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Quantum simulations of lattice gauge theories are anticipated to directly probe the real time dynamics of
QCD, but scale unfavorably with the required truncation of the gauge fields. Improved Hamiltonians are
derived to correct for the effects of gauge field truncations on the SU(3) Kogut-Susskind Hamiltonian. It is
shown in 1þ 1D that this enables low chromoelectric field truncations to quantitatively reproduce features
of the untruncated theory over a range of couplings and quark masses. In 3þ 1D, an improved Hamiltonian
is derived for lattice QCD with staggered massless fermions. It is shown in the strong coupling limit that the
spectrum qualitatively reproduces aspects of two flavor QCD and simulations of a small system are
performed on IBM’s Perth quantum processor.
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I. INTRODUCTION

The real time dynamics of QCD are of relevance
to a number of phenomena in particle and nuclear
physics. These range from collisions of hadrons at high
energies to the behavior of quark-gluon plasma in the
early universe. The simulation of QCD discretized onto a
lattice has enabled nonperturbative calculations of static
observables in QCD such as hadron masses and form
factors [1–6].
Quantum computers are expected to be able to directly

probe the real time dynamics of quantum field theories. The
recent developments in quantum hardware have inspired
studies into how to implement simulations of lattice gauge
gauge theories on quantum computers. The first quantum
simulations of pure non-Abelian lattice gauge theories have
been performed in low dimensions on quantum hardware
[7–14]. There have also been quantum simulations of non-
Abelian gauge theories coupled to matter in one spatial
dimension [15–18]. Theoretical studies have been per-
formed into how to scale up these calculations to larger
systems [19–39] and large scale simulations have been
performed of Abelian gauge theories [40–44]. However, all
these approaches to simulating gauge theories require the
gauge field to be truncated and scale poorly with the gauge
field truncation. Similar problems were found in the
classical simulation of lattice gauge theories with the

scaling of errors with lattice spacing. These problems were
mitigated through the development of improved Symanzik
actions with more favorable scaling of errors with lattice
spacing [45]. Progress has been made towards deriving
improved Hamiltonians that reduce errors from finite lattice
spacing [46]. It is expected that improved Hamiltonians can
be found that mitigate the effects of truncating the gauge
field as well.
In this work, improved Hamiltonians are derived for

lattice gauge theories through the application of the
similarity renormalization group (SRG). SU(3) gauge fields
coupled to fermions in 1þ 1D are used as a case study for
the improved Hamiltonians. Tensor network simulations
are used to demonstrate that the improved Hamiltonians
derived in 1þ 1D correctly reproduce observables on large
lattices. An improved Hamiltonian for lattice QCD with
two flavors is derived for 3þ 1D and a small simulation is
performed on IBM’s quantum processors.

II. 1 + 1D

A. 1 + 1D Hamiltonian

Gauge theories in one spatial dimension have been used
as toy models to study the quantum simulation of gauge
theories in higher dimensions as they share many qualita-
tive features and their reduced complexity makes simu-
lation more tractable. Previous simulations on quantum
hardware have studied the dynamics of hadrons in one
spatial dimension [15,16,18] and β decay [17].
In this work, the SU(3) Kogut-Susskind Hamiltonian

[47] with a single flavor of staggered fermions in 1þ 1D
will be used as a toy model to study the effects of gauge
field truncation and the performance of improved
Hamiltonians. The Hamiltonian describing this theory is
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Ĥ ¼ ĤKin þ Ĥm þ ĤE;

ĤKin ¼
X
x;a;b

1

2
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X
x;c

g2

2
Êc
x;xþ1Ê

c
x;xþ1; ð1Þ

where g is the gauge coupling, m is the fermion mass, ψ̂x;a

is the fermion field at site x with color a, Ûa;b
x;xþ1 is the

parallel transporter on the link between the sites x, xþ 1

and Êc
x;xþ1 is the chromoelectric field operator. By working

with open boundary conditions in the axial gauge, and
enforcing Gauss’s law, the gauge fields in this theory can be
completely integrated out yielding the Hamiltonian

Ĥ ¼ ĤKin þ Ĥm þ ĤE;

ĤKin ¼
X
x;a

1

2
ψ̂†
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ĤE ¼
X
x;c

g2

2

�X
y<x

Q̂c
y

��X
y<x

Q̂c
y

�
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where Q̂c
y is the chromoelectric charge at site x defined by

Q̂c
y ¼

X
a;b

ψ̂†
y;aTc

a;bψ̂y;b; ð3Þ

where Tc
a;b are the Gell-Mann matrices. By working with

this Hamiltonian, we can directly study the untruncated
theory and the performance of improved Hamiltonians that
correct for the gauge field truncation.

B. Strong coupling expansion m= 0

Before the Hamiltonian in Eq. (1) can be mapped onto a
quantum computer, it must first be truncated to a finite
Hilbert space. Typically, this is done by working in the
basis of the chromoelectric field and truncating the field
below some cutoff. It has been shown numerically for some
small systems [10,25,36,48,49] and rigorously proven in
general [50] that the error induced by this truncation falls
off exponentially with the truncation. The error due to
gauge field truncation can be reduced even further by first
performing a unitary rotation on the Hamiltonian to reduce
the coupling to the higher electric field states and then
truncating. In other words, there is a low-energy subspace
coupled to a high-energy subspace and one would like to
derive an effective field theory description of the low-
energy subspace with the high-energy subspace decoupled.

