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At the TeV scale, low-energy precision observations of neutron characteristics provide unique
probes of novel physics. Precision studies of neutron decay observables are susceptible to beyond
the Standard Model (BSM) tensor and scalar interactions, while the neutron electric dipole moment,
dn, also has high sensitivity to new BSM CP-violating interactions. To fully utilize the potential of
future experimental neutron physics programs, matrix elements of appropriate low-energy effective
operators within neutron states must be precisely calculated. We present results from the QCDSF/
UKQCD/CSSM Collaboration for the isovector charges gT , gA and gS of the nucleon, Σ and Ξ
baryons using lattice QCD methods and the Feynman-Hellmann theorem. We use a flavor sym-
metry breaking method to systematically approach the physical quark mass using ensembles that
span five lattice spacings and multiple volumes. We extend this existing flavor-breaking expansion
to also account for lattice spacing and finite volume effects in order to quantify all systematic
uncertainties. Our final estimates of the nucleon isovector charges are gT ¼ 1.010ð21Þstatð12Þsys; gA ¼
1.253ð63Þstatð41Þsys and gS ¼ 1.08ð21Þstatð03Þsys renormalized, where appropriate, at μ ¼ 2 GeV in

the MS scheme.

DOI: 10.1103/PhysRevD.108.094511

I. INTRODUCTION

Historically nuclear and neutron beta decays have
played an important role in determining the vector-axial
(V-A) structure of weak interactions and in shaping the
Standard Model (SM). However, more recently, neutron
and nuclear β-decays can also be used to probe the
existence of beyond the Standard Model (BSM) tensor

and scalar interactions. The interaction of the W boson
with the neutron and proton during neutron β-decay is
proportional to the matrix element of flavor-changing
vector and axial-vector currents between the initial
neutron state and final proton state, with coupling
constants gA=gV ¼ 1.2756ð13Þ [1]. It has been identified
that the potential existence of BSM tensor and scalar
couplings would provide additional contributions to
neutron β-decay [2]. These new BSM contributions are
proportional to analogous matrix elements of flavor-
changing tensor or scalar operators. To gain sensitivity
to these effects the majority of previous and proposed
neutron beta decay studies aim to determine one or more
of the correlation coefficients included in the differential
decay rate for a beam of polarized neutrons [2],
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where σn is the neutron spin, pe is the momentum of the
electron and pν is the momentum of the neutrino with
energies Ee and Eν, respectively, and E0 is the endpoint
energy of the electron. In the SM, ξ ¼ G2

FV
2
udð1þ 3λ2Þ,

where λ ¼ gA=gV is the ratio of the axial-vector and
vector coupling constants and GF is the Fermi constant.
The neutron decay observables include, a, the neutrino-
electron correlation coefficient, b, the Fierz interference
term, A, the beta asymmetry, and B, the neutrino
asymmetry. Within the SM, the correlation coefficients
a, A and B depend solely on the ratio of the axial-vector
and vector coupling constants, λ ¼ gA=gV . However the
parameter, b, is included to account for the case of
the hypothetical scalar or tensor couplings in addition
to the (V-A) interaction of the SM. Many experiments
are underway worldwide with the aim to improve the
precision of measurements of these neutron decay observ-
ables, two importantly being the neutrino asymmetry B [3],
and the Fierz interference term b [4,5]. The parameter b has
linear sensitivity to BSM physics through [6]

bBSM ¼ 2

1þ 3λ2
½gSϵS − 12λgTϵT �

≈ 0.34gSϵS − 5.22gTϵT; ð2Þ

bBSMv ¼ 2

1þ 3λ2
½gSϵSλ − 4λgTϵTð1þ 2λÞ�

≈ 0.44gSϵS − 4.85gTϵT; ð3Þ

where ϵT and ϵS are the new-physics effective couplings
and gT and gS are the tensor and scalar nucleon isovector
charges. Here bBSMv is a correction term to the neutrino
asymmetry correlation coefficient, B, and bBSM is an
addition to the Fierz interference term b in Eq. (1). Data
taken at the Large Hadron Collider (LHC) is currently
looking at probing scalar and tensor interactions at the
≲10−3 level [7]. However to fully assess the discovery
potential of experiments at the 10−3 level it is crucial to
identify existing constraints on new scalar and tensor
operators.
Another quantity of interest is the neutron electric dipole

moment (EDM), which is a measure for CP violation. In
extensions of the Standard Model quarks acquire an
EDM through the interaction of the photon with the tensor
current [8]. The contribution of the quark EDMs, dq, to the
EDM of the neutron, dn, is related to the quark tensor
charges, gqT , by [9–11]

dn ¼ dugdT þ ddguT þ dsgsT: ð4Þ

Here du, dd, ds, are the new effective couplings which
contain new CP-violating interactions at the TeV scale.
The current experimental data gives an upper limit on the
neutron EDM of jdnj < 1.8 × 10−26e cm [12]. In calculat-
ing the tensor charges and knowing a bound on dn, we
are able to constrain the couplings, dq, and hence BSM
theories.
In recent years there has been an increase in interest

from lattice QCD Collaborations in calculating the axial,
scalar and tensor isovector charges due to their importance
in interpreting the results of many experiments and phe-
nomena mediated by weak interactions [13–19]. The
QCDSF/UKQCD/CSSM Collaborations have an ongoing
program investigating various hadronic properties using the
Feynman-Hellmann theorem [20–27]. Here we extend this
work to a dedicated study of the nucleon tensor, scalar and
axial charges. We discuss a flavor symmetry-breaking
method to systematically approach the physical quark
mass. We then extend this existing flavor-breaking expan-
sion to also account for lattice spacing and finite volume
effects to quantify systemic uncertainties. Finally, we look
at the potential impact of our results on measurements of
the Fierz interference term and the neutron EDM.

