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We present a lattice calculation of the low energy constants of QCD with Nc ¼ 3, 4 and 5 colors and
Nf ¼ 2 flavors of degenerate mass fermions. We fit data for the pseudoscalar meson mass, the pseudoscalar
decay constant, and the axial Ward identity fermion mass to formulas from next-to-next-to leading order
chiral perturbation theory. We extract the next to leading order low energy constants and study their
behavior as a function of Nc. Preexisting analyses of Nc ¼ 3 inform our fitting strategies.
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I. INTRODUCTION AND MOTIVATION

The most studied deformation of real-world three-color
(Nc ¼ 3) QCD is its extension to a large number of colors.
In the limit that Nc is taken to infinity, it is believed that
mesons are narrow quark antiquark bound states, baryon
masses scale as Nc, and Nc counting rules set the overall
scale for hadronic matrix elements [1–3].
There is a small lattice literature related to the large Nc

limit of QCD. Simulations involve the pure gauge theory
and fermions included in quenched approximation (mostly
at single-digit values of Nc), quenched simulations at very
largeNc and small volume, and simulations in large volume
with a small number of dynamical fermion flavors (so far,
Nf ¼ 2 and 4). References [4–6] are a selection of reviews
of the various approaches. The goal of these simulations is
to confront predictions of large Nc QCD, which are
typically (semi) analytic, with nonperturbative lattice-based
results.
The qualitative situation with regard to such comparisons

is as follows: Choose to fix the lattice spacing in a
simulation using some observable taken from a correlation
function dominated by gluonic degrees of freedom. Such
observables include the string tension, the Sommer param-
eter [7], or the flow [8,9] parameter t0. Perform lattice
simulations while tuning the bare parameters (the most
sensitive one is the gauge coupling g2) so that the lattice
spacing is the same for all values of Nc. One will discover
that the bare ‘t Hooft couplings λ ¼ g2Nc are roughly
matched across Nc. Alternatively, performing simulations
across Nc at the same value of λ, one will discover that the

lattice spacing had been approximately matched. Once that
is done one will see that the masses of flavor nonsinglet
mesons, and their dependence on the fermion mass, will be
approximately equal across Nc. Simple matrix elements
(decay constants, the kaon B− parameter) will scale with
Nc as predicted from the color weight of amplitudes. All of
these statements are modified by small corrections, which
can be arguably interpreted as 1=Nc effects.
We are not aware of any large volume simulations which

attempt to take a continuum limit; most of them involve
simulations across Nc at a single matched value lattice
spacing. It seemed to us that it might be possible to extend
one of these studies to do that. We make a first attempt to
measure at chiral parameters of SUðNcÞ gauge theory with
Nf ¼ 2 flavors of degenerate fermions, in the continuum
and large Nc limits. Specifically, we studied Nc ¼ 3, 4 and
5. We wanted to address the following set of questions:
(1) How do the low energy constants of the chiral

effective theory scale with Nc?
(2) What is their Nc → ∞ limit? How do our results

compare to those from other approaches (quenched
simulations, simulations in small volume)?

(3) As Nc rises, the low energy effective theory is
expected to change from the conventional SUðNfÞL×
SUðNfÞR → SUðNfÞLþR pattern of symmetry break-
ing to one where the flavor singlet meson becomes
light [10–15]. At what value ofNc does this “UðNfÞ”
expansion begin to reproduce the data?

There is already an extensive literature about the low
energy constants of Nc ¼ 3, Nf ¼ 2 QCD, summarized in
the Flavor Lattice Averaging Group’s 2019 summary,
Ref. [16]. Typical analyses in their summary have much
better quality than what we present here; we cannot add
much to this already-closed subject. We instead use the
results of these pre-existing Nc ¼ 3, Nf ¼ 2 studies to
inform our analysis, and to calibrate the accuracy we claim
for Nc > 3.
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We should say at the start that while we have made a first
attempt to extract continuum to the low energy constants of
Nc > 3 QCD, we do not regard our results as definitive.
The main issues are three: two typical of early QCD studies
of any observable, with too large a lattice spacing and too
large fermion masses for comfortable extrapolations, the
third is that we do not feel that we have enough values of
Nc. But the outline of the solution is there: once again,
Nc ¼ 3 is not that different from infinite Nc.
Our calculation was strongly influenced by two previous

ones. The first is a 2013 computation of the low energy
parameters of Nf ¼ 2 QCD (Nc ¼ 3) in the continuum
limit, by the Budapest-Marseille-Wuppertal collaboration
[17]. Their study has larger volumes, smaller lattice
spacings, and smaller fermion masses than our exploratory
project. We adapted much of their analysis methodology.
The other project was a calculation of the low energy
parameters of Nf ¼ 4 systems by P. Hernández, C. Pena
and F. Romero-López [18]. This was done at a single lattice
spacing, matched acrossNc. They studiedNc ¼ 3, 4, 5, and
6. The addition of Nc ¼ 6 allowed for more controlled
extrapolation to infinite Nc than we could do. This is
because large Nc predictions typically involve a power
series in Nc:

hOðNcÞi ¼ c0 þ
c1
Nc

þ c2
N2

c
þ… ð1Þ

and it is useful to have more than jþ 1 values of Nc to fit
data to such predictions at jth order.
Most discussions of the literature of large Nc QCD (such

as the one we just gave) make the point that comparisons
across Nc reveal only small differences. But to lattice
practitioners QCD’s at different Nc’s are different. Some of
these differences are unfavorable. For example, the up-front
cost of a simulation at some Nc scales roughly like N2

c
(when matrix times vector multiplication dominates, a
situation encountered in inverting the Dirac operator) or
N3

c (for matrix multiplication of gauge links). The simu-
lation autocorrelation time as measured by the topological
susceptibility grows with Nc, in both quenched simulations
and ones with dynamical fermions.
However, differences across Nc can be favorable for

larger Nc. That is the case in this project, where we had
much greater difficulty generating useful Nc ¼ 3 datasets
than we did with Nc ¼ 4 or 5. This is due to the scaling of
the pseudoscalar decay constant F withNc: F ∝

ffiffiffiffiffiffi
Nc

p
. This

is helpful in two (related) ways. First, the expansion
parameter of chiral perturbation theory is (speaking
loosely) the ratio of the squared pseudoscalar mass to
F2, x ¼ m2

PS=ð8π2F2Þ. Simulations which make compar-
isons at identical x across Nc involve ever larger values of
m2

PS and become easier to perform as Nc grows. Second,
finite volume corrections in a box of size L are proportional
to ΔðmPS; LÞ=F2 where ΔðmPS; LÞ is the propagator of a

pseudoscalar “to an image point,”which appears along with
the “tadpole” or “‘snail” graph in finite volume. The
1=F2 ∝ 1=Nc prefactor means that as Nc grows there are
smaller finite volume corrections at identical pion masses.
As a consequence, at bigger Nc one can simulate at smaller
volume without encountering volume artifacts.
The outline of the paper is as follows: Sec. II sets the

conventions we follow for the low energy chiral effective
theory, to which we compare our data. Sections III and IV
describe the various parts of the lattice simulation, first the
collection of data and its conversion to the dimensionless
quantities which are what we fit, and then a discussion of
issues involved in the fits themselves. Results of fits which
extract the low energy constants of the chiral effective
Lagrangian are presented in Sec. V. Some conclusions are
found in Sec. VI.

II. THEORETICAL BACKGROUND AND
CONVENTIONS FOR CHIRAL

OBSERVABLES

The goal of this project is to compare the relationship
between quantities relevant to the low energy properties of
SUðNcÞ gauge theory with two flavors of degenerate mass
fundamental representation fermions, across Nc and in the
continuum limit. We focus on the fermion mass, the
(squared) pseudoscalar mass and pseudoscalar decay con-
stant as measured in simulations. We label these quantities
as mq, m2

PS, and fPS. The comparisons are done in the
context of the parameters of a low energy effective chiral
Lagrangian. There are two choices for an effective theory,
which differ in the number of light degrees of freedom they
represent.
The effective field theory for Nc ¼ 3 QCD is based on

the spontaneous breaking of chiral symmetry SUðNfÞL ×
SUðNfÞR → SUðNfÞLþR (plus its explicit breaking by
quark masses). Its small expansion parameter is

OðδÞ ∼Oðp2Þ ∼OðM2Þ ∼OðmqÞ ð2Þ

where M2 is the squared mass of the fields in the
Lagrangian (taken to be massless Goldstone bosons in
the mq → 0 limit). We will refer to this effective theory as
“SUðNfÞ effective theory.” (Of course, for us, Nf ¼ 2.)
Only flavor nonsinglet mesons appear in the Lagrangian

of SUð2Þ effective theory. In particular, the flavor singlet
meson, the eta-prime (in Nf ¼ 3 language) gets a large
mass from the anomaly and does not appear in the low
energy theory of the Nc ¼ 3 world.
However, the situation at large Nc is different. The size

of anomaly term falls with Nc and the squared eta prime
mass decreases as 1=Nc, so at some point the eta prime
must be included in the low energy effective theory. The
resulting theory is called UðNfÞ [here Uð2Þ] effective
theory and has a slightly different chiral expansion.
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Which chiral expansion scheme works better for any
particular value of Nc is an open question, which we hope
to explore.
We begin by discussing SUð2Þ chiral perturbation

theory. We follow the usual convention for lattice simu-
lations and define the pseudoscalar decay constant fPS in
terms of the matrix element

h0jūγ0γ5djπi ¼ mPSfPS: ð3Þ

This leads to the identification fπ ∼ 132 MeV in QCD.
Note that the continuum chiral PT literature uses a
“93 MeV” definition: the extra

ffiffiffi
2

p
is an isospin raising

factor. See Ref. [19] for a compilation of conventions for
this quantity.
There are two commonly used expansion schemes for

SUðNfÞ chiral perturbation theory. The two leading
order constants are B and F. We will mostly use the
“x-expansion” which is given in terms of mq via the
quantity

x ¼ M2

8π2F2
; ð4Þ

where M2 ¼ 2Bmq ¼ 2Σmq=F2 and Σ is the fermion
condensate. Note that x is OðδÞ according to Eq. (2). In
next to leading order (NLO), Bijnens and Lu [20] define
(converting F conventions)

ĀðM2Þ ¼ M2

8π2
log

μ2

M2
ð5Þ

and the formulas to be addressed are

m2
PS ¼ 2Bmq

�
1þ aM

F2
ĀðM2Þ þM2

F2
bM þ…

�

fPS ¼ F

�
1þ aF

F2
ĀðM2Þ þM2

F2
bF þ…

�
: ð6Þ

Here

aM ¼ −
1

Nf

bM ¼ 8Nfð2L6 − L4Þ þ 8ð2L8 − L5Þ

aF ¼ 1

2
Nf

bF ¼ 4ðNfL4 þ L5Þ: ð7Þ

The Li’s are the low energy constants (LEC’s) of the NLO
chiral expansion. The bj’s depend on the choice of scale in
the logarithm of ĀðM2Þ.
The FLAG review [16] and Ref. [17] make a slightly

different definition, which we will employ:

aj
F2

ĀðM2Þ þM2

F2
bj ≡ aj

M2

8π2F2

�
log

μ2

M2
þ lj

�
: ð8Þ

The li’s are scheme (μ2) dependent, while B and F are not.
Note that

liðμ2Þ ¼ liðμ1Þ þ log
μ21
μ22

: ð9Þ

The convention is that bM is replaced by l3 and bF is
replaced by l4.
We will actually need the next-to next-to leading order

