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We calculate the nucleon electric dipole moment (EDM) from the θ term with overlap fermions on three
domain wall lattices with different sea pion masses at lattice spacing 0.11 fm. Due to the chiral symmetry
conserved by the overlap fermions, we have well-defined topological charge and chiral limit for the EDM.
Thus, the chiral extrapolation can be carried out reliably at nonzero lattice spacings. We use three to four
different partially quenched valence pion masses for each sea pion mass and find that the EDM dependence
on the valence and sea pion masses behaves oppositely, which can be described by partially quenched chiral
perturbation theory. With the help of the cluster decomposition error reduction technique, we determine the
neutron and proton EDM at the physical pion mass to be dn ¼ −0.00148ð14Þð31Þθ̄ e · fm and
dp ¼ 0.0038ð11Þð8Þθ̄ e · fm. This work is a clear demonstration of the advantages of using chiral
fermions in the nucleon EDM calculation and paves the road to future precise studies of the strong CP
violation effects.

DOI: 10.1103/PhysRevD.108.094512

I. INTRODUCTION

Symmetries and their breaking are essential topics in
modern physics, among which the discrete symmetries C
(charge conjugation), P (parity), and T (time reversal) are
of special importance. This is partially because the viola-
tion of the combinedC and P symmetries is one of the three
Sakharov conditions [1] that are necessary to give rise to
the baryon asymmetry of the universe (BAU). However,

despite the great success of the standard model (SM), the
weak baryogenesis mechanism from the CP violation (CP)
within the SM contributes negligibly (∼16 orders of
magnitude smaller than the observed BAU [2–6]). This
poses a hint that, besides the possible θ term in QCD, there
could exist beyond-standard-model (BSM) sources of CP
and thus the study of CP plays an important role in the
efforts of searching for BSM physics.
The electric dipole moment of nucleons (NEDM) serves

as an important observable to study CP. The first exper-
imental upper limit on the neutron EDM (nEDM) was
given in 1957 [7] as∼10−20 e · cm. During the past 60 years
of experiments, this upper limit has been improved by six
orders of magnitude. The most recent experimental result of
the nEDM is 0.0ð1.1Þð0.2Þ × 10−26 e · cm [8], which is still
around five orders of magnitude larger than the contribution
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that can be offered by the weak CP phase. Currently,
several experiments are aiming at improving the limit down
to 10−28 e · cm in the next ∼10 years. This still leaves
plenty of room for the study of CP from BSM interactions
and the QCD θ term.
As a reliable nonperturbative method for solving the

strong interaction, lattice QCD provides us the possibility
of studying the nucleon EDM from first principles and with
both the statistical and systematic uncertainties under
control. To be specific, lattice QCD can be used to calculate
the ratio between the neutron and proton EDM induced by
strong CP and the parameter θ̄, which is the most crucial
theoretical input to determine θ̄ from experiments.
Many lattice calculations have been carried out on this

topic. However, there was a watershed in 2017 when it was
pointed out [9] that all the previous lattice calculations, e.g.,
[10–14], used awrongly definedCP form factor such that all
of those old results need a correction. Although the fixing is
numerically straightforward, none of the previous lattice
calculations gives statistically significant results after the
fixing, leaving a great challenge to the lattice community.
Since then, several attempts [15–18] have been made to
tackle the problem, but the signal-to-noise ratios of the new
results are still not satisfying, and no calculation performed
directly at the physical point gives nonzero results.
A possibility to bypass this difficulty is to perform the

computations with several heavier pion masses and extrapo-
late to the physical point. However, onlywith chiral fermions
can a correct chiral limit be reached at finite lattice spacings.
Otherwise, extrapolating to the continuum limit for each pion
mass becomes an inevitable prior step before a reliable chiral
extrapolation, which complicates the calculation and poten-
tially leads to hard-to-control systematic uncertainties. The
best result, so far, of this approach, using clover fermions,
obtained a 2σ signal [16]. One could also carry out the
continuum limit using simulationswith physical pionmasses
directly, but the signal can be even more noisy.
In this article, we demonstrate that using chiral fermions

to extrapolate to the physical point from heavier pionmasses
is the most efficient choice to study NEDM on the lattice at
the current stage. We employ three gauge ensembles with
different sea pion masses ranging from ∼300 to ∼600 MeV
andwe use three to four valence pionmasses on each lattice.
Therefore, we can study both the valence and sea pion mass
dependence of the NEDM and better control the chiral
extrapolation. The results we obtain at the physical pion
mass are dn ¼ −0.00148ð14Þð31Þθ̄ e · fm and dp ¼
0.0038ð11Þð8Þθ̄ e · fm for neutron and proton, respectively.
More details of the nucleon EDM and θ term will be

provided in Secs. II and III presents the simulation setup
used in this work. Numerical results taking advantage of the
cluster decomposition error reduction (CDER) technique
for the disconnected insertion [19] are shown in Sec. IV,
with the discussion on the systematic uncertainties in
Sec. V. Eventually a brief summary is given in Sec. VI.

II. NUCLEON EDM AND THE θ TERM

The QCD Lagrangian in Euclidean space with the θ term
reads (detailed conventions can be found in the Appendix),

LE ¼ ψ̄ð=DE þmqÞψ þ 1

2
Tr

�
FE
μνFE;μν − iθ̄

g2

8π2
FE
μνF̃E;μν

�
;

ð1Þ

where F̃E;μν ¼ ϵμνρσFE
ρσ . The effective parameter is

θ̄ ¼ θ þ 1
Nf

ArgDet½M�, where θ is the original coefficient

of the θ term and M is the quark mass matrix generated by
the spontaneous breaking of SUð2Þ ×Uð1Þ in the electro-
weak sector. For simplicity, we will not distinguish θ and θ̄
in the following content. A crucial point is that, if
Det½M� ¼ 0, the phase of the UAð1Þ transformation is
arbitrary, which means one can always find a chiral rotation
that lets θ̄ ¼ 0, leaving no net effect of CP. This indicates a
zero NEDM in the chiral limit [20], which poses a very
strong constraint in the chiral extrapolation numerically.
However, as mentioned before, for lattice fermions which
violate the chiral symmetry this constraint cannot be used at
finite lattice spacing.
Given that θ is small, one can expand the theta term in

the action in the path integral and obtain the correlation
functions and matrix elements to the leading order in θ as