Previous work has explored how to perform this decoupling
variationally [51,52]. One alternative method to construct
such an effective Hamiltonian is Schrieffer-Wolff pertur-
bation theory which systematically constructs approximate
unitary transformations that decouple the high-energy
subspace [53,54].
As an example, we will consider the Hamiltonian in

Eq. (1) on two staggered sites (one physical site) with
massless fermions, truncated at zero electric field. This is
the harshest possible truncation that can be applied, and the
only physical states left in the Hilbert space are those where
sites are unoccupied or have three fermions present forming
a color singlet, i.e., a baryon. At this truncation, the
Hamiltonian in Eq. (1) is trivial, and there are no dynamics.
The states kept in this truncation span the zero electric
energy subspace while all states with higher electric energy
are being discarded. Using the Schrieffer-Wolff perturba-
tion theory, an effective Hamiltonian for the zero electric
energy subspace at leading order is given by

Ĥeff ¼
X
x

9

16g2
ẐxẐxþ1 þ

27

32g4
ðX̂xX̂xþ1 þ ŶxŶxþ1Þ

þOðg−6Þ; ð4Þ

where X̂x, Ŷx, Ẑx are the corresponding Pauli matrices at
site x on the lattice. In this basis, spin-up states correspond
to a site being unoccupied and spin-down states correspond
to a baryon being present on the site. The details of this
derivation and how to systematically derive higher-order
terms are in the Appendix. In this context, the Schrieffer-
Wolff expansion corresponds to performing a strong
coupling expansion around the zero electric energy sub-
space. Note that similar results have been derived for SU(2)
lattice gauge theories and the Schwinger model with
multiple flavors, showing that they are equivalent to spin
systems in the strong coupling limit [55–57].
The effective Hamiltonian in Eq. (4) requires only a

single qubit per site to be mapped onto a quantum
computer. The Hamiltonian in Eq. (2) with gauge fields
integrated out requires three qubits per site to represent the
state of the system. By using this effective Hamiltonian to
describe a subspace of the system, the computational
resources required are reduced. However, the Schrieffer-
Wolff expansion is known to have a finite radius of
convergence [54], so this effective Hamiltonian should
only be valid over a limited range of couplings. The energy
gap for the effective Hamiltonians obtained at different
orders in the Schrieffer-Wolff expansion over a range of
couplings are shown in Fig. 1. Note that both the ground
state and first excited state are in the baryon number zero
sector. As this figure shows, the effective Hamiltonians
obtained through the Schrieffer-Wolff expansion are only
valid for strong couplings, and the expansion fails to
converge at weak couplings.
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C. Similarity renormalization group m= 0

The strong coupling expansion in the previous section
was able to yield an improved Hamiltonian to correct for
the chromo-electric field truncation for a small system.
However, the performance of the improved Hamiltonian
was limited by the convergence of the strong-coupling
expansion. An alternative approach to derive an improved
Hamiltonian is the SRG. This method works by choosing a
generator of unitary rotations that should decouple the
high-energy subspace and then continuously flowing to
decouple the high-energy subspace. The similarity renorm-
alization group was originally introduced to help with the
renormalization of light-front quantum field theories
[58–60]. Similar to the calculations in the previous section,
it was found that perturbative calculations in light front
field theories suffered from convergence issues and it was
found that the SRG could mitigate these issues. It has also
been used in low-energy nuclear physics to derive low-
energy nuclear potentials with improved convergence
properties [61]. Explicitly the Hamiltonian being flowed
is parametrized as

Ĥs ¼ ĤΛ þ V̂s; ð5Þ

where ĤΛ determines the energy scales that should be
decoupled, V̂s is the remaining terms in the Hamiltonian
and s is the flow parameter. The generator of the SRG flow
is traditionally taken to be

η̂s ¼ ½ĤΛ; Ĥs�: ð6Þ

Note that because η̂s is anti-Hermitian, the evolution under
the SRG is unitary and prior to truncation Ĥs is the same as

the original Hamiltonian just expressed in a different basis.
The evolution of the Hamiltonian under SRG is given by

dĤs

ds
¼ dV̂s

ds
¼ ½½ĤΛ; V̂s�; Ĥs�

¼ ½½ĤΛ; V̂s�; ĤΛ� þ ½½ĤΛ; V̂s�; V̂s�: ð7Þ

By flowing to s → ∞, the low- and high-energy sectors will
be decoupled. It can be seen that these sectors decouple
because the commutator ½ĤΛ; V̂s� must vanish as s → ∞
for the SRG to converge and when this commutator
vanishes the two sectors have decoupled. In the following
sections, it will be shown how the SRG can be used to
derive improved Hamiltonians that correct for the effects of
gauge field truncation.

1. Two staggered sites

Once again, the Hamiltonian in Eq. (1) on two staggered
sites (one physical site), truncated at zero electric field
will be used as an example to construct an improved
Hamiltonian. The generator of the SRG flow will be chosen
to decouple states with different electric energies, i.e.
ĤΛ ¼ ĤE. The SRG equations can then be solved numeri-
cally to recover an improved Hamiltonian of the form

ĤSRG ¼ AðgÞðX̂1X̂2 þ Ŷ1Ŷ2Þ þ BðgÞẐ1Ẑ2; ð8Þ

where AðgÞ and BðgÞ are constants computed numerically.
It can be seen that the improved Hamiltonian must take
this form due to the symmetries of the full Hamiltonian.
The Hamiltonian in Eq. (1) conserves quark number and
this symmetry commutes with the truncation of the
Hamiltonian. Combined with the chiral symmetry of this
Hamiltonian at m ¼ 0, the only allowed operators in the
improved Hamiltonian are X̂1X̂2 þ Ŷ1Ŷ2 and Ẑ1Ẑ2. Note
that this Hamiltonian takes the same form as that derived in
the strong coupling expansion in Eq. (4) except now the
coefficients multiplying the operators have been deter-
mined through SRG instead of a perturbative expansion.
The energy gap for this Hamiltonian as a function of the
coupling is shown in Fig. 2. Unlike the improved
Hamiltonian obtained through the strong coupling expan-
sion, the improved Hamiltonian obtained through the SRG
suffers from no convergence issues and is able to correctly
reproduce the energy gap at all values of the coupling.

