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In this paper, we present lattice QCD results for the x dependence of the unpolarized gluon parton
distribution functions (PDFs) for the proton. We use one ensemble of Nf ¼ 2þ 1þ 1 maximally twisted
mass fermions with a clover improvement, and the Iwasaki improved gluon action. The quark masses
are tuned to produce a pion with a mass of 260 MeV. The ensemble has a lattice spacing of a ¼ 0.093 fm
and a spatial extent of 3 fm. We employ the pseudodistribution approach, which relies on matrix elements
of nonlocal operators that couple to momentum-boosted hadrons. In this work, we use five values of the
momentum boost between 0 and 1.67 GeV. The gluon field-strength tensors of the nonlocal operator are
connected with straight Wilson lines of varying length z. The light-cone Ioffe time distribution (ITD) is
extracted utilizing data with z up to 0.56 fm and a quadratic parametrization in terms of the Ioffe time at
fixed values of z. We explore systematic effects, such as the effect of the stout smearing for the gluon
operator, excited states effects, and the dependence on the maximum value of z entering the fits to obtain
the gluon PDF. Also, for the first time, the mixing with the quark singlet PDFs is eliminated using matrix
elements with nonlocal quark operators that were previously analyzed within the quasi-PDF framework on
the same ensemble. Here, we expand the dataset for the quark singlet and reanalyze within the pseudo-
PDFs method eliminating the corresponding mixing in the gluon PDF.
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I. INTRODUCTION

As the mediators of the strong force, gluons play a
significant role in the internal structure of hadrons.
However, color confinement, a key aspect of quantum
chromodynamics (QCD), prevents direct observation of
quarks and gluons. Instead, both theoretical and exper-
imental approaches to hadronic structure calculations rely
on QCD factorization, which separates the perturbatively
calculable hard-scattering part from the nonperturbative
part described by form factors and distribution functions,
including parton distribution functions (PDFs). Within the
parton model, the leading-twist PDFs have a probabilistic
interpretation, quantifying, e.g., the likelihood of finding
partons with a particular momentum fraction. Precise
and accurate calculations of the gluon PDF are necessary
for J=ψ photo production at Jefferson lab, the cross section

of Higgs boson production and jet production at the Large
Hadron Collider (LHC), as well as providing theoretical
input to experiments at the future Electron-Ion Collider
(EIC) in the U.S. and the Electron-Ion Collider in
China (EicC).
Lattice QCD is a first-principles approach to calculating

strong force quantities performed on a discrete four-
dimensional Euclidean lattice. While lattice QCD calcu-
lations have proven successful in extracting the nonper-
turbative dynamics of QCD governing hadron structure,
the lightlike nature of PDFs prevents direct calculation on
Euclidean lattices. Several methods have been proposed
over the last decade to relate lattice data to physical light-
cone distributions. Two notable and most widely used
approaches are the quasidistribution [1,2] and pseudo-
distribution [3–7] methods. These approaches utilize the
same matrix elements of momentum-boosted hadrons
coupled to nonlocal operators containing a Wilson line
but differ in the way the Euclidean observable is factorized
into its light-cone counterpart directly in coordinate space
(pseudo) or after reconstruction of the x dependence, i.e. in
momentum space (quasi). Typically, they are also renor-
malized differently. By construction, the renormalization
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for pseudodistributions employs canceling the divergences
by forming an appropriate ratio of matrix elements (ratio
scheme). In turn, quasidistributions are typically renormal-
ized using a dedicated calculation of vertex functions of
the operator under study that leads to a regularization
independent momentum subtraction (RI/MOM) scheme. It
should be noted that, the ratio scheme is also increasingly
utilized for quasidistributions in hybrid schemes [8] that
treat short and long scales differently. Another typical
difference is in the x-dependence reconstruction. For
quasidistributions, this step uses Euclidean matrix elements
in the full range of the nonlocal operator lengths, z.
Pseudodistributions, in turn, are matched in coordinate
space, which imposes limitations on the value of z, which
needs to be kept relatively small so that it remains in the
perturbative region. Thus, without access to the full range
of z, approaches based on pseudodistributions typically
employ a physically motivated fitting ansatz for the func-
tional form of the reconstructed function.
There have been several lattice calculations of various

types of quark distributions for the nucleon and other
hadrons (mostly the pion), see e.g. Refs. [9–43] for
quasidistributions, Refs. [44–56] for pseudodistributions
and Refs. [57–61] for recent reviews. However, the gluonic
component of hadron structure has been less studied,
though the contribution to various physical quantities is
significant. Phenomenological data and lattice calculations,
for instance, suggest that gluons account for approximately
40% of the hadron’s momentum at a scale of 6.25 GeV2

[62,63]. It is essential to better understand how the gluon
contributes to hadron structure, which has led to several
dedicated lattice calculations [64–68] and phenomenologi-
cal analyses of experimental datasets [69–71] on this topic.
As has been done in the case of quark PDFs [72–74], lattice
data on x-dependent quantities have the potential to assist
in constraining global analyses.
In this work, we present our calculation of the unpolar-

ized gluon PDF for the proton using the pseudo-PDF
approach. We calculate the Ioffe-time pseudodistribution
function (pseudo-ITD) by taking the ratio of matrix
elements and evolving to a common scale. The ITD
describes the interaction of the nucleon with the probe

in deep inelastic scattering (DIS) interactions. We use a
fitting ansatz to reconstruct the pseudo-PDF from the
pseudo-ITD. This approach has proved successful for the
extraction of the quark pseudo-PDF. The gluon component
presents additional difficulties, including the need for an
order of magnitude more statistics arising from the
noise associated with the purely disconnected diagram.
The gluon PDF also mixes with the quark singlet PDF.
Previous lattice calculations have neglected this mixing.
We present the first analysis incorporating the quark singlet
mixing from lattice QCD data. We compare our pseudo-
PDF results neglecting mixing with lattice results from
the HadStruc Collaboration [66]. We also compare our
results with and without mixing to global analysis from the
JAM Collaboration [72].
This paper is organized as follows. In Secs. II A and II B,

we describe the theoretical and lattice setups for the
calculation. In Sec. III A, we present our analysis of various
smearing and source-sink time separation values of the
matrix elements and reduced-ITDs. Section III B shows
the results of the pseudo-ITD and pseudo-PDF neglecting
mixing with the quark singlet, and Sec. III C presents the
results addressing the mixing with the quark singlet.