II. SIMULATION DETAILS

For this work we use gauge field configurations that have
been generated with Nf ¼ 2þ 1 flavors of dynamical
fermions, using the tree-level Symanzik improved gluon
action and nonperturbatively OðaÞ improved Wilson fer-
mions [28]. In our simulations, we have kept the bare
average quark mass, m̄ ¼ ðmu þmd þmsÞ=3, held fixed
approximately at its physical value, while systematically
varying the quark masses around the SUð3Þ flavor sym-
metric point, mu ¼ md ¼ ms, to extrapolate results to the
physical point [29]. We also have degenerate u and d quark
masses, mu ¼ md ≡ml. The coverage of lattice spacings
and pion masses is represented graphically in Fig. 1.

FIG. 1. Lattice ensembles that are used in this work charac-
terized by pion mass, mπ , and lattice spacing, a. The horizontal
lines represent the physical pion and kaon masses and the
continuum limit occurs as a → 0.

R. E. SMAIL et al. PHYS. REV. D 108, 094511 (2023)

094511-2



Further information about these ensembles is presented in
Table I and Appendix A, Table VII. We have five lattice
spacings, a ¼ 0.082, 0.074, 0.068, 0.059, 0.052 fm [30],
enabling an extrapolation to the continuum limit as well as
three lattice volumes, 323 × 64, 483 × 96 and 643 × 96,
allowing an extension to the flavor-breaking expansion,
which describes the quark mass dependence of the matrix
elements, to also account for lattice spacing and finitevolume
effects. We also use a bootstrapping resampling technique to
compute all statistical uncertainties in our study.
In order to compare with existing results in the literature

we use the renormalization constants given in Table II.
Table II summarizes the renormalization constants at each
value of β after chiral and continuum extrapolation across

multiple masses with conversion from RI0-MOM to MS at
μ ¼ 2 GeV. The renormalization constants are calculated
following the method in Ref. [31] and the results first
appeared in Ref. [32].

III. THE FEYNMAN-HELLMANN THEOREM

The Feynman-Hellmann (FH) theorem is used to calcu-
late hadronic matrix elements in lattice QCD through
modifications to the QCD Lagrangian. The expression
for the FH theorem in the context of field theory is [20]

∂EH;λðp⃗Þ
∂λ

¼ 1

2EH;λðp⃗Þ
�
H; p⃗

���� ∂S
∂λ

����H; p⃗

�
λ

; ð5Þ

where S is a modified action of our theory so that it depends
on some parameter λ, S → SðλÞ and EH;λðp⃗Þ is the energy
of a hadron state, H. This result relates the derivative of the
total energy to the expectation value of the derivative of the
action with respect to the same parameter.

A. Application and implementation

Consider the following modification to the action of our
theory,

S → Sþ λO: ð6Þ
Then the FH theorem as shown in Eq. (5), provides a
relationship between an energy shift and a matrix element
of interest,

∂EH;λðp⃗Þ
∂λ

����
λ¼0

¼ 1

2EHðp⃗Þ
hH; p⃗jOjH; p⃗i: ð7Þ

Importantly, the right-hand side is the standard matrix
element of the operator O inserted on the hadron, H, in the
absence of any background field. In lattice calculations, we
modify the action in Eq. (6), then examine the behavior of
hadron energies as the parameter λ changes, and finally
extract the above matrix element from the slope at λ ¼ 0.
In order to calculate the tensor, axial and scalar charges

of a baryon, the extra terms we add to the QCD action are

ST → Sþ ζTμνλ
X
x

q̄ðxÞσμνγ5qðxÞ; ð8Þ

SA → Sþ ζAμ λ
X
x

q̄ðxÞγμγ5qðxÞ; ð9Þ

SS → Sþ λ
X
x

q̄ðxÞqðxÞ; ð10Þ

where we will take the case of each quark flavor, q,
separately, ζTμν, ζAμ are the phase factors and there are four
choices of μ and ν. The phase factors chosen here are
ζTk4 ¼ ζT4j ¼ 1, ζTkj ¼ i and ζA4 ¼ 1, ζAk ¼ i. The tensor,
axial and scalar charges are related to the baryon matrix
elements of the same operators:

TABLE I. Details of lattice ensembles used in this work.

β a (fm) Volume ðκlight; κstrangeÞ mπ mK (MeV)

5.40 0.082 323 × 64 (0.119930, 0.119930) 408 408
(0.119989, 0.119812) 366 424
(0.120048, 0.119695) 320 440
(0.120084, 0.119623) 290 450

5.50 0.074 323 × 64 (0.120900, 0.120900) 468 468a

(0.121040, 0.120620) 357 505a

(0.121095, 0.120512) 315 526a

5.50 0.074 323 × 64 (0.120950, 0.120950) 403 403
(0.121040, 0.120770) 331 435
(0.121099, 0.120653) 270 454

5.65 0.068 483 × 96 (0.122005, 0.122005) 412 412
(0.122078, 0.121859) 355 441
(0.122130, 0.121756) 302 457
(0.122167, 0.121682) 265 474

643 × 96 (0.122197, 0.121623) 220 485

5.80 0.059 483 × 96 (0.122810, 0.122810) 427 427
(0.122880, 0.122670) 357 456
(0.122940, 0.122551) 280 477

5.95 0.052 483 × 96 (0.123411, 0.123558) 468 395
(0.123460, 0.123460) 418 418
(0.123523, 0.123334) 347 451

aEnsembles with a different value of m̄, further from the
physical m̄. The uncertainty on the pseudoscalar masses is
between 1–3 MeV.

TABLE II. Renormalization constants at each value of β after
chiral and continuum extrapolation across multiple masses with
conversion from RI0-MOM to MS at μ ¼ 2 GeV [31,32].