(NNLO) expression:

m2
PS ¼ 2Bm

�
1−

1

2
x

�
ln

μ2

M2
þ l3

�
þx2

�
17

8
T2
MþkM

��

fPS ¼F

�
1þx

�
ln

μ2

M2
þ l4

�
þx2

�
−
5

4
T2
FþkF

��
; ð10Þ

where

TM ¼ ln
μ2π
M2

þ 60

51
l12 −

9

51
l3 þ

49

51

TF ¼ ln
μ2π
M2

þ l12 þ
1

5
ðl3 − l4Þ þ

23

30
: ð11Þ

Our analysis convention is to fix aM ¼ −1=2 and aF ¼ 1
in any fit. Then at NLO there are four LEC’s which can be
measured, B, F, l3 and l4. NNLO adds an additional three
LEC’s, (l12, kM, kF) to the collection of quantities to be fit.
The LEC’s are expected to show the following Nc scaling
(the quick list can be found in Ref. [18]):

OðNcÞ∶F2; L5; L8; Oð1Þ∶B;L4; L6: ð12Þ

This means that the li’s for i ¼ 3, 4 scale as

li ¼ Ncl
ð0Þ
i þ lð1Þi : ð13Þ

Our analysis of data using SUðNfÞ chiral perturbation
theory is done with separate fits for each Nc. We can then
ask whether the LEC’s scale with Nc as given by
Eqs. (12)–(13).
The “ξ-convention” rewrites the chiral expansion in

terms of a ratio of observables

ξ ¼ m2
PS

8π2f2PS
ð14Þ

(in the “132 MeV” definition for the decay constant). We
have only implemented the NLO expressions, which are
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M2 ¼ 2Bmq ¼ m2
PS

�
1þ 1

2
ξ

�
ln

μ2

m2
PS

þ l3

�
…

�
ð15Þ

and

F ¼ fPS

�
1 − ξ

�
ln

μ2

m2
PS

þ l4

�
þ…

�
: ð16Þ

The ξ parametrization is often used because the coefficients
of higher order terms [here order (ξ2)] are smaller than in
the x parametrization. It is more awkward to use in a fit
since the expressions have to be inverted (to express
measured quantities such as fPS � ΔfPS in terms of fit
parameters). At NLO, the relevant expressions are

fPS ¼
F
2

�
1þ

�
1þ 4

m2
PS

8π2F2

�
ln

μ2

m2
PS

þ l4

��
1=2

�
≡ F ðF; l4; m2

PSÞ: ð17Þ

and

mq ¼
m2

PS

2B

�
1þ 1

2

�
m2

PS

8π2F ðF; l4; m2
PSÞ

��
log

μ2

m2
PS

þ l3

��
:

ð18Þ

The UðNfÞ chiral Lagrangian includes the eta prime
in its degrees of freedom. The appropriate effective
field theory was developed in Refs. [10–15]. The power
counting is

OðδÞ ∼Oðp2Þ ∼OðM2Þ ∼OðmqÞ ∼ ð1=NcÞ ð19Þ

(Notice that 1=F2 isOðδÞ and the SUðNfÞ chiral expansion
parameter x of Eq. (4) is Oðδ2Þ.
For fPS and m2

PS the many LEC’s of the complete theory
reduce to two, each with its own expansion in Nc, as given
by Eq. (13) as in the SUðNfÞ case. The factors of Nc in the
various li’s of the SUðNfÞ expressions giveOð1=δÞ scaling
factors in the UðNfÞ perturbative expansion. Thus, all that
survives from the x2 terms TM and TF in Eq. (11) are
constants proportional to N2

c.
The eta prime enters as an additional Nambu-Goldstone

boson of the nonanomalous (in the large Nc limit) singlet
Uð1ÞA symmetry. It appears in the perturbative expansion
as an extra tadpole contribution. The perturbative calcu-
lations for fPS and m2

PS can be found in Ref. [21], are
succinctly presented for the degenerate-flavor case in
Ref. [18], and can be reassembled (if desired) by slightly
editing the calculation of Ref. [22].
The formulas for the chiral expansion need the mass of

the eta prime and its decay constant as a function ofNc. The
calculation of the eta prime mass for Nc ¼ 3 is already a
difficult problem (the statistics of a recent study [23] dwarf

those of our little project) and so we have recourse to
theory. Witten and Veneziano [24,25] related the eta prime
mass to the quenched topological susceptibility χT and
the pseudoscalar decay constant F (recall the 132 MeV
convention),

M2
η0 ¼ M2 þM2

0 ð20Þ

where the zero-quark mass eta prime mass is

M2
0 ¼

4NfχT
F2

: ð21Þ

Note thatM2
0 is alsoOðδÞ. There is indirect lattice evidence

in favor of this relation from the study of the Nf ¼ 2

topological susceptibility across Nc from Ref. [26]. A
phenomenological formula which relates the quenched
topological susceptibility to the topological susceptibility
at small quark mass due to Refs. [10,27,28] agreed
qualitatively with lattice results.
We thus proceed, taking Eq. (20) for the eta prime mass,

assuming that the eta prime and the pions share a common
decay constant, and defining

xη0 ¼
M2

η0

8π2F2

x0 ¼
M2

0

8π2F2
ð22Þ

to write

m2
PS ¼ M2

NLO þM2
NNLO

fPS ¼ FNLO þ FNNLO ð23Þ

where

M2
NLO ¼ 2Bmq

�
1 −

x
2
Ncl

ð0Þ
3

�

FNLO ¼ F½1þ xNcl
ð0Þ
4 � ð24Þ

and

M2
NNLO ¼ 2Bmq

�
−
x
2

�
log

μ2

M2
þ lð1Þ3

�
þ xη0

2
log

μ2

M2
η

þ x2N2
cTM

�

FNNLO ¼ F

�
x

�
log

μ2

M2
þ lð1Þ4

�
þ x2N2

cTF

�
: ð25Þ

We use Eqs. (23)–(25) for fits to the data at an individual
Nc value. Notice that, in that case, the NLO fits give lð0Þi ,

but the NNLO fits can only give the full li ¼ Ncl
ð0Þ
i þ lð1Þi .
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We can present results for the LEC’s as we do for the
SUðNfÞ case, a plot of, for example, F versus 1=Nc.
We can also imagine doing combined fits to the data. In

that case we would make an ansatz, that

F ¼
ffiffiffiffiffiffi
Nc

3

r �
f0 þ

f1
Nc

þ f2
N2

c

�

B ¼ b0 þ
b1
Nc

þ b2
N2

c
: ð26Þ

We would insert these expressions in Eqs. (24)–(25),
combine them systematically along with the other
LEC’s, and fit a range of Nc values. In order to do this,
of course, the UðNfÞ chiral expansion has to be well
behaved for all the individual Nc values included in the fit.
We return to this point when we present fit results in Sec. V,
but for now we remark that ourNc ¼ 3 data is incompatible
with the Uð2Þ expansion leaving only two Nc’s to work
with; too few values of Nc to think about NNLO fits. So we
did not pursue this line.
We note that the LEC’s of SUðNfÞ chiral perturbation

theory and UðNfÞ chiral perturbation theory are not
identical [15,29]. In particular, there are shifts

BðSUðNfÞÞ ¼ BðUðNfÞÞ
�
1þ 1

Nf
x0 log

μ2

M2
0

�

Lð1Þ
3 ðSUðNfÞÞ ¼ Lð1Þ

3 ðUðNfÞÞ þ log
μ2

M2
0

− 1: ð27Þ

The shift in the B0s is formally order 1=N2
c but the prefactor

happens to be large. Note also that, in contrast to the
SUðNfÞ case, in the UðNfÞ expansion a shift in the
regularization point μ affects the value of B. FLAG [16]
quotes values for the LEC’s using μ2 set to the physical
squared pion mass. This choice causes a large shift between
the NLO and NNLO determinations of B at low Nc. To
avoid this large logarithm, we choose a regularization point
closer to the eta prime mass; we take μ2 to be an Nc−
independent quantity which we choose to be μ2 ¼ 8π2f2π
where fπ ¼ 132 MeV in all our comparison of lattice data
to the UðNfÞ expansion. When we compare the Uð2Þ
LEC’s to the SUð2Þ ones, there will also be a shift in the
SUð2Þ l0is due to the different choices for μ, see Eq. (8).

III. DETAILS OF THE NUMERICAL
SIMULATIONS

The project involves simulations at three values of Nc.
Each Nc value requires its own set of simulations at four
bare gauge couplings and 4-6 bare quark masses per gauge
coupling. At each bare parameter value six quantities are
measured: the axial Ward identity fermion mass, the
pseudoscalar mass, the pseudoscalar decay constant, two
lattice to continuum renormalization factors (for the fer-
mion mass and decay constant), as well as a parameter to
set the lattice spacing. All these quantities must be checked

for correlations. The lattice regulated quantities are con-
verted into dimensionless continuum regulated quantities
which are then fit to the formulas described in the last
section, plus lattice artifacts. Doing this is a long and
somewhat recursive task. We believe that the methodology
we use to generate, collect, and analyze our lattice datasets
is completely standard. However, all lattice calculations
involve many choices. This section describes what we did
in perhaps too much detail.

A. Simulation details: Lattice action, updating
algorithm, datasets, observables

Our simulations are done with the usual Wilson plaquette
action, with the bare gauge coupling g0 labeled by
β ¼ 2Nc=g20. Two flavors of degenerate mass fermions
(discretized as Wilson-clover fermions) are included.
Configurations are generated using the hybrid
Monte Carlo (HMC) algorithm [30–32] with a multilevel
Omelyan integrator [33] and multiple integration time steps
[34] with one level of mass preconditioning for the
fermions [35].
The fermion action uses gauge connections defined as

normalized hypercubic (nHYP) smeared links [36–38].
Simulations use the arbitrary Nc implementation of
Ref. [39]. The bare quark mass mq

0 appears in the lattice
action along with the lattice spacing a via the hopping
parameter κ ¼ ð2mq

0aþ 8Þ−1. The clover coefficient is
fixed to its tree level value, cSW ¼ 1. The gauge fields
obey periodic boundary conditions; the fermions are
periodic in space and antiperiodic in time.
Lattice volumes are a mix of 163 × 32 and 243 × 32 sites.