II. METHODOLOGY

A. Approach

The computationally expensive component of the
methodology is the evaluation of matrix elements with
momentum-boosted proton states, NðPÞ, that couple to
nonlocal gluon operators; P indicates the proton momen-
tum. The operator is constructed by two gluon field-
strength tensors, Fμν, located at two lattice points that
are spatially separated in the ẑ direction by distance z. The
operator also contains two straight Wilson lines, connecting
points 0 → z and z → 0, to ensure gauge invariance. The
matrix element reads

Mμi;νjðP; zÞ ¼ hNðPÞjFμiðzÞWðz; 0ÞFνjð0ÞWð0; zÞjNðPÞi;
ð1Þ

where Fμν is the gluon field-strength tensor defined as

FμνðxÞ ¼
i

8g0
½UμðxÞUνðxþ aμ̂ÞU†

μðxþ aν̂ÞU†
νðxÞ þ UνðxÞU†

μðxþ aν̂ − aμ̂ÞU†
νðx − aμ̂ÞUμðx − aμ̂Þ

þ U†
μðx − μ̂ÞU†

νðx − aν̂ − aμ̂ÞUμðx − aν̂ − aμ̂ÞUνðx − aν̂Þ
þ U†

νðx − aν̂ÞUμðx − aν̂ÞUνðx − aν̂þ aμ̂ÞU†
μðxÞ − H:c:�; ð2Þ

and g is the bare coupling constant. Potential candidates for the gluon operator are given below for different values of the
indices μ, ν, i, j, which can be temporal or spatial, that is

O0 ≡
X
i<j

Fijðxþ zẑÞWðxþ zẑ; xÞFijðxÞWðx; xþ zẑÞ −
X
i

Fitðxþ zẑÞWðxþ zẑ; xÞFitðxÞWðx; xþ zẑÞ; ð3Þ
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O1≡1

2

X
i

FitðxþzẑÞWðxþzẑ;xÞFitðxÞWðx;xþzẑÞ; i≠z;

ð4Þ

O2 ≡ 1

2

X
i

Fizðxþ zẑÞWðxþ zẑ; xÞFizðxÞWðx; xþ zẑÞ;

ð5Þ

O3≡1

2

X
i

FitðxþzẑÞWðxþzẑ;xÞFizðxÞWðx;xþzẑÞ; i≠ z;

ð6Þ

O4 ≡ 1

2

X
i

Fitðxþ zẑÞWðxþ zẑ; xÞFitðxÞWðx; xþ zẑÞ

−
X
i<j

Fijðxþ nk̂ÞWðxþ zẑ; xÞFijðxÞWðx; xþ zẑÞ;

i ≠ t ≠ z. ð7Þ
The various options of the indices lead to the construc-

tion of operators with different properties. Here, we use
the operator O4, which does not exhibit mixing under
renormalization [75,76]. This operator has a nonvanishing
vacuum expectation value due to finite size effects, which
is subtracted. Since the calculation of the gluon loops is
computationally very inexpensive, the vacuum expectation
value subtraction does not pose any challenges in the
calculation. It should be noted that, regardless of the choice
of operator, the unpolarized gluon PDF mixes with the
unpolarized singlet quark PDF. This mixing manifests in
the matching formalism and not under renormalization due
to the nonlocal nature of the operator. We take this mixing
into account in our analysis and we quantify its effects by
comparing to results with the mixing neglected.
The matrix elements of Eq. (1),Mμi;νj, are extracted from

the ground state contribution to the ratio

ROðts; τ; t0;P; zÞ ¼
C3pt
O ðts; τ;P; zÞ
C2ptðts;PÞ

⟶
ts<τ<t0 4

3

�
m2

4E
− E

�
MOðts;P; zÞ; ð8Þ

taken between the three-point and two-point correlation
functions. The variables ts, τ, and t0 indicate the time of the
sink, operator insertion, and source, respectively. Without
loss of generality, we have taken the source position to be
at t0 ¼ 0. The ground state contribution, MO ≡Mμi;νj, is
identified at large enough values of ts and at τ away from
the source and the sink. Practically, we seek convergence
with a variance of ts and at τ.
For the calculation of gluonic contributions to the proton,

C3pt
O correspond to the so-called disconnected contribu-

tions, which are constructed by the expectation value of a
product of a gluon loop with the proton two-point function.

Also, for the unpolarized gluon PDF, the appropriate parity
projector is Γ0 ≡ 1

4
ð1þ γ0Þ for both the three- and two-

point functions.
In our analysis, we implement the pseudo-ITD frame-

work, which requires several nontrivial steps to extract
the x dependence of the gluon PDF. For convenience,
we use Mg to denote the ground state contribution for the
operatorO4. First, the matrix elements at different values of
P and z are combined to construct the reduced Ioffe-time
distribution (pseudo-ITD),