β ZMS
T ZMS

S ZA

5.40 0.9637(23) 0.7034(48) 0.8671(77)
5.50 0.9644(49) 0.7046(89) 0.8693(38)
5.65 0.9684(54) 0.7153(86) 0.8754(19)
5.80 0.9945(11) 0.6709(23) 0.8913(49)
5.95 0.9980(42) 0.6683(94) 0.8983(43)
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hp⃗; s⃗jT μνjp⃗; s⃗i ¼ −i
2

m
ðsμpν − sνpμÞgqT;

hp⃗; s⃗jAμjp⃗; s⃗i ¼ 2isμg
q
A;

hp⃗; s⃗jSjp⃗; s⃗i ¼ 2mgqS; ð11Þ

where T μν ¼ q̄σμνγ5q, Aμ ¼ q̄γμγ5q and S ¼ q̄q [33]. In
our simulations, we have chosen μ ¼ 3, ν ¼ 4 and p⃗ ¼ 0,

h0⃗; s⃗jT 34j0⃗; s⃗i ¼ 2mgqTσ;

h0⃗; s⃗jA3j0⃗; s⃗i ¼ 2imgqAσ;

h0⃗; s⃗jSj0⃗; s⃗i ¼ 2mgqS; ð12Þ
where, σ ¼ �1, is the spin of the baryon polarized in the z
direction.1 Hence the FH theorem in Eq. (7) for the tensor
and axial charges gives

∂Eþ
λ

∂λ

����
λ¼0

¼ gqT;A;
∂E−

λ

∂λ

����
λ¼0

¼ −gqT;A; ð13Þ

where we have dropped the, H, subscript as from now on
we are only dealing with baryon states and Eþ=− denotes
the baryon energy with spin up/down in the z direction in
the presence of a tensor or axial background field [Eqs. (8)
and (9)] with strength λ. For small values of λ, the energy is
therefore given by

E�
λ ¼ E0 � λgqT;A þOðλ3Þ: ð14Þ

We have related the change in energy of the hadron state to
the spin contribution from the quark flavor q. Alternatively,
due to the combination of �λ, the spin-down state with
positive λ is equivalent to the energy shift of the spin-up
state with negative λ. For the scalar we simply have

∂Eλ

∂λ

����
λ¼0

¼ gqS;

Eλ ¼ E0 þ λgqS þOðλ2Þ: ð15Þ
Here the insertion is on the quark flavor q. For example, we
use the perturbed propagator for the d-quark in the proton
to get the d-quark contribution to the nucleon isovector
charge. The nucleon isovector charges are then given by the
difference between the up- and down-quark contributions,

gu−dT;A;S ¼ guT;A;S − gdT;A;S: ð16Þ
Here we only insert the operator into the propagators used
in the quark-line connected contributions; there are no
quark-line disconnected terms considered here as they
cancel in the case u − d. To improve the precision of

our results we can take advantage of the fact that we are
only interested in energy changes due to changes in λ,
specifically the change in energy around the point λ ¼ 0,
with respect to the unperturbed energy. We consider two
correlation functions, one calculated at λ ¼ 0 and the other
at some finite value of λ. If we take the ratio of these two
quantities, we find

CλðtÞ
CðtÞ ¼large t

e−ðEλ−EÞt E
Eλ

jAλj2
jAj2 : ð17Þ

The exponential dependence on t now contains the differ-
ence in energies between the unperturbed energy and the
energy at some λ. C and Cλ are both measured on the same
configurations, so both will have correlated noise. Using
this ratio to determine energy differences has the advantage
that the noise will largely cancel, leaving to a more reliable
energy shift. We can also constrain our fit function to pass
through zero by construction as there is no difference in
energies at λ ¼ 0.
The extraction of hadron matrix elements in lattice

QCD demands careful attention to contamination from
excited states. Excited-state contamination has an impact
on the study of standard baryon three-point functions
due to the presence of weak signal-to-noise behavior at
large Euclidean times. Various techniques are used to
address excited-state contamination, one of which is the
variational method. The variational method has been
widely successful in spectroscopy investigations [34–40],
and has also found application in the analysis of hadronic
matrix elements [41–46]. Another popular method is the
“two-exponential fit” and “summation” methods seen in
Refs. [45–51]. A summary of these methods as well as a
comparison between them can be seen in Ref. [52]. Since
in this investigation hadron energies are extracted from
two-point functions, control of excited state contamination
in the Feynman-Hellmann is simplified compared to
standard three-point analyses. For example Fig. 2 shows

FIG. 2. Proton effective mass for the ratio [Eq. (17)] divided by
λ, for the down quark at two different values of λ, calculated at
a ¼ 0.068 fm, ðκl; κsÞ ¼ ð0.122167; 0.121682Þ for the tensor.
The points have been offset slightly for clarity.

1Our spin vector is given by sðp⃗Þ ¼ ði s⃗·p⃗E ; s⃗ðpÞÞ, where
s⃗ðp⃗Þ ¼ e⃗þ p⃗·e⃗

mðEþmÞ p⃗, with quantization axis n⃗ where e⃗ ¼ σmn⃗,
σ ¼ �1 and s2 ¼ −m2. For our case we have μ ¼ 3, ν ¼ 4, p⃗ ¼
0 and n⃗ ¼ e⃗3. Therefore, s3 ¼ σme⃗3, s4 ¼ 0 and p4 ¼ im.
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the effective energy shift for the ratio [Eq. (17)] divided by
λ for the down quark at two different values of λ. In Fig. 2
we see a plateau in the effective mass indicating a clear
region where the ground state can be isolated.