θh…iθ ¼ h…i þ iθh…Qti, where j0iθ denotes the vacuum
with the θ term (namely, the θ vacuum), and Qt ¼R
d4xqtðxÞ≡ g2

16π2

R
d4xTr½FE

μνðxÞF̃E;μνðxÞ� is the topologi-
cal charge of the gauge field. Based on this expansion, the
CP electromagnetic (EM) form factor F3ðq2Þ can be
extracted from normal and Qt weighted nucleon matrix
elements with initial momentum pi ¼ ðm; 0⃗Þ and final
momentum pf ¼ ðEf; q⃗Þ as

F3ðq2Þ¼
2m

Efþm

�
2Ef

qi

Tr½ΓiM
ð3ÞQ
4 �

Tr½ΓeMð2Þ� −α1GEðq2Þ
�
;

GEðq2Þ¼
2Ef

Efþm
Tr½ΓeM

ð3Þ
4 �

Tr½ΓeMð2Þ� ; α1¼ Tr½γ5Mð2ÞQ�
2Tr½ΓeMð2Þ� ; ð2Þ

where the matrix elements are

Mð2Þ ¼ hNðpfÞjNðpiÞi;
Mð3Þ

μ ¼ hNðpfÞjVμjNðpiÞi;
Mð2ÞQ ¼ hNðpfÞjQtjNðpiÞi;
Mð3ÞQ

μ ¼ hNðpfÞjQtVμjNðpiÞi; ð3Þ

with Vμ being the EM current operator, Γe ¼ 1þγ4
2

the
unpolarized spin projector, Γi ¼ −iγ5γiΓe the polarized
projector along the ith direction, q2 ¼ ðpf − piÞ2 ¼ −Q2
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the momentum transfer, and qi the nonzero component of
the momentum transfer. The above formalism is the same
for both neutron and proton. In the end, the nucleon EDM
can be extracted from the CP form factor F3ðq2Þ in the
forward limit for neutron and proton respectively using

dn=p ¼ F3;n=pðq2 → 0Þ
2m

θ: ð4Þ

An interesting fact, as seen in Eq. (2), is that the neutron
CP form factor at the zero momentum transfer limit,
F3;nð0Þ has no CP angle α1 dependence since GE;nð0Þ ¼ 0.

III. NUMERICAL SETUP

This study is carried out on three (2þ 1)-flavor RBC/
UKQCD gauge ensembles of domain wall fermions [21]
with the same lattice spacing 0.1105(3) fm and lattice
volume 243 × 64 but different sea quark masses. Using the
overlap fermion action [22] on the hypercubic (HYP)
smeared [23] gauge links, multiple partially quenched
valence quark masses (as listed in Table I with other
parameters) are calculated utilizing the multimass inversion
algorithm; thus both the sea and valence pion mass
dependencies of NEDM can be studied and the chiral
extrapolation can be more reliable.
Generally, the simplest implementation of overlap fer-

mions can be Oð100Þ times more costly compared to the
traditional Wilson-like discretized fermion actions. To
improve the computational efficiency, 12-12-12 grid sources
with Z3-noise and Gaussian smearing are placed at tsrc ¼ 0
and tsrc ¼ 32 in one inversion with randomly chosen spatial
positions of the grid original point on different configura-
tions, and low-mode substitution (LMS) [24] is applied to
suppress the statistical contamination between different
source positions. We also use the stochastic sandwich
method (SSM) [25] with LMS to make the cost of using
multiple nucleon sinks be additive instead of multiplicative.
We use 8 sets of source noises and 16 sets of sink noises (for
each of the source-sink separations 6a, 7a, and 8a) to
improve the statistics. Five nonzeromomentum transfers are
calculated such that we can reliably do the q2 extrapolation
to getF3ð0Þ; the details of the q2 extrapolation will be given
in Sec. V.
In this study, we use overlap fermions as valence quarks.

The overlap Dirac operator Dov satisfies the Ginsparg-
Wilson relation, which ensures the lattice version of chiral
symmetry at finite lattice spacing a. Moreover, since the
modified quark field ψ̂ ¼ ð1 − 1=2DovÞψ is used for the
chirally regulated current operators and interpolating fields,
the effective quark propagator is then 1=ðDc þmqÞ, where
mq is the current quark mass and Dc ¼ Dov=ð1 − 1=2DovÞ
anticommutes with γ5, i.e., fDc; γ5g ¼ 0 [26]. This is the
same form as in the continuum and the eigenvalues of Dc
are purely imaginary. Actually, it has been shown that all

the current algebra is satisfied with overlap fermions at
finite a. In particular, the anomalous Ward identity (AWI)
has been proven by Peter Hasenfratz [23] for Dov with
chiral axial vector current. And we have also shown
numerically [27] that the normalization factor ZA obtained
from the axial Ward identity in the isovector case is the
same (within error) as the one from the AWI in the
singlet case.
Geometrically, the θ term is related to the

topological charge of the gauge field Qt¼
R
d4xqtðxÞ≡

g2

32π2

R
d4xFE

μνðxÞF̃E;μνðxÞ. Usually, the FF̃ definition of the
topological charge with unsmeared gauge fields suffers
from large UV effects and cannot give integer total
topological charge values on the lattice (a review on this
topic can be found in [28]). One way to solve the problem is
to use the gradient flow to smooth the gauge fields and to
get renormalized topological charges [29–31]. Since we are
using a lattice chiral fermion, we have an alternative
way to obtain the topological charge. According to the
Atiyah-Singer index theorem, the topological charge equals
the numerical difference between the left-handed zero
modes of Dov and the right-handed zero modes, that is,
Qt ¼ n− − nþ, which ensures integer topological charge on
each configuration with no additional renormalization. This
definition is theoretically the same as the definition from
the overlap Dirac operator

