 0.131(30) 0.128(29) 0.141(28) 0.138(28)

M0RI;X
0;5

−0.337ð74Þ −0.331ð72Þ −0.205ð52Þ −0.202ð51Þ −0.48ð11Þ −0.47ð11Þ −0.311ð78Þ −0.306ð76Þ
M0RI;X

0;6
−1.44ð16Þ −1.40ð16Þ −1.12ð13Þ −1.10ð12Þ −1.56ð17Þ −1.52ð17Þ −1.51ð17Þ −1.48ð16Þ

M0RI;X
0;7

0.731(21) 0.732(20) 0.553(17) 0.553(17) 0.714(21) 0.714(20) 0.673(21) 0.673(21)

M0RI;X
0;8

2.883(63) 2.888(60) 2.249(49) 2.253(47) 3.080(67) 3.086(65) 3.019(66) 3.024(63)

cRI;X0;1
0.079(63) 0.050(39) 0.071(56) 0.044(35) 0.081(64) 0.051(40) 0.090(72) 0.057(45)

cRI;X0;2
−0.118ð41Þ −0.074ð26Þ −0.073ð32Þ −0.045ð20Þ −0.191ð56Þ −0.120ð35Þ −0.133ð43Þ −0.083ð27Þ

cRI;X0;3
0.136(42) 0.085(26) 0.115(36) 0.072(22) 0.165(49) 0.103(31) 0.175(50) 0.109(31)

cRI;X0;5
−0.35ð12Þ −0.217ð78Þ −0.191ð90Þ −0.120ð56Þ −0.53ð17Þ −0.33ð10Þ −0.32ð12Þ −0.200ð78Þ

cRI;X0;6
−1.83ð30Þ −1.15ð19Þ −1.44ð23Þ −0.90ð15Þ −1.99ð32Þ −1.25ð20Þ −1.94ð31Þ −1.22ð19Þ

cRI;X0;7
−0.037ð46Þ −0.023ð29Þ −0.022ð37Þ −0.014ð23Þ −0.036ð46Þ −0.022ð29Þ −0.027ð46Þ −0.017ð29Þ

cRI;X0;8
−0.32ð16Þ −0.200ð97Þ −0.25ð12Þ −0.156ð76Þ −0.34ð17Þ −0.21ð10Þ −0.34ð16Þ −0.21ð10Þ

THOMAS BLUM et al. PHYS. REV. D 108, 094517 (2023)

094517-30



halving is because the intermediate scale μ2, which
always results in the largest deviation from the central
value and hence determines the NPR error, may not be
sufficiently small on this coarse lattice as discussed in
Sec. V D. The error from the on shell limit is discussed
in detail in Appendix C but basically estimated by

propagating the difference between M0SMOMðq;qÞ;lin
I;j ðμhÞ

and M0SMOMðq;qÞ;quad
I;j ðμhÞ as an error on M0SMOMðq;qÞ

I;j ðμhÞ
in Eq. (62). The other errors are quoted based on Ref. [6]
as there is no reason to expect significant difference from
our earlier estimations. The finite-lattice spacing error is
extended with an assumption of the Oða2Þ scaling and the
other errors with ‘�’ are the same as in Ref. [6]. The error
from the Wilson coefficients is an estimate dominated
mostly by the matching between the three- and four-flavor
theories, that needs to be done below the charm threshold.
We could in principle bypass the matching for the

ΔI ¼ 3=2 channel at one-loop level because it is to
accommodate the effects of matrix elements of four-quark
operators including the charm and anticharm quarks, which
are all ΔI ¼ 1=2. In this paper we still assign a 12%
Wilson-coefficient error to ΔI ¼ 3=2 channel since we
have not computed the renormalization matrices in the four-
flavor theory that could be used with the more accurate
Wilson coefficients for this isospin channel and instead use
the same renormalization procedure and Wilson coeffi-
cients as for the ΔI ¼ 1=2 channel. The last error, which is
from finite-lattice spacing, is estimated with the assumption
of Oða2Þ scaling with the corresponding error estimated in
Ref. [6]. This estimate is based on our earlier results for the
ΔI ¼ 3=2 channel.
We also considered another estimation of the systematic

error from the finite-lattice spacing by comparing the
results from this work with our earlier results.
Table XXIV shows a comparison of A2 from this work
and earlier works on the 323 × 64 lattice with the Iwasakiþ
DSDR gauge action [18] and on the 483 × 64 and 643 ×
128 lattices with the Iwasaki gauge action [19]. The chiral
extrapolation of the results obtained with nonunitary light
quark masses was performed in the former reference, while
the physical pion and kaon masses are realized, and the
continuum limit was taken in the latter work. The values of
Im(A2) from earlier works are modified according to the
significantly updated value of the τ parameter. Table XXV
shows a comparison of A0 between this work and our
earlier work on the 323 × 64 lattice with GPBC at the

TABLE XV. K → ππ matrix elementsMMS
I;i ðμhÞ in the MS scheme at μh ≈ 4.01 GeV with the physical kinematics.

Results obtained through multiple intermediate renormalization schemes (SMOMðγμ; γμÞ and SMOMðq; qÞ) and
scales (μ1 and μ2) are shown in units of GeV3. For the ΔI ¼ 1=2 channel we also show the results from the GPBC
calculation, which were obtained through an intermediate renormalization scale near μ2 and summarized in

Table XIV of Ref. [6]. Since ΔTMS
ij in Eq. (62) is zero at NLO level for i ¼ 1, 2, 9, 10, the relation MMS

2;1 ðμhÞ ¼
MMS

2;2 ðμhÞ ¼ 2
3
MMS

2;9 ðμhÞ ¼ 2
3
MMS

2;10ðμhÞ still obeys at this order of perturbation theory in the MS scheme and hence the
results for i ¼ 1, 9, 10 in the ΔI ¼ 3=2 channel are dropped. The QCD penguin (i ¼ 3, 4, 5, 6) contributions to the
ΔI ¼ 3=2 channel are zero also in the MS scheme and dropped. Errors are statistical, only.

Via SMOMðγμ; γμÞ Via SMOMðq; qÞ
I i μ1 μ2 GPBC (μ2) μ1 μ2 GPBC (μ2)

3*2 2 0.01087(90) 0.00971(81) � � � 0.01098(91) 0.0123(10) � � �
7 0.2723(26) 0.2014(21) � � � 0.2649(26) 0.2443(26) � � �
8 1.2966(91) 1.0121(69) � � � 1.3247(97) 1.2991(90) � � �

10*0 1 −0.099ð26Þ −0.062ð20Þ −0.093ð18Þ −0.151ð39Þ −0.101ð28Þ −0.107ð22Þ
2 0.120(24) 0.102(20) 0.143(14) 0.136(26) 0.142(26) 0.147(15)
3 −0.094ð73Þ −0.012ð52Þ −0.053ð44Þ −0.22ð12Þ −0.060ð77Þ −0.086ð61Þ
4 0.147(69) 0.169(52) 0.200(40) 0.09(10) 0.205(73) 0.185(53)
5 −0.334ð74Þ −0.203ð52Þ −0.311ð48Þ −0.47ð11Þ −0.308ð78Þ −0.348ð62Þ
6 −1.50ð17Þ −1.18ð13Þ −1.272ð86Þ −1.56ð17Þ −1.51ð17Þ −1.308ð90Þ
7 0.726(21) 0.548(17) 0.784(23) 0.707(21) 0.666(21) 0.769(23)
8 3.086(67) 2.408(52) 3.308(63) 3.152(69) 3.089(67) 3.389(64)
9 −0.102ð24Þ −0.086ð21Þ −0.114ð19Þ −0.118ð27Þ −0.122ð27Þ −0.117ð20Þ

10 0.117(26) 0.078(20) 0.123(19) 0.169(38) 0.122(28) 0.137(22)

TABLE XVI. Covariance matrix between the ΔI ¼ 3=2 matrix
elements in the MS scheme at μh obtained through the
SMOMðq; qÞ scheme and the low-scale μ1 given in Table XV.
Results are shown in units of GeV6.

2 7 8

2 8.31 × 10−7 −1.75 × 10−7 1.20 × 10−6

7 −1.75 × 10−7 6.56 × 10−6 1.54 × 10−5

8 1.20 × 10−6 1.54 × 10−5 9.37 × 10−5
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physical pion and kaon masses [6]. The first error on each
value in these tables is statistical and the second error
combines the listed systematic errors in quadrature except
for the discretization error. The tables indicate that these
errors are not small enough to estimate the finite-lattice
spacing error from the comparisons. Therefore, we stick
with the estimation of the finite-lattice spacing error given
in the previous paragraph, though it is estimated from the

results for the ΔI ¼ 3=2 channel and may not be an ideal
estimation for the ΔI ¼ 1=2 channel. Unmasking the
discretization error more accurately and taking the con-
tinuum limit of the ΔI ¼ 1=2 channel are important goals
in the near future.
With the quoted values of the K → ππ amplitude we can

test the ΔI ¼ 1=2 rule, which is an experimental fact that
kaons are roughly 450 times more likely to decay into the
I ¼ 0 channel of two pions than the I ¼ 2 counterpart,
ReðA0Þ=ReðA2Þ ¼ 22.45ð6Þ. While leading-order pertur-
bative QCD can explain the difference in the amplitudes
only up to the factor of 2 [88–91], some theoretical
indications of this fact were seen when we performed
lattice calculations of the ΔI ¼ 3=2 channel [18,19,92],
where we observed a sizable cancellation between the two
Wick contractions of the K → ππ three-point function with
the dominant (27,1) operator. In our most recent work on
the ΔI ¼ 1=2 channel with GPBC [6], we were able to
numerically verify it by combining the result for ReðA0Þ
from the GPBC work with the continuum limit of ReðA2Þ
from Ref. [19], ReðA0Þ=ReðA2Þ ¼ 19.9ð2.3Þð4.4Þ, with the
statistical and systematic errors, respectively. Here we
quote the corresponding value calculated on the 243

ensemble

TABLE XVII. Covariance matrix between the ΔI ¼ 1=2 matrix elements in the MS scheme at μh obtained through the SMOMðq; qÞ
scheme and the low scale μ1 given in Table XV. Results are shown in units of GeV6.

1 2 3 4 5 6 7 8 9 10

1 0.00148 3.72 × 10−5 0.00423 0.00276 0.00364 0.00136 5.99 × 10−5 −0.000478 0.000110 −0.00134
2 3.72 × 10−5 0.000700 0.00125 0.00187 0.000807 0.00130 4.20 × 10−5 0.000288 −0.000568 9.50 × 10−5

3 0.00423 0.00125 0.0149 0.0118 0.0121 0.00612 −2.48 × 10−5 −0.00118 −0.00112 −0.00411
4 0.00276 0.00187 0.0118 0.0108 0.00909 0.00553 −2.77 × 10−5 −0.000342 −0.00176 −0.00265
5 0.00364 0.000807 0.0121 0.00909 0.0124 0.00881 −0.000151 −0.00177 −0.000586 −0.00342
6 0.00136 0.00130 0.00612 0.00553 0.00881 0.0301 −0.000893 −0.00470 −0.00102 −0.00108
7 5.99 × 10−5 4.20 × 10−5 −2.48 × 10−5 −2.77 × 10−5 −0.000151 −0.000893 0.000431 0.000930 0.000102 8.44 × 10−5

8 −0.000478 0.000288 −0.00118 −0.000342 −0.00177 −0.00470 0.000930 0.00473 −0.000127 0.000639
9 0.000110 −0.000568 −0.00112 −0.00176 −0.000586 −0.00102 0.000102 −0.000127 0.000725 4.73 × 10−5

10 −0.00134 9.50 × 10−5 −0.00411 −0.00265 −0.00342 −0.00108 8.44 × 10−5 0.000639 4.73 × 10−5 0.00148

TABLE XVIII. Wilson coefficients zi and yi renormalized in
the MS used in this work.

i zMS
i ðμhÞ yMS

i ðμhÞ
1 −0.201 0
2 1.091 0
3 −0.00536 0.0193
4 0.0251 −0.0568
5 −0.00619 0.01337
6 0.0178 −0.0569
7 0.000134 −0.000260
8 −0.000122 0.000535
9 0.0000537 −0.00965
10 0.0000945 0.00191

TABLE XIX. Contribution from each MS matrix element to ReðA2Þ. Results with multiple intermediate
renormalization schemes [SMOMðγμ; γμÞ and SMOMðq; qÞ] and scales (μ1 and μ2) are shown in units of
10−8 GeV. Errors are statistical, only.