Mgðν; z2Þ≡
�

Mgðν; z2Þ
Mgðν; 0Þjz¼0

���
Mgð0; z2Þjp¼0

Mgð0; 0Þjp¼0;z¼0

�
; ð9Þ

which depends on the Lorentz-invariant quantities ν≡ z · P
(Ioffe time) and z2. For multiplicatively renormalizable
operators, the reduced ITD acts as a gauge invariant
renormalization scheme that removes UV divergences,
including the power divergence due to the presence of
the Wilson line. The effects of the residual scale 1=z can
be accounted for by an evolution term (see below) and
data from different scales 1=z can be combined into
ITDs defined at a common renormalization scale, μ2.
Furthermore, it is anticipated that Eq. (9) leads to sup-
pressed discretization and higher-twist effects, which are
assumed similar in the two single ratios shown above [44].
Another component of this work is the calculation of the

unpolarized quark PDF to address the mixing with the
gluon case. The matrix element can be written similarly to
the gluon case, that is

Mfðz; PÞ ¼ hNðPÞjψ̄fðzÞγ0WðzÞψfð0ÞjNðPÞi; ð10Þ
where the fermionic field ψfðxÞ≡ ψfðx⃗; tÞ is taken to be
the up, down, and strange quark; f indicates the flavor. For
a proper flavor decomposition of the up and down quark
contributions, we calculate the disconnected diagram in
addition to the connected one. Moreover, the strange-quark
contribution is purely disconnected for the nucleon case.
Forming the quark-disconnected contributions requires
the evaluation of quark loops that are combined with the
nucleon two-point correlators. The quark loop of the
nonlocal operator reads

Lðtins; zÞ ¼
X
x⃗ins

Tr½D−1
q ðxins; xins þ zÞγ0Wðxins; xins þ zÞ�;

ð11Þ
where D−1

f ðxins; xins þ zÞ is the quark propagator, whose
endpoints are connected by a Wilson line. More details in
the calculation of the disconnected contributions can be
found in Ref. [35]. Here we combine the connected
and disconnected contributions to the matrix element to
form the singlet uþ dþ s combination, Mq. The latter is
normalized by constructing the pseudo-ITD, Mq similarly
to the definition of Eq. (9).
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To extract the light-cone counterpart ofMg, indicated as Qgq, one must apply a matching procedure known to one-loop-
level accuracy [75,76],

Qgqðν; z2; μ2Þ ¼ Mgðν; z2Þhxiμg þ
αsNc

2π

Z
1

0

duMgðuν; z2Þhxiμg
�
ln

�
z2μ2e2γE

4

�
BggðuÞ þ LðuÞ

�

þ αsCF

2π
ln

�
z2μ2e2γE

4

�Z
1

0

duðMSðuν; μ2Þ −MSð0; μ2ÞÞBgqðuÞ; ð12Þ

where hxiμg is the gluon momentum fraction renormalized at
the scale μ, and

MSðν; μ2Þ ¼
Z

1

0

dx
X
f

cosðxνÞxðqfðx; μ2Þ þ q̄fðx; μ2ÞÞ;

ð13Þ

with qfðx; μ2Þ [q̄fðx; μ2Þ] being the quark (antiquark) PDF
of flavor f, and the sum runs over all considered quark
flavors (f ¼ u, d, s). This distribution is related to the
imaginary part of the double ratio Mq,

ImMqðν; μ2Þ ¼
Z

ν

0

dyMSðy; μ2Þ: ð14Þ

Differentiating this equation with respect to the upper limit
of the integral, we get

MSðν; μ2Þ ¼
dImMqðν; μ2Þ

dν
: ð15Þ

Thus, the singlet quark Ioffe-time distribution appearing in
the matching equation,MSðν; μ2Þ, is purely real and related
to the imaginary part of the quark double ratio.
The matching kernels read

BggðuÞ ¼ 2

�ð1 − uð1 − uÞÞ2
1 − u

�
þ
;

LðuÞ ¼ 4

�
uþ lnð1 − uÞ

1 − u

�
þ
þ 2

3
½1 − u3�þ;

BgqðuÞ ¼ 1þ ð1 − uÞ2; ð16Þ

and the plus prescription is given by
R
1
0 ½fðuÞ�þMgðuνÞ ¼R

1
0 fðuÞðMgðuνÞ −MgðνÞÞ.
The matching equations involve evolving the reduced

gluon ITD to a common scale [BggðuÞ term], converting the
expressions to the light-cone gluon ITD in the MS scheme
[LðuÞ term] and taking its mixing with the singlet quarks
into account (Bgq term). It is convenient to rewrite Eq. (12)
in three parts so that one can inspect the role of the three
terms separately,

M0
gðν; z2; μ2Þ ¼ Mgðν; z2Þ þ

αsNc

2π

Z
1

0

duMgðuν; z2Þ

× ln

�
z2μ2e2γE

4

�
BggðuÞ; ð17Þ

where M0
gðν; z2; μ2Þ is the evolved gluon ITD, which

depends on ν, the final scale μ2 and the initial scale z2.
The matching and conversion to the MS scheme is given by

Qgðν; z2; μ2Þ ¼ M0
gðν; z2; μ2Þ

þ αsNc

2π

Z
1

0

duMgðuν; z2ÞLðuÞ: ð18Þ

Finally, we take the mixing with the singlet quark into
account, Mq, arriving at the final light-cone ITD,

Qgqðν; z2; μ2Þ ¼ Qgðν; z2; μ2Þhxiμg

þ αsCF

2π
ln

�
z2μ2e2γE

4

�Z
1

0

duðMSðuν; μ2Þ

−MSð0; μ2ÞÞBgqðuÞ: ð19Þ

The matched gluon ITD still keeps track of the initial scale
z2 at this stage. However, different scales z2 should lead to
the same light-cone ITDs up to higher-twist effects. For
data points where this holds, i.e. leading to consistent
values of Qgðν; z2; μ2Þ from different initial z2, Qg is
averaged over the same values of ν extracted from different
combinations of P and z. We denote such ν-averaged ITDs
by Qg=gqðν; μ2Þ, i.e. dropping the argument indicating the
initial scale z.
To extract the x-dependent gluon PDF, xgðxÞ, the

light-cone ITDs need to be subjected to a cosine Fourier
transform,

Qg=gqðν; μ2Þ ¼
Z

1

0

dx cosðνxÞxgðx; μ2Þ: ð20Þ

The extraction of xgðx; μ2Þ poses an inverse problem [45],
because one attempts to calculate a continuous distribution
from a limited number of lattice data points for a finite
range of Ioffe times up to some νmax. Therefore, to
determine xgðx; μ2Þ, one requires additional information,
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which can be chosen in several ways. Here, we reconstruct
the gluon PDF by using a fitting ansatz commonly used in
the analysis of experimental datasets, that is

xqðxÞ ¼ Nxað1 − xÞb; ð21Þ

where the exponents a, b are fitting parameters and N is the
normalization that is fixed by the gluon momentum fractionR
1
0 dx x gðxÞ ¼ hxig. The lattice data are, thus, fitted accord-
ing to the minimization of