Qt ¼
1

2
Tr½γ5Dov� ¼ −Tr

�
γ5

�
1 −

Dov

2

��
; ð5Þ

where the trace over all color, spin, and space-time indices
of Dov can be estimated through noise sources. And this
Dov definition can also be used to define the topological
charge density qtðxÞ. The topological charge term is
essential in the nEDM calculation and the overlap defi-
nition reduces the subtleties in the evaluation of the
topological charges, which is another benefit of using
chiral fermions.
It is interesting to note the difference between topologi-

cal charges from the overlap definition and those from the
gluonic definition with long enough gradient flow until
integer topological charge values are reached. We find that,
as shown in Fig. 1, the total topological charge on

TABLE I. Parameters of the RBC/UKQCD ensembles with
L × T ¼ 243 × 64 at 0.1105(3) fm [21]; label, sea and valence
pion masses, nucleon mass with unitary quark mass, and the
number of configurations.

Label
mπ;s

(MeV) mπ;v (MeV)
mNðmπ;sÞ
(GeV) Ncfg

24I005 339 282 321 348 389 1.14 805
24I010 432 426 519 600 1.25 508
24I020 560 432 525 606 1.30 552
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individual configurations with the gluonic definition
is not necessarily the same as the one with the overlap
definition. This is actually natural as they involve different
regulations. However, the topological charge distributions
over different gauge configurations in a given ensemble are
similar. All the distributions are approximately symmetric
with central value at around zero, and it seems the gluonic
definition gives more zero charges. Now, a further question
is whether they will lead to consistent physical results at
finite lattice spacing.
For the purpose of checking physical results, we calcu-

late the topological susceptibility on the same lattice

χt ¼
1

V
hQ2

t i: ð6Þ

The upper panel of Fig. 2 plots the fourth root of the
topological susceptibilities χ1=4t from the FF̃ definition
with different flow time and the overlap definition as a
function of pion mass. It shows that at large flow time tf,
the value of the topological susceptibility from the gluonic
definition tends to approach that from the overlap defi-
nition. However, it is found that, even at tf ¼ 6a2, the χt
value from the gluonic definition is still around 10% higher
than that from the overlap definition, and this discrepancy
roughly remains unchanged for the three different pion
masses we use. Although there is a gentle trend that the
central values will be closer as the flow time tf is larger

still, for the study at only one lattice spacing, it is hard to
justify a precise choice of tf that is large enough.
The difference can be attributed to the Oða2Þ discretization
error. To further verify which definition is optimal to
use in this study, we plot ðχtð 4

m2
π;l
þ 2

m2
π;s
ÞÞ1=2 in the lower

panel of Fig. 2, which should give the pion decay constant
f in the leading-order (2þ 1)-flavor chiral perturbation
theory, since

χt ¼
f2

4
m2

π;l
þ 2

m2
π;s

: ð7Þ

One can see that the values from the overlap definition are
closer to the physical value. This demonstrates that the
overlap definition of the topological charge has smaller
discretization error and is more reasonable to use in the
numerical calculation as well as the chiral extrapolation.
Another conclusion that can be drawn here is that the

FIG. 1. Topological charge distributions over gauge configu-
rations with different definitions. The distribution with label Nν0
corresponds to the topological charges from counting the zero
modes, which should be the same as the one with label Dov. The
nuanced difference between them comes from the fact that Dov is
estimated by noise and has statistical fluctuations. The distribu-
tion with label FF̃ corresponds to that using the gluonic
definition with tf ¼ 4a2. The brown color is the overlay of
orange and blue.

FIG. 2. The fourth root of the topological susceptibilities χ1=4t

(upper panel) and ðχtð 4
m2

π;l
þ 2

m2
π;s
ÞÞ1=2 (lower panel) from the FF̃

definition with different flow time and the overlap definition are
plotted as a function of pion mass.

JIAN LIANG et al. PHYS. REV. D 108, 094512 (2023)

094512-4



specific topological charge value on each single configu-
ration has not much effect on the physical correlations; only
the distribution matters.

IV. CDER IMPROVEMENT AND RESULTS

To further suppress the statistical uncertainty of Mð2ÞQ

and Mð3ÞQ, we take advantage of CDER for the discon-
nected insertion [19]. As illustrated in Fig. 3, we write the
total topological charge as the summation of the local
charge density qtðxÞ derived from the overlap operator
[32,33] as qtðxÞ ¼ 1

2
Tr½γ5Dovðx; xÞ�, where the trace is over

the color-spin indices, and convert the two-point function
weighted with the total topological charge Qt into a
summation of the three-point functions involving qtðxÞ

Gð2ÞQ ¼
X
x⃗

�X
r

qtðxþ rÞχðxÞχ̄ðt0;GÞ
	
; ð8Þ

where χ is the nucleon interpolating operator, G denotes the
source grid, and x ¼ ðtf; x⃗Þ. We then use the cluster
decomposition property to limit the sum to a range
commensurate with the correlation length

Gð2ÞQ ∼
X
x⃗

�Xjrj<R
r

qtðxþ rÞχðxÞχ̄ðt0;GÞ
	

∼Mð2ÞQ þOðe−δmtf ; e−mηRÞ; ð9Þ
which reduces the variance by a volume factor [19]. In
Eq. (9), R is the four-dimensional truncated size of the
topological operator, δm is the effective mass gap between
the nucleon and its excited states, and mη is the mass of the
pseudoscalar meson η.
Similarly, the three-point function with Qt can be

converted into a four-point function with qtðxÞ

Gð3ÞQ∼
X
x⃗ y⃗

e−iq⃗ðx⃗−y⃗Þ
�
χðxÞ

Xjrj<R
r

qtðyþ rÞJμðyÞχ̄ðt0;GÞ
	

∼Mð3ÞQþOðe−δmðtc−t0Þ;e−δEðq⃗Þðtf−tcÞ;e−mηRÞ; ð10Þ

where y ¼ ðtc; y⃗Þ, and δEðq⃗Þ is the energy gap of the
nucleon and its excited states with 3-momentum q⃗ at the
sink. Using Eqs. (9) and (10), the CP form factor F3 can be