Via SMOMðγμ; γμÞ Via SMOMðq; qÞ
i μ1 μ2 μ1 μ2

1 −0.393ð33Þ −0.351ð29Þ −0.397ð33Þ −0.443ð37Þ
2 2.14(18) 1.91(16) 2.16(18) 2.41(20)
7 0.006549(61) 0.004843(50) 0.006372(62) 0.005876 (61)
8 −0.02822ð20Þ −0.02202ð15Þ −0.02883ð21Þ −0.02827ð20Þ
9 0.0001160(96) 0.0001036(86) 0.0001172(97) 0.000131(11)
10 0.000286(24) 0.000255(21) 0.000289(24) 0.000322(27)

Total 1.72(14) 1.54(13) 1.74(15) 1.94(16)
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ReðA0Þ=ReðA2Þ ¼ 16.3ð3.7Þð6.7Þ; ð71Þ

where the errors are, again, statistical and systematic,
respectively.

E. Determination of ε0

Now we quote our numerical result for the measure
of direct CP violation, Reðε0=εÞ. Writing ε ¼ jεjeiϕε ,
the phase of ε0=ε defined in Eq. (1) is found to be
δ2 − δ0 þ π=2 − ϕε, where π=2 comes from the overall
factor i on the right-hand side. Using the value ϕε ¼
43.52ð2Þ° [4] and the prediction from the dispersion theory
with inputs from experiment and ChPT [77] δ2 − δ0 ¼
−44.8ð3.0Þ° at 497.6MeV, the experimental value of theK0

mass, we can verify the phase of ε0=ε is approximately zero.
Lattice predictions for the phase shifts are also consistent
with the dispersive approach [43,44]. The potential differ-
ence of the phase from zero does not affect the following
results that have much larger statistical and systematic
errors. Therefore we simply drop the phase term for the real
part of ε0=ε and find

Re

�
ε0

ε

�
¼ ωffiffiffi

2
p jεj

�
ImðA2Þ
ReðA2Þ

−
ImðA0Þ
ReðA0Þ

�
: ð72Þ

TABLE XX. Same as Tab XIX but the breakdown of ImðA2Þ
shown in units of 10−13 GeV.

Via SMOMðγμ; γμÞ Via SMOMðq; qÞ
i μ1 μ2 μ1 μ2

1 0 0 0 0
2 0 0 0 0
7 0.8162(77) 0.6036(62) 0.7941(77) 0.7324(76)
8 −7.997ð56Þ −6.242ð42Þ −8.170ð60Þ −8.012ð55Þ
9 1.81(15) 1.62(13) 1.83(15) 2.04(17)
10 −0.359ð30Þ −0.320ð27Þ −0.362ð30Þ −0.404ð34Þ
Total −5.73ð12Þ −4.34ð11Þ −5.91ð13Þ −5.64ð14Þ

TABLE XXI. Same as Table XIX but the breakdown of ReðA0Þ shown in units of 10−7 GeV.

Via SMOMðγμ; γμÞ Via SMOMðq; qÞ
i μ1 μ2 μ1 μ2

1 0.358(95) 0.223(72) 0.55(14) 0.37(10)
2 2.35(47) 2.01(40) 2.68(52) 2.79(51)
3 0.0090(70) 0.0012(50) 0.021(12) 0.0058(73)
4 0.066(31) 0.076(23) 0.042(47) 0.092(33)
5 0.0371(82) 0.0225(58) 0.052(12) 0.0342(87)
6 −0.480ð54Þ −0.376ð42Þ −0.496ð55Þ −0.483ð53Þ
7 0.001745(51) 0.001319(42) 0.001701(50) 0.001603(51)
8 −0.00672ð15Þ −0.00524ð11Þ −0.00686ð15Þ −0.00672ð15Þ
9 −0.000072ð17Þ −0.000061ð15Þ −0.000084ð19Þ −0.000087ð19Þ
10 0.000205(45) 0.000136(34) 0.000296(67) 0.000213(49)

Total 2.34(54) 1.95(45) 2.84(57) 2.80(58)

TABLE XXII. Same as Table XIX but the breakdown of ImðA0Þ shown in units of 10−11 GeV.

Via SMOMðγμ; γμÞ Via SMOMðq; qÞ
i μ1 μ2 μ1 μ2

1 0 0 0 0
2 0 0 0 0
3 0.21(16) 0.03(12) 0.48(27) 0.13(17)
4 0.96(45) 1.11(34) 0.61(68) 1.34(48)
5 0.51(11) 0.313(80) 0.73(17) 0.47(12)
6 −9.9ð1.1Þ −7.73ð86Þ −10.2ð1.1Þ −9.9ð1.1Þ
7 0.02175(63) 0.01644(52) 0.02120(62) 0.01998(64)
8 −0.1903ð41Þ −0.1485ð32Þ −0.1944ð42Þ −0.1905ð41Þ
9 −0.113ð27Þ −0.096ð23Þ −0.131ð30Þ −0.135ð30Þ
10 −0.0258ð57Þ −0.0171ð43Þ −0.0372ð85Þ −0.0267ð61Þ
Total −8.5ð1.2Þ −6.53ð94Þ −8.7ð1.2Þ −8.3ð1.2Þ
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It is illustrative to analyze the two terms on the right-hand
side separately. The first term of the ΔI ¼ 3=2 channel is
called electroweak penguin (EWP) term Reðε0=εÞEWP, while
the second term of ΔI ¼ 1=2 is the QCD penguin (QCDP)
term Reðε0=εÞQCDP. Using the results for AI discussed in the
previous subsection we obtain

Re

�
ε0

ε

�
EWP

¼ −4.80ð49Þð1.95Þ × 10−4; ð73Þ

Re

�
ε0

ε

�
QCDP

¼ 43.4ð12.9Þð18.5Þ × 10−4; ð74Þ

Re

�
ε0

ε

�
¼ 38.6ð13.0Þð18.6Þ × 10−4; ð75Þ

where the errors are statistical and systematic, respectively.
The results indicate that the QCDP part is the dominant
source of both the statistical and systematic errors.
We could reduce the errors if we input experimental

values of the real parts, ReðA2Þexp ¼ 1.479ð4Þ × 10−8 GeV
and ReðA0Þexp ¼ 3.3201ð18Þ × 10−7 GeV, which are much
more precise than those determined on the lattice. To give
our best prediction for the ε0=ε we also use the continuum
limit of Im(A2) determined in Ref. [19]. Since Im(A2)
depends on the τ parameter that has been significantly
updated, we use the modified value shown in Table XXIV.
We only use ImðA0Þ from this work. The EWP and QCDP
contributions to Re(ε0=ε) obtained with this approach read

Re

�
ε0

ε

�
EWP

¼ −7.69ð22Þð92Þ × 10−4; ð76Þ

Re

�
ε0

ε

�
QCDP

¼ 37.1ð5.2Þð11.1Þ × 10−4; ð77Þ

where the errors are statistical and systematic, respectively.
In is interesting to note that the contribution from QCD
penguin operators to Re(ε0=ε) is sizable compared to that
from the electroweak penguin operators. We obtain the ratio
Reðε0=εÞQCDP=Reðε0=εÞEWP ¼ −4.83ð69Þð1.55Þ, which is
consistent with the one from the GPBC calculation [6],
−3.73ð56Þð89Þ.
Before quoting our final result for Re(ε0=ε) we note that

this quantity could receive significant corrections due to
electromagnetic and isospin-breaking effects as discussed
in Refs. [6,49]. We quote the same size of this systematic
error as the third error as in Ref. [6] and obtain the final
result

Re

�
ε0

ε

�
¼ 29.4ð5.2Þð11.1Þð5.0Þ × 10−4: ð78Þ

While the errors are somewhat large, this result is compatible
with the experimental value, Re(ε0=εÞexp ¼ 16.6ð2.3Þ [4].

VII. CONCLUSION

We have presented a new calculation of ΔI ¼ 1=2 and
ΔI ¼ 3=2 processes in K → ππ decays using periodic
boundary conditions, essentially extracting the physical
amplitudes from the dominant excited state with near
physical kinematics, Eππ ¼ mK . The calculation was done
on a 243 × 64 domain wall fermion ensemble with a−1 ¼
1.023 GeV at the physical pion and kaon masses. The
GEVP method was used to compute the matrix elements

TABLE XXIII. Systematic error breakdowns for the K → ππ
amplitudes. The errors with the symbol ‘�’ are inherited from
Ref. [6]. The finite-lattice spacing error with the symbol ‘†’ is
also estimated based on Ref. [6] with an assumption of Oða2Þ
scaling. The error sources with ‘(HE)’ are associated with high-
energy particle properties and independent of lattice calculations.

Error source ReðA2Þ ImðA2Þ ReðA0Þ ImðA0Þ
NPR 6% 13% 16% 13%
On shell limit 7% 3% 1.8% 3%
LL factor� 1.5% 1.5% 1.5% 1.5%
Finite-volume corrections� 7% 7% 7% 7%
Missing G1 operator� 3% 3% 3% 3%
Finite-lattice spacing† 22% 22% 22% 22%
Wilson coefficients� (HE) 12% 12% 12% 12%
Parametric errors�for I¼0 (HE) <1% 7% <1% 6%

Total 28% 30% 31% 30%

TABLE XXIV. Comparison of A2 with our earlier results
obtained with the antiperiodic down quark on a finer lattice
a−132ID ≈ 1.38 GeV [18] and the continuum limit with finer 483 and
643 Iwasaki gauge ensembles [19]. The imaginary part of earlier
results are modified according to the significant (15%) change in
the τ parameter. The first error is statistical and the second one
combines the listed systematic errors in quadrature excluding the
finite-lattice spacing error.

ReðA2Þ½10−8 GeV� ImðA2Þ½10−13 GeV�
This work 1.74(15)(30) −5.91ð13Þð1.18Þ
a−132ID ≈ 1.38 GeV 1.381(46)(135) −6.93ð49Þð76Þ
Continuum limit 1.501(39)(140) −8.05ð23Þð97Þ

TABLE XXV. Comparison of A0 with our earlier work [6] on a
finer lattice a−132ID ≈ 1.38 GeV with GPBC. The first error is
statistical and the second one combines the listed systematic
errors in quadrature excluding the finite-lattice spacing error.