2. Larger systems

As shown in the previous section, the SRG was capable
of producing an improved Hamiltonian that correctly
describes the physics of a small system. In practice,
improved Hamiltonians will be needed for larger systems.
The setup of the SRG used in the previous section does not
scale efficiently to larger lattices. This is because as the
SRG evolves, the number of operators generated can be
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FIG. 1. Energy gaps as a function of coupling g for the
improved Hamiltonian derived with Schrieffer-Wolff perturbation
theory. The black dashed curve is the energy gap of the exact
Hamiltonian in Eq. (2) and the blue curve is the energy gap of the
Hamiltonian in Eq. (4). The other curves correspond to including
higher-order terms in the Schrieffer-Wolff expansion of the
improved Hamiltonian.
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exponential in the system size. This can be mitigated
through the use of the in-medium similarity renormaliza-
tion group (IMSRG) which truncates operators in the SRG
flow above a certain weight [62]. In practice IMSRG can be
implemented by performing SRG on a lattice of the same
size as the operator size truncation and matching the
obtained improved Hamiltonian to a translationally invari-
ant Hamiltonian defined on a larger lattice. The cost of
performing the IMSRG scales exponentially with the size
truncation. However, the convergence with operator size is
also exponential due to the exponential decay of correla-
tions in low-energy states.
As an explicit example, improved Hamiltonians for the

zero electric field truncation will be derived with IMSRG.
The smallest nontrivial operator size truncation is at two

staggered sites. The improved Hamiltonian derived with
IMSRG at this truncation with coupling g on L staggered
sites is

ĤSRG¼
X
x<L

AðgÞðX̂xX̂xþ1þ ŶxŶxþ1ÞþBðgÞẐxẐxþ1: ð9Þ

This improved Hamiltonian comes from doing the same
calculation as the previous section and matching the two
staggered site improved Hamiltonian to a translationally
invariant one defined on a larger lattice. The accuracy of the
improved Hamiltonians derived through IMSRG at this
electric field truncation can be improved by computing the
IMSRG flow for larger operator size truncations. In
general, one would expect this method to work well when
the operator size truncation used is comparable to the
correlation length of the system in question. Explicitly, the
form of the improved Hamiltonians obtained by truncating
at operators defined on three staggered sites takes the form

Ĥ3;SRG ¼
X
x

A1ðgÞðX̂xX̂xþ1 þ ŶxŶxþ1Þ þ B1ðgÞẐxẐxþ1

þ A2ðgÞðX̂xX̂xþ2 þ ŶxŶxþ2Þ þ B2ðgÞẐxẐxþ2;

ð10Þ

where AiðgÞ, and BiðgÞ are constants determined from
solving the SRG equations numerically. Note that this takes
the same form as Eq. (8) just with the inclusion of next to
nearest neighbor hopping. The performance of the improved
Hamiltonians can be improved further by truncating the
operator size at four staggered sites. The improved
Hamiltonian obtained at this truncation takes the form

Ĥ4;SRG ¼
X
x

A1ðgÞðb̂xb̂†xþ1 þ b̂†xb̂xþ1Þ þ B1ðgÞẐxẐxþ1 þ A2ðgÞðb̂xb̂†xþ2 þ b̂†xb̂xþ2Þ þ B2ðgÞẐxẐxþ2

þ A3ðgÞðb̂xb̂†xþ3 þ b̂†xb̂xþ3Þ þ B3ðgÞẐxẐxþ3 þ C1ðgÞðb̂xb̂†xþ1 þ b̂†xb̂xþ1ÞẐxþ2Ẑxþ3

þ C2ðgÞðb̂xb̂†xþ2 þ b̂†xb̂xþ1ÞẐxþ1Ẑxþ3 þ C2ðgÞðb̂xþ1b̂
†
xþ3 þ b̂†xþ1b̂xþ3ÞẐxẐxþ2

þ C3ðgÞðb̂xb̂†xþ3 þ b̂†xb̂xþ1ÞẐxþ1Ẑxþ2 þ C4ðgÞðb̂xþ1b̂
†
xþ2 þ b̂†xþ1b̂xþ2ÞẐxẐxþ3 þ C5ðgÞẐxẐxþ1Ẑxþ2Ẑxþ3

þD1ðgÞðb†xb†xþ1bxþ2bxþ3 þ bxbxþ1b
†
xþ2b

†
xþ3Þ þD2ðgÞðb†xbxþ1b

†
xþ2bxþ3 þ bxb

†
xþ1bxþ2b

†
xþ3Þ

þD3ðgÞðb†xbxþ1bxþ2b
†
xþ3 þ bxb

†
xþ1b

†
xþ2bxþ3Þ; ð11Þ

where b̂x ¼ 1
2
ðX̂x þ iŶxÞ is a qubit annihilation operator

at site x and AiðgÞ, BiðgÞ, CiðgÞ, and DiðgÞ are constants
determined from solving the SRG equations numeri-
cally. Note that it can be seen that the improved
Hamiltonians must take the forms in Eqs. (10) and
(11) at these size truncations by considering the sym-
metries of the full Hamiltonian as discussed in the
previous section.