IV. WEIGHTED-AVERAGING METHOD

The dependency of the fits on the time ranges used is a
source of systematic uncertainty. To address these issues,
we use a weighted-averaging method on the fit results to
limit the impact of the fit window selection. The weighted
averaging method we use is a simplified variation of that
outlined in detail in Ref. [53] and has similarities to that
proposed in Ref. [54]. We proceed by determining the
energy shifts, ΔE ¼ Eλ − E, by fitting the ratio of per-
turbed to unperturbed correlation functions using Eq. (17)
for a variety of different Euclidean time fit windows. The
largest time slice employed in each fit for each ensemble
and operator is fixed to be the last time slice before the
signal is lost due to statistical noise. For example, in Fig. 2
this would be chosen to be tmax ≈ 17. The start of the fit
range, tmin, is varied between tmin =a ¼ 6, 7, 8, 9, 10 for
ensembles with β ¼ 5.40, 5.50, 5.65, 5.80, 5.95, respec-
tively and up to the largest value of tmin such that no less
than four time slices are used in a fit. By adjusting the
minimum time of the fit range, tmin, based on the lattice
spacing of each ensemble, we are ensuring that each fit
starts at an earlier scale. In the following we refer to the
value of ΔE for a single fit, f, as Ef. Each fit result is then
assigned a weight,

wf ¼ pfðδEfÞ−2P
N
f0¼1

pf0 ðδEf0 Þ−2 ; ð18Þ

where f labels the choice of fit range specified by tmin

for a fixed tmax, pf ¼ ΓðNd.o.f.=2; χ2=2Þ=ΓðNd.o.f.=2Þ is the
p-value of the fit and δEf is the uncertainty in the energy
shift, Ef, for fit f. Taking a weighted average of the N fit

findings, Ef, provides the final estimate of the energy shift,
Ē, and associated uncertainty δĒ,

Ē ¼
XN
f¼1

wfEf;

δstatĒ2 ¼
XN
f¼1

wfðδEfÞ2;

δsysĒ2 ¼
XN
f¼1

wfðEf − ĒÞ2;

δĒ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δstatĒ2 þ δsysĒ2

q
: ð19Þ

The total error δĒ describes the combined statistical
uncertainty on Ē plus the systematic uncertainty arising
from the choice of fit range. The separating of this error into
δstatĒ and δsysĒ only partially separates statistical and
systematic uncertainties because δstatĒ includes statistical
errors plus systematic uncertainties related to fluctuations
among the δEf. The final estimate, Ē, provides an estimate
of the energy of the hadron with reduced systematic bias
arising from choice of fit window. Figure 3 shows the
proton effective energy shift for the ratio [Eq. (17)], using
the standard definition of an effective mass. The final
estimate of the energy shift, Ē, when using the weighted-
averaging method is indicated by the red band. Figure 3
also includes a bar graph for the weights assigned to each
fit value.

V. DETERMINATION OF MATRIX ELEMENTS

A. Feynman-Hellman method

Now that we have a procedure for reliably determining
the energy shifts, we are now in a position to determine ΔE
at multiple values of λ for a fixed ensemble and operator. In
Fig. 4 we plot the calculated proton energy shifts ΔE for

(a) (b) (c)

FIG. 3. Proton effective mass for the ratio [Eq. (17)] for the up quark at λ ¼ 0.00005, for spin down in the tensor (a) and the axial
(b) with the scalar results show in (c), calculated at a ¼ 0.068 fm, ðκl; κsÞ ¼ ð0.122167; 0.121682Þ. The blue bar graph shows the
weight of each fit result for the value of tmin. The horizontal (red) band is the weighted-average value, where the band includes the
combined statistical and systematic uncertainty.
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each value of λ for the a ¼ 0.068 fm ensemble with
ðκl; κsÞ ¼ ð0.122167; 0.121682Þ. Figure 4(a) shows results
for the tensor operator, while Fig. 4(b) shows those for
the axial operator. Now performing a linear fit to Eq. (14)
and extracting the slope we obtain the following results,
guT ¼ 0.822ð27Þ, gdT ¼ −0.263ð25Þ, guA ¼ 0.814ð56Þ and
gdA ¼ −0.316ð26Þ, with the tensor results, renormalized at
μ ¼ 2 GeV in the MS scheme using the renormalization
factors given in Table II. Similarly for the scalar charge, in
Fig. 4(c) we perform a linear fit to Eq. (15) and by extracting
the slope we find, guS ¼ 4.03ð29Þ and gdS ¼ 3.04ð17Þ, again
renormalized at μ ¼ 2 GeV in the MS scheme. The above
process has been repeated for all quark masses on each of the
lattice spacings aswell as for theΣ andΞ baryons. The results
can been found in Appendix B, in Tables XIII, IX, and X.

B. Two-exponential fit method

Here we compare the FH method results to the popular
“two-exponential fit” method using three point functions.

This is undertaken by expanding the two-point and
three-point functions to the second energy state and
fitting to obtain the parameters of interest. The process
for the two-exponential fit is to fit the two-point cor-
relator over a sink time range in which the two-state
initial fit assumption is justified. Then using these
extracted parameters in the fit to the three-point correlator
using a τ range that also satisfies a two-state initial fit
assumption. A detailed treatment of the two-exponential
fit is given in, for example, Ref. [52]. Figure 5 shows a
comparison of the result for guS extracted using the FH
method (red band) and the result using the two-expo-
nential fit method (purple band). The red points come
from a fixed λ value, similar to that shown in Fig. 2,
whereas the red band comes from performing a linear fit
to Eq. (14) and extracting the slope. We can see that the
results using the FH method is in excellent agreement
with the standard three-point analysis.
Now that we have the quark contributions for mul-

tiple lattice ensembles, in the next section we shall use a
SUð3Þ flavor symmetry breaking method to extrapolate
results for the nucleon isovector charges to the physical
quark mass.

VI. FLAVOR SYMMETRY BREAKING

The QCD interaction is flavor-blind, which means that
the only distinction between quark flavors comes from the
quark masses when we disregard the electromagnetic and
weak interactions. The theory behind these interactions is
easiest to understand when all three quark flavors share
the same mass, as this allows us to use the full power
of SUð3Þ flavor symmetry. Here we have kept the bare
quark mass, m̄ ¼ ðmu þmd þmsÞ=3, held fixed at its
physical value, while systematically varying the individ-
ual quark masses around the SUð3Þ flavor symmetric
point, mu ¼ md ¼ ms, in order to constrain the extrapo-
lation to the physical point. In this work we simulate with
degenerate u and d quark masses mu ¼ md ≡ml, restrict-
ing ourselves to nf ¼ 2þ 1.