ReðA0Þ½10−7GeV� ImðA0Þ½10−11GeV�
This work 2.84(57)(62) −8.7ð1.2Þð1.8Þ
GPBC, a−132ID≈1.38GeV 2.99(32)(47) −6.98ð62Þð1.17Þ
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and amplitudes with multiple two-pion final states in finite
volume. After applying the Lellouch-Lüscher formalism
to normalize these two-pion states to their infinite volume
counterparts, the amplitudes were interpolated to physical
kinematics while the energy of the I ¼ 0 first excited two-
pion state is only 5% off from mK.
We obtained a value for the well-known measure of direct

CP violation, Reðε0=εÞ ¼ 29.4ð5.2Þð11.1Þð5.0Þ × 10−4
ð5.0Þ × 10−4, where the first error is statistical, the second
is all systematics in an isospin symmetricworld, and the third
combines uncertainties in estimates of electromagnetic and
isospin-breaking corrections in the real world. The result is
consistent with our previous GPBC result, Reðε0=εÞ2020 ¼
21.7ð2.6Þð6.2Þð5.0Þ × 10−4 [6]. In Fig. 20 we summarize all
our lattice results for Reðε0=εÞ obtained earlier with GPBC
[5,6] and in this work comparing with the world average of
experimental results [1–4]. Note that our recent analyses [6]
with multiple two-pion operators and larger statistics
revealed that the excited-state systematic error was substan-
tially underestimated in our original, 2015 work [5] that
included only a single operator; hence the discrepancy
observable in the figure. The inclusion of the additional
operators, particularly the σ-like operator, dramatically
reduced this error.
While the statistical and systematic errors in the present

work are larger because of fewer measurements on a
coarser lattice, the results are promising enough to motivate
us to perform calculations with more configurations and on
a finer lattice ensemble that are ongoing. Therefore we
expect more precise results will be obtained in the near
future. The on-going calculations are on the 323 × 64
Iwasakiþ DSDR ensemble, which has the same lattice
spacing as on the GPBC ensemble, as well as to increase
the statistics on the 243 × 64 ensemble employed here. We
will attempt to take the continuum limit with these two

ensembles. This may be challenging due to possible
discretization effects on the a−1 ¼ 1.023 GeV ensemble,
both for NPR factors and matrix elements, beyond the
leading Oða2Þ scaling errors. The validity of taking the
continuum limit with these ensembles needs to be carefully
investigated.
There is another important systematic error due to the

perturbative truncation of the Wilson coefficients in the
three-flavor theory. This is not improved by step scaling
because the matching of the Wilson coefficients in the four-
flavor theory to those in the three-flavor theory needs to be
done below the charm threshold. This error gives a 12%
systematic uncertainty in the K → ππ amplitudes, which is
as large as the finite-lattice spacing error on the 323 lattice.
While the error will eventually be reduced when we have
enough computational resources to calculate the matrix
elements on fine enough lattices where we can introduce
the charm quark and the corresponding four-quark oper-
ators explicitly, it is still desired to fix this defect sooner.
Perturbative matching of the Wilson coefficients to NNLO
[93–97] and an alternative nonperturbative matching [98]
are being studied.
The single largest systematic error on ε0=ε is from the

electromagnetic and isospin-breaking corrections. Despite
Oð1%Þ effects on many quantities, the small value of A2

relative to A0 could enhance the impact on ε0=ε toOð20%Þ.
In order to introduce electromagnetic effects in the lattice
calculation there is a significant challenge posed by the
extension of the formalism by Lüscher [50] and Lellouch-
Lüscher [51] to two-hadron systems in finite volumes due
to the long-distance character of electromagnetism. One
such approach under development by our collaboration
[54] uses the Coulomb gauge to break the electromagnetic
contributions into those of a static Coulomb potential and
of transverse radiation. The truncation of the Coulomb
potential allows the former to be treated on the lattice, and
the effects of the truncation can be reintroduced through
conventional quantum mechanics on the basis that they
describe long-distance physics that is not capable of
resolving the structure of the interaction. There has been
progress in the former, but challenges remain to be over-
come with the transverse radiation contributions before the
approach can be applied to the K → ππ decay calculation.
Although a complete formalism for introducing these effects
has not been constructed, we expect that the incorporation of
elctromagnetism and strong isospin-breaking in the method
with PBC may be easier compared with GPBC where the
electric charge is not conserved.
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APPENDIX A: STATE NORMALIZATION
AND AMPLITUDE DEFINITION

In this appendix we summarize the conventions on state
normalization and the definition of theK → ππ amplitudes.
While there have been different expressions in the overall
factor for the definition of the amplitudes in the series of
RBC/UKQCD papers [6,13,19,92], this appendix clarifies
the interpretation of these differences. To give a brief
clarification we remark here that the differences were due to
the difference in the definition of the LL factor and hence in
the normalization of the infinite-volume two-pion states as
one can see below and that the amplitudes AI themselves
have been consistent through the series.
We normalize hadronic states in finite volume to unity.

The two-pion states are normalized by

LhðππÞI; njππI0 ; n0iL ¼ δI;I0δn;n0 ; ðA1Þ

where and n and n0 stand for state indices. This convention
is consistent with the insertion of the complete set in Eq. (9)
for the two-pion states. We have added the subscript L to
express finite-volume states. The kaon states jK; ni are
normalized to unity in an equivalent manner.
The infinite-volume states are normalized relativistically,

∞hKðp⃗ÞjKðp⃗0Þi∞ ¼ 2EKðp⃗Þð2πÞ3δ3ðp⃗ − p⃗0Þ; ðA2Þ

for the kaon state. Here we have added the subscript ∞ to
express hadronic states in infinite volume. For two-pion
states we also employ the relativistic normalization

∞hπþðp⃗1Þπ−ðp⃗2Þjπþðp⃗0
1Þπ−ðp⃗0

2ÞÞi∞
¼2Eπðp⃗1Þ ·2Eπðp⃗2Þð2πÞ6δ3ðp⃗1− p⃗0

1Þδ3ðp⃗2− p⃗0
2Þ; ðA3Þ

∞hπ0ðp⃗1Þπ0ðp⃗2Þjπ0ðp⃗0
1Þπ0ðp⃗0

2ÞÞi∞
¼ 1

2
ð2Eπðp⃗1Þ · 2Eπðp⃗2Þð2πÞ6δ3ðp⃗1 − p⃗0

1Þδ3ðp⃗2 − p⃗0
2Þ

þ ðp⃗0
1 ↔ p⃗0

2ÞÞ: ðA4Þ

The isospin-definite two-pion states are then given by

jðππÞI¼2; p⃗1; p⃗2i∞ ¼ 1ffiffiffi
3

p jπþðp⃗1Þπ−ðp⃗2Þi∞

þ
ffiffiffi
2

3

r
jπ0ðp⃗1Þπ0ðp⃗2Þi∞; ðA5Þ

jðππÞI¼0; p⃗1; p⃗2i∞ ¼
ffiffiffi
2

3

r
jπþðp⃗1Þπ−ðp⃗2Þi∞

−
1ffiffiffi
3

p jπ0ðp⃗1Þπ0ðp⃗2Þi∞: ðA6Þ

The LL factor (18) compensates the normalization
difference between finite and infinite volumes discussed
above as well as the effects of two-pion interaction in finite
volume. If the on shell kinematics is realized by a finite-
volume state labeled by nphys, the K → ππ amplitudes are
given by

AI ¼ FI;nphysLhðππÞI; nphysjHW jK0; 0iL: ðA7Þ

For the rest of this appendix all states are in infinite
volume and correspond to the physical kinematics of
K → ππ. Therefore, we drop the subscripts L and ∞ and
the momentum arguments. In the series of K → ππ paper
by the RBC and UKQCD Collaborations there have been
two expressions in the definition for the amplitudes,

AI ¼ hðππÞI; ðAÞjHW jK0i ðA8Þ

and

ffiffiffi
2

p
AI ¼ hðππÞI; ðBÞjHW jK0i: ðA9Þ

Here (A) or (B) were not explicitly shown in the earlier
papers but denotes a specific normalization of the two-pion
state. Some of the earlier papers also multiplied AI with
the phase factor eiδI on the left-hand side related to the
definition of the two-pion state. This phase factor does not
affect the magnitude of the amplitudes and it should be
noted that the imaginary parts of AI in our convention have
been associated with only CP-violating effects that appear
in the CKM matrix elements (more specifically, the τ
parameter). The difference in the normalization between
these two two-pion states is obviously by the factor of

ffiffiffi
2

p
and originates from the difference in the overall factor of
the LL factor. In this paper we define the LL factor by

FðAÞ2 ¼ 4πmKE2
ππ

k3

�
k
dδ0
dk

þ q
dϕ
dq

�
; ðA10Þ

while some of the earlier papers defined

FðBÞ2 ¼ 8πmKE2
ππ

k3

�
k
dδ0
dk

þ q
dϕ
dq

�
: ðA11Þ
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Again we distinguish these two different definitions by (A)
and (B). Table XXVI summarizes the expressions of the
amplitude definition in the series of RBC/UKQCD papers.
One can easily recognize that the definition of AI has been
consistent despite the two different expressions. Note that
expression (A) corresponds to our convention described in
Eqs. (A3)–(A6) and we omit (A) in what follows.
It is also valuable to relate these amplitudes with the

decay rates, which is independent of convention. We
consider the amplitudes for decay of Kþ into πþπ0

(Aþ0) and those of KS into πþπ− (Aþ−) and π0π0 (A00).
Applying Fermi’s golden rule yields their relations with the
decay rates

Γþ0 ¼
1

8π

pþ0

m2
Kþ

jAþ0j2; ðA12Þ

Γþ− ¼ 1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K0

4
−m2

πþ

q
m2

K0

jAþ−j2; ðA13Þ

Γ00 ¼
1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K0

4
−m2

π0

r
m2

K0

jA00j2: ðA14Þ

Here pþ0 is given in Eq. (27) of Ref. [80] andmX stands for
the mass of meson X (¼ Kþ; K0; πþ and π0). Since the
latter two amplitudes are a linear combination of A0 and A2,
the phase factors eiδI should be taken into account sepa-
rately. The relations between these amplitudes and the
isospin-definite amplitudes, A0 and A2, are given by

Aþ0 ¼
ffiffiffi
3

2

r
A2eiδ2 ; ðA15Þ

Aþ− ¼ 2ffiffiffi
3

p A0eiδ0 þ
ffiffiffi
2

3

r
A2eiδ2 ; ðA16Þ

A00 ¼ −
ffiffiffi
2

3

r
A0eiδ0 þ

2ffiffiffi
3

p A2eiδ2 ; ðA17Þ

where we have used the Wigner-Eckart theorem for Aþ0.
The extra factor of

ffiffiffi
2

p
on the right-hand sides of Eqs. (A16)

and (A17) despite the relations of two-pion states in
Eqs. (A5) and (A6) is because of the difference in the
initial kaon states, jKSi¼ 1ffiffi

2
p ðjK0iþjK̄0iÞ for Aþ− and A00

versus jK0i for A2 and A0. Assuming ReðAIÞ ≫ ImðAIÞ,
we can calculate ReðAIÞ ≈ jAIj from experimental values of
decay rates as follows. Calculation of jA2j is trivial from
Eqs. (A12) and (A15). Summing up the absolute squares of
Eqs. (A16) and (A17) gives

jAþ−j2 þ jA00j2 ¼ 2jA0j2 þ 2jA2j2; ðA18Þ

which enables us to calculate jA0j ≈ ReðA0Þ as the other
terms in this equation are related to the decay rates as
explained above. In the actual world with electromagnetism
and without exact isospin symmetry, however, Eqs (A15)–
(A17) do not have to hold consistently and the definitions of
A0 and A2 are ambiguous. In the series of the RBC/UKQCD
papers on K → ππ, we have been using the value of ReðA0Þ
defined as jA0j in Eq. (A18) but without jA2j2 (≪ jA0j2),
while ReðA2Þ has been defined as jA2j obtained from
Eq. (A15).

APPENDIX B: WICK CONTRACTIONS

Throughout the section the indices of Greek characters
are summed over the color space, while the trace ‘Tr’ and
matrix operation of quark propagators Sαβl;s are implemented
within the spin space. The four-quark operators Q1 and Q2

are replaced with Q̃1 ¼ s̄αγμð1 − γ5Þdα · ūβγμð1 − γ5Þuβ
and Q̃2 ¼ s̄αγμð1 − γ5Þuβ · ūβγμð1 − γ5Þdα, respectively,
using the Fierz symmetry. They are identical to the original
definitions on the lattice and give the same numerical
results, although the explicit forms of the contractions
given below are different. As noted in Sec. IVA we only
take the parity-odd part of the four-quark operators because
the parity-even part increases the statistical error but is zero
in the infinite statistics.

1. K → ππ

All K → ππ three-point functions are a linear combina-
tion of the following contractions:

TABLE XXVI. Expressions for definition of AI in RBC/
UKQCD papers.