The lattice sizes were chosen so as to minimize finite
volume effects (which we describe in Sec. III C below).
Briefly, we began simulation runs at nearly all our bare
parameter values taking 163 spatial volumes and collected
enough data to determine the mass and decay constant of a
pseudoscalar meson, and then to estimate the size of the
finite volume correction. When this appeared to be larger
than a few per cent, we replaced the 163 datasets by 243

ones. A glance at Tables I–III shows that there are more 243

Nc ¼ 3 datasets than there are for Nc ¼ 4 or 5. This is
because of the scaling of the pseudoscalar decay constant
with Nc, as described in the Introduction.
Lattices used for analysis are spaced a minimum of 10

HMC time units apart, so individual bare parameter sets
contain 30 to 200 stored lattices. All datasets at individual
bare parameters ðβ; κÞ are based on a single stream. We
check for thermalization at the start of each data stream
(which typically begins from an equilibrated configuration
at a nearby bare parameter set) and typically discard the
first 100 trajectories (more than this for simulations at
strong coupling). The datasets are extensions of ones
presented in Refs. [39,40].
Data for the pseudoscalar mass, the pseudoscalar decay

constant, and the fermionmass come fromhadron correlators
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using propagators constructed in Coulomb gauge, with
Gaussian sources and p⃗ ¼ 0 point sinks. We tune the width
of the source to minimize the dependence of the effective
mass [defined, as usual, to bemeffðtÞ ¼ logCðtÞ=Cðtþ 1Þ in
the case of open boundary conditions for the correlatorCðtÞ]
on the distance t between source and sink. All results are
based on a standard full correlated analysis involving fits to a
wide range of t’s. Best fits are chosen with the “model
averaging” ansatz of Jay and Neil [41]. In one sentence, this
gives each particular fit in a suite (with a chi-squared value χ2

and NDOF degrees of freedom) a weight in the average which
is proportional to expð−ðχ2=2 − NDOFÞÞ.
The pseudoscalar decay constant is defined in terms of

the matrix element of the timelike component of the
axial current A0ðx; tÞ ¼ ūðx; tÞγ0γ5dðx; tÞ between the
vacuum and a pseudoscalar state as in Eq. (3). It is
determined via a correlated fit to two propagators with a
common source,

C1ðtÞ ¼
X
x

hA0ðx; tÞOð0; 0Þi

C2ðtÞ ¼
X
x

hOðx; tÞOð0; 0Þi: ð28Þ

The fermion mass amq is taken to be the axial Ward
identity (AWI) fermion mass, defined through the relation
of the axial current matrix element to the pseudoscalar
Pðx; tÞ ¼ ūðx; tÞγ5dðx; tÞ,

∂t

X
x

hA0ðx; tÞOi ¼ 2amq

X
x

hPaðx; tÞOi; ð29Þ

again taken from a simultaneous fit to two two-point
functions. O can be any convenient source, of course,
and for us it is a Gaussian.
Conversion factors from lattice regulated quantities will

be needed for fPS and mq and their calculation will be
described in Sec. III D below.
The pseudoscalar mass amPS is determined from fits

involving correlators of pseudoscalar currents.
We give is a brief summary of the datasets. We attempted

to collect data at similar values of ξ ¼ m2
PS=ð8π2f2PSÞ for

our different values of Nc, since that is the expansion
parameter for chiral perturbation theory.
For Nc ¼ 3 we have four beta values and 24 bare

parameter sets in total. The ξ range is from 0.06 to 0.19.
t0m2

PS ranges from 0.05 to 0.35, for pion masses in the
range 300–776 MeV (taking a nominal value for the flow

TABLE I. Lattice data for Nc ¼ 3. The entries C1, C2, and C3 correspond to the correlation coefficients Cmq;mPS
, Cmq;fPS , and CmPS;fPS .

κ L amq amPS afPS t0=a2 C1 C2 C3 ZA Zm Nconf

β ¼ 5.25
0.1284 16 0.0628(5) 0.4743(31) 0.519(28) 0.927(3) 0.423 0.196 −0.120 0.984(11) 1.011(37) 50
0.1288 16 0.0476(6) 0.4135(34) 0.4937(80) 0.981(3) 0.508 0.438 0.314 0.962(8) 1.010(40) 90
0.1292 16 0.0324(5) 0.3371(27) 0.4479(64) 1.045(3) 0.564 0.417 0.106 0.955(7) 1.024(37) 90
0.1294 16 0.0253(5) 0.2926(36) 0.4234(90) 1.076(4) 0.546 0.567 0.280 0.967(8) 1.033(42) 90
0.1296 16 0.0189(4) 0.2488(36) 0.443(13) 1.128(7) 0.393 0.608 0.093 0.946(7) 1.064(30) 90

β ¼ 5.3
0.1280 16 0.0470(4) 0.3956(24) 0.438(17) 1.249(10) 0.034 0.466 −0.073 0.978(10) 1.026(34) 90
0.1284 16 0.0334(3) 0.3213(36) 0.3969(59) 1.326(5) 0.251 0.583 0.216 0.980(14) 1.033(31) 110
0.1285 16 0.0288(13) 0.3022(31) 0.3961(74) 1.381(5) 0.454 0.407 0.211 0.961(9) 1.038(30) 90
0.1286 16 0.0244(3) 0.263(15) 0.3705(87) 1.414(6) −0.006 −0.112 0.065 0.966(8) 1.071(24) 90
0.1288 24 0.0177(3) 0.2333(44) 0.3580(64) 1.449(5) 0.310 0.457 0.113 0.959(6) 0.999(35) 73

β ¼ 5.35
0.1270 16 0.0581(4) 0.4124(66) 0.429(22) 1.557(10) 0.011 0.510 0.073 0.989(10) 1.021(30) 30
0.1275 16 0.0396(4) 0.3361(41) 0.368(16) 1.729(10) 0.268 0.112 0.435 0.986(7) 1.046(27) 50
0.12775 16 0.0322(3) 0.3115(49) 0.376(12) 1.742(7) 0.110 0.452 0.179 0.983(8) 1.041(26) 110
0.1280 24 0.0237(4) 0.2556(37) 0.3485(60) 1.831(8) 0.671 0.388 −0.079 0.969(6) 1.037(25) 150
0.1282 24 0.0169(2) 0.2224(17) 0.326(14) 1.888(5) 0.443 0.351 0.115 0.962(6) 1.059(23) 90
0.1283 24 0.0132(2) 0.1916(28) 0.3216(73) 1.937(8) 0.339 0.396 −0.096 0.962(6) 1.085(20) 89
0.1284 24 0.0097(2) 0.1650(66) 0.2988(68) 1.982(6) −0.116 0.410 −0.243 0.956(7) 1.072(24) 90

β ¼ 5.4
0.1265 24 0.0565(9) 0.3889(16) 0.399(13) 2.028(9) −0.046 0.081 −0.194 0.989(9) 1.032(27) 90
0.1270 24 0.0410(2) 0.3282(14) 0.3631(77) 2.155(7) 0.291 0.161 −0.271 0.984(8) 1.055(22) 90
0.1272 24 0.0339(2) 0.2976(25) 0.3463(35) 2.240(8) 0.227 0.217 0.299 0.974(7) 1.058(25) 90
0.1276 24 0.0203(6) 0.2360(59) 0.3050(30) 2.372(8) −0.157 0.002 0.015 0.973(6) 1.076(20) 90
0.1277 24 0.0169(2) 0.2102(20) 0.2977(77) 2.430(10) 0.188 0.489 −0.208 0.971(8) 1.046(26) 90
0.1278 24 0.0138(3) 0.1855(21) 0.2836(58) 2.467(10) 0.402 0.032 −0.075 0.967(6) 1.063(24) 90
0.1279 24 0.0104(2) 0.1631(58) 0.2754(91) 2.574(13) 0.218 0.696 0.172 0.970(6) 1.112(18) 90
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parameter
ffiffiffiffi
t0

p ¼ 0.15 fm from Ref. [42]). t0=a2 ranges
from 1.0 to 2.4 for lattice spacings between 0.10–0.15 fm.
The Nc ¼ 4 datasets come from four beta values and

there are 26 bare parameter sets. ξ ranges from 0.04 to 0.2
and t0m2

PS is in the range 0.06-0.67. t0=a2 is in the range
1.1-3.34 for a ¼ 0.08–0.14 fm.
And there are four beta values and 21 bare parameter sets

in the Nc ¼ 5 sector. ξ ranges from 0.05 to 0.16, t0m2
PS is in

the range 0.10–0.63, while t0 lies between 1.5 and 3.4,
or a ¼ 0.08–0.12 fm.
A useful marker point is ξ ¼ 0.1, for which t0m2

PS is
about 0.10, 0.22, and 0.35 forNc ¼ 3, 4, or 5. This quantity
will reappear in Sec. V.
Another marker is a comparison with the large Nc study

of Ref. [18]. Their datasets were collected at fixed fermion
masses across Nc and spanned ξ∈ ð0.10 − 0.16Þ for
Nc ¼ 3, ξ∈ ð0.05 − 0.09Þ for Nc ¼ 4, ξ∈ ð0.04 − 0.08Þ
for Nc ¼ 5, and ξ∈ ð0.03 − 0.06Þ for Nc ¼ 6. The lower
part of our ξ ranges overlap with theirs.
The data are presented in Tables I–III.

B. Setting a scale

The conversion of simulations quantities whose scale is
set by the lattice spacing into dimensionless parameters
which can be used in continuum extrapolations is done
using the Wilson flow parameter t0 [8,9]. The determi-
nation of t0 from each dataset (with its own β and κ) is done
in the standard way, from the observable Eðt0Þ extracted
from the field strength tensor,

t20hEðt0Þi ¼ CðNcÞ: ð30Þ

CðNcÞ is chosen to match what most other large Nc
simulations take,

CðNcÞ ¼
3

8

�
N2

c − 1

Nc

�
× C ð31Þ

with C ¼ 0.3 the usual value used in SUð3Þ. The motiva-
tion for this choice is that CðNcÞ should be rescaled
proportionally to the quadratic Casimir of the fundamental

TABLE II. Lattice data for Nc ¼ 4. The entries C1, C2, and C3 correspond to the correlation coefficients Cmq;mPS
, Cmq;fPS , and CmPS;fPS .