calculated as a function of cutoff R. Due to the cluster
decomposition principle, operators far enough separated
have exponentially small correlation. When the distance
between operators is larger than the correlation length
∼1=mη, the signal falls below the noise while the errors still
accumulate in the disconnected insertions [19]. So we bind
the topological charge to the sink of the nucleon in the
three-point functions or to the inserted currents in the four-
point function to see if a proper cutoff R exists, such that
the physics is not altered while the errors can be reduced.
Then we do the two-state fit to eliminate the excited-state

contamination of nucleon matrix elements at each value of
R, and obtain F3ðQ2Þ as a function of R. The corresponding
systematic uncertainty is estimated to be the difference
between the value from the two-state fits and that from
single-exponential fits using only the middle point at
different separations. Taking F3;nðQ2 ¼ 0.2 GeV2Þ at
mπ;s ¼ 339 MeV and different mπ;v as an example (shown
in Fig. 4), the central value starts to saturate at around R ¼
9a ∼ 2=mη as expected. Since the R dependence for
different pion masses are similar, we choose Rc ¼ 9a as
our optimal cutoff in the neutron case. For the proton, we
use Rc ¼ 10a. The systematic uncertainty of this cutoff will
be discussed in detail in Sec. V.
Benefited fromCDER, the data points ofF3;nðQ2Þ show a

non-vanishingQ2 dependence as shown in Fig 5 for the case
of mπ;v ∼mπ;s ¼ 340 MeV, while there is no significant
deviation from a linear shape. Thus, we use a linear fit for the
extrapolation to Q2 ¼ 0, and estimate the corresponding
systematic uncertainty to be the difference between the
extrapolated value and the data value with the smallest Q2.
After the Q2 → 0 extrapolation, the final chiral extrapo-

lation of the neutron EDM is shown in the upper panel of
Fig. 6 with both valence and sea pion mass dependencies.
We observe that the partially quenched data behave

FIG. 3. Illustration of the CDER technique used when comput-
ing the correlation functions with the local topological charge
summed inside the sphere with radius R.

FIG. 4. The cutoff dependence of F3;nðQ2 ¼ 0.2 GeV2Þ with
different mπ;v and mπ;s ¼ 339 MeV. We can see that the value
saturates at R ∼ 9a.
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differently from those with unitary points in the lower
panel. The former tend to move away from zero as the
valence quark mass decreases. Using the overlap fermion
allows us to fit our data with the partially quenched chiral
perturbation form [34] at finite lattice spacing,

dn;p ¼ c1;n=pm2
π;s log

�
m2

π;v

m2
N

�
þ c2;n=pm2

π;s

þ c3;n=pðm2
π;v −m2

π;sÞ; ð11Þ
where c1;2;3;n=p are free parameters. Our lattice data are
well-fitted to the above form with χ2=d:o:f: ¼ 1.2 using
correlated fittings, and our numerical results suggest that
the different valence and sea quark mass dependence is
consistent with the chiral perturbation expression. It is also
interesting to point out that the chiral log term is crucial to
ensure that the NEDM approaches zero in the chiral limit of
both the valence and sea quark masses. With the zero
NEDM constraint at the chiral limit, our interpolated result
for neutron is dn ¼ −0.00148ð14Þθ̄ e · fm, where the stat-
istical uncertainty is less than 10%. This is quite an
improvement from the 2σ statistical error in Ref. [16].
We also carry out another chiral extrapolation using only

the unitary pion mass points, as shown in the lower panel of
Fig. 6. It gives dn ¼ −0.00142ð20Þθ̄ e · fm, which is
consistent with the prediction using partially quenched
data points but with larger statistical uncertainty. We take
the difference between the extrapolated results with and
without partially quenched data points as an estimation of
the systematic uncertainty in the chiral extrapolation.
The proton EDM and its systematic uncertainties can be

obtained with a similar procedure and the result is shown in

FIG. 5. TheQ2 dependence of F3;n withmπ;v∼mπ;s¼339MeV.
The green band shows a linear fit in Q2.

FIG. 6. The chiral extrapolation of dn=θ on both the sea and
valence quark masses (upper panel) and on only the unitary
points (lower panel). FIG. 7. The same as Fig. 6 but for the proton case.
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Fig. 7. More detailed discussion on the systematic uncer-
tainty estimation will be presented in the next section.

V. SUMMARY ON THE SYSTEMATIC
UNCERTAINTIES

In this study, the main sources of systematic uncertain-
ties are the two-state fits of the three-point (four-point)
function to two-point function ratios, the momentum
extrapolation, the use of the CDER technique, the final
chiral extrapolation, and the finite lattice spacing effect.
1) Two-state fit: The systematic uncertainty from the

two-state fit is estimated by the difference between the two-
state fitted values and the results from single-exponential
fits using only the middle point at different separations.
Usually, one compares the two-state fits results and the
values of the middle data point at the largest separations to
estimate the systematic uncertainty. In our case, since we
are using relatively small source-sink separations, we fit
the middle points to a simplified form C0 þ C1e−mtf to
account for the excited-state effect on different separations
tf. Then, we consider the distribution of the difference

between the two-state results and C0’s (as shown in the
lower panel of Fig. 8), and take the 1σ width (68%
probability) to be the final systematic uncertainty, which
is determined to be 13%.
2) CDER technique: The systematic uncertainty due to

the use of the CDER technique is a crucial one. The key
idea of CDER is that operators have finite correlation
length and going beyond the correlation length results in
only noise rather than signal. In our case, the topological
charge operator is summed up to a cutoff R with the center
being at the position of the EM current. We can have an
optimal cutoff to have saturated signal and improved
statistical error. The upper panel of Fig. 9 shows the dn
dependence on the cutoff R. We do observe that, after
R ≥ 9a, the central values do not change (within errors)
while the errors are getting larger. The lower panel of Fig. 9
shows the difference of dn normalized by the number of
equivalent R’s

1

NRþ1

½dnðRþ 1Þ − dnðRÞ�; ð12Þ

FIG. 8. An example of a two-state fit of F3;n with
Q2 ¼ 0.2 GeV2, R ¼ 9a and mπ;v ∼mπ;s ¼ 339 MeV (upper
panel) and the systematic uncertainty distribution over
different momentum transfers, CDER cutoffs and pion masses
(lower panel).