Year and Ref. Amplitude definition LL factor

2003 [13] (A8) Not used
2011 [80] (A8) (A10)
2012 [17] Not specified Not specified
2012 [18] (A9) (A11)
2015 [19] (A9) (A11)
2015 [5] Not specified Not specified
2020 [6] (A8) (A10)

This paper (A8) (A10)
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type 1LR=LL1Tr;cdiagðxK; xQ; x1; x2Þ ¼ �Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; xQÞγμγ5Sγδl ðxQ; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵαs ðxK; xQÞγμ�
� Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; xQÞγμγ5Sγδl ðxQ; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵαs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; xQÞγμSγδl ðxQ; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵαs ðxK; xQÞγμγ5�
− Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; xQÞγμSγδl ðxQ; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵαs ðxK; xQÞγμγ5�; ðB1Þ

type 1LR=LL2Tr;cdiagðxK; xQ; x1; x2Þ ¼ �Tr½Sαβl ðxQ; x1Þγ5Sβαl ðx1; xQÞγμγ5� · Tr½Sγδl ðxQ; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵγs ðxK; xQÞγμ�
� Tr½Sαβl ðxQ; x2Þγ5Sβαl ðx2; xQÞγμγ5� · Tr½Sγδl ðxQ; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵγs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; x1Þγ5Sβαl ðx1; xQÞγμ� · Tr½Sγδl ðxQ; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵγs ðxK; xQÞγμγ5�
− Tr½Sαβl ðxQ; x2Þγ5Sβαl ðx2; xQÞγμ� · Tr½Sγδl ðxQ; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵγs ðxK; xQÞγμγ5�; ðB2Þ

type 1LR=LL1Tr;cmixðxK; xQ; x1; x2Þ ¼ �Tr½Sαβl ðxQ; x1Þγ5Sβαl ðx1; xQÞγμγ5Sγδl ðxQ; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵγs ðxK; xQÞγμ�
� Tr½Sαβl ðxQ; x2Þγ5Sβαl ðx2; xQÞγμγ5Sγδl ðxQ; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵγs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; x1Þγ5Sβαl ðx1; xQÞγμSγδl ðxQ; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵγs ðxK; xQÞγμγ5�
− Tr½Sαβl ðxQ; x2Þγ5Sβαl ðx2; xQÞγμSγδl ðxQ; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵγs ðxK; xQÞγμγ5�; ðB3Þ

type 1LR=LL2Tr;cmixðxK; xQ; x1; x2Þ ¼ �Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; xQÞγμγ5� · Tr½Sγδl ðxQ; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵαs ðxK; xQÞγμ�
� Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; xQÞγμγ5� · Tr½Sγδl ðxQ; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵαs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; xQÞγμ� · Tr½Sγδl ðxQ; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵαs ðxK; xQÞγμγ5�
− Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; xQÞγμ� · Tr½Sγδl ðxQ; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵαs ðxK; xQÞγμγ5�; ðB4Þ

type 2LR=LL1Tr;cdiagðxK; xQ; x1; x2Þ ¼ �Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; x2Þγ5Sγδl ðx2; xQÞγμγ5Sδϵl ðxQ; xKÞγ5Sϵαs ðxK; xQÞγμ�
� Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; x1Þγ5Sγδl ðx1; xQÞγμγ5Sδϵl ðxQ; xKÞγ5Sϵαs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; x2Þγ5Sγδl ðx2; xQÞγμSδϵl ðxQ; xKÞγ5Sϵαs ðxK; xQÞγμγ5�
− Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; x1Þγ5Sγδl ðx1; xQÞγμSδϵl ðxQ; xKÞγ5Sϵαs ðxK; xQÞγμγ5�; ðB5Þ

type 2LR=LL2Tr;cdiagðxK; xQ; x1; x2Þ ¼ �Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; x2Þγ5Sγαl ðx2; xQÞγμγ5� · Tr½Sδϵl ðxQ; xKÞγ5Sϵδs ðxK; xQÞγμ�
� Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; x1Þγ5Sγαl ðx1; xQÞγμγ5� · Tr½Sδϵl ðxQ; xKÞγ5Sϵδs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; x2Þγ5Sγαl ðx2; xQÞγμ� · Tr½Sδϵl ðxQ; xKÞγ5Sϵδs ðxK; xQÞγμγ5�
− Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; x1Þγ5Sγαl ðx1; xQÞγμ� · Tr½Sδϵl ðxQ; xKÞγ5Sϵδs ðxK; xQÞγμγ5�; ðB6Þ

type 2LR=LL1Tr;cmixðxK; xQ; x1; x2Þ ¼ �Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; x2Þγ5Sγαl ðx2; xQÞγμγ5Sδϵl ðxQ; xKÞγ5Sϵδs ðxK; xQÞγμ�
� Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; x1Þγ5Sγαl ðx1; xQÞγμγ5Sδϵl ðxQ; xKÞγ5Sϵδs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; x2Þγ5Sγαl ðx2; xQÞγμSδϵl ðxQ; xKÞγ5Sϵδs ðxK; xQÞγμγ5�
− Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; x1Þγ5Sγαl ðx1; xQÞγμSδϵl ðxQ; xKÞγ5Sϵδs ðxK; xQÞγμγ5�; ðB7Þ

type 2LR=LL2Tr;cmixðxK; xQ; x1; x2Þ ¼ �Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; x2Þγ5Sγδl ðx2; xQÞγμγ5� · Tr½Sδϵl ðxQ; xKÞγ5Sϵαs ðxK; xQÞγμ�
� Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; x1Þγ5Sγδl ðx1; xQÞγμγ5� · Tr½Sδϵl ðxQ; xKÞγ5Sϵαs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; x1Þγ5Sβγl ðx1; x2Þγ5Sγδl ðx2; xQÞγμ� · Tr½Sδϵl ðxQ; xKÞγ5Sϵαs ðxK; xQÞγμγ5�
− Tr½Sαβl ðxQ; x2Þγ5Sβγl ðx2; x1Þγ5Sγδl ðx1; xQÞγμ� · Tr½Sδϵl ðxQ; xKÞγ5Sϵαs ðxK; xQÞγμγ5�; ðB8Þ
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type 3LR=LL;l-loop1Tr;cdiag ðxK; xQ; x1; x2Þ ¼ �Tr½Sαβl ðxQ; xQÞγμγ5Sβγl ðxQ; x1Þγ5Sγδl ðx1; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵαs ðxK; xQÞγμ�
� Tr½Sαβl ðxQ; xQÞγμγ5Sβγl ðxQ; x2Þγ5Sγδl ðx2; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵαs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; xQÞγμSβγl ðxQ; x1Þγ5Sγδl ðx1; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵαs ðxK; xQÞγμγ5�
− Tr½Sαβl ðxQ; xQÞγμSβγl ðxQ; x2Þγ5Sγδl ðx2; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵαs ðxK; xQÞγμγ5�; ðB9Þ

type 3LR=LL;s-loop1Tr;cdiag ðxK; xQ; x1; x2Þ ¼ −Tr½Sαβs ðxQ; xQÞγμγ5Sβγl ðxQ; x1Þγ5Sγδl ðx1; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵαs ðxK; xQÞγμ�
− Tr½Sαβs ðxQ; xQÞγμγ5Sβγl ðxQ; x2Þγ5Sγδl ðx2; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵαs ðxK; xQÞγμ�
� Tr½Sαβs ðxQ; xQÞγμSβγl ðxQ; x1Þγ5Sγδl ðx1; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵαs ðxK; xQÞγμγ5�
� Tr½Sαβs ðxQ; xQÞγμSβγl ðxQ; x2Þγ5Sγδl ðx2; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵαs ðxK; xQÞγμγ5�; ðB10Þ

type3LR=LL;q-loop2Tr;cdiag ðxK;xQ;x1;x2Þ¼�Tr½Sααq ðxQ;xQÞγμγ5� · Tr½Sβγl ðxQ;x1Þγ5Sγδl ðx1;x2Þγ5Sδϵl ðx2;xKÞγ5Sϵβs ðxK;xQÞγμ�
�Tr½Sααq ðxQ;xQÞγμγ5� · Tr½Sβγl ðxQ;x2Þγ5Sγδl ðx2;x1Þγ5Sδϵl ðx1;xKÞγ5Sϵβs ðxK;xQÞγμ�
−Tr½Sααq ðxQ;xQÞγμ� · Tr½Sβγl ðxQ;x1Þγ5Sγδl ðx1;x2Þγ5Sδϵl ðx2;xKÞγ5Sϵβs ðxK;xQÞγμγ5�
−Tr½Sααq ðxQ;xQÞγμ� · Tr½Sβγl ðxQ;x2Þγ5Sγδl ðx2;x1Þγ5Sδϵl ðx1;xKÞγ5Sϵβs ðxK;xQÞγμγ5�; ðB11Þ

type 3LR=LL;l-loop1Tr;cmix ðxK; xQ; x1; x2Þ ¼ �Tr½Sααl ðxQ; xQÞγμγ5Sβγl ðxQ; x1Þγ5Sγδl ðx1; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵβs ðxK; xQÞγμ�
� Tr½Sααl ðxQ; xQÞγμγ5Sβγl ðxQ; x2Þγ5Sγδl ðx2; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵβs ðxK; xQÞγμ�
− Tr½Sααl ðxQ; xQÞγμSβγl ðxQ; x1Þγ5Sγδl ðx1; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵβs ðxK; xQÞγμγ5�
− Tr½Sααl ðxQ; xQÞγμSβγl ðxQ; x2Þγ5Sγδl ðx2; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵβs ðxK; xQÞγμγ5�; ðB12Þ

type 3LR=LL;s-loop1Tr;cmix ðxK; xQ; x1; x2Þ ¼ −Tr½Sααs ðxQ; xQÞγμγ5Sβγl ðxQ; x1Þγ5Sγδl ðx1; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵβs ðxK; xQÞγμ�
− Tr½Sααs ðxQ; xQÞγμγ5Sβγl ðxQ; x2Þγ5Sγδl ðx2; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵβs ðxK; xQÞγμ�
� Tr½Sααs ðxQ; xQÞγμSβγl ðxQ; x1Þγ5Sγδl ðx1; x2Þγ5Sδϵl ðx2; xKÞγ5Sϵβs ðxK; xQÞγμγ5�
� Tr½Sααs ðxQ; xQÞγμSβγl ðxQ; x2Þγ5Sγδl ðx2; x1Þγ5Sδϵl ðx1; xKÞγ5Sϵβs ðxK; xQÞγμγ5�; ðB13Þ

type3LR=LL;q-loop2Tr;cmix ðxK;xQ;x1;x2Þ¼�Tr½Sαβq ðxQ;xQÞγμγ5� · Tr½Sβγl ðxQ;x1Þγ5Sγδl ðx1;x2Þγ5Sδϵl ðx2;xKÞγ5Sϵαs ðxK;xQÞγμ�
�Tr½Sαβq ðxQ;xQÞγμγ5� · Tr½Sβγl ðxQ;x2Þγ5Sγδl ðx2;x1Þγ5Sδϵl ðx1;xKÞγ5Sϵαs ðxK;xQÞγμ�
−Tr½Sαβq ðxQ;xQÞγμ� · Tr½Sβγl ðxQ;x1Þγ5Sγδl ðx1;x2Þγ5Sδϵl ðx2;xKÞγ5Sϵαs ðxK;xQÞγμγ5�
−Tr½Sαβq ðxQ;xQÞγμ� · Tr½Sβγl ðxQ;x2Þγ5Sγδl ðx2;x1Þγ5Sδϵl ðx1;xKÞγ5Sϵαs ðxK;xQÞγμγ5�; ðB14Þ

type4LR=LL;l-loop2Tr;cdiag ðxK;xQ;x1;x2Þ¼�Tr½Sαβl ðxQ;xQÞγμγ5Sβγl ðxQ;xKÞγ5Sγαs ðxK;xQÞγμ� · Tr½Sδϵl ðx1;x2Þγ5Sϵδl ðx2;x1Þγ5�
−Tr½Sαβl ðxQ;xQÞγμSβγl ðxQ;xKÞγ5Sγαs ðxK;xQÞγμγ5� · Tr½Sδϵl ðx1;x2Þγ5Sϵδl ðx2;x1Þγ5�; ðB15Þ

type4LR=LL;s-loop2Tr;cdiag ðxK;xQ;x1;x2Þ¼−Tr½Sαβs ðxQ;xQÞγμγ5Sβγl ðxQ;xKÞγ5Sγαs ðxK;xQÞγμ� · Tr½Sδϵl ðx1;x2Þγ5Sϵδl ðx2;x1Þγ5�
�Tr½Sαβs ðxQ;xQÞγμSβγl ðxQ;xKÞγ5Sγαs ðxK;xQÞγμγ5� ·Tr½Sδϵl ðx1;x2Þγ5Sϵδl ðx2;x1Þγ5�; ðB16Þ

type 4LR=LL;q-loop3Tr;cdiag ðxK; xQ; x1; x2Þ ¼ �Tr½Sααq ðxQ; xQÞγμγ5� · Tr½Sβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμ� · Tr½Sδϵl ðx1; x2Þγ5Sϵδl ðx2; x1Þγ5�
− Tr½Sααq ðxQ; xQÞγμ� · Tr½Sβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμγ5� · Tr½Sδϵl ðx1; x2Þγ5Sϵδl ðx2; x1Þγ5�;