χ2 ¼
Xνmax

ν¼0

ðQg=gqðν; μ2Þ −Qfðν; μ2ÞÞ2
σ2Qðν; μ2Þ

: ð22Þ

We consider the reconstruction in the cases with (Qgq) and
without (Qg) the mixing taken into account, to assess the
effect of this mixing at the level of the x-dependent
distributions. The data are weighted by the inverse variance
of the light-cone ITDs, σ2Qg=gqðν;μ2Þ. Qfðν; μ2Þ is the cosine

Fourier transform of the assumed fitting ansatz.

B. Setup of lattice calculation

The calculation is performed using an Nf ¼ 2þ 1þ 1

ensemble of twisted-mass clover-improved fermions
and Iwasaki-improved gluons [77]. The quark masses
are fixed such that the pion has approximately twice its
physical mass (mπ ¼ 260 MeV). The lattice spacing is
a ¼ 0.0938ð2Þð3Þ fm, and the lattice volume is 323 × 64 in
lattice units. The parameters of the ensemble are summa-
rized in Table I.
Matrix elements of gluon operators have increased

gauge noise, and one needs to (a) obtain high statistics
and (b) use smoothing techniques. To this end, we calculate
the correlation functions from different source positions
on the same configuration, as the cA211.30.32 ensemble
has about 1,200 thermalized gauge configurations [77].
Utilizing several source positions per configuration com-
bined with the large speed-up achieved with the use of the
multi-grid [78–81], leads to an efficient increase in sta-
tistics. Here, we analyze a total of 200 source positions for
each configuration. To further increase statistics without
loss of generality, we calculate the matrix element using six
kinematically equivalent setups, where both the Wilson line
and momentum boost are in the �x;�y;�z directions.
These six matrix elements can be averaged over, leading to
total statistics exceeding one million measurements, as
shown in Table II. Since the pseudo-ITD utilizes matrix

elements at several values of the proton momentum, we use
five values, that is, P ¼ 0, 0.42, 0.83, 1.25, 1.67 GeV. Each
matrix element is normalized with the P ¼ 0 case and we
found non-negligible correlations between the numerator
and denominator of the reduced ITD in Eq. (9). These are
eliminated by calculating all matrix elements at the same
configurations and identical source positions. Regarding
excited-state contamination, we use the measurements of
Table II at multiple ts values. This comes at no additional
computational cost, as, by construction, disconnected
contributions are evaluated at open sink time.
The increased gauge noise is addressed by employing the

stout smearing smoothing technique [82] on the gauge links
entering the gluon field-strength tensor and the Wilson line.
The stout smearing parameter is ρ ¼ 0.129 [83,84], and the
number of smearing steps is chosen independently in the
gluon field-strength tensor (NF

stout) and the Wilson line
(NW

stout). We apply a 4D smearing to the field-strength tensor
and a 3D smearing to the gauge links of theWilson line. We
have tested a 4D smearing in the Wilson line, obtaining
compatible results after the double-ratio renormalization.
We calculate 25 combinations of NF

stout and NW
stout, by using

the values 0, 5, 10, 15, and 20 for each.
Another technique to decrease the noise-to-signal ratio

is to improve the overlap with the proton ground state. We
apply momentum smearing [85] for the three highest
momentum boosts, P ¼ 0.83, 1.25, 1.67 GeV, which has
been proven essential in suppressing the gauge noise in
matrix elements with boosted hadrons and nonlocal oper-
ators [12]. We found the optimized value at ξ ¼ 0.6 for the
momentum smearing parameter.
The evaluation of the quark matrix elements is an

extension of the previous work of Ref. [35], which obtained
the quark PDFs within the quasidistributions method
with momenta P ¼ 0.42, 0.83, 1.25 GeV. Here, we added
P ¼ 0, 1.67 GeV, so that we obtain the reduced ITDs for
the quarks, Mq, needed in Eq. (19). As for the gluon case,
we implement the momentum smearing method and five
stout smearing steps on the gluon fields of the Wilson line

TABLE II. Total statistics for the calculation for each value
of P. Nconfs is the number of configurations, Nsrc the number of
source positions, Ndir is the number of spatial directions for the
Wilson line and P, andNmeas is the number of total measurements
(Nmeas ¼ Nconfs × Nsrc × Ndir).

P (GeV) Nconfs Nsrc Ndir Nmeas

0, 0.42, 0.83, 1.25, 1.67 1,134 200 6 1,360,800

TABLE I. Parameters of the ensemble used in this work.