FIG. 9. Upper panel: The cutoff dependence of F3;nðQ2 ¼ 0Þ
with different mπ;v and mπ;s ¼ 339 MeV. Lower panel: The
correlation in terms of the 4D distance r between the topological
charge operator and the current operator. Different colors are for
different pion masses.
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which is in fact the correlation in terms of the 4-D distance
r between the topological charge operator and the current
operator, since

dnðRÞ ∼
X
jrj<R

hNjqðxþ rÞJμðxÞjN0i; ð13Þ

where hNjqðxþ rÞJμðxÞjN0i denotes the nucleon matrix
element that encodes the correlation. This panel demon-
strates that the correlation decays exponentially and there is
indeed a finite correlation length. The optimal cutoff is
chosen to be R0 ¼ 9a. The systematic error can obtained by
two ways. One is to take the difference between the value at
R0 ¼ 9a and the constant fitted value after that cutoff.
From data such as that in the left panel the systematic
uncertainty is estimated to be ∼10–15% in this way. The
other way is to fit the correlation to an exponential form
first, and then put the fitted correlation in the summation
dnðRÞ ∼

P
jrj>R0

hqð0þ rÞJμð0Þi to estimate the contribu-
tion from the truncated tail. In this way, with the correlation

data such as that in the lower panel of Fig. 9, the
corresponding systematic uncertainty is estimated to be
∼10%. So the two methods give consistent systematic
uncertainties and we choose ∼12% to be our final
estimation.
3) Momentum extrapolation: Considering the systematic

uncertainty from the momentum extrapolation, although
we have five momentum transfers, the data points show no
significant deviation from a linear shape due to the large
uncertainties, so we use a linear fit for the extrapolation and
estimate the corresponding systematic uncertainty to be the
difference between the extrapolated value and the data
value with the smallest momentum transfer. Similar to the
two-state fit case, the systematic uncertainty is estimated to
be 10% by taking the 1σ width of the error distribution
shown in the upper panel of Fig. 10. We can also estimate
this systematic uncertainty by the difference between the
extrapolated results with or without a Q4 term, which is
also 10% of the central value and consistent with the
present estimate.
4) Chiral extrapolation: For the systematic uncertainty

from the chiral extrapolation, we take the difference of the
extrapolations with and without partially quenched data
points to be our estimation. As shown in Fig. 6 (the chiral
fits for neutron) and Fig. 7 (that for proton), the difference
is around 3%. The small systematic uncertainty of chiral
interpolation is understandable since the chiral limit pro-
vides a very strong constraint to the interpolation.
The total systematic uncertainty is found to be 21%,

which is simply calculated by quadrature from all the
systematic uncertainties.

VI. SUMMARY

We calculate the nucleon electric dipole moment with
overlap fermions on 3 domain wall lattices at lattice spacing
0.11 fm. Since the overlap fermion preserves chiral
symmetry, we have well-defined topological charge and
the chiral extrapolation is carried out reliably without the
need of doing continuum extrapolations first. We have in
total three sea pion masses and ten partially quenched
valence pion masses in the chiral fitting and find that the
EDM dependence on the sea and valence pion masses
behaves oppositely, as expected from partially quenched
chiral perturbation theory.
With the help of the CDER technique, we determine

the neutron and proton EDM at the physical pion
mass point to be dn ¼ −0.00148ð14Þð31Þθ̄ e · fm and dp ¼
0.0038ð11Þð8Þθ̄ e · fm, respectively. The two uncertainties
are the statistical uncertainty and the total systematic
uncertainty from the excited-state contamination, the
CDER cutoff, and the Q2 and chiral extrapolations. By
using the most recent experimental upper limit of dn, our
results indicate that θ̄ < 10−10. This work demonstrates
the advantage of using chiral fermions in the NEDM

FIG. 10. An example of momentum transfer extrapolation of
F3;n with R ¼ 9a and mπ;v ∼mπ;s ¼ 339 MeV (upper panel) and
the systematic uncertainty distribution over CDER cutoffs and
pion masses lower panel). In the upper panel, blue points are
lattice data and the green band shows a linear fit in Q2 while the
red band shows the fit with an additional Q4 term.
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calculation and paves the road to future precise studies of
the strong CP effects.
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APPENDIX A: CONVENTIONS
AND FORMALISM

In this part of the appendix, we list our notations and
conventions in a very detailed manner, which we think is
quite worthwhile since the final sign of EDM depends
directly on the conventions used.

1. Gamma matrices

First, for the gamma matrices in Minkowski space, we
use

fγμ; γνg ¼ 2ημν; ðA1Þ

where ημν ¼ ðþ;−;−;−Þ is the corresponding metric
tensor. Similarly, we have, for the Euclidean ones,

fγEμ ; γEν g ¼ 2ηEμν; ðA2Þ

with ηEμν ¼ ðþ;þ;þ;þÞ. Our choice is to let γE4 ¼ γ0 while
γEi ¼ −iγi. For the momentum we have pE

4 ¼ iE ¼ ip0 and
pE
i ¼ pi, this definition ensures =p ¼ γ0p0 þ γipi ¼

−iγE4pE
4 − iγEi p

E
i ¼ −i=pE.

Then, with the above definitions, we come to the
following conventions of the spinors

uū ¼ =pþm
2m

; uEūE ¼ −i=pE þm
2m

; ðA3Þ

and we define

σμν ¼
i
2
½γμ; γν�; σEμν ¼

1

2i
½γEμ ; γEν �: ðA4Þ

in our notations.