ðB17Þ
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type4LR=LL;l-loop2Tr;cmix ðxK;xQ;x1;x2Þ¼�Tr½Sααl ðxQ;xQÞγμγ5Sβγl ðxQ;xKÞγ5Sγβs ðxK;xQÞγμ� · Tr½Sδϵl ðx1;x2Þγ5Sϵδl ðx2;x1Þγ5�
−Tr½Sααl ðxQ;xQÞγμSβγl ðxQ;xKÞγ5Sγβs ðxK;xQÞγμγ5� · Tr½Sδϵl ðx1;x2Þγ5Sϵδl ðx2;x1Þγ5�; ðB18Þ

type4LR=LL;s-loop2Tr;cmix ðxK;xQ;x1;x2Þ¼−Tr½Sααs ðxQ;xQÞγμγ5Sβγl ðxQ;xKÞγ5Sγβs ðxK;xQÞγμ� · Tr½Sδϵl ðx1;x2Þγ5Sϵδl ðx2;x1Þγ5�
�Tr½Sααs ðxQ;xQÞγμSβγl ðxQ;xKÞγ5Sγβs ðxK;xQÞγμγ5� ·Tr½Sδϵl ðx1;x2Þγ5Sϵδl ðx2;x1Þγ5�; ðB19Þ

type 4LR=LL;q-loop3Tr;cmix ðxK; xQ; x1; x2Þ ¼ �Tr½Sαβq ðxQ; xQÞγμγ5� · Tr½Sβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμ� · Tr½Sδϵl ðx1; x2Þγ5Sϵδl ðx2; x1Þγ5�
− Tr½Sαβq ðxQ; xQÞγμ� · Tr½Sβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμγ5� · Tr½Sδϵl ðx1; x2Þγ5Sϵδl ðx2; x1Þγ5�;

ðB20Þ
where the sign ‘�’ is determined by the chirality LR/LL of the four-quark operator. All color indices α–ϵ are implicitly
summed over. A generic symbol ‘q’ is employed for some of type3 and type4 diagrams to indicate either the light (l) or
strange (s) quark. Sq denotes the propagator of the quark q. The arguments xK , xQ are the locations of the kaon (OK), four-
quark (Qi) operators, respectively. Two arguments x1 and x2 are used to indicate the location of the two individual pion
operators of a ππ-like operator ππI with a specific isospin I. Omitting these position arguments, the K → ππ three-point

functions CK→ππjI
i ¼ hππIðx1; x2ÞQiðxQÞOKðxKÞ†i read

−
ffiffiffi
6

p
iCK→ππjI¼2

1 ¼ þtype 1LL2Tr;cdiag − type 1LL1Tr;cdiag; ðB21Þ

−
ffiffiffi
6

p
iCK→ππjI¼2

2 ¼ þtype 1LL2Tr;cmix − type 1LL1Tr;cmix; ðB22Þ

−
ffiffiffi
6

p
iCK→ππjI¼2

7 ¼ þ 3

2
type 1LR2Tr;cdiag −

3

2
type 1LR1Tr;cdiag; ðB23Þ

−
ffiffiffi
6

p
iCK→ππjI¼2

8 ¼ þ 3

2
type 1LR2Tr;cmix −

3

2
type 1LR1Tr;cmix; ðB24Þ

CK→ππjI¼2

9 ¼ 3

2
CK→ππjI¼2

1 ; ðB25Þ

CK→ππjI¼2

10 ¼ 3

2
CK→ππjI¼2

2 ; ðB26Þ

for the ΔI ¼ 3=2 channel and

−
ffiffiffi
3

p
iCK→ππjI¼0

1 ¼ −
1

2
type 1LL2Tr;cdiag − type 1LL1Tr;cdiag þ

3

2
type 2LL2Tr;cdiag þ

3

2
type 3LL;l-loop2Tr;cdiag − 3type 4LL;l-loop3Tr;cdiag; ðB27Þ

−
ffiffiffi
3

p
iCK→ππjI¼0

2 ¼ −
1

2
type 1LL2Tr;cmix − type 1LL1Tr;cmix þ

3

2
type 2LL2Tr;cmix þ

3

2
type 3LL;l-loop2Tr;cmix − 3type 4LL;l-loop3Tr;cmix ; ðB28Þ

−
ffiffiffi
3

p
iCK→ππjI¼0

3 ¼ −
3

2
type 1LL1Tr;cdiag þ 3type 2LL2Tr;cdiag −

3

2
type 2LL1Tr;cdiag þ 3type 3LL;l-loop2Tr;cdiag −

3

2
type 3LL;l-loop1Tr;cdiag

þ 3

2
type 3LL;s-loop2Tr;cdiag −

3

2
type 3LL;s-loop1Tr;cdiag − 6type 4LL;l-loop3Tr;cdiag þ 3type 4LL;l-loop2Tr;cdiag − 3type 4LL;s-loop3Tr;cdiag

þ 3type 4LL;s-loop2Tr;cdiag ; ðB29Þ

−
ffiffiffi
3

p
iCK→ππjI¼0

4 ¼ −
3

2
type 1LL1Tr;cmix þ 3type 2LL2Tr;cmix −

3

2
type 2LL1Tr;cmix þ 3type 3LL;l-loop2Tr;cmix −

3

2
type 3LL;l-loop1Tr;cmix

þ 3

2
type 3LL;s-loop2Tr;cmix −

3

2
type 3LL;s-loop1Tr;cmix − 6type 4LL;l-loop3Tr;cmix þ 3type 4LL;l-loop2Tr;cmix − 3type 4LL;s-loop3Tr;cmix

þ 3type 4LL;s-loop2Tr;cmix ; ðB30Þ
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−
ffiffiffi
3

p
iCK→ππjI¼0

5 ¼ −
3

2
type 1LR1Tr;cdiag þ 3type 2LR2Tr;cdiag −

3

2
type 2LR1Tr;cdiag þ 3type 3LR;l-loop2Tr;cdiag −

3

2
type 3LR;l-loop1Tr;cdiag

þ 3

2
type 3LR;s-loop2Tr;cdiag −

3

2
type 3LR;s-loop1Tr;cdiag − 6type 4LR;l-loop3Tr;cdiag þ 3type 4LR;l-loop2Tr;cdiag − 3type 4LR;s-loop3Tr;cdiag

þ 3type 4LR;s-loop2Tr;cdiag ; ðB31Þ

−
ffiffiffi
3

p
iCK→ππjI¼0

6 ¼ −
3

2
type 1LR1Tr;cmix þ 3type 2LR2Tr;cmix −

3

2
type 2LR1Tr;cmix þ 3type 3LR;l-loop2Tr;cmix −

3

2
type 3LR;l-loop1Tr;cmix

þ 3

2
type 3LR;s-loop2Tr;cmix −

3

2
type 3LR;s-loop1Tr;cmix − 6type 4LR;l-loop3Tr;cmix þ 3type 4LR;l-loop2Tr;cmix − 3type 4LR;s-loop3Tr;cmix

þ 3type 4LR;s-loop2Tr;cmix ; ðB32Þ

−
ffiffiffi
3

p
iCK→ππjI¼0

7 ¼ −
3

4
type 1LR2Tr;cdiag −

3

4
type 1LR1Tr;cdiag þ

3

4
type 2LR2Tr;cdiag þ

3

4
type 2LR1Tr;cdiag þ

3

4
type 3LR;l-loop2Tr;cdiag

þ 3

4
type 3LR;l-loop1Tr;cdiag −

3

4
type 3LR;s-loop2Tr;cdiag þ 3

4
type 3LR;s-loop1Tr;cdiag −

3

2
type 4LR;l-loop3Tr;cdiag −

3

2
type 4LR;l-loop2Tr;cdiag

þ 3

2
type 4LR;s-loop3Tr;cdiag −

3

2
type 4LR;s-loop2Tr;cdiag ; ðB33Þ

−
ffiffiffi
3

p
iCK→ππjI¼0

8 ¼ −
3

4
type 1LR2Tr;cmix −

3

4
type 1LR1Tr;cmix þ

3

4
type 2LR2Tr;cmix þ

3

4
type 2LR1Tr;cmix þ

3

4
type 3LR;l-loop2Tr;cmix

þ 3

4
type 3LR;l-loop1Tr;cmix −

3

4
type 3LR;s-loop2Tr;cmix þ 3

4
type 3LR;s-loop1Tr;cmix −

3

2
type 4LR;l-loop3Tr;cmix −

3

2
type 4LR;l-loop2Tr;cmix

þ 3

2
type 4LR;s-loop3Tr;cmix −

3

2
type 4LR;s-loop2Tr;cmix ; ðB34Þ

−
ffiffiffi
3

p
iCK→ππjI¼0

9 ¼ −
3

4
type 1LL2Tr;cdiag −

3

4
type 1LL1Tr;cdiag þ

3

4
type 2LL2Tr;cdiag þ

3

4
type 2LL1Tr;cdiag þ

3

4
type 3LL;l-loop2Tr;cdiag

þ 3

4
type 3LL;l-loop1Tr;cdiag −

3

4
type 3LL;s-loop2Tr;cdiag þ 3

4
type 3LL;s-loop1Tr;cdiag −

3

2
type 4LL;l-loop3Tr;cdiag −

3

2
type 4LL;l-loop2Tr;cdiag

þ 3

2
type 4LL;s-loop3Tr;cdiag −

3

2
type 4LL;s-loop2Tr;cdiag ; ðB35Þ

−
ffiffiffi
3

p
iCK→ππjI¼0

10 ¼ −
3

4
type 1LL2Tr;cmix −

3

4
type 1LL1Tr;cmix þ

3

4
type 2LL2Tr;cmix þ

3

4
type 2LL1Tr;cmix þ

3

4
type 3LL;l-loop2Tr;cmix

þ 3

4
type 3LL;l-loop1Tr;cmix −

3

4
type 3LL;s-loop2Tr;cmix þ 3

4
type 3LL;s-loop1Tr;cmix −

3

2
type 4LL;l-loop3Tr;cmix −

3

2
type 4LL;l-loop2Tr;cmix

þ 3

2
type 4LL;s-loop3Tr;cmix −

3

2
type 4LL;s-loop2Tr;cmix ; ðB36Þ

for the ΔI ¼ 1=2 channel.
Note that the contractions of type1–3 diagrams given in Eqs. (B1)–(B14) are twice as large as the corresponding

contractions ①–�32 given in Ref. [80] and consequently the coefficients for these contractions differ by factor of 2.