To test the performance of the improved Hamiltonians
derived through SRG, density matrix renormalization
group (DMRG) calculations were performed using the
Cþþ ITensor library [63–67] to obtain the vacuum state
and the single baryon ground state of the Hamiltonian in
Eq. (2) and the improved Hamiltonians described above
for lattices with up to fifteen physical sites with open
boundary conditions. Figure 3 shows the mass of the baryon
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FIG. 2. Energy gaps as a function of coupling g for the
improved Hamiltonian derived with the SRG. The black dashed
curve is the energy gap of the exact Hamiltonian in Eq. (2) and the
blue points are the energy gap of the Hamiltonian in Eq. (8).
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(difference of the energy of the single baryon state and
vacuum state) for the full Hamiltonian and the improved
Hamiltonians for the zero electric field truncation for g ¼ 2.
As this figure shows, the relative error in the baryon mass
computed with the improved Hamiltonians grows with
system size and then saturates. By using improved
Hamiltonians with a larger operator size truncation in the
IMSRG, the relative error in the baryonmass can be reduced
down to the percent level. The baryon mass for g ¼ 1 was
also computed and is shown in Fig. 4. At this weaker
coupling, the correlation length is longer and the relative
error in the baryon mass grows uncontrollably with the
lattice size for the improved Hamiltonian obtained by the
two staggered site truncation IMSRG. However, increasing
the size of the operator truncation used in the IMSRG
decreases the error in the baryon mass to controllable levels.
This rapid convergence with the operator size is due to the
IMSRG correctly reproducing all correlations smaller than
the operator size truncation. It is expected that once the
operator size truncation is larger than the inverse baryon
mass, the improved Hamiltonian derived through IMSRG
will accurately describe single baryon states. In general, it is
expected that the improved Hamiltonians derived with

IMSRG will accurately describe states containing correla-
tions that are smaller than the operator size truncation.
In addition to studying the energy of different states on

the lattice, the IMSRG flows of operators can be computed
and their expectation values can be computed using
improved Hamiltonians. As an explicit example, the
SRG flow of the chromoelectric-energy density was com-
puted. The operators corresponding to the chromoelectric
operators in the improved basis are the same as those that
show up in the improved Hamiltonians, just with different
coefficients. The vacuum expectation of the chromoelec-
tric-energy density is shown in Fig. 5 for g ¼ 1 and g ¼ 2.
As before, increasing the size of the operator truncation in
the IMSRG improves the accuracy of the improved
Hamiltonians. Remarkably, even though the improved
Hamiltonians are being truncated at zero electric field,
their ground states still reproduce the electric-energy
density of the full untruncated theory.

D. Similarity renormalization group m ≠ 0

In the previous section, IMSRG was used to derive an
improved Hamiltonian that describes the dynamics of
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FIG. 3. Baryon mass as a function of lattice size for g ¼ 2. The
black points show the baryon mass for the Hamiltonian in Eq. (2).
The different solid curves correspond to the baryon mass in the
various improved Hamiltonians derived through the use of
IMSRG with different operator size truncations.
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FIG. 4. Baryon mass as a function of lattice size for g ¼ 1. The
black points show the baryon mass for the Hamiltonian in Eq. (2).
The different solid curves correspond to the baryon mass in the
various improved Hamiltonians derived through the use of
IMSRG with different operator size truncations.

QUANTUM SIMULATION OF LATTICE QCD WITH IMPROVED … PHYS. REV. D 108, 094513 (2023)

094513-5



baryons in QCD in one dimension with massless quarks.
The same technique can be used to setup improved
Hamiltonians in the case of massive quarks as well.
In a theory with massive quarks, the piece of the

Hamiltonian that should be used to generate the SRG flow
is the combination of the mass and electric-energy terms.
At the zero electric-energy truncation, the only state left
after truncation is the one with matter sites empty and
antimatter sites filled. Therefore. with massive quarks, there
are no dynamics at this level of truncation. The next lowest
truncation in the SRG flow depends on the relative size of
the fermion mass m and the coupling g. If 2

3
g2 > m, then

the next lowest-lying state in the spectrum consists of a
baryon at a site. The improved Hamiltonian derived by
truncating at this level takes the same form as in the
previous section except with the addition of a mass term for
the baryons. If instead 2

3
g2 < m, then the next lowest-lying

state in the spectrum corresponds to a quark antiquark pair
connected by a link of electric flux. In the strong coupling
limit, this corresponds to a meson at the excited link.
Denoting the trivial vacuum state by jVaci, and the state

with a qq pair on link l by jli, the Hamiltonian obtained

under IMSRG flow truncating the energy at single-link
excitations and the operator size at two link operators takes
the form

ĤSRG ¼ E0ðg;mÞjVacihVacj
þ
X
l

hðg;mÞðjlþ 1ihlj þ jlihlþ 1jÞ

þ E1ðg;mÞjlihlj; ð12Þ

where E0ðg;mÞ, E1ðg;mÞ, and hðg;mÞ are constants
determined through numerically solving the SRG flow.
Note that this Hamiltonian has the same form as that of a
single nonrelativistic particle. The Hamiltonian in Eq. (12)
can be viewed as a Hamiltonian for a single-link excitation
(or meson) and can be mapped onto a second quantized
Hamiltonian to describe a system with more excited links.
Explicitly, the single excitation sector of

ĤSRG ¼
X
l

hðg;mÞ
2

ðX̂lX̂lþ1 þ ŶlŶlþ1Þ

þ E0ðg;mÞ − E1ðg;mÞ
2

Ẑl; ð13Þ

will be identical to the Hamiltonian in Eq. (12). This
improved Hamiltonian will also be capable of describing
states with multiple links excited as well. The description of
these states with multiple links excited can be improved by
raising the truncation of states kept after SRG flow to
include states where two links are excited. By keeping these
states after the SRG flow and keeping the other truncations
as before, the improved Hamiltonian given by

ĤSRG2¼
X
l

hðg;mÞ
2

ðX̂lX̂lþ1þ ŶlŶlþ1Þ

þ sðg;mÞẐlẐlþ1þ
E0ðg;mÞ−E1ðg;mÞ

2
Ẑl; ð14Þ

will have single and two excitation sectors that match the
improved Hamiltonians derived through SRG. As a test of
the performance of this improved Hamiltonian, the mass of
the meson was computed on a lattice with two physical sites
for g ¼ 1 and various values of m in Fig. 6. Similar to the
massless case, the improved Hamiltonian derived with the
SRG performs well when there is a large separation in
energy scales between the states being decoupled. Note that
in principle, the same comparison can be done with larger
lattices, however the meson is in the same baryon number
sector as the vacuum which complicates the calculation of
the meson mass. It is expected that this improved
Hamiltonian scales to larger lattices as in the massless case.
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FIG. 5. The expectation of the electric energy on each link for a
lattice with 15 physical sites. The black points were computed
using the Hamiltonian in Eq. (2). The other points were computed
using the improved Hamiltonians for the zero electric field
truncation computed using SRG.
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1. Quantum simulation