2. QCD Lagrangian with the θ term

The Minkowski QCD Lagrangian reads

L ¼ ψ̄ði=D −mÞψ −
1

4
Fa
μνF

μν
a

¼ ψ̄ði=D −mÞψ −
1

2
Tr½FμνFμν�; ðA5Þ

where the covariant derivative is Dμ ≡ ∂μ − igAμ with a
minus sign in front of Aμ. Along with this convention,
we use

Fμν ≡ 1

−ig
½Dμ; Dν� ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�: ðA6Þ

To have the QCD Lagrangian in Euclidean space, we
first notice ∂0 ¼ i∂E4 and ∂i ¼ −∂Ei , and for the gauge fields,
the conversion is the same as that of pE and p,

AE
4 ¼ iA0; AE

i ¼ Ai: ðA7Þ

Combining the above relations, we come to

D0 ¼ ∂

∂x0
− igA0 → i

�
∂

∂xE4
þ igAE

4

�
≡ iDE

4 ; ðA8Þ

and

Di ¼ ∂

∂xi
− igAi → −

�
∂

∂xEi
þ igAE

i

�
≡ −DE

i : ðA9Þ

Plugging in the conversions of the gamma matrices,
we have
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iD0γ0 þ iDiγi −m ¼ −DE
4 γ

E
4 −DE

i γ
E
i −m: ðA10Þ

The Minkowski field tensor satisfies

FμνFμν ¼ 2
X

F0iF0i þ 2
X
i<j

FijFij ¼ −2E2 þ 2B2;

ðA11Þ

where Ei ¼Ei ¼F0i¼−F0i, and Bi ¼ − 1
2
ϵijkFjk ¼ Bi ¼

− 1
2
ϵijkFjk. It is easy to check that

Ei ¼ −iEE
i ; Bi ¼ −BE

i ; ðA12Þ

and such that

FE
μνFE;μν ¼ 2½ðEEÞ2 þ ðBEÞ2� ¼ FμνFμν: ðA13Þ

Then, we finally reach the form of the QCD Lagrangian in
Euclidean space

LE ¼ ψ̄ð=DE þmÞψ þ 1

2
Tr½FE

μνFE;μν�: ðA14Þ

When the θ term is taken into consideration, in
Minkowski space, we have L → Lþ Lθ and

Lθ ¼ θ̄
g2

32π2
Fa
μνF̃

μν
a ¼ θ̄

g2

16π2
Tr½FμνF̃μν�≡ θ̄qt ðA15Þ

where F̃μν ¼ ϵμνρσFρσ and qt is the topological charge
density. Based on the above conversions, we have

FμνF̃μν ¼ 2
X

F0iF̃0i þ 2
X
i<j

FijF̃ij ¼ −8E · B;

FE
μνF̃E;μν ¼ 2

X
FE
0iF̃

E;0i þ 2
X
i<j

FE
ijF̃

E;ij ¼ 8iE · B;

ðA16Þ

and in the end

LE þ LE
θ ¼ ψ̄ð=DE þmÞψ þ 1

2
Tr½FE

μνFE;μν�

− iθ̄
g2

16π2
Tr½FE

μνF̃E;μν�: ðA17Þ

3. Spinors under the θ vacuum

Now we have determined the Lagrangian in Euclidean
space. In the following part of the appendix, we will work
in the Euclidean space and omit the superscript E unless
otherwise specified.
After the θ term is plugged in, the P and CP symmetries

are broken. The normal Dirac equation and spinor defi-
nition should be modified. The new Dirac equation reads

½−i=p−mθe−iαðθÞγ5 �uθ ¼ ūθ½−i=p−mθe−iαðθÞγ5 � ¼ 0; ðA18Þ

where the superscript θ denotes quantities under the θ
vacuum and αðθÞ is an unknown function of θ. Up to
terms linear in θ (due to the smallness of θ), we have, for
example,

½−i=p −mð1þ f1mθÞð1 − iα1θγ5Þ�ð1þ f1uθÞu ¼ 0; ðA19Þ

where f1m, α1, and f1u are expansion coefficients.
Subtracting the normal Dirac equation, we get

−mðf1m − iα1γ5Þuþ ½−i=p −m�f1uu ¼ 0: ðA20Þ

Since the nucleon mass has no leading θ correction [35]

mθ ¼ mþOðθ2Þ; ðA21Þ

the new spinors can be expressed as

uθ ¼ eiα
1θγ5u ðA22Þ

and

ūθ ¼ ūeiα
1θγ5 ; ðA23Þ

such that we have

uθðpÞūθðpÞ ¼ −i=pþmei2α
1γ5θ

2m
: ðA24Þ

Also, we define the overlapping factor

h0jχjNi ¼ Zu; ðA25Þ

where χ is the nucleon interpolating field operator and jNi
is the corresponding nucleon state. Then, under the θ
vacuum we define

θh0jχjNiθ ¼ Zθuθ: ðA26Þ

Similarly, we have

Zθ ¼ Z þOðθ2Þ: ðA27Þ

4. Form factors

In Minkowski space, we use the following electromag-
netic form factor decomposition

hN0jψ̄γμψ jNi ¼ ūðp0Þ
�
γμF1ðq2Þ þ iσμνqν

F2ðq2Þ
2m

�
uðpÞ;

ðA28Þ
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where F1 and F2 are the Pauli and Dirac form factors
respectively, q ¼ p0 − p with p0 the momentum of the
outgoing nucleon (ūðp0Þ) and p the momentum of the
incoming nucleon. For the Minkowski case, with our
conventions we have

iσμνqν ¼ ðqμ − γμ=qÞ; ðA29Þ

and using the Dirac equation ð=p −mÞu ¼ 0 we get

ūðp0Þ½iσμνqν�uðpÞ
¼ 2mūðp0Þ½γμ�uðpÞ − ūðp0Þ½p0

μ þ pμ�uðpÞ: ðA30Þ

On the other hand, with the Euclidean notation, we have
−σEμνqEν ¼ iðγEμ=qE − qEμ Þ. Similarly,