2. K → σ

All K → σ three-point functions are a linear combination of the following contractions:

type 2σLR=LL1Tr;cdiagðxK; xQ; xσÞ ¼ �Tr½Sαβl ðxQ; xσÞSβγl ðxσ; xQÞγμγ5Sγδl ðxQ; xKÞγ5Sδαs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; xσÞSβγl ðxσ; xQÞγμSγδl ðxQ; xKÞγ5Sδαs ðxK; xQÞγμγ5�; ðB37Þ
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type 2σLR=LL2Tr;cdiagðxK; xQ; xσÞ ¼ �Tr½Sαβl ðxQ; xσÞSβαl ðxσ; xQÞγμγ5� · Tr½Sγδl ðxQ; xKÞγ5Sδγs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; xσÞSβαl ðxσ; xQÞγμ� · Tr½Sγδl ðxQ; xKÞγ5Sδγs ðxK; xQÞγμγ5�; ðB38Þ

type 2σLR=LL1Tr;cmixðxK; xQ; xσÞ ¼ �Tr½Sαβl ðxQ; xσÞSβαl ðxσ; xQÞγμγ5Sγδl ðxQ; xKÞγ5Sδγs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; xσÞSβαl ðxσ; xQÞγμSγδl ðxQ; xKÞγ5Sδγs ðxK; xQÞγμγ5�; ðB39Þ

type 2σLR=LL2Tr;cmixðxK; xQ; xσÞ ¼ �Tr½Sαβl ðxQ; xσÞSβγl ðxσ; xQÞγμγ5� · Tr½Sγδl ðxQ; xKÞγ5Sδαs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; xσÞSβγl ðxσ; xQÞγμ� · Tr½Sγδl ðxQ; xKÞγ5Sδαs ðxK; xQÞγμγ5�; ðB40Þ

type 3σLR=LL;l-loop1Tr;cdiag ðxK; xQ; xσÞ ¼ �Tr½Sαβl ðxQ; xQÞγμγ5Sβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδαs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; xQÞγμSβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδαs ðxK; xQÞγμγ5�; ðB41Þ

type 3σLR=LL;s-loop1Tr;cdiag ðxK; xQ; xσÞ ¼ −Tr½Sαβs ðxQ; xQÞγμγ5Sβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδαs ðxK; xQÞγμ�
� Tr½Sαβs ðxQ; xQÞγμSβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδαs ðxK; xQÞγμγ5�; ðB42Þ

type 3σLR=LL;q-loop2Tr;cdiag ðxK; xQ; xσÞ ¼ �Tr½Sααq ðxQ; xQÞγμγ5� · Tr½Sβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδβs ðxK; xQÞγμ�
− Tr½Sααq ðxQ; xQÞγμ� · Tr½Sβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδβs ðxK; xQÞγμγ5�; ðB43Þ

type 3σLR=LL;l-loop1Tr;cmix ðxK; xQ; xσÞ ¼ �Tr½Sααl ðxQ; xQÞγμγ5Sβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδβs ðxK; xQÞγμ�
− Tr½Sααl ðxQ; xQÞγμSβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδβs ðxK; xQÞγμγ5�; ðB44Þ

type 3σLR=LL;s-loop1Tr;cmix ðxK; xQ; xσÞ ¼ −Tr½Sααs ðxQ; xQÞγμγ5Sβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδβs ðxK; xQÞγμ�
� Tr½Sααs ðxQ; xQÞγμSβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδβs ðxK; xQÞγμγ5�; ðB45Þ

type 3σLR=LL;q-loop2Tr;cmix ðxK; xQ; xσÞ ¼ �Tr½Sαβq ðxQ; xQÞγμγ5� · Tr½Sβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδαs ðxK; xQÞγμ�
− Tr½Sαβq ðxQ; xQÞγμ� · Tr½Sβγl ðxQ; xσÞSγδl ðxσ; xKÞγ5Sδαs ðxK; xQÞγμγ5�; ðB46Þ

type 4σLR=LL;l-loop2Tr;cdiag ðxK; xQ; xσÞ ¼ �Tr½Sαβl ðxQ; xQÞγμγ5Sβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμ� · Tr½Sδδl ðxσ; xσÞ�
− Tr½Sαβl ðxQ; xQÞγμSβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμγ5� · Tr½Sδδl ðxσ; xσÞ�; ðB47Þ

type 4σLR=LL;s-loop2Tr;cdiag ðxK; xQ; xσÞ ¼ −Tr½Sαβs ðxQ; xQÞγμγ5Sβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμ� · Tr½Sδδl ðxσ; xσÞ�
� Tr½Sαβs ðxQ; xQÞγμSβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμγ5� · Tr½Sδδl ðxσ; xσÞ�; ðB48Þ

type 4σLR=LL;q-loop3Tr;cdiag ðxK; xQ; xσÞ ¼ �Tr½Sααq ðxQ; xQÞγμγ5� · Tr½Sβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμ� · Tr½Sδδl ðxσ; xσÞ�
− Tr½Sααq ðxQ; xQÞγμ� · Tr½Sβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμγ5� · Tr½Sδδl ðxσ; xσÞ�; ðB49Þ

type 4σLR=LL;l-loop2Tr;cmix ðxK; xQ; xσÞ ¼ �Tr½Sααl ðxQ; xQÞγμγ5Sβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμ� · Tr½Sδδl ðxσ; xσÞ�
− Tr½Sααl ðxQ; xQÞγμSβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμγ5� · Tr½Sδδl ðxσ; xσÞ�; ðB50Þ

type 4σLR=LL;s-loop2Tr;cmix ðxK; xQ; xσÞ ¼ −Tr½Sααs ðxQ; xQÞγμγ5Sβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμ� · Tr½Sδδl ðxσ; xσÞ�
� Tr½Sααs ðxQ; xQÞγμSβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμγ5� · Tr½Sδδl ðxσ; xσÞ�; ðB51Þ
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type 4σLR=LL;q-loop3Tr;cmix ðxK; xQ; xσÞ ¼ �Tr½Sαβq ðxQ; xQÞγμγ5� · Tr½Sβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμ� · Tr½Sδδl ðxσ; xσÞ�
− Tr½Sαβq ðxQ; xQÞγμ� · Tr½Sβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμγ5� · Tr½Sδδl ðxσ; xσÞ�: ðB52Þ

We have only ΔI ¼ 1=2 channel of the K → σ three-point functions, which is defined as CK→σ
i ¼ hσðxσÞQiðxQÞOKðxKÞ†i

and given as follows:

ffiffiffi
2

p
iCK→σ

1 ¼ þtype 2σLL2Tr;cdiag þ type 3σLL;l-loop2Tr;cdiag − 2type 4σLL;l-loop3Tr;cdiag; ðB53Þ
ffiffiffi
2

p
iCK→σ

2 ¼ þtype 2σLL2Tr;cmix þ type 3σLL;l-loop2Tr;cmix − 2type 4σLL;l-loop3Tr;cmix ; ðB54Þ
ffiffiffi
2

p
iCK→σ

3 ¼ þ2type 2σLL2Tr;cdiag − type 2σLL1Tr;cdiag þ 2type 3σLL;l-loop2Tr;cdiag − type 3σLL;l-loop1Tr;cdiag þ type 3σLL;s-loop2Tr;cdiag − type 3σLL;s-loop1Tr;cdiag

− 4type 4σLL;l-loop3Tr;cdiag þ 2type 4σLL;l-loop2Tr;cdiag − 2type 4σLL;s-loop3Tr;cdiag þ 2type 4σLL;s-loop2Tr;cdiag ; ðB55Þ
ffiffiffi
2

p
iCK→σ

4 ¼ þ2type 2σLL2Tr;cmix − type 2σLL1Tr;cmix þ 2type 3σLL;l-loop2Tr;cmix − type 3σLL;l-loop1Tr;cmix þ type 3σLL;s-loop2Tr;cmix − type 3σLL;s-loop1Tr;cmix

− 4type 4σLL;l-loop3Tr;cmix þ 2type 4σLL;l-loop2Tr;cmix − 2type 4σLL;s-loop3Tr;cmix þ 2type 4σLL;s-loop2Tr;cmix ; ðB56Þ
ffiffiffi
2

p
iCK→σ

5 ¼ þ2type 2σLR2Tr;cdiag − type 2σLR1Tr;cdiag þ 2type 3σLR;l-loop2Tr;cdiag − type 3σLR;l-loop1Tr;cdiag þ type 3σLR;s-loop2Tr;cdiag − type 3σLR;s-loop1Tr;cdiag

− 4type 4σLR;l-loop3Tr;cdiag þ 2type 4σLR;l-loop2Tr;cdiag − 2type 4σLR;s-loop3Tr;cdiag þ 2type 4σLR;s-loop2Tr;cdiag ; ðB57Þ
ffiffiffi
2

p
iCK→σ

6 ¼ þ2type 2σLR2Tr;cmix − type 2σLR1Tr;cmix þ 2type 3σLR;l-loop2Tr;cmix − type 3σLR;l-loop1Tr;cmix þ type 3σLR;s-loop2Tr;cmix − type 3σLR;s-loop1Tr;cmix

− 4type 4σLR;l-loop3Tr;cmix þ 2type 4σLR;l-loop2Tr;cmix − 2type 4σLR;s-loop3Tr;cmix þ 2type 4σLR;s-loop2Tr;cmix ; ðB58Þ
ffiffiffi
2

p
iCK→σ

7 ¼ þ 1

2
type 2σLR2Tr;cdiag þ

1

2
type 2σLR1Tr;cdiag þ

1

2
type 3σLR;l-loop2Tr;cdiag þ

1

2
type 3σLR;l-loop1Tr;cdiag −

1

2
type 3σLR;s-loop2Tr;cdiag

þ 1

2
type 3σLR;s-loop1Tr;cdiag − type 4σLR;l-loop3Tr;cdiag − type 4σLR;l-loop2Tr;cdiag þ type 4σLR;s-loop3Tr;cdiag − type 4σLR;s-loop2Tr;cdiag ; ðB59Þ

ffiffiffi
2

p
iCK→σ

8 ¼ þ 1

2
type 2σLR2Tr;cmix þ

1

2
type 2σLR1Tr;cmix þ

1

2
type 3σLR;l-loop2Tr;cmix þ 1

2
type 3σLR;l-loop1Tr;cmix −

1

2
type 3σLR;s-loop2Tr;cmix

þ 1

2
type 3σLR;s-loop1Tr;cmix − type 4σLR;l-loop3Tr;cmix − type 4σLR;l-loop2Tr;cmix þ type 4σLR;s-loop3Tr;cmix − type 4σLR;s-loop2Tr;cmix ; ðB60Þ

ffiffiffi
2

p
iCK→σ

9 ¼ þ 1

2
type 2σLL2Tr;cdiag þ

1

2
type 2σLL1Tr;cdiag þ

1

2
type 3σLL;l-loop2Tr;cdiag þ

1

2
type 3σLL;l-loop1Tr;cdiag −

1

2
type 3σLL;s-loop2Tr;cdiag

þ 1

2
type 3σLL;s-loop1Tr;cdiag − type 4σLL;l-loop3Tr;cdiag − type 4σLL;l-loop2Tr;cdiag þ type 4σLL;s-loop3Tr;cdiag − type 4σLL;s-loop2Tr;cdiag ; ðB61Þ

ffiffiffi
2

p
iCK→σ

10 ¼ þ 1

2
type 2σLL2Tr;cmix þ

1

2
type 2σLL1Tr;cmix þ

1

2
type 3σLL;l-loop2Tr;cmix þ 1

2
type 3σLL;l-loop1Tr;cmix −

1

2
type 3σLL;s-loop2Tr;cmix

þ 1

2
type 3σLL;s-loop1Tr;cmix − type 4σLL;l-loop3Tr;cmix − type 4σLL;l-loop2Tr;cmix þ type 4σLL;s-loop3Tr;cmix − type 4σLL;s-loop2Tr;cmix : ðB62Þ