As an example of how these improved Hamiltonians can
be used for quantum simulation, a simulation will be
performed of a meson’s time evolution on three physical
sites with open boundary conditions. Using the Hamiltonian
in Eq. (2) would require a quantum computer with 18 qubits
to encode the state, and nonlocal interactions between the
qubits to implement the electric-energy piece of the
Hamiltonian. Using the improved Hamiltonian in Eq. (14)
requires only 5 qubits to represent the state and only requires
nearest neighbor interactions on the quantum computer to
perform time evolution.
Figure 7 shows the real time evolution of a single meson

on three physical sites with g ¼ 1, m ¼ 1 simulated on
IBM’s Perth quantum processor [68,69]. A meson state
was prepared on the quantum processor by applying an X̂
gate to the qubit assigned to the leftmost link. Time
evolution was performed using a first-order Trotter for-
mula. Explicitly, the Hamiltonian was decomposed as
Ĥ ¼ P

4
l¼1 Ĥl, where

Ĥl ¼
hðg;mÞ

2
ðX̂lX̂lþ1 þ ŶlŶlþ1Þ þ sðg;mÞẐlẐlþ1; ð15Þ

and the Trotterized time evolution operator was given by

ÛðΔtÞ ¼ e−iĤ2Δte−iĤ4Δte−iĤ3Δte−iĤ1Δt: ð16Þ

Each individual e−iĤlΔt was decomposed into a circuit with
3 CNOT gates using standard techniques [70,71]. The sum
over Pauli Ẑ operators can be ignored when performing
time evolution because it commutes with the full
Hamiltonian and the operators being measured. The noise
in the quantum simulation was mitigated using self-
mitigation combined with Pauli twirling [8,9,72]. For each

Trotter step, 50 circuits describing the time evolution were
used along with 50 circuits with Δt ¼ 0 used to determine
the strength of the depolarizing noise channel. Each circuit
was sampled 10,000 times. As Fig. 7 shows, the quantum
hardware is able to describe the time evolution well at short
times, but at long times the hardware noise begins to
dominate. However, despite the presence of hardware noise
at late times, the location of the peak of the wave packet of
the meson can still be located at late times.

III. 3 + 1D

A. 3 + 1D Hamiltonian

Performing a quantum simulation of lattice QCD
requires a choice of Hamiltonian to be used. This choice
is complicated by the phenomena of fermion doubling,
where the naive discretization of the Dirac field on the
lattice in d dimensions actually describes 2d fermions.
Furthermore, the Nielson-Ninomiya theorem forbids the
presence of chiral symmetry on the lattice when all
doublers are removed [73,74]. In this work, staggered
fermions will be used. Staggered fermions work by
distributing the components of the Dirac field across
different sites of the lattice. This preserves some chiral
symmetry at the cost of still having some fermion doublers
remain. In lattice QCD calculations on classical computers,
space and time are both discretized leading to staggered
fermions describing four types of fermions, referred to as
tastes in the literature. For practical calculations, these can
be reduced to a single flavor through the process of rooting
[75–79]. In quantum simulation, time is left continuous and
only space is discretized. This changes the counting of the
number of tastes present. Explicitly, with three dimensions
of space discretized and time left continuous, staggered
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FIG. 7. Time evolution of a single meson on three physical sites
performed on the IBM Perth quantum processor. Each color
corresponds to the probability of a different link being excited.
The solid lines show the exact time evolution. The dashed lines
show a classical simulation of the Trotterized time evolution that
was implemented on the quantum processor. The data points were
obtained using self-mitigating circuits on IBM Perth.
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FIG. 6. Meson mass as a function of quark mass m for g ¼ 1
on a lattice of 2 physical sites (4 staggered). The black dashed
curves shows the meson mass for the Hamiltonian in Eq. (2). The
blue curve shows the meson mass for the improved Hamiltonian
in Eq. (14).
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fermions describe two tastes. This is a feature, not a
bug for using lattice QCD to study nuclear physics as
one taste can be identified as an up quark and the other can
be identified as a down quark. Therefore, we would expect
lattice QCD with a single staggered fermion on a quantum
computer to describe two flavor QCD where both quarks
have the same mass. With massless quarks, this lattice
regularization should reproduce the predictions of chiral
perturbation theory as the continuum limit is approached.
Explicitly, the Hamiltonian that should be used for (3þ 1)-
dimensional two flavor massless lattice QCD on a quantum
computer is

Ĥ ¼ ĤK þ ĤE þ ĤB;

ĤK ¼
X
r⃗;μ̂;a;b

ηr⃗;μ̂
1

2
ψ̂†
r⃗;aÛ

a;b
r⃗;r⃗þμ̂ψ̂ r⃗þμ̂;b þ H:c:;

ĤE ¼ g2

2

X
l∈ links;c

Êc
l Ê

c
l ;

ĤB ¼ −
1

2g2
X

p∈ plaquettes

□p; ð17Þ

where ψ r⃗;a is a fermion field at site r⃗with color a, μ̂ is a unit
vector in the x̂, ŷ, or ẑ directions, ηr⃗;μ̂ are the spin
diagonalization phases, Ûa;b

r⃗;r⃗þμ̂ is an SU(3) parallel trans-

porter between sites r⃗ and r⃗þ μ̂, Êc
l is the SU(3) chromo-

electric field on link l and □p is the Hermitian component
of the trace over color indices of the product of parallel
transporters on plaquette p. Previous work has shown that
this Hamiltonian has a discrete chiral symmetry corre-
sponding to translation by one lattice site that is sponta-
neously broken and an isospin symmetry that corresponds
to diagonal translations [80–82].