κ L amq amPS afPS t0=a2 C1 C2 C3 ZA Zm Nconf

β ¼ 10.0
0.1270 16 0.1017(4) 0.6159(15) 0.7086(77) 0.855(2) 0.603 0.419 0.261 0.992(15) 0.994(44) 61
0.1280 16 0.0570(10) 0.4461(45) 0.610(21) 1.023(4) 0.620 0.187 0.258 0.984(14) 1.011(41) 40
0.1285 16 0.0359(4) 0.3456(22) 0.5262(87) 1.131(5) 0.522 0.018 −0.207 0.974(10) 1.038(36) 50
0.1288 16 0.0240(6) 0.2798(44) 0.483(14) 1.194(6) 0.472 0.528 0.357 0.973(11) 1.072(31) 90
0.1289 16 0.0192(4) 0.2504(34) 0.482(12) 1.230(7) 0.421 0.636 0.284 0.974(12) 1.053(33) 90
0.1290 16 0.0158(3) 0.2264(29) 0.489(14) 1.241(6) 0.396 0.490 −0.130 0.963(6) 1.102(25) 80

β ¼ 10.1
0.1250 16 0.1161(1) 0.6168(15) 0.6138(96) 1.321(6) 0.275 0.329 0.180 1.020(13) 0.978(38) 90
0.1266 16 0.0623(2) 0.4324(16) 0.5255(71) 1.565(7) 0.547 0.200 0.188 0.998(10) 1.025(28) 80
0.1270 16 0.0481(2) 0.3743(35) 0.4905(52) 1.665(8) 0.273 0.214 0.321 0.999(8) 1.033(26) 80
0.1275 16 0.0311(2) 0.2988(18) 0.4391(97) 1.772(11) 0.361 −0.001 0.306 0.987(12) 1.050(27) 90
0.12765 16 0.0264(1) 0.2740(14) 0.4420(41) 1.786(7) 0.381 0.227 −0.028 0.975(7) 1.056(24) 140
0.12775 16 0.0226(2) 0.2556(15) 0.4132(76) 1.831(9) 0.387 −0.140 −0.182 0.988(10) 1.038(31) 120
0.1280 16 0.0147(5) 0.2017(56) 0.3955(78) 1.883(13) 0.757 −0.035 −0.185 0.977(8) 1.083(22) 50

β ¼ 10.2
0.1252 16 0.0866(2) 0.4897(22) 0.4957(28) 2.080(3) 0.645 0.333 0.418 1.012(9) 1.005(30) 190
0.1262 16 0.0547(1) 0.3783(15) 0.4473(35) 2.270(4) 0.185 0.356 0.328 1.002(8) 1.036(23) 190
0.1265 16 0.0454(2) 0.3415(16) 0.4314(50) 2.312(10) 0.088 0.315 −0.158 0.992(6) 1.045(22) 90
0.1270 16 0.0290(2) 0.2709(19) 0.3881(44) 2.452(5) 0.136 0.188 −0.045 0.982(5) 1.079(20) 101
0.1272 16 0.0222(1) 0.2387(36) 0.3659(97) 2.520(20) 0.041 0.210 −0.186 0.983(7) 1.079(20) 90
0.1273 16 0.0191(2) 0.2229(36) 0.3555(94) 2.543(17) 0.293 0.281 −0.288 0.983(8) 1.085(18) 90
0.1275 24 0.0124(1) 0.1760(12) 0.3429(41) 2.621(9) 0.295 0.401 −0.241 0.980(7) 1.090(18) 90

β ¼ 10.3
0.1260 16 0.0494(3) 0.3391(40) 0.3910(62) 3.106(17) 0.689 0.489 0.494 0.997(8) 1.046(22) 50
0.1265 16 0.0337(1) 0.2826(23) 0.3503(53) 3.139(14) 0.160 0.129 −0.141 0.990(7) 1.080(17) 98
0.12675 16 0.0255(1) 0.2454(23) 0.3347(49) 3.277(28) 0.208 0.420 −0.110 0.989(6) 1.067(16) 90
0.1270 16 0.0174(1) 0.2020(35) 0.3124(85) 3.375(21) 0.271 −0.057 −0.212 0.982(6) 1.084(10) 90
0.1271 24 0.0142(1) 0.1791(21) 0.3044(34) 3.436(13) 0.408 −0.072 −0.464 0.979(4) 1.094(16) 90
0.1272 24 0.0108(1) 0.1595(26) 0.2918(35) 3.514(14) −0.282 0.148 −0.015 0.978(7) 1.079(20) 90
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representation of the gauge group. Our procedure for
computing t0 from the data is identical to what was done
in Ref. [26] and details may be found there.
In contrast to our earlier work, where conversion from

dimensionful to dimensionless parameter [ðamPSÞ2 to
t0m2

PS, for example] was done at individual bare parameter
values with a t0ðβ; κÞ, we need to use a mass-independent
definition of t0. This is because the chiral expansion for t0
has its own set of NLO analytic contributions which
combine with the ones for our desired observables (fPS
andm2

PS) [43] and would contaminate the chiral LEC’s. We
also need a scale choice which is superficially identical
across Nc.
We investigated several possibilities
(i) t0 at a fixed value ðNc=3Þξ—This is a bit awkward to

produce, since it needs ZA, the axial current match-
ing factor.

(ii) t0 at fixed m2
PS=m

2
V (where mV is the mass of the

vector meson)—This was noisier than the first
choice.

(iii) t0 at fixed t0m2
PS—This was also noisier than the first

choice (and with greater correlations).
We arbitrarily selected the first choice, ðNc=3Þξ≡ ξ0.
Then we followed the following procedure to produce a

value of t0 at each β value. Each dataset gives its own
ξ0 � Δξ0 and t0 � Δt0. For each β value, we performed a

polynomial fit t0ðiÞ ¼
P

n CnðξðiÞ − ξ0Þn to produce a
value of t0ðξ0; βÞ. The fit included the errors Δt0 and
Δξ. (See Sec. IV for a discussion about fit methodology.)
We checked subsets of the data to see if correlations in t0
and ξ affected the fit. They did not (differences in correlated
and uncorrelated fits for t0ðξ0Þ were well under a standard
deviation) so we did not include them in our analysis. We
typically fit to a cubic, bracketing ξ0 so that the fit was
essentially an interpolation.
Our choice of ξ0 is purely heuristic. We have to make

sure ξ0 lies inside the range of measured ðNc=3Þξ values
recorded for each bare parameter set, and then we simply
pick a ξ0 for which Δt0 is minimized. Like many other
decisions made in the data analysis, we looked at many
possible choices but we saw little effect on results. In the
end, we took ξ0 ¼ 0.12.
An example of the extraction of t0 from data, forNc ¼ 5,

is shown in Fig. 1, and the data are collected in Table IV.

C. Correcting for finite volume

Our smallest quark mass data could potentially be
affected by our simulation volumes. For chiral observables,
the cause is well known: tadpole graphs, where a pseudo-
scalar particle is emitted from some location and returns to
the same point, are replaced by a set of contributions
connecting the location to its image points. (We found the

TABLE III. Lattice data forNc ¼ 5. The entries C1,C2, andC3 correspond to the correlation coefficientsCmq;mPS
,Cmq;fPS , andCmPS;fPS .

κ L amq amPS afPS t0=a2 C1 C2 C3 ZA Zm Nconf

β ¼ 16.2
0.1250 16 0.1218(4) 0.6461(23) 0.7055(92) 1.161(4) 0.421 0.448 0.507 1.029(16) 0.950(44) 60
0.1260 16 0.0871(4) 0.5309(20) 0.6650(61) 1.290(7) 0.545 0.426 0.083 1.020(14) 0.988(38) 30
0.1270 16 0.0517(4) 0.4011(22) 0.599(15) 1.451(21) 0.247 −0.000 0.572 0.997(12) 1.033(30) 30
0.1278 16 0.0249(2) 0.2708(19) 0.5250(65) 1.562(10) 0.427 0.502 0.018 0.987(9) 1.058(28) 70

β ¼ 16.3
0.1250 16 0.0982(3) 0.5383(27) 0.612(18) 1.709(7) 0.414 −0.087 −0.027 1.033(12) 0.979(33) 50
0.1260 16 0.0667(2) 0.4377(17) 0.5700(73) 1.823(6) −0.205 −0.035 0.243 1.007(11) 1.015(28) 50
0.1264 16 0.0543(1) 0.3880(13) 0.554(18) 1.871(7) 0.375 0.227 −0.112 1.010(11) 1.031(25) 90
0.1268 16 0.0409(3) 0.3335(12) 0.514(14) 1.940(11) 0.118 0.615 0.071 0.995(11) 1.045(23) 90
0.1270 16 0.0346(1) 0.3070(17) 0.4992(51) 1.950(8) −0.033 0.336 −0.199 0.996(9) 1.056(24) 90
0.1273 16 0.0249(1) 0.2551(12) 0.4795(49) 2.030(8) 0.079 0.243 −0.065 0.996(8) 1.060(22) 110
0.1275 16 0.0183(2) 0.2220(23) 0.4444(68) 2.057(7) 0.299 0.141 −0.004 0.986(7) 1.066(21) 50

β ¼ 16.4
0.1252 16 0.0818(1) 0.4701(7) 0.5510(25) 2.181(4) 0.167 0.183 0.160 1.015(11) 1.006(28) 190
0.1258 16 0.0631(1) 0.4037(14) 0.5194(42) 2.272(5) −0.161 0.104 0.023 1.008(10) 1.019(24) 190
0.1265 16 0.0409(1) 0.3228(11) 0.4792(55) 2.386(6) 0.206 0.351 0.242 1.000(11) 1.047(23) 190
0.1270 16 0.0247(1) 0.2478(16) 0.4283(25) 2.483(6) 0.161 0.114 −0.146 0.986(9) 1.081(18) 200
0.1272 24 0.0183(1) 0.2122(8) 0.4236(68) 2.526(6) 0.070 0.074 −0.128 0.987(10) 1.082(19) 90

β ¼ 16.6
0.1252 16 0.0695(1) 0.4040(12) 0.4705(37) 3.136(12) 0.255 0.292 0.063 1.020(11) 1.024(24) 90
0.1260 16 0.0443(1) 0.3186(15) 0.4171(45) 3.360(22) 0.164 0.102 0.197 1.005(7) 1.051(21) 110
0.1264 16 0.0318(1) 0.2674(15) 0.3934(37) 3.407(22) 0.253 0.037 0.029 0.993(4) 1.067(18) 140
0.1266 16 0.0254(1) 0.2382(22) 0.3712(63) 3.455(16) −0.243 −0.133 0.060 1.002(9) 1.078(16) 140
0.1269 24 0.0159(0) 0.1814(12) 0.3591(31) 3.543(12) 0.281 0.257 −0.282 0.988(7) 1.093(16) 90
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discussion in Ref. [44] to be quite helpful.) If we write the
pseudoscalar correlator for a particle of mass m in a box of
length Lμ in direction μ as

Δðm; xÞ →
X
nμ

Δðm; xþ nμLμÞ; ð32Þ

the infinite volume propagator, call it Δ̄ðm; xÞ, is the n ¼ 0
term in the sum. The finite volume tadpole is

Δðm; 0Þ ¼ Δ̄ðm; 0Þ þ Ī1ðm;LÞ ð33Þ

where Ī1ðm;LÞ is the sum over images. If a typical infinite
volume observable has a chiral expansion

OðL ¼ ∞Þ ¼ O0

�
1þ C0

1

f2PS
Δ̄ðm; 0Þ

�
ð34Þ

then the finite volume correction is

OðLÞ −OðL ¼ ∞Þ ¼ O0

�
C0

1

f2PS
Ī1ðm;LÞ

�
: ð35Þ

We replace the simulation observable in our dataset
OðLÞ by

OðL ¼ ∞Þ ¼ OðLÞ
1þ C0

1
f2PS

Ī1ðm;LÞ : ð36Þ

Ī1ðm;LÞ can be found from

ΔðxÞ ¼
Z

d4p
ð2πÞ4

expðipxÞ
p2 þm2

¼ m
16π2x

Z
∞

0

dk exp

�
−mx

�
k
4
þ 1

k

��
ð37Þ

by summing over all image points until the expression
saturates.
Equation (36) also needs fPS, the decay constant in the

chiral limit. This is, of course a parameter in the fit.