(a) (b) (c)

FIG. 4. Proton energy shift, ΔE ¼ Eλ − E, for different parameter values, with a linear fit, where the red and blue bands show the
statistical errors associated with the fitted parameters. Calculated at a ¼ 0.068 fm, ðκl; κsÞ ¼ ð0.122167; 0.121682Þ. Results for the
tensor (a), axial (b) and scalar (c) operators.

FIG. 5. Graph of guS extracted using the FH method shown by
the red points and shaded band compared with the result using the
two-exponential fit method, calculated at a ¼ 0.068 fm,
ðκl; κsÞ ¼ ð0.122167; 0.121682Þ. The black, orange and blue fits
correspond to the two-exponential fit function constructed and
the purple shaded area corresponds to the guS parameter extracted
from the two-exponential fit.
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When SUð3Þ is unbroken all octet baryon matrix
elements of a given octet operator can be expressed in
terms of just two couplings f and d. However, once SUð3Þ
is broken and we move away from the symmetric point we
can construct quantities (Di, Fi) which are equal at the
symmetric point but differ in the case where the quark
masses are different. The theory behind constructing these
quantities is described in detail in Ref. [55] and is
summarized below. The result of constructing these quan-
tities leads to “fan” plots, with slope parameters (ri, si)
relating them. Following the method in Ref. [55] we use the
SUð3Þ expansion to extrapolate the nucleon charges to the
physical point.
In this work, we describe the quark mass depen-

dence of the hadronic matrix elements by a perturbation
in the quark masses about an SUð3Þ symmetric point.
This perturbation generates a polynomial expansion in
the quark mass differences [i.e. the SUð3Þ breaking
parameter] and therefore appears distinct from a chiral
formulation that generates nonanalytic behavior (e.g.
logarithms) in the vicinity of the 2- or 3-flavor chiral
limits. However, it has been demonstrated in Ref. [56],
that by expanding the logarithmic features about a fixed
quark mass point (such as the chosen SUð3Þ symmetric
point), the infrared singularities reveal themselves in the
high-order terms of the polynomial expansion—hence
demonstrating that the group-theoretic expansion does
encode the same physics that appears in the logarithms.
A detailed numerical investigation exploring the numeri-
cal convergence from both limits goes beyond the present
work. Here we assess the convergence of our expansion
empirically, subject to the precision of our numerical
results.

A. Mass dependence of amplitudes

In order to find the allowed mass dependence of the octet
operators in hadrons we need the SUð3Þ decomposition of
the 8 ⊗ 8 ⊗ 8. SUð3Þ singlet and octet coefficients are
constructed through group theory and using a mass Taylor
expansion, which can be seen in Ref. [55]. Here we
summarize the coefficients in Table III.
These coefficients are used to construct equations which

are linear in δml, where

δml ¼ ml − m̄; ð20Þ

is the difference of the light quark mass to the SUð3Þ
symmetric point. Using the definitions in Table IV, we
introduce the notation for the matrix element transition of
B → B0 as follows:

AB̄0FB ¼ hB0jJFjBi; ð21Þ

where JF is the appropriate operator, or current, from
Table IV and F represents the flavor structure of the

operator. From Table III we can now read off the expan-
sions of the various matrix elements, where the f and d
terms are independent of δml and the coefficients r1, r2, r3
and s1, s2 are the leading order δml terms. For example if
we look at the Σ̄πΣ term, we have to first order in δml,

hΣþjJπ0 jΣþi ¼ AΣ̄πΣ ¼ 2f þ ð−2s1 þ
ffiffiffi
3

p
s2Þδml: ð22Þ

B. Mass dependence: Fan plots

Since we hold the average quark mass, m̄, fixed, while
moving away from the symmetric point, we only need to
consider the nonsinglet polynomials in the quark mass. In
this subsection quantities ðDi; FiÞ are constructed which
are equal at the symmetric point and differ in the case where
the quark masses are different. We can then evaluate
the violation of SUð3Þ symmetry that emerges from the
difference in ms −ml.

TABLE III. Coefficients in the mass Taylor expansion of AB̄0FB
operator amplitudes: SUð3Þ singlet and octet, for first-class
currents [55].

1, 1st class 8, 1st class

Oð1Þ OðδmlÞ
f d d d d f f

I AB̄0FB f d r1 r2 r3 s1 s2

0 N̄ηN
ffiffiffi
3

p
−1 1 0 0 0 −1

0 Σ̄ηΣ 0 2 1 0 2
ffiffiffi
3

p
0 0

0 Λ̄ηΛ 0 −2 1 2 0 0 0
0 Ξ̄ηΞ −

ffiffiffi
3

p
−1 1 0 0 0 1

1 N̄π0N 1
ffiffiffi
3

p
0 0 −2 2 0

1 Σ̄π0Σ 2 0 0 0 0 −2
ffiffiffi
3

p
1 Ξ̄π0Ξ 1 −

ffiffiffi
3

p
0 0 2 2 0

TABLE IV. The conventions for the generalized currents. We
use the convention that current (i.e. operator) numbered by i has
the same effect as absorbing a meson with the index i. Here γ
represents an arbitrary Dirac matrix [55].