B. Improved Hamiltonian

As is the case for 1D QCD, mapping the Hamiltonian in
Eq. (17) onto qubits is challenging, especially if one
wishes to perform a quantum simulation with existing
hardware. Improved Hamiltonians can also be derived for
performing quantum simulations of this theory. Following
the discussions of the previous sections, IMSRG can be
applied to this theory with a truncation in operator size.
The smallest nontrivial operator size IMSRG can be
applied to is a single link and the lowest electric field
truncation that can be used is zero electric field. The
resulting improved Hamiltonian on the three-dimensional
lattice will take the same form as in the 1D case except
now the hopping terms will have phases that result from
the spin diagonalization.
Explicitly, the improved Hamiltonian obtained through

SRG at this truncation in operator size and electric field is

ĤSRG ¼
X
r⃗

AðgÞðψ̂†
r⃗ ψ̂ r⃗þx̂ þ ψ̂†

r⃗þx̂ψ̂ r⃗Þ

þ AðgÞð−1Þr1ðψ†
r⃗ ψ̂ r⃗þŷ þ ψ̂†

r⃗þŷψ̂ r⃗Þ
þ AðgÞð−1Þr1þr2ðψ̂†

r⃗ ψ̂ r⃗þẑ þ ψ̂†
r⃗þẑψ̂ r⃗Þ

þ BðgÞ
X
μ̂

ð2ψ̂†
r⃗ ψ̂ r⃗ − 1Þð2ψ̂†

r⃗þμ̂ψ̂ r⃗þμ̂ − 1Þ; ð18Þ

where ψ r⃗ is a colorless fermion field at site r⃗ and AðgÞ and
BðgÞ are numerical constants determined through solving
the SRG equations.
Note that this improved Hamiltonian only describes the

QCD Hamiltonian accurately for large coupling g as the
lattice size is increased. This is because as g is decreased,
the correlation length increases. To accurately describe the
QCDHamiltonian at these couplings without increasing the
electric field truncation, higher-weight operators must be
included as in the 1D case. Alternatively, the electric field
truncation could be increased. At large coupling, the π
meson is massive and is integrated out of this improved
Hamiltonian. By increasing the chromoelectric field trun-
cation of states kept after the SRG flow, states with quark-
antiquark pairs separated by a link will be included in the
low-energy Hilbert space kept after truncation and will
yield an improved Hamiltonian that describes meson
degrees of freedom as well.

1. Spectrum

The improved Hamiltonian in Eq. (18) will describe the
untruncated theory accurately in the limit of large g. While
the continuum limit of lattice QCD is in the limit of g → 0,
large couplings can be used to study the theory at finite
lattice spacing. In the limit g → ∞, AðgÞ → 0 and some
qualitative features of low-energy QCD are recovered. In
particular, it has been shown that in the strong coupling
limit this theory has an isospin symmetry and a sponta-
neously broken chiral symmetry [80–82]. In addition to the
previously studied features of this regularization, the strong
coupling limit of this Hamiltonian also reproduces the
approximateWigner SU(4) spin flavor symmetry of nuclear
physics.
As an example, we will study the improved Hamiltonian

in Eq. (18) on a single cube. The fermionic fields will be
mapped onto qubits using a Jordan-Wigner encoding.
When AðgÞ ¼ 0, the Hamiltonian in Eq. (18) can be
rewritten in terms of Pauli matrices as

ĤSRG ¼ 9

16g2
X
μ̂

Ẑr⃗Ẑr⃗þμ̂: ð19Þ

The ground state is in the baryon number B ¼ 0 sector and
is a degenerate Néel state. For the rest of this discussion, we
will only consider the sector that is even under reflection
across the ẑ axis. The lowest-lying excited states in the

ANTHONY N. CIAVARELLA PHYS. REV. D 108, 094513 (2023)

094513-8



B ¼ 0 sector correspond to performing a SWAP operation
on one of the links. Denoting the energy cost of flipping
one link as Δ ¼ 9

8g2, this set of excited states has energy 4Δ
and there are 12 of them. These 12 states should correspond
to spin-one and spin-zero baryon antibaryon pairs, i.e., pp̄,
nn̄, np̄ and pn̄ states.
The lowest-lying energy states in the B ¼ 1 sector

correspond to flipping one site from the Néel state on
the cube. There are four corners that can be flipped in the
Néel state to end up in the B ¼ 1 sector so there are four
degenerate states with energy 3Δ. These correspond to the
two spin modes of the proton and neutron. Note that the
proton and neutron mass are degenerate which should be
expected from isospin symmetry.
In the B ¼ 2 sector, the lowest-lying states correspond to

flipping two spins in the Néel state. This results in six
degenerate states with energy 6Δ. These states correspond
to spin 1pn states and spin 0pp, pn, and nn states. The fact
that these states are degenerate is reflective of spin-flavor
symmetry which is approximately present in low-energy
nuclear physics. The spin-flavor symmetry has been shown
to emerge in the largeNc limit of QCD [83] and is related to
the minimization of entanglement in low-energy nucleon
scattering [84–89]. We also see that in the strong coupling
limit, the deuteron has binding energy zero. Similar
calculations can be done in the higher baryon number
sectors which also show that these sectors also demonstrate
spin-flavor symmetry and nuclei with binding energy ¼ 0.
It is also interesting to note that the nucleon-nucleon
scattering lengths are large. As a result, the pionless
effective field theory describing nucleon scattering is an
expansion around a nontrivial fixed point where the binding
energy of nuclei vanishes as is the case in this lattice
regularization [90–93].