FIG. 1. Interpolating to find a fiducial t0, for Nc ¼ 5 datasets. The data at individual κ values are shown in squares; the interpolated
value is an octagon (in blue). Panels are (a) β ¼ 16.2, (b) β ¼ 16.3, (c) β ¼ 16.4 (d) β − 16.6.
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However, if we just make an estimate for it and evaluate
Eq. (36), we find that for all our datasets, the correction is at
most on the order of a few per cent for a few of the lightest-
mass points, so we only need to input an approximate value
of fPS given all the other uncertainties in the calculation.
We use

ffiffiffiffi
t0

p
fPS ¼ 0.078, 0.107, 0.128 for Nc ¼ 3, 4, 5.

D. Lattice to continuum regularization conversion

We will use the “regularization independent” or RI
scheme [45] for computing matching factors (labeled as
Zi for current i). The method is standard and so we will
only briefly describe our particular implementation of it.
One computes quark and gluon Green’s functions in

Landau gauge, regulated by giving all external lines a large
Euclidean squared momentum p2 ¼ μ2, and uses combi-
nations of them to determine the Z’s. Specifically, we
define

μ2 ¼
X
i

4 sin2
pi

2
þ 4 sin2

pt

2
ð38Þ

where pi ¼ 2niπ=L and pt ¼ ð2ni þ 1Þπ=T since the
temporal boundary conditions are anti-periodic. (Recall
that the lattices are L3 × T sites.)
The matching factor is defined by computing the ratio of

the matrix elements of the operator between off-shell single
particle momentum eigenstates in the full and free theories

ZRI
Γ ðμÞhpjOΓjpip2¼μ2 ¼ hpjOΓjpi0: ð39Þ

or equivalently

ZRI
Γ ðμÞ 1

4Nc
Tr½hpjOΓjpip2¼μ2hpjOΓjpi−10 � ¼ 1; ð40Þ

where the factor of 1=4Nc counts Dirac spins and colors.
We use the RI0 scheme to define ZQ from a projection
against the free propagator S0ðpÞ:

ZRI0
Q ¼ 1

4Nc
TrSðpÞS−10 ðpÞ: ð41Þ

We are using clover fermions, for which there is an
overall 2κ factor in the field definition as opposed to a
continuum like normalization. We define our ZΓ factors for
observables built from clover fermions by

hhjΓjh0icont ¼ hhjΓjh0ilatt × 2κZΓ ð42Þ

where ZΓ ∼ 1þ Cg2… in a perturbative expansion. The 2κ
factor gives clover Z’s equal to unity for free field theory.
One needs the scale μ to be large enough not to be

affected by confinement effects but not so large that is
affected by lattice artifacts. Given our lattice spacings and
volumes, this means in practice a value of μa around unity.
We need a renormalization factor for the axial current,

ZA, to define F and one for the fermion mass Zm to carry
the quark mass to a continuum regularization. The com-
putations are straightforward. We generate lattice data for
ZAðaμÞ at many values of ðaμÞ2 ¼ P

j a
2p2

j for lattice
momenta apj. The data is averaged under single elimina-
tion jackknife and sorted in aμ. Fits to a linear function are
performed over “windows” of data around a central value
and checked for systematic dependence on the chosen
central value. We typically use about 30 lattices per bare
parameter value to do this. The resulting uncertainties are
completely dominated by systematics, to be described
below, so it is not worthwhile to work with larger datasets.

1. ZA

Figure 2 illustrates our results for ZA. It shows large scale
views of ZA for a 163 and a 243 spatial volume lattice. The
163 volume shows clear discretization artifacts above
aμ ∼ 1.4. This represents an upper limit on the range of
aμ values which can be analyzed. The finer grained 243

data do not have this issue.
Fits about some central value of aμ typically show a

value close to unity with a statistical uncertainty of a few
parts per mille. That ZA is close to unity for the fermion
action used here (nHYP) fermions has been well docu-
mented in the literature (cf. Ref. [46]).
However, there is another issue. ZA should be a constant

across aμ because the operator has no anomalous dimen-
sion. Our datasets show a small but noticeable drift of
ZAðaμÞ versus aμ. This is probably due to coupling to the
pseudoscalar state, as described in the original literature
[45]. We account for this drift by comparing linear fits to
ZAðaμÞ versus aμ over windows of aμ. We pick (somewhat
arbitrarily) a central value aμ ¼ 1 and a range
aμ ¼ 0.8–1.2. (For comparison, μ ¼ 2 GeV corresponds

TABLE IV. Flow parameter values at ξ0 ¼ 0.12.

β t0=a2

SUð3Þ
5.25 1.037(7)
5.3 1.374(13)
5.35 1.804(17)
5.4 2.379(19)

SUð4Þ
10.0 1.116(14)
10.1 1.770(12)
10.2 2.503(33)
10.3 3.339(25)

SUð5Þ
16.2 1.510(23)
16.3 1.959(10)
16.4 2.468(8)
16.6 3.487(27)

THOMAS DEGRAND and EVAN WICKENDEN PHYS. REV. D 108, 094516 (2023)

094516-10



to aμ ∼ 1.4 at our coarsest lattice spacings down to 0.8 at our
finest spacings.) Our systematic uncertainty is taken to be
jZAðaμ ¼ 1.2Þ − ZAðaμ ¼ 0.8Þj=2. This gives a systematic
uncertainty in the range of 0.005-0.008 as compared to
statistical uncertainties from ZAðaμ ¼ 1Þ of 0.002-0.003.
We use the first quantity as the uncertainty for ZA.

2. ZS and Zm

Zm is a bit more complicated to compute. We take Zm

from the renormalization factor for the scalar current ZRI
S as

Zm ¼ 1=ZS, defined at some value of μa. We must then
convert it to an MS value at a nominal scale μ ¼ 2 GeV.
(This is done to make contact with pre-existing SUð3Þ
results.) This involves two steps after ZRI

S ðaμÞ is deter-
mined; the analysis to determine this quantity is identical to
what is done for ZA. First, there is the conversion to MS at
the scale at which ZRI

S is determined. An explicit three loop
formula (for general Nc and Nf fundamental representation
fermions) for this conversion is given by Chetyrkin and
Retey [47]. (See also Ref. [48].) To use it we need the MS
coupling at scale μ ¼ ðμaÞ=a. The lattice spacing is given
by the flow parameter in lattice units (tL0 ¼ t0=a2 where
t0 ¼ 0.15 fm from the compilation in Ref. [42]). The MS
coupling comes from the plaquette, where in the “alpha-V”
scheme [49,50]

ln
1

Nc
TrUp ¼ −4πCFαVðq�VÞ; ð43Þ

where q� ¼ 3.41=a for the Wilson plaquette gauge action
and CF ¼ ðN2

c − 1Þ=ð2NcÞ is the usual invariant. Then the
conversion to MS is given by

αMSðe−5=6q�Þ ¼ αVðq�Þ
�
1 −

2

3
Nc

αV
π

�
ð44Þ

and run to αMSð2 GeVÞ with the usual two-loop formula

αsðqÞ ¼
αsðq0Þ

v

�
1þ β1

αsðq0Þ
v

log v

�
ð45Þ

with

v ¼ 1 − β0
αsðq0Þ
2π

log
q0
q
: ð46Þ

In all these equationsβ0 andβ1 are the two lowest coefficients
of the beta function. Recalling that β0 ¼ 11=3Nc − 2=3Nf

and β1 ¼ 34=3N2
c − Nf=2ðð20=3ÞNc þ 4CFÞ, we note the

appearance of the ‘t Hooft coupling Ncαs in all these
formulas. (The RI to MS formula, which we do not quote,
involvesαsCF aswell.)Wedidnot findEq. (44) forNc ≠ 3 in
the literature but it can be reconstructed from expressions
in Ref. [51].
Finally, the MS Zm is run to the final scale μ ¼ 2 GeV;

this is done with the usual two loop formula

mqðqÞ ¼ mqðμÞ
�
αsðqÞ
αsðμÞ

� γ0
2β0

�
1þ αaðqÞ − αsðμÞ

4π

×

�
γ1β0 − β1γ0

2β20

��
: ð47Þ

This is always a small effect since μa ∼ 1 puts μ in close
vicinity to 2 GeValready. The γi’s are the one and two loop
terms for the mass anomalous dimension.
The need to match and run makes the determination of

Zm much more fraught that the case of ZA. The issue can be
seen in the RI to MS conversion factor. (Here we describe
the situation for Nc ¼ 3.) Working at aμ ∼ 1, the scale μ
ranges from about 1.4 to 2 GeV and αðμÞ is in the range
0.18–0.2. The conversion factor can be written as

FIG. 2. Examples of datasets and results for ZA. Panel (a) is from the β ¼ 5.35, κ ¼ 0.12775, L ¼ 16 set and (b) from β ¼ 5.35,
κ ¼ 0.1282, L ¼ 24. They show ZA versus aμ around aμ ¼ 1.
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R ¼ 1þ
X
i

Ciα
i
s: ð48Þ

The fraction of R from the highest order term, C3α
3
s=R, is

about two percent (slightly bigger at smaller lattice spacing,
slightly smaller at bigger lattice spacing, of course). This
issue has already been noticed and described by Chetyrkin
and Retey [47]. The suggested cure, to match at bigger aμ,
is not possible for our datasets due to the discretization
effects we have already described. We must include a
systematic effect in the error budget. We elect to do this by
taking C3α

3
s=R as a fractional systematic uncertainty on

mMS
q . (Compare the discussion in Ref. [17], from a study at

much smaller lattice spacing.) We again bracket the match
between aμ ¼ 0.8 and 1.2.
We conclude with some figures showing the analysis for

Zm, in Fig. 3. The errors on ZmðμÞ are from the C3α
3
s term.

One positive remark about ZMS
m worth mentioning: the

points shown at different aμ involve slightly different
amounts of correction (since the conversion from RI0 to

MS is done at different aμ values with different running
distances to μ ¼ 2 GeV). Nevertheless, the results are
reasonably independent of aμ even discounting the overall
systematic uncertainty.

IV. FITTING STRATEGIES

We believe that little in our fitting strategy is novel. Fits
involve minimizing a chi-squared function

χ2 ¼
X
ij

XTðiÞ Cði; jÞ−1
ΔEðjÞΔEðjÞXðjÞ; ð49Þ

where the sum runs over all quantities determined by
simulation and the entries are XðiÞ ¼ EðiÞ − TðiÞ where
EðiÞ is the measured data value, ΔEðiÞ is its standard
deviation of the mean, TðiÞ is the model (containing
parameters to be fit) and Cði; jÞ is the correlation between
the different experimental values. If the data points are

FIG. 3. Examples of datasets and results for ZS and Zm. Panels (a) and (c) are from β ¼ 5.35, κ ¼ 0.12775, L ¼ 16 set and (b) and
(d) from β ¼ 5.35, κ ¼ 0.1282, L ¼ 24. Panels (a) and (b) show ZS from lattice data versus aμ around μ ¼ 1 while panels (c) and

(d) show ZMS
m from linear fits to ZSðaμÞ centered at the shown aμ values, then converted into ZMS

m ðμ ¼ 2 GeVÞ. The error bar includes
the factor C3α

3
s=R, as a systematic.