Ensemble β a (fm) Volume L3 × T Nf mπ (MeV) Lmπ L (fm)

cA211.30.32 1.726 0.0938(2)(3) 323 × 64 2þ 1þ 1 260 4 3.0
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entering the operator. To reduce the stochastic noise
coming from the low modes [86] in the calculation of
the quark loops, we compute the first Nev ¼ 200 eigenpairs
of the squared twisted mass Dirac operator. Then, the
low-mode contribution to the all-to-all propagator can be
exactly reconstructed, and the high modes can then be
evaluated with stochastic techniques, such as hierarchical
probing [87]. The latter allows for the reduction of the
contamination of the off-diagonal terms in the evaluation of
the trace of Eq. (11), up to a distance 2k, using Hadamard
vectors as basis vectors for the partitioning of the lattice.
Here, we use k ¼ 3 in four dimensions leading to 512
Hadamard vectors. In addition to the hierarchical probing,
we make use of the one-end trick [88,89] and fully dilute
spin and color subspaces. More information can be found in
Ref. [35], as well as Refs. [84,90–92].
On a large enough lattice, and given that the source

positions are selected randomly, the autocorrelations
become very small, and the data on multiple source
positions on the same configuration can be considered
statistically independent. To check for autocorrelations, we
analyze different subsets of data for the two-point functions
and extract the relative error on the energy, as shown in
Fig. 1 for two representative values of the momentum
boost, P ¼ 0.83 GeV (p ¼ 2) and P ¼ 1.67 GeV (p ¼ 4).
We find that the statistical error of various quantities scales
with the inverse square root of the number of source
positions indicating uncorrelated data.

III. RESULTS

A. Gluon matrix elements and reduced ITDs

Before presenting the final bare matrix elements,
it is useful to examine the effect of the stout smearing in
terms of the signal quality. The stout smearing is exten-
sively used in the calculation of nonlocal operators of
Refs. [12,16,17,20,27–29,35,36] demonstrating the noise

reduction. Also, in Ref. [20], we demonstrated the inde-
pendence of the renormalized matrix elements from the
level of smearing. However, the above statements regard
quark bilinear operators, so similar tests are imperative
for gluonic operators. As mentioned in the previous
section, we construct the gluon matrix elements for 25
combinations of stout steps in the gluon field-strength
tensor and theWilson line, that is fNF

stout; N
W
stoutg∈ ½0; 20� in

steps of 5. The bare matrix elements are shown in Fig. 2
for a subset of these combinations, which includes
fNF

stout; NW
stoutg ¼ f0; 10; 20g. All presented matrix ele-

ments have been evaluated at ts ¼ 9a, which, as we will
demonstrate below, is the one used in the final analysis.
It is interesting to observe that the smearing on the
field-strength tensor has a bigger impact on the signal
compared to the smearing on the Wilson line. For instance,
the signal already improves significantly with NF

stout ¼ 10

and NW
stout ¼ 0.

Comparing the effect of the stout smearing directly at
each momentum can offer another qualitative understand-
ing of signal improvement. In Fig. 3 we show selected
cases of the NW

stout and NF
stout combinations, presented as

Nstout ¼ ðNF
stout; NW

stoutÞ. As previously discussed, the stout
smearing applied on the gluon fields of the field-strength
tensor is crucial to get a signal. In all values of P, further
signal improvement is found as NF

stout and NW
stout increase.

We observe a saturation at ðNF
stout; NW

stoutÞ ¼ ð20; 10Þ, which
we will use for the remainder of this analysis. In Fig. 6, we
will examine the effect of the mixing in the pseudo-ITDs.
In this work, we also examine excited-states effects using

the preferred setup for the stout smearing, NF
stout ¼ 20,

NW
stout ¼ 10. Figure 4 shows the matrix elements at four

values of the source-sink time separation, that is,
ts ¼ 8a; 9a; 10a; 11a. For P ¼ 0, 0.42, and 0.83 GeV,
there is an indication of excited-states effects at ts ¼ 8a,
which differs from ts ¼ 10a and ts ¼ 11a. The effect is
visible mainly due to the high statistical accuracy of the
data. For higher momenta, all matrix elements are com-
patible within uncertainties, which are enhanced compared
to the lower momenta. Therefore, ts ¼ 9a is favorable, as it
is consistent with ts ¼ 10a and ts ¼ 11a in all cases, while
good signal is maintained. Below, we will also consider
excited-states effects in the reduced ITDs (see, e.g., Fig. 6).
To summarize the presentation of the bare matrix

elements, we compare in Fig. 5 the data for all values
of the momentum boost using ts ¼ 9a, NF

stout ¼ 20, and
NW

stout ¼ 10. The P dependence of the data is as observed in
the quark case, that is, the signal quality decreases. We find
that the relative error at z ¼ 0 for P ¼ 0 is about 6%, while
for P ¼ 1.67 GeV, the error becomes close to 9% despite
the same statistics. In all cases, we find that the matrix
elements decay to zero at about z ¼ 8a.
The matrix elements of Fig. 5 are the core of our

calculation and are used to construct the double ratio of
Eq. (9). We note that systematic uncertainties might affect

FIG. 1. The relative error of the proton energy at momentum
boost P ¼ 2π

L p as a function of the source positions analyzed. As
examples, we show p ¼ 2 (blue circles) and p ¼ 4 (red squares).
The lines correspond to the 1=

ffiffiffiffiffiffiffiffi
Nsrc

p
scaling.
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FIG. 3. Stout smearing dependence of the bare matrix elements Mg. Results are given in coordinate space for the indicated
combination Nstout ¼ ðNF

stout; NW
stoutÞ. The data at momentum boost P ¼ 2π

L p with p ¼ 0, 1, 2, 3, 4 are shown in the top, middle left,
middle right, bottom left, and bottom right panels.