Index Baryon (B) Meson (F) Current (JF)

1 n K0 d̄γs
2 p Kþ ūγs
3 Σ− π− d̄γu
4 Σ0 π0 1ffiffi

2
p ðūγu − d̄γdÞ

5 Λ0 η 1ffiffi
6

p ðūγuþ d̄γd − 2s̄γsÞ
6 Σþ πþ ūγd
7 Ξ− K− s̄γu
8 Ξ0 K̄0 s̄γd

0 η0 1ffiffi
6

p ðūγuþ d̄γdþ s̄γsÞ
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1. The d-fan

Following Ref. [55], we construct the following combi-
nations of matrix elements which have the same value, 2d,
at the SUð3Þd symmetric point:

D1 ≡ −ðAN̄ηN þ AΞ̄ηΞÞ ¼ 2d − r1δml;

D2 ≡ AΣ̄ηΣ ¼ 2dþ ðr1 þ 2
ffiffiffi
3

p
r3Þδml;

D3 ≡ −AΛ̄ηΛ ¼ 2d − ðr1 þ 2r2Þδml;

D4 ≡ 1ffiffiffi
3

p ðAN̄πN − AΞ̄πΞÞ ¼ 2d −
4ffiffiffi
3

p r3δml;

D5 ≡ AΣ̄πΛ ¼ 2dþ ðr2 −
ffiffiffi
3

p
r3Þδml;

D6 ≡ 1ffiffiffi
6

p ðAN̄KΣ þ AΣ̄KΞÞ ¼ 2dþ 2ffiffiffi
3

p r3δml;

D7 ≡ −ðAN̄KΛ þ AΛ̄KΞÞ ¼ 2d − 2r2δml: ð23Þ

By constructing these quantities the result is a “fan”
plot with seven lines and three slope parameters ðr1; r2
and r3) constraining them. The slope parameters can
be constrained by calculating octet baryon matrix
elements on a set of ensembles with varying quark
masses at fixed lattice spacing, such as those given in
Table I, and constructing the Dis. For the forward
matrix elements considered here, these Dis can also be
written as linear combinations of the different quark
contributions to the baryon charges. For example,
using Table IV we see

D1 ¼ −ðAN̄ηN þ AΞ̄ηΞÞ

¼ −
�

1ffiffiffi
6

p ðgup þ gdpÞ þ
1ffiffiffi
6

p ðguΞ − 2gsΞÞ
�
; ð24Þ

where we introduce the notation gqB to denote the
quark, q, contribution to the overall charge in the
baryon, B. In this work we only consider the flavor
diagonal matrix terms, i.e. there are no transition
terms. Therefore, only the diagonal D terms, D1, D2

and D4, are used. An “average D” can also be
constructed from the diagonal amplitudes,

XD ¼ 1

6
ðD1 þ 2D2 þ 3D4Þ ¼ 2dþOðδm2

l Þ; ð25Þ

which is constant in δml up to terms Oðδm2
l Þ. When

constructing these fan plots it is useful to plot D̃i ¼
Di=XD to find the average fit to reduce statistical
fluctuations.

2. The f -fan

Similarly another five quantities, Fi, can be constructed
which all have the same value, 2f, at the SUð3Þf symmetric
point:

F1 ≡ 1ffiffiffi
3

p ðAN̄ηN − AΞ̄ηΞÞ ¼ 2f −
2ffiffiffi
3

p s2δml;

F2 ≡ ðAN̄πN þ AΞ̄πΞÞ ¼ 2f þ 4s1δml;

F3 ≡ AΣ̄πΣ ¼ 2f þ ð−2s1 þ
ffiffiffi
3

p
s2Þδml;

F4 ≡ 1ffiffiffi
2

p ðAΣ̄KΞ − AN̄KΣÞ ¼ 2f − 2s1δml;

F5 ≡ 1ffiffiffi
3

p ðAΛ̄KΞ − AN̄KΛÞ ¼ 2f þ 2ffiffiffi
3

p ð
ffiffiffi
3

p
s1 − s2Þδml:

ð26Þ

Again, an “average F” can be calculated through

XF ¼ 1

6
ð3F1 þ F2 þ 2F3Þ ¼ 2f þOðδm2

l Þ: ð27Þ

In this work, only the connected quark-line terms are
computed. Quark-line disconnected terms only show up in
the r1 coefficient and rdiscon1 cancels in the case gu−dT;A;S ¼
guT;A;S − gdT;A;S. Unlike the d-fan, the f-fan to linear order, has
no error from dropping the quark-line disconnected contri-
butions, as none of the ri parameters appear in the f-fan.

C. Fan plot results

Here we present results using the a ¼ 0.068 fm ensem-
ble. Results from other lattice spacings are similar. In
Sec. VII, we will extend this method to include all
ensembles and present the final results for gT;A;S. The
singlet quantities XD and XF are calculated using Eqs. (25)
and (27). In Fig. 6 XD and XF are plotted against δml and
fitted to a constant. Since in Sec. VII we will work to
Oðδm2

l Þ in our flavor-breaking expansions, we fit XD and
XF to constants in order to determine their values at the
physical quark masses. The constant fits to the a ¼
0.068 fm data are shown by the dashed lines in Fig. 6.
In Fig. 7(a) we present the D-“fan” plot which shows the

FIG. 6. XD and XF for each δml for the a ¼ 0.068 fm ensemble
for the tensor matrix element. The dashed lines are constant fits
and the black stars represent the physical point.
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δml dependence of the D̃i ¼ Di=XD for i ¼ 1, 2 and 4.
Here the lines correspond to the linear in δml fits using
Eq. (23). From these linear fits the slope parameters r̃1 ¼
r1=XD and r̃3 ¼ r3=XD are determined. It is interesting to
note that these parameters also lead to a prediction for the
flavor off-diagonal term for i ¼ 6, which is also shown.
Similarly in Fig. 7(b) we present the F-“fan” plot for
F̃i ¼ Fi=XF, i ¼ 1, 2 and 3, where the lines correspond to
the linear fits using Eq. (26). Similarly, the parameters s̃1 ¼
s1=XF and s̃2 ¼ s2=XF are determined from the linear fits.
Again, the corresponding off-diagonal terms for i ¼ 4, 5
are also predicted and plotted. By forming appropriate
linear combinations, we reconstruct the matrix elements for
an individual quark flavor in a particular hadron:

hpjūΓujpi¼2
ffiffiffi
2

p
fþ

� ffiffiffi
3

2

r
r1−

ffiffiffi
2

p
r3þ

ffiffiffi
2

p
s1−

ffiffiffi
3

2

r
s2

�
δml;

hpjd̄Γdjpi¼
ffiffiffi
2

p
ðf−

ffiffiffi
3

p
dÞþ

� ffiffiffi
3

2

r
r1þ

ffiffiffi
2

p
r3−

ffiffiffi
2

p
s1

−
ffiffiffi
3

2

r
s2

�
δml; ð28Þ

and hence the nucleon isovector charges can be determined,

gu−dT;A;S ¼ hpjūΓujpi − hpjd̄Γdjpi; ð29Þ
for Γ ¼ σ34γ5; γ3γ5 and I. To obtain an extrapolation of
gT;A;S to the physical point, we evaluate the expressions in
Eq. (28) at δml → δm�

l and substitute in the estimated
values for ri ¼ r̃iXD and si ¼ s̃iXF. In order to quantify
systemic uncertainties we will now extend this flavor
breaking expansion method further.

VII. GLOBAL FITS

The flavour breaking expansion described in Sec. VI
only accounts for the quark mass-dependence of the matrix
elements. However, in order to quantify systematic uncer-
tainties, here we extend this method to also account for
lattice spacing, finite volume effects and second-order mass
terms. As we are performing a global fit over all ensembles,
we are now able to place constraints on the second-order
mass terms, which means that all fits will now incorporate a
term of order Oðδm2

l Þ. These fits also include corrections
with respect to a, a2 and mπL. In order to perform a global
fit across all masses we substitute the quantity δml from
here on with

δml → δml ¼
m2

π − X2
π

X2
π

; ð30Þ

where the pseudoscalar mass-flavor singlet, X2
π , is given by

X2
π ¼

2m2
K þm2

π

3
: ð31Þ

By determining δml to now be dimensionless and given in
terms of physical quantities we are now able to combine
results from different lattice spacings. The fit used for the
singlet quantities XD and XF are extended to [56],

XD;F ¼ X�
D;F

�
1þ c1

1

3
½fLðmπÞ þ 2fLðmKÞ�

�
þ c2a

þ c3δm2
l ; ð32Þ

where we also consider an alternativeOða2Þ lattice spacing
dependence by replacing c2a with c2a2. The c1 term
estimates the finite-size effects, where the leading
meson-loop contribution has the functional form [57],

fLðmÞ ¼
�
m
Xπ

�
2 e−mLffiffiffiffiffiffiffi

mL
p : ð33Þ

It is important to note that here finite size effects are only
included in the singlet quantities XD and XF and not in
the D and F fan plot fits as the finite size corrections to
the flavor-breaking coefficients determined by fits to, e.g.
D̃i ¼ Di=XD are expected to be subdominant compared to
those in the corresponding singlet quantities. The fits used
for the D fan, D̃i ¼ Di=XD, are of the form:

(a)

(b)

FIG. 7. (a) The three fitsD1,D2 andD4 (b) The three fits F1, F2

and F3 for the tensor. The vertical black dotted line represents the
physical point. Results for the five ensembles at a ¼ 0.068 fm
ensemble. The flavor off-diagonal terms D6, F4 and F5 are also
predicted and plotted. Where some points have been offset
slightly for clarity.

CONSTRAINING BEYOND THE STANDARD MODEL NUCLEON … PHYS. REV. D 108, 094511 (2023)

094511-9



D̃1 ¼ 1 − 2ðr̃1 þ b̃1aÞδml þ d̃1δm2
l ;

D̃2 ¼ 1þ ððr̃1 þ b̃1aÞ þ 2
ffiffiffi
3

p
ðr̃3 þ b̃3aÞÞδml þ d̃2δm2

l ;

D̃4 ¼ 1 −
4ffiffiffi
3

p ðr̃3 þ b̃3aÞδml þ d̃4δm2
l ; ð34Þ

and similarly for the F fan, F̃i ¼ Fi=XF:

F̃1 ¼ 1 −
2ffiffiffi
3

p ðs̃2 þ ẽ2aÞδml þ f̃1δm2
l ;

F̃2 ¼ 1þ 4ðs̃1 þ ẽ1aÞδml þ f̃2δm2
l

F̃3 ¼ 1þ ð−2ðs̃1 þ ẽ1aÞ þ
ffiffiffi
3

p
ðs̃2 þ ẽ2aÞÞδml þ f̃3δm2

l :

ð35Þ
The δm2

l coefficients were computed for the EM form
factors in Ref. [55]. At Oðδm2

l Þ there are 12 amplitudes and
11 coefficients so there is just one constraint. However, here
we only consider the diagonal amplitudes and therefore we
do not have 12 amplitudes and hence they are unable to be
constrained here [58]. Therefore, they are replaced with one
δm2

l coefficient (d̃i; f̃i) for each Di and Fi.
Now we perform a combination of different fits sum-

marized in Table V. Firstly, the fit is performed individually
on XD and XF. An example of this is shown in Figs. 8(a)

and 8(c). In Fig. 8(a) we show XF as a function m2
π−X2

π

X2
π

for

“Fit 1,” which only includes the constant term, X�
F and a

δm2
l term in Eq. (32), while Fig. 8(c) shows XF as a

function of m2
π−X2

π

X2
π

with the result from using Eq. (32)

with all corrections included (Fit 4). The extrapolated
result for XD and XF are summarized in Table V taken
in the limits a → 0, mπL → ∞ and mπ; mK → physical
masses. Similarly, fits are performed on the fan plots using
Eqs. (34) and (35). Figures 8(b) and 8(d) show the results
when using “Fit 1” and “Fit 4,” where it is important to
mention that all data points are shifted in the limit a → 0 in
Figs. 8(c) and 8(d). The slope results are then multiplied by
the extrapolated results for XD and XF:

ri ¼ ðr̃i þ b̃iaÞXD;

si ¼ ðs̃i þ ẽiaÞXF;

di ¼ d̃iXD;

fi ¼ f̃iXF: ð36Þ

The resulting slope parameters ri, si and the δm2
l coef-

ficients are then included in the reconstruction of the matrix
elements in a particular hadron,