ūEðp0EÞ½−σEμνqEν �uEðpEÞ
¼ 2mūEðp0EÞ½γEμ �uEðpÞþ iūEðp0Þ½p0E

μ þpE
μ �uEðpEÞ:

ðA31Þ

So in order to have consistent results for both Minkowski
and Euclidean space, one should use −σEμνqEν under our
convention,

hN0jγμjNiE ¼ ūEðp0EÞ
�
γEμF1ðq2Þ − σEμνqEν

F2ðq2Þ
2m

�
uEðpEÞ:

ðA32Þ

For the CP case, we have an additional form factor F0
3

−σμνqνγ5
F0
3ðq2Þ
2m

: ðA33Þ

N.B., when taking the phase carried by the CP spinors
into consideration, this CP odd form factor should
be modified as well. The relation between the correct
CP form factor under the θ vacuum F3 and F0

3 can be
retrieved by considering the parity transformation of the
normal spinors

uðpÞ→ uðp̃Þ¼ γ4uðpÞ; ūðpÞ→ ūðp̃Þ¼ ūðpÞγ4; ðA34Þ

and the CP ones

uθðpÞ→ uθðp̃Þ¼ eiα1θγ5γ4uðpÞ¼ ð1þ iα1θγ5Þγ4u; ðA35Þ

ūθðpÞ→ ūθðp̃Þ¼ ūðpÞγ4eiα1θγ5 ¼ ūðpÞγ4ð1þ iα1θγ5Þ:
ðA36Þ

Specifically, we have

iθF3 ¼ 2iα1θF2 þ iθF0
3 ¼ iθð2α1F2 þ F0

3Þ: ðA37Þ

5. Correlation functions

In general, path integrals under the θ vacuum can be
estimated by employing the Taylor expansion in θ and
keeping only the leading term

Z
DA ·Det½M�e−SgþiθQt

∼
Z

DA ·Det½M�e−Sg þ iθ
Z

DA ·Det½M�Qte−Sg ; ðA38Þ

where Qt ¼
R
d4xqt ¼ g2

32π2

R
d4xFE

μνF̃E;μν is the total topo-
logical charge and qt is the charge density. Correlation
functions can therefore be accessed by

θh…iθ ¼ h…i þ iθh…Qti: ðA39Þ

For example, the two-point functions can be expressed as

Gθ
2 ¼ G2 þ iθGQ

2 ; ðA40Þ

where Gθ
2, G2, and GQ

2 are two-point functions evaluated
with the θ term, normal two-point functions, and two-point
functions weighted by the topological charge, respectively.
Since,

Gθ
2 ¼ ZZ0†e−Et

m
E
uθðpÞūθðpÞ

¼ ZZ0†e−Et
m
E
uūþ ZZ0†e−Et

m
E
iα1γ5θ; ðA41Þ

where Z and Z0 are the sink and source overlapping factors
and m and E are the nucleon mass and energy, and

G2 ¼ ZZ0†e−Et
m
E
uðpÞūðpÞ; ðA42Þ

we can get

GQ
2 ¼ Gθ

2 −G2 ¼ ZZ0†e−Et
m
E
α1γ5: ðA43Þ

Here we are assuming t is large enough so that only the
ground state survives to simplify the equations. These two-
point correlation functions offer to a way of determining the
CP angle α1,

1

2

Tr½γ5GQ
2 �

Tr½ΓeG2�
¼ 1

2

α1Tr½I4�
1
2
Tr½I4�

¼ α1; ðA44Þ

where Γe ¼ 1þγ4
2

is the unpolarized projector and I4 is the 4
by 4 identity matrix. The angle α1 is actually the leading
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coefficient of the spinor dependence on θ, which, in some
sense, measures the CP effect of the θ term.
For the three-point function case, similarly, we have

Gθ
3 ¼ G3 þ iθGQ

3 : ðA45Þ

The normal three-point function is

G3 ¼ ZZ0†e−Efðtf−tcÞe−Eitc
m2

EfEi
uðpfÞhNfjJμjNiiūðpiÞ;

ðA46Þ

where the subscripts i and f are for the initial and final
nucleons respectively. Denoting the common factor
ZZ0†e−Efðtf−tcÞe−Eitc m2

EfEi
¼ A for simplicity, we have

Gθ
3 ¼ AuθðpfÞθhNfjJμjNiiθūθðpiÞ: ðA47Þ

The relation between the correlators and the form factors
will be derived as follows. In general, the nucleon matrix
elements in the three-point correlation functions can be
decomposed into CP even and CP odd form factors Weven

μ

and Wodd
μ as

G3 ¼ AuðpfÞūðpfÞWeven
μ uðpiÞūðpiÞ; ðA48Þ

and

Gθ
3 ¼ AuθðpfÞūθðpfÞðWeven

μ þ iθWodd
μ ÞuθðpiÞūθðpiÞ:

ðA49Þ
Thus, we have

G3

A
¼

�
−i=pf þm

2m
Weven

μ
−i=pi þm

2m

�
; ðA50Þ

and

Gθ
3

A
¼ −i=pf þmei2α

1θγ5

2m
ðWeven

μ þ iθWodd
μ Þ−i=pi þmei2α

1θγ5

2m

¼
�
−i=pf þm

2m
Weven

μ
−i=pi þm

2m

�

þ iθ

�
α1γ5Weven

μ
−i=pi þm

2m
þ −i=pf þm

2m
Weven

μ α1γ5 þ
−i=pf þm

2m
Wodd

μ
−i=pi þm

2m

�
: ðA51Þ

So by doing a similar subtraction, we arrive at

GQ
3

A
¼ α1γ5Weven

μ
−i=pi þm

2m
þ −i=pf þm

2m
Weven

μ α1γ5

þ −i=pf þm

2m
Wodd

μ
−i=pi þm

2m
: ðA52Þ

This is what the three-point correlator weighted by the
topological charge looks like, and is what we use to extract
the CP form factors.