FIG. 2. Stout smearing dependence of the bare matrix elements using ts ¼ 9a. The left, center, and right columns correspond to
NF

stout ¼ 0, 10, 20, respectively. The top, center, and bottom rows correspond to NW
stout ¼ 0, 10, 20, respectively. The data at momentum

boost P ¼ 2π
L p with p ¼ 0, 1, 2, 3, 4 are shown with blue circles, green squares, red up triangles, yellow down triangles, and magenta

left triangles, respectively.
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the matrix elements and pseudo-ITDs differently due to
possible correlations between the ratios in the numerator
and/or denominator. Thus, investigating systematic effects,
such as excited states and stout smearing, in the ratio of
Eq. (9) is important. Since the pseudo-ITD, i.e. the double
ratio, serves as a renormalization prescription, it should be
independent of the number of smearing steps. We examine
the validity of this argument, and a summary is shown in
Fig. 6. Due to the large uncertainties of certain combina-
tions of smearing steps, their inclusion in the plot is not
meaningful, as their errors cover the whole range of the
plot. As can be seen, all combinations of NF

stout and NW
stout

are in full agreement within errors, demonstrating that
the pseudo-ITDs can be extracted from any of these
combinations.
We study excited-states effects inMg, as shown in Fig. 6

for four values of the source-sink time separation, that is
ts ¼ 8a; 9a; 10a; 11a. The increase of the statistical error
is sizeable between ts ¼ 9a and ts ¼ 11a and the signal is
lost at ts ¼ 12a; the latter is not shown here. Overall, we
find that both ts ¼ 8a and ts ¼ 9a are good options for
these data. Nevertheless, we choose ts ¼ 9a for a more
conservative estimate. For completeness, we show in Fig. 7
the double ratio for all values of P corresponding to
ts ¼ 9a, NF

stout ¼ 20 and NW
stout ¼ 10. We note that each

value of ν is constructed from all possible combinations of
available z and P, but we constrain z up to 6a ∼ 0.56 fm.

This leads to νmax ∼ 5. Comparing all combinations of P
and z at a given ν allows one to comment on the effect of P
dependence. We find that dependence on P is within the
statistical errors for up to z ¼ 6a. Thus, Mg can be
described by a smooth function in terms of the Ioffe time,
which allows for a controlled interpolation. The latter is

FIG. 5. Matrix elements of Eq. (1) as a function of the length of
the Wilson line, z=a. The data at momentum boost P ¼ 2π

L p with
p ¼ 0, 1, 2, 3, 4 are shown with blue squares, red circles, green
downward-pointing triangles, yellow upward-pointing triangles,
and magenta rightward-pointing triangles, respectively.

FIG. 4. Source-sink time separation dependence of the bare matrix elements at each momentum boost. We use NW
stout ¼ 10 and

NF
stout ¼ 20 in all cases. The results for ts ¼ 8a; 9a; 10a; 11a are shown in blue circles, green squares, red up triangles, and orange down

triangles, respectively. The data at momentum boost P ¼ 2π
L p with p ¼ 0, 1, 2, 3, 4 are shown in the top, middle left, middle right,

bottom left, and bottom right panels, respectively.
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needed for the scale evolution and matching procedure, as
discussed below.
The reduced ITDs are interpolated in terms of ν at each

value of z2, so that one obtains a continuous function in
ν=z, which is needed for the matching procedure. Having
five values of ν at a fixed z2, one can test different
parametrizations of the ν dependence. Here, we test a
linear and a second-order polynomial fit, which can be seen
in Fig. 8 for selected values of z. We find that the two fits
are compatible and choose the polynomial fit to proceed.

B. Reconstruction of the gluon PDF

In general, the extraction of light-cone ITDs from
reduced ITDs contains combining effects of three

functions, the Bgg, L and Bgq kernels, as given in
Eq. (12). That is, one must apply the evolution to a
renormalization scale of choice (μ), convert the data to
light-cone ITDs in the MS scheme, and eliminate the
mixing with the quark-singlet PDF. Here, we chose 2 GeV
for the renormalization scale, as commonly used in global
analyses. In all previous calculations of the gluon PDF,
the mixing with the quark-singlet case has been ignored
due to the lack of lattice results for the latter, as it requires
information from disconnected contributions, which are
computationally very expensive. Here, we extend the
calculation of Ref. [35] to include all values of P imple-
mented in this work, which allows us to eliminate the
mixing by considering Bgq. To demonstrate the effect of
the mixing, we first apply Bgg and L, but ignore Bgq. The
resulting evolved and matched ITDs are shown in Fig. 9.
We find that the scale evolution increases the values of the
evolved ITDs (M0) relative to those of the reduced ITDs
(M), while the matching has the opposite effect than the
evolution and brings the light-cone ITDs (Q) closer to the
reduced ITDs, making them consistent with the latter
within error bars. Such behavior is also observed in the
case of quark PDFs (see, e.g., Refs. [50,55]). We note that
the dependence on the individual P and z is minimal for all
three functions,M,M0, andQ, as the values from different
ðP; zÞ pairs fall on a universal curve. This implies that the
higher-twist Oðz2ΛQCDÞ contamination is much smaller
than the current statistical precision and hence, matrix
elements with z up to 6a (beyond which the signal is
practically lost) can be used in the reconstruction of the
x-dependent PDF. While z ¼ 6a ≈ 0.56 fm is not strictly
perturbative, the higher-twist effects are plausibly cancelled
between the numerator and the denominator of the double
ratio and become subleading with respect to the statistical
errors. In the right panel of Fig. 9, we show the matched

FIG. 7. Final results for the reduced ITD at ts ¼ 9a,NF
stout ¼ 20

and NW
stout ¼ 10. We show data with all values of P ¼ 2π

L p and z
up to 6a ∼ 0.56 fm. Data for p ¼ 1, 2, 3, 4 are shown with blue
circles, red down triangles, green up triangles, and magenta right
triangles, respectively.