2. Quantum simulation

The Hilbert space describing the Hamiltonian in Eq. (18)
consists of a single fermion mode for each site. Using the
Jordan-Wigner encoding, the state of each site can be
represented with a single qubit. In this encoding, a list of
fermion operators ψ1; ψ̂2;…; ψ̂N are mapped onto qubit
operators as

ψ̂n ¼ ⊗
k<n

1

2
ẐkðX̂n þ iŶnÞ: ð20Þ

For a local one dimensional fermionic theory, this fermion
encoding leads to a Hamiltonian that is local in qubits.
However, in higher dimensions, the operators in the
Hamiltonian will include strings of Pauli Ẑ operators that
wrap around the lattice. These long-range operators are
necessary to enforce the anticommutation relations of the
fermionic operators and may make it difficult to practically
scale to calculations on a large lattice.

As a demonstration of how this improved Hamiltonian
works in practice, time evolution on six vertices connected
to a single vertex at the center as shown in Fig. 8 will be
simulated. This is the smallest nontrivial subsystem of a full
three-dimensional lattice that will be repeated periodically
and will be useful for understanding how simulations on a
larger lattice will work. Each of the seven vertices can be
mapped onto a single qubit. The Hamiltonian describing
their time evolution is given by

ĤSRG ¼
X
v

AðgÞðψ̂†
0ψ̂v þ ψ̂†

vψ̂0Þ

þ BðgÞ
X
v

ð2ψ̂†
vψ̂v − 1Þð2ψ̂†

0ψ̂0 − 1Þ; ð21Þ

where the 0 subscript denotes the vertex at the center and
the sum is over the other vertices. The quantum processor is
initialized with the center qubit in the 1 state and the
remaining qubits are in the 0 state. In the staggered fermion
lattice regularization, sites are alternatively identified with
matter and antimatter degrees of freedom so this state
should correspond to the trivial vacuum. By evolving with
the Hamiltonian in Eq. (21), it should be possible to
observe matter antimatter fluctuations. Note that with this
initial state, a single Trotter step can be performed without
having to implement CNOT gates from the Jordan-Wigner
strings. A single Trotter step was implemented on IBM
Perthwith the size of the time step being varied to sample
different times. Due to the connectivity of the hardware,
this circuit required 28 CNOT gates. Fig. 9 shows the
results of performing a single Trotter step for g ¼ 2 on IBM
Perth. For small times, the quantum simulation is able to
describe the evolution of the system accurately, however

FIG. 8. Connectivity of the system described by the improved
Hamiltonian in Eq. (21).
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beyond t ¼ 1, the error in the single Trotter step used is
large and limits the accuracy of the quantum simulation.
While the Jordan-Wigner encoding is efficient in the

number of qubits used, the Hamiltonian generated has long
range interactions which are necessary to preserve the
anticommutation relation of the fermions. Scaling these
calculations to a larger lattice will require making use of a
more efficient fermion encoding. For example, the Bravyi-
Kitaev superfast encoding can be used to map fermions
onto qubits [94]. In this encoding, a qubit is associated with
each link on the lattice and represents the parity of the
number of fermions on the link. The length of the strings of
Pauli Ẑ operators for an operator on a link extends only to
neighboring links. For a large lattice, this will limit the
circuit depth necessary to perform time evolution and
potentially allow for larger calculations to be performed.

IV. DISCUSSION

In this work, the SRG has been used to derive improved
Hamiltonians that mitigate the effects of gauge field
truncation. It was demonstrated in 1þ 1D that the
improved Hamiltonians derived this way outperform those
derived through the strong coupling expansion for small
systems. Tensor network calculations were performed to
demonstrate that these improved Hamiltonians perform
well as the system size is increased. These techniques were
also applied to 3þ 1D giving an improved Hamiltonian
capable of describing two flavour QCD on the lattice. Real-
time dynamics on small systems were simulated on IBM’s
Perth quantum processor.
Previous strategies for quantum simulation of lattice

gauge theories improved accuracy by increasing the trun-
cation of the gauge field. This comes at the cost of needing
more qubits to represent the system and a more complicated

circuit to implement the time evolution. The improved
Hamiltonians introduced in this work are capable of
improving accuracy only at the cost of requiring more
complicated circuits to simulate.
Improved Hamiltonians have been derived for a single

flavor of staggered fermions coupled to SU(3) gauge fields
truncated at low electric field. This has enabled quantum
simulation of systems that would otherwise be out of reach
of current quantum hardware. The same approach intro-
duced here can be used to derive improved Hamiltonians
for larger electric field truncations and with more flavors of
fermions. Future work will extend these methods to higher
spatial dimensions with larger operator truncations where
the plaquette terms will modify the SRG flow. This will
enable quantum simulations of lattice gauge theories in
multiple dimensions to be performed in the near term.
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APPENDIX: SCHRIEFFER-WOLFF
PERTURBATION THEORY

The improved Hamiltonians derived in this work are
based on performing a unitary transformation before
truncating the electric field to reduce the coupling to the
states being removed by the truncation. This can be done
perturbatively through the use of Schrieffer-Wolf pertur-
bation theory (SWPT). In this section, the application of
SWPT to the Hamiltonian in Eq. (2) with m ¼ 0 will be
demonstrated. The Hamiltonian for lattice gauge theories in
1D we wish to simulate takes the form