APPENDIX B: EXTRACTING FORM FACTORS

To calculate the CP form factor, we need to the make
three-point function to two-point function ratios

R3ðΓi; JμÞ≡ Tr½ΓiG3ðJμÞ�
Tr½ΓeG2�

eEfðtf−tcÞeEiðtc−t0Þ; ðB1Þ

and

RQ
3 ðΓi; JμÞ≡ Tr½ΓiG

Q
3 ðJμÞ�

Tr½ΓeG2�
eEfðtf−tcÞeEiðtc−t0Þ; ðB2Þ

where Γi is the polarized projector and Jμ stands for the
current insertion. If we write down the explicit form of the
correlators, we have, e.g., in the CP even case,

R3ðΓi; Jμ; p⃗i; p⃗f; p⃗Þ ¼
m2

EfEi
Tr½ΓiuðpfÞhNfjJμjNiiūðpiÞ�

m
E Tr½ΓeuðpÞūðpÞ�

:

ðB3Þ

Here again we assume t is large enough to simplify the
equations. Details of dealing with the excited-states con-
tamination are discussed in the systematic uncertainty
section, Sec. V. The additional overlapping and kinematic
factors in Eqs. (B1) and (B2) are cancelled with proper
combination of two-point correlation functions. Please note
that in our numerical setup we always set the initial
momentum pi

!¼ 0 in three-point functions. With proper
selection of the momentum p⃗f, polarization Γi and current
insertion Jμ, the ratio gives the desired nucleon matrix
element for particular form factors (or combinations of
form factors). The relation between the corresponding form
factors and the setup of the ratios are derived as follows.
For the normal EM case, we choose unpolarized pro-

jection and vector current γ4, which gives (in our momen-
tum setup)

REM1
3 ðΓe;γ4Þ¼

Tr½ΓeG3ðγ4Þ�
Tr½ΓeG2ðp⃗¼0Þ�

¼Efþm

2Ef

�
F1−

jq⃗j2
2mðEfþmÞF2

�
¼Efþm

2Ef
GE;
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whereGE ≡ F1 −
q2

4m2 F2 is the electric form factor. The last
step used the fact that the momentum transfer

q2 ¼ jq⃗j2 − ΔE2 ¼ jq⃗j2 − ðEf −mÞ2 ðB4Þ

and

jq⃗j2 ¼ E2
f −m2: ðB5Þ

Therefore, we have

q2 ¼ E2
f −m2 − ðEf −mÞ2 ¼ 2m

Ef þm
jq⃗j2; ðB6Þ

and

jq⃗j2
2mðEf þmÞ ¼

1

2mðEf þmÞ
Ef þm

2m
q2 ¼ q2

4m2
: ðB7Þ

We can also choose polarized projection (Γi≡
−i 1þγ4

2
γ5γi) and the γj current,

REM2
3 ðΓi; γjÞ ¼

Tr½ΓiG3ðγjÞ�
Tr½ΓeG2ðp⃗ ¼ 0Þ�

¼ −ϵijk
pf;k

2Ef
ðF1 þ F2Þ

¼ −ϵijk
pf;k

2Ef
GM; ðB8Þ

where GM ≡ F1 þ F2 is the magnetic form factor, or
unpolarized projection and γi,

REM3
3 ðΓe; γiÞ ¼

Tr½ΓeG3ðγiÞ�
Tr½ΓeG2ðp⃗ ¼ 0Þ�

¼ −i
pf;i

2Ef

�
F1 −

q2

4m2
F2

�

¼ −i
pf;i

2Ef
GE:

These ratios can be used to extract the CP conserved form
factors. For the CP case, we can choose the polarized
projection and γ4, which turns out to be

RQ;EM1
3 ðΓi; γ4Þ ¼

Tr½ΓiG
Q
3 ðγ4Þ�

Tr½ΓeG2ðp⃗ ¼ 0Þ�

¼ pf;i

2Ef

�
α1F1 þ

Ef þ 3m

2m
α1F2 þ

Ef þm

2m
F0
3

�

¼ pf;i

2Ef

�
α1F1 −

Ef −m

2m
α1F2 þ

Ef þm

2m
ð2α1F2 þ F0

3Þ
�

¼ pf;i

2Ef

�
α1GE þ Ef þm

2m
F3

�
: ðB9Þ

An important fact about this ratio is that the neutron
form factor F3;nð0Þ has no α1 dependence since
GE;nð0Þ ¼ 0. This means that one does not need to have
any information about α1 or the other CP-even form

factors if one focuses only on the neutron case with
q2 ¼ 0. But α1 is still essential to obtain the correct values
at nonzero q2 for both the proton and neutron cases.
Similarly, we can also use

RQ;EM2
3 ðΓi; γiÞ ¼

Tr½ΓiG
Q
3 ðγiÞ�

Tr½ΓeG2ðp⃗ ¼ 0Þ�

¼ −i
�
α1

Ef −m

2Ef
ðF1 þ F2Þ þ

p2
f;i

4mEf
ðα1F2 þ F0

3Þ
�

¼ −i
�
α1

Ef −m

2Ef
GM þ p2

f;i

4mEf
ðα1F2 þ F0

3Þ
�

and
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RQ;EM3
3 ðΓi; γjÞ ¼

Tr½ΓiG
Q
3 ðγjÞ�

Tr½ΓeG2ðp⃗ ¼ 0Þ�

¼ −
i
4

�
α1

pf;ipf;j

mEf
F2 þ

pf;ipf;j

mEf
F0
3

�
¼ −

i
4

pf;ipf;j

mEf
½α1F2 þ F0

3�; ðB10Þ

which prefers giving the combination of α1F2 þ F0
3 rather than F3 ¼ 2α1F2 þ F0

3.
We use the ratios REM1

3 ðΓe; γ4Þ, REM2
3 ðΓi; γjÞ, and RQ;EM1

3 ðΓi; γ4Þ in our calculation.
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