3. K to vacuum

We use the following fundamental contractions for the K to vacuum correlation functions:

k2vacLR=LL;l-loop1Tr;cdiag ðxK; xQÞ ¼ �Tr½Sαβl ðxQ; xQÞγμγ5Sβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμ�
− Tr½Sαβl ðxQ; xQÞγμSβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμγ5�; ðB63Þ
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k2vacLR=LL;s-loop1Tr;cdiag ðxK; xQÞ ¼ −Tr½Sαβs ðxQ; xQÞγμγ5Sβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμ�
� Tr½Sαβs ðxQ; xQÞγμSβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμγ5�; ðB64Þ

k2vacLR=LL;q-loop2Tr;cdiag ðxK; xQÞ ¼ �Tr½Sααq ðxQ; xQÞγμγ5� · Tr½Sβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμ�
− Tr½Sααq ðxQ; xQÞγμ� · Tr½Sβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμγ5�; ðB65Þ

k2vacLR=LL;l-loop1Tr;cmix ðxK; xQÞ ¼ �Tr½Sααl ðxQ; xQÞγμγ5Sβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμ�
− Tr½Sααl ðxQ; xQÞγμSβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμγ5�; ðB66Þ

k2vacLR=LL;s-loop1Tr;cmix ðxK; xQÞ ¼ −Tr½Sααs ðxQ; xQÞγμγ5Sβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμ�
� Tr½Sααs ðxQ; xQÞγμSβγl ðxQ; xKÞγ5Sγβs ðxK; xQÞγμγ5�; ðB67Þ

k2vacLR=LL;q-loop2Tr;cmix ðxK; xQÞ ¼ �Tr½Sαβq ðxQ; xQÞγμγ5� · Tr½Sβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμ�
− Tr½Sαβq ðxQ; xQÞγμ� · Tr½Sβγl ðxQ; xKÞγ5Sγαs ðxK; xQÞγμγ5�: ðB68Þ

The K to vacuum correlation functions CK→j0i
i ¼ hQiðxQÞOKðxKÞ†i read

iCK→j0i
1 ¼ k2vacLL;l-loop2Tr;cdiag; ðB69Þ

iCK→j0i
2 ¼ k2vacLL;l-loop2Tr;cmix ; ðB70Þ

iCK→j0i
3 ¼ 2k2vacLL;l-loop2Tr;cdiag − k2vacLL;l-loop1Tr;cdiag þ k2vacLL;s-loop2Tr;cdiag − k2vacLL;s-loop1Tr;cdiag ; ðB71Þ

iCK→j0i
4 ¼ 2k2vacLL;l-loop2Tr;cmix − k2vacLL;l-loop1Tr;cmix þ k2vacLL;s-loop2Tr;cmix − k2vacLL;s-loop1Tr;cmix ; ðB72Þ

iCK→j0i
5 ¼ 2k2vacLR;l-loop2Tr;cdiag − k2vacLR;l-loop1Tr;cdiag þ k2vacLR;s-loop2Tr;cdiag − k2vacLR;s-loop1Tr;cdiag ; ðB73Þ

iCK→j0i
6 ¼ 2k2vacLR;l-loop2Tr;cmix − k2vacLR;l-loop1Tr;cmix þ k2vacLR;s-loop2Tr;cmix − k2vacLR;s-loop1Tr;cmix ; ðB74Þ

iCK→j0i
7 ¼ 1

2
k2vacLR;l-loop2Tr;cdiag þ

1

2
k2vacLR;l-loop1Tr;cdiag −

1

2
k2vacLR;s-loop2Tr;cdiag þ 1

2
k2vacLR;s-loop1Tr;cdiag ; ðB75Þ

iCK→j0i
8 ¼ 1

2
k2vacLR;l-loop2Tr;cmix þ 1

2
k2vacLR;l-loop1Tr;cmix −

1

2
k2vacLR;s-loop2Tr;cmix þ 1

2
k2vacLR;s-loop1Tr;cmix ; ðB76Þ

iCK→j0i
9 ¼ 1

2
k2vacLL;l-loop2Tr;cdiag þ

1

2
k2vacLL;l-loop1Tr;cdiag −

1

2
k2vacLL;s-loop2Tr;cdiag þ 1

2
k2vacLL;s-loop1Tr;cdiag ; ðB77Þ

iCK→j0i
10 ¼ 1

2
k2vacLL;l-loop2Tr;cmix þ 1

2
k2vacLL;l-loop1Tr;cmix −

1

2
k2vacLL;s-loop2Tr;cmix þ 1

2
k2vacLL;s-loop1Tr;cmix : ðB78Þ

4. Contractions for power-divergence subtractions

We define fundamental contractions as follows:

type 3γ5ðxK; xQ; x1; x2Þ ¼ Tr½SlðxQ; x1Þγ5Slðx1; x2Þγ5Slðx2; xKÞγ5SsðxK; xQÞγ5�
þ Tr½SlðxQ; x2Þγ5Slðx2; x1Þγ5Slðx1; xKÞγ5SsðxK; xQÞγ5�; ðB79Þ

type 3σγ5ðxK; xQ; xσÞ ¼ Tr½SlðxQ; xσÞSlðxσ; xKÞγ5SsðxK; xQÞγ5�; ðB80Þ
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type 4γ5ðxK; xQ; x1; x2Þ ¼ Tr½SlðxQ; xKÞγ5SsðxK; xQÞγ5� · Tr½Slðx1; x2Þγ5Slðx2; x1Þγ5�; ðB81Þ

type 4σγ5ðxK; xQ; xσÞ ¼ Tr½SlðxQ; xKÞγ5SsðxK; xQÞγ5� · Tr½Slðxσ; xσÞ�; ðB82Þ

k2vacγ5ðxK; xQÞ ¼ Tr½SlðxQ; xKÞγ5SsðxK; xQÞγ5�; ðB83Þ

where we omit the color indices since they are all contracted in the same way as the spin indices. The three- and two-point
functions used for the subtractions read

−
ffiffiffi
3

p
iCK→ππ

γ5 ðxK; xQ; x1; x2Þ ¼ hππI¼0ðx1; x2Þs̄γ5dðxQÞOKðxKÞ†i ¼ −
3

2
type 3γ5 þ 3type 4γ5 ; ðB84Þ

ffiffiffi
2

p
iCK→σ

γ5 ðxK; xQ; xσÞ ¼ hσðxσÞs̄γ5dðxQÞOKðxKÞ†i ¼ −type 3σγ5 þ 2type 4σγ5 ; ðB85Þ

iCK→j0i
γ5 ðxK; xQÞ ¼ hs̄γ5dðxQÞOKðxKÞ†i ¼ −k2vacγ5 : ðB86Þ

APPENDIX C: SYSTEMATIC ERROR ON THE
AMPLITUDES DUE TO THE INTERPOLATION

In this appendix we describe how we estimate the
systematic error due to the interpolation of the matrix
elements to the physical kinematics. Throughout this
appendix the matrix elements in the SMOMðq; qÞ scheme
under consideration are the ones after a step scaling from μ1
to μh.
We define the systematic error on the matrix elements

due to the interpolation as the difference

ΔM0SMOMðq;qÞ
I;j ðμhÞ ¼ M0SMOMðq;qÞ;lin

I;j ðμhÞ
−M0SMOMðq;qÞ;quad

I;j ðμhÞ; ðC1Þ

whose ratios to M0SMOMðq;qÞ;lin
I;j ðμhÞ are tabulated in

Table XXVII. The table indicates that the systematic error
due to the interpolation is well-resolved and maximally a
few percent except for j ¼ 1, where the systematic error for
I ¼ 2 is about 7% and that for I ¼ 0 is not resolved but
fairly less than 10%.
In order to propagate these systematic errors to the

K → ππ amplitudes, we consider the summation form

AI ¼
X
j∈ C

C0SMOMðq;qÞ
j ðμhÞM0SMOMðq;qÞ

I;j ðμhÞ; ðC2Þ

where

C0SMOMðq;qÞ
j ðμhÞ ¼

X10
i¼1

X
k∈ C

CMS
i ðμhÞðTik þ ΔTMS

ik Þ

× RMS←SMOMðq;qÞ
kj ðμhÞ ðC3Þ

is calculated perturbatively. We estimate the systematic
error on the amplitudes as

ΔAI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j∈ C

	
C0SMOMðq;qÞ
j ðμhÞΔM0SMOMðq;qÞ

I;j ðμhÞ


2

s
: ðC4Þ

We find

ReðΔA2Þ=ReðĀ2Þ ¼ 0.071ð10Þ; ðC5Þ

ImðΔA2Þ=ImðĀ2Þ ¼ 0.0328ð18Þ; ðC6Þ

ReðΔA0Þ=ReðĀ0Þ ¼ 0.0184ð52Þ; ðC7Þ

ImðΔA0Þ=ImðĀ0Þ ¼ 0.0254ð39Þ; ðC8Þ

where ĀI stands for the central value of AI . The errors
from ‘On shell limit’ shown in Table XXIII are from these
values.

TABLE XXVII. Values of ΔM0SMOMðq;qÞ
I;j ðμhÞ divided by the

central value of the corresponding M0SMOMðq;qÞ;lin
I;j ðμhÞ. Errors in

the parentheses are statistical only.

j I ¼ 2 I ¼ 0

1 0.070(10) 0.038(30)
2 � � � 0.0203(59)
3 � � � 0.0216(67)
5 � � � 0.0191(59)
6 � � � 0.0220(35)
7 −0.0279ð13Þ 0.0009(11)
8 −0.0199ð11Þ 0.00191(92)
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APPENDIX D: SUPPLEMENTAL FIGURES AND TABLES

The fit results for the K → ππ matrix elements of the eight operators that are not shown in the main section are plotted in
Figs. 21 and 22 for the ground and first-excited two-pion states, respectively. These matrix elements give a relatively small
contribution to the K → ππ amplitudes compared to those of Q2 and Q6, which are shown in the main section.

FIG. 21. ΔI ¼ 1=2 channel of K → ππ matrix elements of the four-quark operatorsQ1;3;4;5;7;8;9;10 with the ground two-pion final state.
The result for those of Q2;6 are shown on the left panels of Fig. 15.
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FIG. 22. ΔI ¼ 1=2 channel of K → ππ matrix elements of the four-quark operators Q1;3;4;5;7;8;9;10 with the first-excited two-pion final
state. The result for those of Q2;6 are shown on the left panels of Fig. 17.
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TABLE XXVIII. Renormalization matrices with the chiral basis on the 243 ensemble for SMOMðγμ; γμÞ at μ ¼ μ1 (upper),
SMOMðγμ; γμÞ at μ ¼ μ2 (middle) and SMOMðq; qÞ at μ ¼ μ2 (lower). The result for SMOMðq; qÞ at μ ¼ μ1 is shown in Table VII.

1 2 3 5 6 7 8

1 0.47461(14) 0 0 0 0 0 0
2 0 0.5384(62) −0.0780ð49Þ −0.0025ð26Þ −0.0024ð14Þ 0 0
3 0 −0.0634ð26Þ 0.5542(26) −0.0030ð10Þ 0.00563(75) 0 0
5 0 −0.048ð20Þ −0.043ð16Þ 0.5672(72) −0.1102ð43Þ 0 0
6 0 0.0029(82) 0.0277(80) −0.0437ð31Þ 0.3854(22) 0 0
7 0 0 0 0 0 0.55930(17) −0.103918ð38Þ
8 0 0 0 0 0 −0.036095ð23Þ 0.36730(13)

1 0.42042(13) 0 0 0 0 0 0
2 0 0.4970(78) −0.0682ð70Þ 0.0034(27) −0.0061ð18Þ 0 0
3 0 −0.0561ð34Þ 0.5080(37) −0.0026ð15Þ 0.0065(12) 0 0
5 0 −0.006ð24Þ −0.013ð21Þ 0.5188(83) −0.0941ð58Þ 0 0
6 0 0.000(13) 0.040(14) −0.0358ð51Þ 0.3829(41) 0 0
7 0 0 0 0 0 0.49986(16) −0.087247ð35Þ
8 0 0 0 0 0 −0.037058ð27Þ 0.36232(13)

1 0.56764(21) 0 0 0 0 0 0
2 0 0.4542(91) −0.385ð11Þ −0.0053ð34Þ 0.0012(23) 0 0
3 0 0.164(17) 1.089(18) 0.0064(65) −0.0105ð46Þ 0 0
5 0 −0.067ð44Þ −0.051ð45Þ 0.632(16) −0.106ð11Þ 0 0
6 0 −0.075ð26Þ −0.090ð34Þ −0.078ð10Þ 0.5613(92) 0 0
7 0 0 0 0 0 0.62059(22) −0.108774ð48Þ
8 0 0 0 0 0 −0.093300ð83Þ 0.56162(28)

TABLE XXIX. Step-scaling matrices with the chiral basis on the 32Ifine ensemble from the low scale μ to the high scale μh ≈ 4 GeV.
Results for SMOMðγμ; γμÞ at μ ¼ μ1 (upper), SMOMðγμ; γμÞ at μ ¼ μ2 (middle) and SMOMðq; qÞ at μ ¼ μ2 (lower) are shown. The
result for SMOMðq; qÞ at μ ¼ μ1 is shown in Table IX.