FIG. 6. Left: Stout smearing number of steps dependence of the reduced ITDs at ts ¼ 9a. Results for ðNF
stout; NW

stoutÞ ¼
ð10; 10Þ; ð15; 15Þ; ð20; 10Þ; ð20; 20Þ are shown with blue circles, green squares, red up triangles, black down triangles, and orange
left-pointing triangles, respectively. Right: Excited states in the reduced ITDs at NF

stout ¼ 20 and NW
stout ¼ 10. ts ¼ 8a; 9a; 10a; 11a are

shown with blue circles, green squares, red up triangles, and orange down triangles, respectively.
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ITDs, Qðz2; μ2Þ, where we average over the ðP; zÞ pairs for
a given value of the Ioffe time.
To extract the x dependence of the gluon PDF, we use the

fitting reconstruction and follow the procedure discussed in
Sec. II A. As can be seen in Eq. (21), one cannot isolate the
gluon PDF, because it appears normalized with the gluon
momentum fraction. The latter has not been extracted on
the ensemble under study, so we use, instead, the lattice
results of Ref. [84]. The aforementioned calculation used
an ensemble that has the same gluon and fermion action as
this work, but different lattice parameters. In particular, the
lattice spacing is 0.08 fm, and the pion mass is 139 MeV.
The reported value for the gluon momentum fraction is

hxiMS;2 GeV
g ¼ 0.427ð92Þ, which we use below.
Another input of the reconstruction procedure is the

value of zmax. We tested zmax ¼ 5a; 6a; 7a, which corre-
spond to zmax ¼ 0.47, 0.56, 0.66 fm, respectively. In this
subsection, we show results for zmax ¼ 6a and we

demonstrate the independence of the results on zmax in
the case where mixing with the quark singlet is eliminated
(see next subsection). The conclusions of this test fully
pertain also to the case with the mixing neglected.

Using the above value of hxiMS;2 GeV
g and zmax ¼ 6a, we

obtain the gluon PDF, which is given in the left panel of
Fig. 10. The corresponding fitted ITDs are shown in the
right panel of Fig. 9. We remind the reader that we have not
yet considered the mixing with the quark-singlet PDF; this
will be addressed in the next subsection. In the right panel
of Fig. 10, we compare our final results to the lattice results
of HadStruc [66], in which the gluon-quark singlet mixing
has not been considered. HadStruc used an ensemble of
Nf ¼ 2þ 1 clover Wilson fermions with stout-link smear-
ing and the Symanzik-improved gauge action. The ensem-
ble has the same volume and lattice spacing as this work.
However, their pion is heavier, namely mπ ¼ 358 MeV.
Their source-sink time separation is also 9a, which is the

FIG. 9. Left: The reduced (blue), evolved (red), and matched (green) ITDs (no mixing with the quark singlet PDF) shown for
momentum boosts p ¼ 1 (circles), p ¼ 2 (down-pointing triangles), p ¼ 3 (up-pointing triangles), and p ¼ 4 (right-pointing triangles),
where p is defined through P ¼ 2π

L p. Right: The light-cone ITDs (no mixing) averaged over ðP; zÞ pairs giving the same Ioffe time and
the fitting band of the fitting ansatz reconstruction.

FIG. 8. Lattice data of the reduced ITDs for z ¼ 1a − 6a (blue points) and their interpolation at fixed z2 using a first-order (green
bands) and second-order polynomial fit (red bands).
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same as the value used here. In general, our results are
consistent with the ones from HadStruc. It is worth noting
that the reconstruction performed by HadStruc includes
values of Ioffe time up to νmax ¼ 7.07, while our
reconstruction includes up to a maximum Ioffe time of
νmax ¼ 4.71 (zmax ¼ 6a). The smaller statistical error of
HadStruc may possibly be attributed to two factors: (a) the
use of the distillation method [93]; (b) the higher pion mass
compared to this work. In Fig. 10, we also compare the
lattice data to the global analysis of JAM20 [71]. As can be
seen, all results are in full agreement within errors. We note
that all comparisons are qualitative, as the lattice results
are obtained on a single ensemble with different lattice
formulations. Nevertheless, the agreement between lattice
results and global analysis is very promising.

C. Elimination of mixing with quark-singlet PDF

In this section, we provide, for the first time, the quark-
singlet PDF using the pseudodistribution method. This is a
continuation of the work of Ref. [35], which used a subset

of the data of Table II to obtain the quark PDFs within the
quasidistributions method. The quark-singlet PDF will be
used to eliminate the mixing with the gluon contribution
using the matching formalism of Ref. [94]. In principle,
with our data for the quark and gluon PDFs, we can also
obtain the quark-singlet PDFs without mixing. However,
Refs. [75,76] only provide the components of the mixing
kernel that are relevant to the gluon PDF, that is, Bgg

and Bgq. While the complete 2 × 2 matching kernel is
presented in Ref. [94], it corresponds to a different
definition of the gluon operator than the one we use in
this work, so we are not able to apply it here.
First, let us present the bare quark matrix elements for the

singlet combination uþ dþ s. The matrix elements con-
tain all kinematic factors, so they can be compared directly
at z ¼ 0 for different values of P. As seen in Fig. 11, the
data are consistent at z ¼ 0. This is expected theoretically,
because z ¼ 0 is directly related to hxi, which is indepen-
dent of the kinematic frame. As z increases, we find that
the behavior with the increase of P is as expected. That is,

FIG. 11. Bare matrix elements for the quark-singlet case as a function of the length of the Wilson line, z=a. The data at momentum
boost P ¼ 2π

L p with p ¼ 0, 1, 2, 3, 4 are shown with blue squares, green circles, red downward-pointing triangles, yellow upward-
pointing triangles, and magenta rightward-pointing triangles, respectively.