THOMAS DEGRAND and EVAN WICKENDEN PHYS. REV. D 108, 094516 (2023)

094516-12



assumed to be uncorrelated, Cði; jÞ−1 ¼ δði; jÞ in our
convention.
We include correlations in Eq. (49) by jackknife. Recall

that under a jackknife the average a quantity x̄ and its
uncertainty Δx are given in terms of N individual jackknife
averages xðnÞ

x̄ ¼ 1

N

X
n

xðnÞ

ðΔxÞ2 ¼ N − 1

N
1

N

X
n

ðxðnÞ2 − x̄2Þ: ð50Þ

The correlation function is computed similarly, with a
convention that the diagonal entries are the identity:

Cði;jÞ¼ 1

ΔxiΔxj
N−1

N

X
n

ðxiðnÞ− x̄iÞðxjðnÞ− x̄jÞ: ð51Þ

Recall all the ingredients we need: amq, amPS, afL,
t0=a2, ZA, Zm. We combine these into dimensionless
continuum-regulated quantities, which are then used as
input data to fits which determine the LO and NLO chiral
parameters. The dimensionless quantities we need, com-
pulsively retaining the lattice spacing, are

m̂q ¼ Zm

ffiffiffiffiffi
t0
a2

r
amq

m̂2
PS ¼

t0
a2

ðamPSÞ2

f̂PS ¼ Za

ffiffiffiffiffi
t0
a2

r
afPS: ð52Þ

In practice, only amq, amPS, and afL show measurable
correlations andwe retain only these correlations in the chiral
fits. The uncertainties on m̂q, f̂PS, and m̂2

PS come from the
uncertainties in their ingredients, combined in quadrature.
We also need t0=a2 (actually, its inverse) as a (squared) lattice
spacing to add lattice dependent terms in the chiral fits.
In Sec. III B we mentioned the issue that we have to

perform a fit determining a set of parameters fag from
yðiÞ ¼ fðxi; fagÞ, where both the yi’s and x0is have
uncertainties. We deal with that issue by promoting the
xi’s in the fitting function to additional terms in the χ2

function. For example, in Sec. III B the yi’s were values of
t0 � Δt0 at a set of N bare parameter values, and the xi’s
were a set ξi � Δξi. The set fag were a set of J coefficients
on a polynomial fit. We expand the χ2 function to

χ2 ¼
XN
i¼1

ðyi − fðXi; fagÞÞ2
ðΔyðiÞÞ2 þ

XN
i¼1

ðxi − XiÞ2
ðΔxðiÞÞ2 ð53Þ

(we suppress the obvious correlation term), so that we now
have 2N terms in χ2 and J þ N quantities to be determined.
If there were no errors on the xi the counting of degrees of

freedom would be N − J, and with the procedure we have
outlined it is still 2N − ðJ þ NÞ ¼ N − J.
The ξ fits present one final annoyance, since the fitting

function must be written entirely in terms of quantities to be
fit. This means that in Eq. (18) we must remove the error-
bearing m2

PS from the right-hand side of these expressions.
We do this by adding a ðyðiÞ − TðiÞÞ ¼ ðmPSðiÞ2 −
MPSðiÞ2Þ term to the chi-squared formula. For Nd bare
parameter values there will be 3Nd data points (FPS,mq and
MPS) to be fit, with 4þ 3Nd fit parameters, for Nd − 4
degrees of freedom.
Finally, wemust discuss howwe deal with lattice artifacts.

Our lattice action has order a2 artifacts, and this means that
the LEC’s which will come out of fits will also carry Oða2Þ
corrections. In principle, for x fits, that will be the case for all
four LO andNLOparameters and the three additionalNNLO
ones. To include all these correction terms in the fitting
function would be very unwieldy (and, given our uncertain-
ties, quite unstable). Instead, we follow the lead of Ref. [17]
and proceed empirically, adding terms and seeing how they
affect the χ2 of a fit. We discover that we are sensitive to
lattice artifacts in two places, basically a modification of the
right-hand sides of Eqs. (10), (17), and (18). To be explicit,
we fit the following functional forms. For x fits,

m2
PS ¼

�
1þ cB

a2

t0

�
2Bmq

�
1 −

1

2
x

�
log

μ2π
M2

þ l3

�

þ x2
�
17

8
T2
M þ kM

��

fPS ¼
�
1þ cF

a2

t0

�
F

�
1þ x

�
log

μ2π
M2

þ l4

�

þ x2
�
−
5

4
T2
F þ kF

��
; ð54Þ

TF andTM are given byEq. (11). TheNLO ξ fitting functions
become

fPS ¼
�
1þ cF

a2

t0

�
F
2

�
1þ

�
1þ 4

m2
PS

8π2F2

×

�
ln

μ2

m2
PS

þ l4

��
1=2

�

mq ¼
�
1þ cB

a2

t0

�
m2

PS

2B

�
1þ 1

2

�
m2

PS

8π2F ðF; l4; m2
PSÞ

�

×

�
log

�
μ2

m2
PS

�
þ l3

��
: ð55Þ

Note again that all input variables (mq;M2
PS; FPS) have been

rescaled by the appropriate power of t0. This means that an
NLO fit involves six parameters and NNLO, nine. Of these
two nuisance parameters, cB is muchmore important. (It was
the only term kept byRef. [17].)We comment on their values
in the next section.

LATTICE STUDY OF THE CHIRAL PROPERTIES OF … PHYS. REV. D 108, 094516 (2023)

094516-13



FIG. 4. Fit values of LO and NLO chiral parameters from an NNLO x fit to Nc ¼ 5 over a set of priors for l12, kF, and kM. The
diamond shows the fit result without priors.

FIG. 5. Fit values of NNLO parameters l12, kF, and kM from NNLO x fits to Nc ¼ 5 over a set of priors for them. The diamond shows
the fit result without priors.
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Priors are included in the standard way, as additional
terms in the χ2 function, χ2 → χ2 þ χ2P where

χ2P ¼
X
j

ðpj − PjÞ2
ΔPðjÞ2 : ð56Þ

We discover that while both x and ξ NLO fits are uniformly
stable over a wide range of choices of fit parameters, the
NNLO fits are unstable without inclusion of priors. We
made a set of fits with a broad range of priors for l12, kF,
and kM, and we found that values of the four fitted LO and
NLO quantities are reasonably independent of the choices
we made, but the fitted values and (especially) their
uncertainties of l12, kF, and kM are completely determined
by the priors. This result occurs for allNc’s. We present one
illustration, for Nc ¼ 5. This is a fit to the datasets with the

smallest 15 values of ξ. Figure 4 shows the LO and NLO
quantities for ten choices of priors, set identical for
l12, kF, and kM. The values, from left to right, are
ðP;ΔPÞ ¼ ð0.0; 1.0Þ, (0.0,2.0), (0.0,3.0), (1.0,1.0),
(1.0,2.0), (1.0,3.0), (2.0,1.0), (2.0,2.0), (2.0,3.0), (3.0,3.0).
The fitted values for l12, kF, and kM are shown inFig. 5. In our
NLO fits in Sec. V, we will keep the (1.0,2.0) prior.
We remark in passing that one lattice artifact which

we looked for but did not observe was an extra term in
the relation m2

PS ¼ 2Bmq due to nonzero lattice spacing.
This is an extra term on the right hand side of the first
equation in the set of Eq. (54). We checked this most
thoroughly for NNLO x fits. The addition of terms
m2

PS ¼ 2Bmqð…Þ þ Caða2=t0Þ or m2
PS ¼ 2Bmqð…Þ þ

Caða=
ffiffiffiffi
t0

p Þ make a tiny change to the χ2 (comparing
the same fit ranges) compared to leaving them out.

FIG. 7. Plots of (a)
ffiffiffiffi
t0

p
fPS=

ffiffiffiffiffiffiffiffiffiffiffi
Nc=3

p
and (b)

ffiffiffiffi
t0

p
m2

PS=mq versus ξ ¼ m2
PS=ð8π2f2PSÞ. Colors label different Nc values (black for

Nc ¼ 3, red for Nc ¼ 4 and blue for Nc ¼ 5), and the different symbols label the different bare gauge couplings as described in the text.

FIG. 6. Nc ¼ 3 data compared to NLO formulas from the x-parameterization in the black solid lines black and the ξ parameterization
in red dashes with “known” (FLAG) [16] parameters for the LEC’s. (a)

ffiffiffiffi
t0

p
fPS versus

ffiffiffiffi
t0

p
mq; (b)

ffiffiffiffi
t0

p
m2

PS=mq versus
ffiffiffiffi
t0

p
mq. Symbols

show β ¼ 5.25 in squares, β ¼ 5.3 in diamonds, β ¼ 5.35 in octagons, β ¼ 5.4 in crosses.
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All that happens is that the uncertainties on the other fit
parameters (mostly F) grow and the central values drift
by a σ or so. A broad prior on Ca is needed to stabilize
the fit. The authors of Ref. [17] use an action with
smeared gauge links which is similar to ours and do not
include this term either.

V. RESULTS FROM FITS TO CHIRAL
PERTURBATION THEORY

A. SUð2Þ chiral perturbation theory

Our extraction of LEC’s from our datasets is done by
performing a series of fits varying the range of quark

FIG. 8. NNLO x fits showing
ffiffiffiffi
t0

p
fPS and

ffiffiffiffi
t0

p
m2

PS=mq vs
ffiffiffiffi
t0

p
mq. (a) and (b) show Nc ¼ 3, (c) and (d) show Nc ¼ 4, and (e) and

(f) show Nc ¼ 5 datasets. The fits involve the seven parameters of the NNLO expression, with the NNLO LEC’s stabilized by priors as
described in the text and two Oða2Þ correction terms as described in Eq. (54). The different plotting symbols label the different beta
values of the datasets and are given in the text. Red points are the fitted values associated with the black data points. The lines show the
continuum limit of the fitting functions. The decomposition of the SUðNfÞ fitting functions for fPS andm2

PS=mq (shown as solid lines) is
split into their NLO (dashed lines) and NNLO (dash-dotted lines) components.
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masses, typically varying the maximum value of ξ in the
dataset and using model averaging to produce a set of
results. The lattice data for fPS and m2

PS are typically very
smooth functions of the quark mass. The fitting functions
are also very smooth. It is usually possible to get a good
quality fit for any ξ range. The issue is then whether the fit
parameters are stable under variation of fit ranges.

Thevalues ofSUðNfÞLEC’swere already a closed subject
beforewe began our project. They are summarized by FLAG
[16] and come fromdatasets ofmuch higher quality than ours.
The study ofNc > 3 is our goal.We therefore useNc ¼ 3 as a
fiducial: can we reproduce FLAG results?
Recall that we are scaling all quantities with the

appropriate power of t0 to produce dimensionless

FIG. 9. Results of NLO and NNLO SUð2Þ x fits toNc ¼ 3 datasets versus ξmax. The red squares show NLO fits and the black octagons
show NNLO fit results. (a)

ffiffiffiffi
t0

p
F, (b) l4, (c)

ffiffiffiffi
t0

p
B, (d) l3, (e) the χ2 per degree of freedom.
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quantities. The 2019 FLAG review tells us that F ¼
87 MeV (in the “93 MeV” convention) so withffiffiffiffi
t0

p ¼ 0.15 fm, F̂ ¼ ffiffiffi
2

p
× 87 MeV × 0.15 fm ∼ 0.09 in

our convention. The condensate Σ ¼ F2B in the same
convention. The review quotes Σ1=3 ∼ 266ð10Þ MeV (in
MS at μ ¼ 2 GeV) and with F̂ ¼ 0.09, B̂ ∼ 2.05. The
review lists l3 ¼ 3.41ð82Þ and l4 ¼ 4.40ð28Þ.