1 2 3 5 6 7 8

1 0.94625(42) 0 0 0 0 0 0
2 0 0.955(93) −0.262ð85Þ 0.021(33) 0.051(26) 0 0
3 0 −0.121ð35Þ 1.133(34) 0.005(11) −0.003ð12Þ 0 0
5 0 −0.15ð27Þ −0.17ð25Þ 0.959(94) 0.449(80) 0 0
6 0 0.11(14) 0.07(14) 0.007(48) 2.224(48) 0 0
7 0 0 0 0 0 0.97575(56) 0.3671(13)
8 0 0 0 0 0 0.0165(11) 2.3154(52)

1 0.95422(29) 0 0 0 0 0 0
2 0 0.985(49) −0.157ð42Þ −0.022ð19Þ 0.023(15) 0 0
3 0 −0.106ð20Þ 1.065(19) −0.0131ð70Þ −0.0062ð65Þ 0 0
5 0 −0.10ð15Þ −0.13ð12Þ 0.864(56) 0.245(47) 0 0
6 0 0.001(76) −0.058ð71Þ −0.032ð28Þ 1.744(24) 0 0
7 0 0 0 0 0 0.97529(28) 0.23528(65)
8 0 0 0 0 0 0.00920(46) 1.8345(26)

1 0.90212(23) 0 0 0 0 0 0
2 0 1.115(77) 0.100(62) −0.002ð24Þ 0.023(17) 0 0
3 0 −0.488ð49Þ 0.534(42) −0.027ð16Þ 0.009(10) 0 0
5 0 −0.19ð28Þ −0.20ð22Þ 0.847(82) 0.243(58) 0 0
6 0 0.09(12) 0.09(10) −0.027ð40Þ 1.603(33) 0 0
7 0 0 0 0 0 0.97601(23) 0.18587(60)
8 0 0 0 0 0 0.07499(83) 1.6123(32)

THOMAS BLUM et al. PHYS. REV. D 108, 094517 (2023)

094517-48



[1] J. R. Batley et al., A precision measurement of direct CP
violation in the decay of neutral kaons into two pions,
Phys. Lett. B 544, 97 (2002).

[2] E. T. Worcester, The final measurement of epsilon-prime/
epsilon from KTeV, in Heavy Quarks and Leptons 2008
(HQ&L08) (2009), arXiv:0909.2555.

[3] E. Abouzaid et al., Precise measurements of direct CP
Violation, CPT symmetry, and other parameters in the
neutral kaon system, Phys. Rev. D 83, 092001 (2011).

[4] R. L. Workman et al., Review of particle physics, Prog.
Theor. Exp. Phys. 2022, 083C01 (2022).

[5] Z. Bai et al., Standard Model prediction for direct CP
violation in K → ππ decay, Phys. Rev. Lett. 115, 212001
(2015).

[6] R. Abbott et al., Direct CP violation and theΔI ¼ 1=2 rule
in K → ππ decay from the Standard Model, Phys. Rev. D
102, 054509 (2020).

[7] Andrzej J. Buras, Matthias Jamin, and Markus E.
Lautenbacher, The anatomy of ϵ0=ϵ beyond leading log-
arithms with improved hadronic matrix elements, Nucl.
Phys. B408, 209 (1993).

[8] Gerhard Buchalla, Andrzej J. Buras, and Markus E.
Lautenbacher, Weak decays beyond leading logarithms,
Rev. Mod. Phys. 68, 1125 (1996).

[9] L. Maiani and M. Testa, Final state interactions from
Euclidean correlation functions, Phys. Lett. B 245, 585
(1990).

[10] Claude W. Bernard, Terrence Draper, A. Soni, H. David
Politzer, and Mark B. Wise, Application of chiral pertur-
bation theory to K → 2π decays, Phys. Rev. D 32, 2343
(1985).

[11] S. Aoki, M. Fukugita, S. Hashimoto, N. Ishizuka, Y.
Iwasaki, K. Kanaya, Y. Kuramashi, M. Okawa, A.
Ukawa, and T. Yoshie, Kþ → πþπ0 decay amplitude with
the Wilson quark action in quenched lattice QCD, Phys.
Rev. D 58, 054503 (1998).

[12] J. I. Noaki et al., Calculation of nonleptonic kaon decay
amplitudes from K⃗π matrix elements in quenched domain
wall QCD, Phys. Rev. D 68, 014501 (2003).

[13] T. Blum et al., Kaon matrix elements and CP violation
from quenched lattice QCD: 1, The three flavor case, Phys.
Rev. D 68, 114506 (2003).

[14] C. J. David Lin, G. Martinelli, E. Pallante, C. T. Sachrajda,
and G. Villadoro, Kþ → πþπ0 decays on finite volumes
and at next-to-leading order in the chiral expansion, Nucl.
Phys. B650, 301 (2003).

[15] Jack Laiho and Amarjit Soni, On lattice extraction of
K → ππ amplitudes to Oðp4Þ in chiral perturbation theory,
Phys. Rev. D 65, 114020 (2002).

[16] Jack Laiho and Amarjit Soni, Lattice extraction of K → ππ
amplitudes to NLO in partially quenched and in full chiral
perturbation theory, Phys. Rev. D 71, 014021 (2005).

[17] T. Blum et al., The K → ðππÞI¼2 decay amplitude from
lattice QCD, Phys. Rev. Lett. 108, 141601 (2012).

TABLE XXX. Renormalization matrices with step scaling performed from the scale μ to μh ≈ 4 GeV. Results for SMOMðγμ; γμÞ at
μ ¼ μ1 (upper), SMOMðγμ; γμÞ at μ ¼ μ2 (middle) and SMOMðq; qÞ at μ ¼ μ2 (lower) are shown. The result for SMOMðq; qÞ at μ ¼ μ1
is shown in Table X.

1 2 3 5 6 7 8

1 0.44910(24) 0 0 0 0 0 0
2 0 0.530(46) −0.219ð41Þ 0.008(19) 0.014(12) 0 0
3 0 −0.137ð17Þ 0.637(17) −0.0001ð69Þ 0.0049(55) 0 0
5 0 −0.11ð13Þ −0.11ð12Þ 0.525(55) 0.067(37) 0 0
6 0 0.063(72) 0.089(71) −0.094ð29Þ 0.856(22) 0 0
7 0 0 0 0 0 0.53248(35) 0.03344(49)
8 0 0 0 0 0 −0.07433ð66Þ 0.8487(20)

1 0.40117(17) 0 0 0 0 0 0
2 0 0.498(24) −0.146ð20Þ −0.008ð11Þ 0.0039(72) 0 0
3 0 −0.1121ð96Þ 0.5480(93) −0.0097ð40Þ 0.0065(31) 0 0
5 0 −0.048ð72Þ −0.061ð58Þ 0.439(31) 0.012(22) 0 0
6 0 0.005(41) 0.040(40) −0.079ð17Þ 0.671(13) 0 0
7 0 0 0 0 0 0.47879(21) 0.00016(24)
8 0 0 0 0 0 −0.06338ð28Þ 0.66386(98)

1 0.51209(23) 0 0 0 0 0 0
2 0 0.521(45) −0.322ð45Þ −0.009ð16Þ 0.013(11) 0 0
3 0 −0.133ð29Þ 0.770(31) −0.011ð11Þ 0.0016(70) 0 0
5 0 −0.19ð16Þ −0.21ð15Þ 0.516(54) 0.048(37) 0 0
6 0 −0.065ð82Þ −0.082ð93Þ −0.142ð31Þ 0.902(25) 0 0
7 0 0 0 0 0 0.58836(26) −0.00177ð35Þ
8 0 0 0 0 0 −0.10389ð73Þ 0.8973(19)

ΔI ¼ 3=2 AND ΔI ¼ 1=2 CHANNELS OF K → ππ DECAY AT THE … PHYS. REV. D 108, 094517 (2023)

094517-49

https://doi.org/10.1016/S0370-2693(02)02476-0
https://arXiv.org/abs/0909.2555
https://doi.org/10.1103/PhysRevD.83.092001
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevLett.115.212001
https://doi.org/10.1103/PhysRevLett.115.212001
https://doi.org/10.1103/PhysRevD.102.054509
https://doi.org/10.1103/PhysRevD.102.054509
https://doi.org/10.1016/0550-3213(93)90535-W
https://doi.org/10.1016/0550-3213(93)90535-W
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1016/0370-2693(90)90695-3
https://doi.org/10.1016/0370-2693(90)90695-3
https://doi.org/10.1103/PhysRevD.32.2343
https://doi.org/10.1103/PhysRevD.32.2343
https://doi.org/10.1103/PhysRevD.58.054503
https://doi.org/10.1103/PhysRevD.58.054503
https://doi.org/10.1103/PhysRevD.68.014501
https://doi.org/10.1103/PhysRevD.68.114506
https://doi.org/10.1103/PhysRevD.68.114506
https://doi.org/10.1016/S0550-3213(02)01038-6
https://doi.org/10.1016/S0550-3213(02)01038-6
https://doi.org/10.1103/PhysRevD.65.114020
https://doi.org/10.1103/PhysRevD.71.014021
https://doi.org/10.1103/PhysRevLett.108.141601


[18] T. Blum et al., Lattice determination of the K → ðππÞI¼2

decay amplitude A2, Phys. Rev. D 86, 074513 (2012).
[19] T. Blum et al., K → ππΔI ¼ 3=2 decay amplitude in the

continuum limit, Phys. Rev. D 91, 074502 (2015).
[20] U. J. Wiese, C periodic and G periodic QCD at finite

temperature, Nucl. Phys. B375, 45 (1992).
[21] Norman H. Christ, Christopher Kelly, and Daiqian Zhang,

Lattice simulations with G-parity boundary conditions,
Phys. Rev. D 101, 014506 (2020).

[22] N. Ishizuka, K. I. Ishikawa, A. Ukawa, and T. Yoshié,
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[97] Maria Cerdà-Sevilla, NNLO QCD contributions to ε0=ε,
Acta Phys. Pol. B 49, 1087 (2018).

[98] Masaaki Tomii, Non-perturbative matching of three/four-
flavor Wilson coefficients with a position-space procedure,
Proc. Sci. LATTICE2019 (2020) 174.

[99] https://github.com/RBC-UKQCD/CPS.
[100] https://github.com/paboyle/Grid.
[101] https://github.com/aportelli/hadrons.

Correction: An incorrect version of Table XVIII was
used for publication and has now been replaced with the
correct version.

THOMAS BLUM et al. PHYS. REV. D 108, 094517 (2023)

094517-52

https://doi.org/10.1103/PhysRevLett.110.152001
https://doi.org/10.1016/S0550-3213(99)00810-X
https://doi.org/10.1016/j.nuclphysb.2005.01.047
https://doi.org/10.1016/j.nuclphysb.2005.01.047
https://doi.org/10.1103/PhysRevD.82.094026
https://doi.org/10.1103/PhysRevD.82.094026
https://doi.org/10.1088/1742-6596/800/1/012008
https://doi.org/10.1088/1742-6596/800/1/012008
https://doi.org/10.5506/APhysPolB.49.1087
https://doi.org/10.22323/1.363.0174
https://github.com/RBC-UKQCD/CPS
https://github.com/RBC-UKQCD/CPS
https://github.com/paboyle/Grid
https://github.com/paboyle/Grid
https://github.com/aportelli/hadrons
https://github.com/aportelli/hadrons