FIG. 10. Left: The reconstructed gluon PDF without mixing elimination. Right: A comparison of our results from the left panel (red),
the lattice results of HadStruc [66] (green), and the global analysis of JAM20 [71] (blue). Results are shown in the MS scheme at a scale
of 2 GeV.
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the real part of the matrix element falls faster, while the
imaginary part is enhanced. The corresponding quark
reduced ITDs are shown in Fig. 12. In the real part, we
find an agreement between the different P and z combi-
nations corresponding to the same value of ν. Some
difference is observed in the imaginary part for fp; z=ag ¼
f1; 4g as compared to fp; z=ag ¼ f2; 2g and fp; z=ag ¼
f4; 1g (where P ¼ 2π

L p). Similarly, fp; z=ag ¼ f1; 6g
deviates from fp; z=ag ¼ f2; 3g, and fp; z=ag ¼ f3; 2g.
However, the momenta with p > 1 are in agreement
within errors.
We use the above quark-singlet reduced ITDs to

eliminate the mixing in the light-cone gluon ITDs. In
particular, onlyMS—the ν derivative of the imaginary part
of Mq—enters the matching formalism, as explained in
Sec. II A. For completeness we show MS in Fig. 13.
Finally, the resulting effect of the mixing is shown in
Fig. 14 by comparing the gluon ITDs before (Bgq ¼ 0)
and after (Bgq ≠ 0) the elimination of the mixing with the

FIG. 13. The ν derivative of the imaginary part ofMq,MS as a
function of ν, as obtained from z ¼ 1, 2, 3, 4, 5, 6 shown in blue,
green, red, magenta, orange, and cyan bands.

FIG. 14. Comparison of the light-cone ITD before (Bgq ¼ 0,
shown in red) and after (Bgq ≠ 0, shown in green) the elimination
of the mixing with the quark-singlet case. The bands correspond
to the fits of the lattice data.

FIG. 12. Quark-singlet reduced-ITD for z up to 6a ∼ 0.56 fm. Data at momentum boost P ¼ 2π
L p with p ¼ 1, 2, 3, 4 are shown with

blue circles, red down triangles, green up triangles, and magenta right triangles, respectively.

FIG. 15. Comparison of fitted ITDs at different values of the
maximum z entering the reconstruction fit. zmax ¼ 5a; 6a; 7a are
indicated by red, green, blue bands, respectively.
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quark singlet. The fitting bands from the x-dependence
reconstruction procedure are also shown. The main finding
is that the gluon ITDs move slightly towards lower
values, with the mixing being well within the occurring
statistical uncertainties.
As hinted in the previous subsection, we also establish

the robustness of the results against the choice of the value
of zmax, using zmax ¼ 5a; 6a; 7a, see Fig. 15. We find a
small difference between zmax ¼ 5a and zmax ¼ 6a, but the
effect is significantly smaller than the statistical uncertain-
ties. The difference between zmax ¼ 6a and zmax ¼ 7a is
almost negligible, and the two bands cannot be visually
distinguished in the figure. That is, the addition of z ¼ 7a
points does not influence the reconstruction, mainly due to
their large statistical errors. Thus, our choice of zmax ¼ 6a
is validated at this level of data precision and given the
compatibility of results for different zmax, it is not necessary
to assign a reconstruction-related systematic uncertainty
to our results.
For completeness, we also present the effect of the

mixing in the x-dependent gluon PDF, as seen in the right
panel of Fig. 16. The conclusion is consistent with Fig. 14,
as the effect of the mixing is smaller than the statistical
uncertainties. In the left panel of Fig. 16, we show our
final results together with JAM20 [71], demonstrating
full compatibility. As previously mentioned, the statistical
uncertainties are currently larger than the ones from
global analysis.

IV. SUMMARY

The main component of this work is the calculation of
the unpolarized gluon PDF of the proton using numerical
simulations of QCD. The calculation is performed using
an Nf ¼ 2þ 1þ 1 ensemble of clover-improved twisted
mass fermions with the quark masses tuned to give a pion
mass of 260 MeV. The lattice spacing is 0.093 fm, and the
volume is 323 × 64. For the calculation, we employ the

pseudodistribution approach that significantly simplifies
the renormalization procedure by forming ratios of matrix
elements, leading to the reduced pseudo-Ioffe time distri-
butions, expressed in terms of the combination ν ¼ z · P. In
our calculation, we use a nucleon momentum boost with
values up to 1.67 GeV, and, in the final results we restrict
the length of the Wilson line to 0.56 fm. We find that the
combination of P and z suffices to extract a continuous
dependence on ν and reconstruct the gluon PDF. We
explore systematic effects such as excited-states effects,
the effect of stout smearing, and the dependence on the
maximum value of z entering the fits to obtain the ITD. For
the evolution and conversion to the MS scheme at a scale
of 2 GeV, we use a one-loop formalism. We use the fitting
reconstruction method to address the inverse problem and
obtain the x dependence of the gluon PDF. A novel aspect
of the calculation is the elimination of the mixing with the
quark-singlet unpolarized PDF, which we extract for the
same ensemble. The effect of the mixing brings the gluon
ITD to smaller values, but the effect is much smaller than
the statistical uncertainties. However, when the precision
stage is reached for such lattice calculations, mixing will
inevitably become a more important effect. Our results are
compared with other lattice data obtained using a different
lattice formulation, methodology, and setup [66], and we
find a very good agreement. In such a comparison, we
ignore the quark-gluon mixing for a more appropriate
comparison with Ref. [66]. Furthermore, a comparison
of our final data with the global analysis of the JAM
Collaboration [71] reveals agreement, with the global
analysis being much more accurate than lattice data at this
stage. The above-mentioned comparison uses our data after
the elimination of the quark-gluon mixing as done in
JAM20. An extension of this work is the investigation
of other sources of systematic uncertainties, such as volume
and discretization effects, as well as pion mass dependence.
In the near future, we will address the continuum limit by
adding two ensembles with smaller lattice spacing.

FIG. 16. Left: The reconstructed gluon PDF before (Bgq ¼ 0) and after (Bgq ≠ 0) the elimination of the mixing with the quark-singlet
PDF. Right: A comparison of our final results (Bgq ≠ 0) and the global analysis of JAM20 [71]. Results are shown in the MS scheme at a
scale of 2 GeV.
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