Before doing any fits, we can just compare our data to
NLO curves with these values for the LEC’s. Figure 6 shows
twoplots:

ffiffiffiffi
t0

p
fPS versus

ffiffiffiffi
t0

p
mq in panel (a) and

ffiffiffiffi
t0

p
m2

PS=mq

versus
ffiffiffiffi
t0

p
mq in panel (b). The different plotting symbols

correspond to different values of the bare gauge coupling.
The figure shows one loop results with the FLAG

parameters for the LEC’s. The black curves show the

FIG. 10. Results of NNLO x fits to SUð4Þ datasets versus ξmax, as in Fig. 9.
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NLO x curve while the dashed red curves the NLO ξ curve.
The data, especially for fPS, are much straighter than either
NLO fit would favor. In an NLO fit to the data, the fit
parameter for l4 will drift upward as higher mass points are
kept, to try to straighten the curve. The datasets we
collected mostly lie outside the range where NLO chiral
perturbation theory is applicable. To fit all our datasets it is
necessary to do NNLO fits.
As a second preliminary picture we display

ffiffiffiffi
t0

p
fPS=ffiffiffiffiffiffiffiffiffiffiffi

Nc=3
p

and
ffiffiffiffi
t0

p
m2

PS=mq versus ξ, in Fig. 7. The quantities

plotted on the x and y axes of these plots are quite degenerate,
but the figure does display the landscape of the data. The
different plotting symbols label the different beta values (and
hencedifferent lattice spacings) of the datasets. The catalog is

(i) For Nc ¼ 3, shown in black, squares for β ¼ 5.25,
diamonds show β ¼ 5.3, octagons show β ¼ 5.35,
crosses show β ¼ 5.4.

(ii) For Nc ¼ 4, shown in red, squares are for β ¼ 10.0,
diamonds for β ¼ 10.1, octagons for β ¼ 10.2,
crosses for β ¼ 10.3.

FIG. 11. Results of NNLO x fits to SUð5Þ datasets versus ξmax, as in Fig. 9.
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(iii) ForNc ¼ 5, shown in blue, squares are for β ¼ 16.2,
diamonds for β ¼ 16.3, octagons for β ¼ 16.4,
crosses for β ¼ 16.6.

We begin with a set of typical results for NNLO x fits,
Fig. 8. The data in these fits has been selected to be less
than some chosen value of ξmax. The fits involve the
seven parameters of the NNLO expression, with the

NNLO LEC’s stabilized by priors as described in
the text, and two Oða2Þ correction terms as given in
Eq. (54). The two sets of points show

ffiffiffiffi
t0

p
m2

PS=mq andffiffiffiffi
t0

p
fPS vs

ffiffiffiffi
t0

p
mq. The different plotting symbols label

the different beta values (and hence different lattice
spacings) of the datasets as we have listed. The red
points are the fit values associated with each data point.

FIG. 12. More results of NNLO x fits to SUð4Þ datasets versus ξmax: (a) cB, the a2 correction to B (b) cF, the a2 correction to F, and the
three NNLO LEC’s (controlled by priors in the fits) (c) kF, (d) kM , (e) l12.
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The solid lines are the continuum result. The difference
between the line and the data points is due to the
nuisance parameters cF and cB in Eq. (54).
To determine the LEC’s, we organized a set of NNLO

fits by sorting each Nc’s data into a file with increasing ξ
and performed a series of fits beginning with a subset of
points with the smallest ξ values and extending up to
some maximum ξ. We monitored the χ2 per degree of
freedom and confidence level of the fits. Figure 9 shows
results from Nc ¼ 3 for B, F, l3, and l4, along with the
chi-squared per degree of freedom. The flatness of the fit
quantities versus ξmax indicates that we can perform
model averaging over our suite of fits to determine
the LEC’s.

Figures 10 and 11 show the same information, but for
Nc ¼ 4 and 5. We show one representative example of our
determination of the cutoff dependent terms cB and cF and
the NNLO parameters kF, kM, and l12, for Nc ¼ 4, in
Fig. 12. Recall that the NNLO fitted parameters are
strongly controlled by priors.
Results are listed in listed in Table V and displayed

in Fig. 13.
The uncertainties on l3 are much larger than those of l4.

This is similar to what is seen in the FLAG averages for
Nc ¼ 3 [16].
As a final check of the consistency of our results, we

break apart the NNLO predictions for fPS andm2
PS=mq into

their LOþ NLO and NNLO components and plot them.

FIG. 13. LEC’s from fits of NNLO SUð2Þ chiral perturbation theory for Nc ¼ 3, 4, and 5, along with other relevant results for
comparison. (a)

ffiffiffiffi
t0

p
F=

ffiffiffiffiffiffiffiffiffiffiffi
Nc=3

p
, (b)

ffiffiffiffi
t0

p
B, (c) l4=Nc, (d) l3=Nc. The plotting symbols are red octagons, for our SUð2Þ results;

blue crosses, our Uð2Þ results, converted to SUð2Þ LEC’s. Other relevant data are also shown (in black). High precision Nf ¼ 2,
Nc ¼ 3 results are diamonds [16], and fancy diamonds, [17]. There are two large Nc limits of quenched data, the large volume
results of [52] as squares and the small volume ones of [53,54] as fancy crosses. Purple fancy squares show Nf ¼ 4

results from [18].
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This is shown in Fig. 8. The NNLO piece remains small
over the range of

ffiffiffiffi
t0

p
mq values used in fits.

B. Uð2Þ chiral perturbation theory

The analysis path for Uð2Þ chiral fits exactly parallels
that for SUð2Þ. We performed fits to the NLO and NNLO
formulas, studying individual Nc datasets. We included
additional nuisance parameters to account for finite lattice
spacing effects. Specifically,

m2
PS ¼

�
1þ cB

a2

t0

�
ðM2

NLO þM2
NNLOÞ

fPS ¼
�
1þ cF

a2

t0

�
ðFNLO þ FNNLOÞ ð57Þ

where the NLO and NNLO terms are given in Eqs. (24) and

(25). The NLO fits involve six parameters B, F, lð0Þ3 , lð0Þ4 , cB
and cF. The NNLO fits add two more: TF and TM, for eight

parameters, and replaces the lð0Þi ’s by lð0Þi þ lð1Þi =Nc.
We need one more input parameter, the quenched topo-

logical susceptibility χT. Reference [55] measured it to be

t20χT ¼ 7 × 10−4: ð58Þ

(See also [56] for earlier determinations of χT .)
We experimented with priors for TF and TM. We

discovered that if the fitting range in ξ or
ffiffiffiffi
t0

p
mq was

large, no priors were needed, while when the range became
small, setting a prior 0.2� 0.2 for TF and −0.2� 0.2 for
TM stabilized the fit.
Notice that the NLO fits are “fits to a straight line” (plus

lattice artifacts) of our data.
As in the case of the SUð2Þ, we can generally find fits

which have low chi-squares to any dataset; the issue is
whether the fit parameters are stable under dataset size.
A second consideration is whether the fit makes sense in that
the NNLO contribution is small compared to the NLO one.

Nc ¼ 3 is a special case:Uð2Þ chiral fits fail. This can be
seen in Fig. 14, where we break up a typical NNLO fit into
its component parts. For Nc ¼ 3 the actual NNLO com-
ponent is huge compared to the NLO piece. The fitted B
also has a very large uncertainty as it tries to compensate for
the incorrect functional form demanded by the fitting
function. We include the data with the same plotting
symbols as in Fig. 8.
This leaves us Nc ¼ 4 and 5. Figure 14 shows that the

size of the various contributions is consistent with a small
NNLO correction and that the situation is more improved
for Nc ¼ 5 than for Nc ¼ 4.
We proceed to results. Figures 15 and 16 show results of

individual NLO and NNLO fits out to values of ξmax. The
NLO fits drift when ξmax becomes greater than about 0.1.
These fits will be model-averaged once a range is chosen.
We then compare NLO and NNLO fits at ξmax ¼ 0.107
with NNLO fits at ξmax ¼ 0.20 (Nc ¼ 4) or NLO and
NNLO fits at ξmax ¼ 0.09 with NNLO fits at ξmax ¼ 0.16
(Nc ¼ 5). Fitted values for the LEC’s agree at the one
standard deviation level. Results from the NNLO fits at
large ξmax are listed in Table VI.
One final thing we must do is connect the Uð2Þ LEC’s to

the SUð2Þ ones. TheF values need no conversion. The other
LEC’s need a shift and rescaling according to Eqs. (27)
and (9). With the dimensionless Uð2Þ scheme point μ ¼
t0ð8π2F2Þ ¼ 0.64 and the SUð2Þ μ ¼ t0m2

πðphysÞ ¼
0.011, the converted expressions are recorded in Table VI.
As we saw in the SUð2Þ case, the results for l3 are quite a bit
noisier than the ones for l4.

C. Discussion of results

We collect our results in a panel of figures, Fig. 13.
Our results are presented in MS at a scale of 2 GeV
(equivalent, for Nc > 3, of course) and we have con-
verted the li’s to a scale μ2 ¼ m2

π . The Uð2Þ parameters
have been matched to SUð2Þ ones, so the plots show
SUð2Þ LEC’s.
We have included data from other sources. At Nc ¼ 3

these are the FLAG [16] numbers. They do not quote a
direct average for B so we substitute the measurement of B
from Ref. [17] as comparison.
We also added two Nc → ∞ results, from the large Nc—

small volume simulations of Refs. [53,54] and from the
large volume quenched simulations of Ref. [52].
Quenched simulations, of course, fall outside the two

chiral expansions (SUðNfÞ and UðNfÞ) we have studied:
the quenched pseudoscalar decay constant has no chiral
logarithm and the dependence of the pseudoscalar mass on
the fermion mass is not m2

PS ∝ mq but

m2
PS ∝ m1=ð1þδÞ

q : ð59Þ
These differences are related to the fact that in the quenched
approximation, the flavor singlet pseudoscalar meson
propagator is not a pole; it is a double pole involving

TABLE V. LO and NLO LEC’s of SUð2Þ chiral perturbation
theory from our Nc ¼ 3, 4, and 5 datasets.