Ĥ ¼ ĤE þ ĤD þ V̂; ðA1Þ

where ĤE is the electric Hamiltonian, V̂ couples the low-
energy subspace to the high-energy subspace and ĤD
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FIG. 9. Probability of staying in the trivial vacuum state
computed on the IBM Perth quantum processor. The solid
black line shows the exact time evolution. The blue dashed line
shows the probability computed using a first-order Trotter step
computed on a classical computer. The blue data points were
obtained using self-mitigating circuits on IBM Perth.
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describes dynamics in the high-energy Hilbert space. Note
that the kinetic term of Eq. (2) is equal to ĤD þ V̂. For the
zero electric field truncation, V̂ is the piece of the kinetic
term that corresponds to a baryon on a site ejecting a quark
to a neighboring site and ĤD is the piece of the kinetic term
that describes a quark propagating freely between sites.
SWPT systematically generates a unitary, eŜ that decouples
the selected low-energy subspace. For lattice gauge theo-
ries, we will be decoupling the electric vacuum and states
with low energy relative to the electric Hamiltonian. To
leading order we have

eŜ1Ĥe−Ŝ1 ¼ ĤE þ ½Ŝ1; ĤE þ ĤD� þ ĤD þ V̂ þ ½Ŝ1; V̂�

þ 1

2
½Ŝ1; ½Ŝ1; ĤE þ ĤD� þOðV̂3Þ: ðA2Þ

The leading order coupling between the low- and high-
energy subspace comes from V̂ and be canceled at leading
order by choosing Ŝ1 such that ½Ŝ1; ĤE þ ĤD� ¼ −V̂.
Explicitly, the matrix elements of Ŝ1 are

ðS1Þab ¼
1

Ea − Eb
Vab; ðA3Þ

where the indices label eigenstates of ĤE þ ĤD with
eigenvalues Ea. To leading order, the effective
Hamiltonian is

Ĥ1
eff ¼ ĤE þ 1

2
½Ŝ1; V̂�; ðA4Þ

and provided that the low-energy subspace has an electric
energy of zero, the commutator is equal to

1

2
½Ŝ1; V̂� ¼ −V̂

1

ĤE þ ĤD
V̂ ¼ −

X
n

V̂ ð−Ĥ−1
E ĤDÞn

1

ĤE
V̂:

ðA5Þ

Therefore, toOðH−2
E Þ, the effective Hamiltonian is given by

Ĥ1
eff ¼ ĤE − V̂

1

ĤE
V̂ þ V̂

1

ĤE
ĤD

1

ĤE
V̂ þOðĤ−3

E Þ: ðA6Þ

To derive Eq. (4) from Eq. (A6), it will be helpful to work
in the gauge invariant subspace of the theory. The gauge-
invariant states of the two staggered site Hamiltonian are

jΩi ¼ ψ̂†
1;bψ̂

†
1;gψ̂

†
1;rj0i;

jMi ¼ 1ffiffiffi
3

p
X
c

ψ̂†
2;cψ̂1;cjΩi;

jTi ¼ 1

2
ffiffiffi
3

p
X
c0
ψ̂†
2;c0 ψ̂1;c0

X
c

ψ̂†
2;cψ̂1;cjΩi;

jBi ¼ ψ̂†
2;bψ̂

†
2;gψ̂

†
2;rjΩi;

jB̄i ¼ ψ̂1;bψ̂1;gψ̂1;rjΩi;
jBB̄i ¼ ψ̂1;bψ̂1;gψ̂1;rψ̂

†
2;bψ̂

†
2;gψ̂

†
2;rji; ðA7Þ

where j0i is the state with all fermion modes unoccupied,
ψ̂x;c is the quark-field operator on site x with color c, jΩi is
the electric vacuum, jMi is a meson state in the strong
coupling limit with massive quarks, jTi is a tetraquark
state, jBi is a state with a single baryon, jB̄i is a state with
a single antibaryon and jBB̄i is a state with a baryon
antibaryon pair. When these basis states are enumerated in
the order fjB̄i; jΩi; jBB̄i; jBi; jMi; jTig, the electric energy
operator written as a matrix is

ĤE ¼

0
BBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 2
3
g2 0

0 0 0 0 0 2
3
g2

1
CCCCCCCCCCA

ðA8Þ

and the kinetic term is

ĤK ¼

0
BBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0
ffiffi
3

p
2

0

0 0 0 0 0
ffiffi
3

p
2

0 0 0 0 0 0

0
ffiffi
3

p
2

0 0 0 1

0 0
ffiffi
3

p
2

0 1 0

1
CCCCCCCCCCA

: ðA9Þ

Note that this ordering of basis states has been chosen so
that the encoding onto qubits corresponds to the upper left
4 × 4 corner of this matrix. The decomposition of ĤK into
V̂ þ ĤD is given by

V̂ ¼

0
BBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0
ffiffi
3

p
2

0

0 0 0 0 0
ffiffi
3

p
2

0 0 0 0 0 0

0
ffiffi
3

p
2

0 0 0 0

0 0
ffiffi
3

p
2

0 0 0

1
CCCCCCCCCCA

; ðA10Þ

and
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ĤD ¼

0
BBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

1
CCCCCCCCCA

: ðA11Þ

Truncating to the basis states fjB̄i; jΩi; jBB̄i; jBig, the
leading term in the effective Hamiltonian is given by

−V̂
1

ĤE
V̂ ¼

0
BBBB@

0 0 0 0

0 − 9
8g2 0 0

0 0 − 9
8g2 0

0 0 0 0

1
CCCCA
; ðA12Þ

and after dropping a term proportional to the identity matrix
this is equivalent to 9

16g2 Ẑ1Ẑ2. Similarly, the subleading

term is

V̂
1

ĤE
ĤD

1

ĤE
V̂ ¼

0
BBBB@

0 0 0 0

0 0 27
16g4 0

0 27
16g4 0 0

0 0 0 0

1
CCCCA
; ðA13Þ

and written in terms of Pauli matrices this is
27
32g4 ðX̂1X̂2 þ Ŷ1Ŷ2Þ. Adding together the expressions in

Eqs. (A12) and (A13) yields the improved Hamiltonian in
Eq (4). Techniques for performing this expansion to higher
orders can be found in Ref. [54].
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