Nc ¼ 3 Nc ¼ 4 Nc ¼ 5ffiffiffiffi
t0

p
B 1.90(10) 1.98(8) 1.82(7)ffiffiffiffi

t0
p

F 0.086(5) 0.111(5) 0.137(4)
l4 4.2(7) 4.9(6) 5.2(4)
l3 3.2� 1.5 3.62� 1.3 2.9� 1.3

cB −0.14ð3Þ −0.20ð2Þ −0.14ð4Þ
cF −0.6ð2Þ −0.06ð2Þ −0.04ð3Þ
l12 2.7(5) 3.1(4) 3.3(5)
kF 1.14� 1.5 1.0� 1.4 1.5� 1.8
kM 0.15� 1.0 0.4� 0..8 0.5� 1.0
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two ordinary pseudoscalars—a “hairpin” [44]. There is no
sense in which the flavor singlet pseudoscalar’s mass
decreases with Nc, as occurs with any Nf ≠ 0. We are
not sure how to add quenched results to the panels showing
l3 and l4 of Fig. 13. Still, the coupling of the hairpin, like
the coupling to the tadpole which gives the chiral loga-
rithm, scales as 1=F2 ∼ 1=Nc and disappears in the limit.

It seems reasonable to expect that quenched QCD and
QCD with any fixed number of flavors of dynamical
fermions should share a common large Nc limit.
However, the Nc dependence of observables away from
the limit will depend on Nf. What one learns from doing
simulations which include dynamical fermions, of course,
involves the fermions. It is expected that their effects fall

FIG. 14. Decomposition of the UðNfÞ fitting functions for fPS and m2
PS=mq (shown as solid lines) into their NLO (dashed lines) and

NNLO (dash-dotted lines) components. (a) and (b) Nc ¼ 3; (c) and (d) Nc ¼ 4; (e) and (f) Nc ¼ 5. The data are shown with the same
plotting symbols as in Fig. 8.
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away, but (for example) do some contributions disappear
(say, as a power of 1=Nc) independently of Nf, or in terms
of the ratio Nf=Nc, or does something else happen? We
think this question is as interesting as asking what are the
large Nc limits of B and F=

ffiffiffiffiffiffi
Nc

p
.

The authors of Refs. [53,54] performed simulations
in the context of the twisted Eguchi-Kawai matrix

model at Nc ¼ 169, 289, and 361 at several lattice
spacings per Nc. They give the large Nc limiting resultsffiffiffiffiffiffiffiffiffi
8t0σ

p ¼ 1.078ð9Þ and fPS=
ffiffiffi
σ

p ffiffiffiffiffiffiffiffiffiffiffi
3=Nc

p ¼ 0.22ð1Þð2Þ
where σ is the string tension and the two uncertainties
are statistical and systematic. They use the “93 MeV”
definition for the decay constant, so we convert their
numbers to

FIG. 15. Results of NLO (red squares) and NNLO (black octagons) Uð2Þ fits to Nc ¼ 4 datasets versus ξmax. (a)
ffiffiffiffi
t0

p
F, (b) lð0Þ4 or

lð0Þ4 þ lð1Þ4 =Nc, (c)
ffiffiffiffi
t0

p
B, (d) lð0Þ3 or lð0Þ4 þ lð1Þ3 =Nc, (d) l3, (e) the χ2 per degree of freedom.

THOMAS DEGRAND and EVAN WICKENDEN PHYS. REV. D 108, 094516 (2023)

094516-24



ffiffiffiffiffiffi
3

Nc

s ffiffiffiffi
t0

p
F ¼

ffiffiffi
2

p �
Fffiffiffi
σ

p
ffiffiffiffiffiffiffiffiffi
8t0σ

p ffiffiffi
8

p
�
¼ 0.118ð11Þ ð60Þ

(combining errors in quadrature for the plot).
Reference [54] quotes

ffiffiffiffi
t0

p
B ¼ 1.81ð36Þ as a byproduct

of their value of Σ (which has a much smaller uncertainty).

Reference [52] has quenched data for Nc ¼ 2–7 and 17,
at one lattice spacing, a ∼ 0.1 fm. They quote a large Nc
limit of

1ffiffiffi
2

p
ffiffiffiffiffiffi
3

Nc

s
Fffiffiffi
σ

p ¼ 0.2174ð30Þ ð61Þ

FIG. 16. Results of NLO and NNLO Uð2Þ fits to Nc ¼ 5 datasets versus ξmax. The red squares are NLO fits, the black octagons are

NNLO fits without priors, and the blue crosses are NNLO fits with priors. (a)
ffiffiffiffi
t0

p
F, (b) lð0Þ4 or lð0Þ4 þ lð1Þ4 =Nc, (c)

ffiffiffiffi
t0

p
B, (d) lð0Þ3 or

lð0Þ4 þ lð1Þ3 =Nc, (d) l3, (e) the χ2 per degree of freedom.
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with an additional eight per cent error on the string tension,
which is the dominant uncertainty. With a choice of

ffiffiffi
σ

p ¼
440 MeV and t0 ¼ 0.15 fm, this is the limiting value

lim
Nc→∞

ffiffiffiffiffiffi
3

Nc

s ffiffiffiffi
t0

p
F ¼ 0.103ð8Þ: ð62Þ

We note that the authors of Ref. [52] extrapolate all their
data in 1=N2

c.
Next, we attempt a comparison with the results of

Hernandez et al. [18]. Their Nf ¼ 4 datasets are fit to
Uð4Þ chiral perturbation theory and they perform interpo-
lations in Nf assuming that Nf appears in the combination
Nf=Nc (so that tuning Nc is a proxy for varying Nf).
They have tables of aF=

ffiffiffiffiffiffi
Nc

p
which we convert toffiffiffiffi

t0
p ffiffiffiffiffiffiffiffiffiffiffi

3=Nc

p
F in our conventions using

ffiffiffiffi
t0

p ¼ 0.15 fm and
their a ¼ 0.075 fm. TheirNf ¼ 4 results are lower than our
Nf ¼ 2 ones. The coefficient of Nf=Nc in their fitting
function is negative and their Nf ¼ 2 extrapolations are
0.093(3) fo Nc ¼ 3, 0.101(3) for Nc ¼ 4 and 0.105(3) for
Nc ¼ 5. Their extrapolation to infinite Nc is 0.124(3)—
0.130(3) for the two functional forms they use.
We present

ffiffiffiffi
t0

p
B ¼ Zs

ffiffiffiffi
t0

p
=aðaBÞ from their tables,

converted to the SUðNfÞ B, in Fig. 13(b). There seems
to be little Nf dependence on this quantity—which their
Nf=Nc parametrizations also show.
We translated their data for LF into l4ðμ ¼ m2

πÞ by

l4ðNf ¼ 4; μÞ ¼ log
8π2F2

m2
π

þ 64π2

ðNf=2 ¼ 2ÞLF: ð63Þ

Figure 13(c) shows that their Nf ¼ 4 results for Nc > 3 are
consistent with ours. Their prediction of Nc ¼ 3, Nf ¼ 2

numbers (l4 ¼ 5.1ð3Þ or 4.1(11) for two fits) are consistent
with ours.
Finally, l3. We again convert their Uð4Þ quantity to an

SUð4Þ one and plot it in panel d of Fig. 13. This quantity is

apparently stronglyNf dependent, in addition to being very
noisy. They quote an Nc ¼ 3, Nf ¼ 2 value of l4 ¼ 0.4�
1.6 (at μ ¼ mπ) to be compared with our 3.2� 1.5 and
FLAG’s 3.41(82).
It’s a bit dangerous to extrapolate our data to Nc → ∞,

we think. But (just to save readers the work of doing it
themselves) a linear fit to the SUð2Þ values for ffiffiffiffi

t0
p

B andffiffiffiffi
t0

p ffiffiffiffiffiffiffiffiffiffiffi
3=Nc

p
F of the form c1 þ c2=Nc gives large Nc values

of
ffiffiffiffi
t0

p
B ¼ 1.72ð22Þ and

ffiffiffiffi
t0

p ffiffiffiffiffiffiffiffiffiffiffi
3=Nc

p
F ¼ 0.136ð10Þ. A

glance at Fig. 13 shows that these predictions seem to
be unexpected. Of course, a convincing plot would benefit
from continuum predictions from all the possible
approaches (listed at the beginning of the paper) to the
large Nc limit. Presumably all approaches would converge
to the same large Nc limit, but would do so in different
ways, which might illustrate how varying numbers of
fermion flavors affect the LEC’s.

VI. CONCLUSIONS

The results shown in Fig. 13 show that we have not
answered the list of questions which motivated this project,
though we may have made a start:
(1) How do the low energy constants of the chiral

effective theory scale with Nc? What is their limit?
The expected leading scaling B ∼ N0

c, F ∼
ffiffiffiffiffiffi
Nc

p
,

l3, l4 ∼ Nc seem to hold. We can see subleading Nc
behavior in F, l3, and l4. With three values of Nc we
cannot say anything about corrections beyond 1=Nc.

(2) Is there a crossover to Uð2Þ chiral behavior?
This we cannot tell. Uð2Þ fits fail for Nc ¼ 3. We

see that in our Nc ¼ 4 and 5 datasets both chiral
expansions give comparable results for the LEC’s,
when they are converted to a common scheme. We
are aware of no direct calculations of the mass of the
flavor singlet meson for Nc > 3, so the Uð2Þ fitting
functions depend on the validity of the Witten–
Veneziano relation.

TABLE VI. LO and NLO LEC’s of Uð2Þ chiral perturbation theory from our Nc ¼ 4 and 5 datasets. The
“converted” columns show conversions to SUð2Þ quantities according to Eq. (27). In the column we have listed l3
and l4; note the rescaling.

Nc ¼ 4 converted Nc ¼ 5 convertedffiffiffiffi
t0

p
B 1.84(9) 1.96(10) 1.65(6) 1.79(7)ffiffiffiffi

t0
p

F 0.109(4) 0.136(4)

l04 þ lð1Þ4 =Nc
0.22(6) 4.93(24) 0.28(6) 5.45(30)

lð0Þ3 þ l13=Nc
−0.74ð24Þ −0.57� 1.15 −0.81ð23Þ −0.11� 0.23

cB −0.20ð2Þ −0.14ð4Þ
cF −0.06ð2Þ −0.04ð3Þ
TF 0.08(5) 0.06(4)
TM −0.06ð7Þ −0.07ð6Þ
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What could we have done better (and why)? The list is
obvious: smaller fermion masses would have been a big
help, to be able to do chiral fits deeper in the NLO regime.
This then implies a need for bigger lattice volumes, so as
not to be compromised by finite size effects. Fortunately,
the larger the value of Nc, the less this is an issue. Our large
lattice spacings led to big uncertainties in the value of
lattice to continuum matching factors, and the SUð3Þ
literature makes the obvious point that smaller lattice
spacing allows more controlled matching at larger momen-
tum scales. And finally, more values of Nc would certainly
have been helpful. Trying to extrapolate three values of Nc
leaves little room to deal with the possibility that quantities
scale nonlinearly in 1=Nc. We suspect, though, that datasets
of the size of the ones reported in FLAG for SUð3Þ could
complete the story of the chiral and continuum limit of
large Nc QCD.
Of course, to really give high precision answers to the

questions we have asked will probably involve some kind
of superanalysis involving a variety of approaches includ-
ing simulations at several fixed Nf values, as well as
quenched simulations in small and large volumes. But in

the meantime, we think that the low-statistics take away
continues to be that Nc ¼ 3 QCD is not that different from
its large Nc limit.
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