TABLE V. Table of results for each fit and the corresponding χ2=d.o.f., renormalized, where appropriate, at μ ¼ 2 GeV in the MS
scheme. The notation in the first column shows which corrections are included in Eqs. (32), (34), and (35). For example Fit 4 includes all
corrections a, δm2

l and mπL, while Fit 1 only includes an added δm2
l term, i.e. c1 ¼ c2 ¼ bi ¼ ei ¼ 0.

Fit XD χ2=d.o.f. XF χ2=d.o.f. gT χ2=d.o.f. D-Fan χ2=d.o.f. F-Fan

1. δm2
l 0.515(43) 1.88 0.6002(57) 1.74 1.035(13) 1.27 1.84

2. a; δm2
l 0.5251(81) 1.87 0.610(10) 1.74 1.000(27) 0.76 1.24

3. a2; δm2
l 0.5211(59) 1.86 0.608(69) 1.74 1.016(18) 0.72 1.22

4. a; δm2
l ; mπL 0.5252(80) 1.98 0.611(10) 1.84 1.001(27) 1.35 1.97

5. a2; δm2
l ; mπL 0.5212(59) 1.97 0.606(75) 1.84 1.017(18) 0.74 1.18

6. δm2
l ; mπL 0.516(43) 1.98 0.6005(50) 1.83 1.034(13) 0.78 1.21

Fit XD χ2=d.o.f. XF χ2=d.o.f. gA χ2=d.o.f. D-Fan χ2=d.o.f. F-Fan

1. δm2
l 0.583(21) 0.99 0.648(22) 0.81 1.262(60) 1.00 1.74

2. a; δm2
l 0.565(36) 1.02 0.656(39) 0.85 1.21(15) 1.03 1.80

3. a2; δm2
l 0.572(26) 1.02 0.651(28) 0.85 1.231(95) 1.02 1.80

4. a; δm2
l ; mπL 0.563(36) 1.08 0.654(39) 0.90 1.21(15) 0.93 1.64

5. a2; δm2
l ; mπL 0.574(27) 1.08 0.653(30) 0.90 1.231(95) 0.95 1.73

6. δm2
l ; mπL 0.584(22) 1.04 0.648(22) 0.85 1.262(60) 0.95 1.73

Fit XD χ2=d.o.f. XF χ2=d.o.f. gS χ2=d.o.f. D-Fan χ2=d.o.f. F-Fan

1. δm2
l −0.610ð53Þ 1.03 2.52(12) 1.52 1.07(20) 1.29 2.76

2. a; δm2
l −0.72ð10Þ 0.98 2.58(15) 1.57 1.12(50) 1.30 2.87

3. a2; δm2
l −0.654ð67Þ 0.99 2.55(13) 1.57 1.09(31) 1.30 2.89

4. a; δm2
l ; mπL −0.71ð10Þ 1.04 2.59(17) 1.67 1.11(50) 1.07 2.85

5. a2; δm2
l ; mπL −0.655ð66Þ 1.05 2.52(14) 1.66 1.10(31) 1.07 2.99

6. δm2
l ; mπL −0.608ð54Þ 1.09 2.51(12) 1.60 1.06(19) 1.07 2.98
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hpjūΓujpi ¼ 2
ffiffiffi
2

p
f þ

� ffiffiffi
3

2

r
r1 −

ffiffiffi
2

p
r3 þ

ffiffiffi
2

p
s1

−
ffiffiffi
3

2

r
s2

�
δm�

l þ
�
−

ffiffiffi
3

p

2
ffiffiffi
2

p d1 þ
ffiffiffi
3

p

2
ffiffiffi
2

p d4

þ 3

2
ffiffiffi
2

p f1 þ
1

2
ffiffiffi
2

p f2

�
δm�2

l ;

hpjd̄Γdjpi ¼
ffiffiffi
2

p
ðf −

ffiffiffi
3

p
dÞ þ

� ffiffiffi
3

2

r
r1 þ

ffiffiffi
2

p
r3 −

ffiffiffi
2

p
s1

−
ffiffiffi
3

2

r
s2

�
δm�

l þ
�
−

ffiffiffi
3

p

2
ffiffiffi
2

p d1 −
ffiffiffi
3

p

2
ffiffiffi
2

p d4

þ 3

2
ffiffiffi
2

p f1 −
1

2
ffiffiffi
2

p f2

�
δm�2

l ; ð37Þ

where d ¼ X�
D=2 and f ¼ X�

F=2. The final result for gT;A;S
are then given in the limit, a → 0,mπL → ∞ and δm�

l is the
physical mass. The final results for XD, XF and gT;A;S for
each fit are summarized are in Table V, together with the
χ2reduced for each fit.

A. Results

In order to combine these results we extend our
weighted-averaging method described in Sec. IV. To do
this we combine the χ2 and degrees of freedom of XD, XF,
D-fan and F-fan; enumerated by i ¼ 1, 2, 3, 4, respectively,
in the following:

χ2f ¼
X4
i¼1

χ2i ; Nd.o.f.;f ¼
X4
i¼1

Nd.o.f.;i; ð38Þ

where f labels one of the six fit types. Each fit is then
assigned a weight using the combined χ2f,

w̃f ¼ pfðδgfT;A;SÞ−2P
6
f0¼1

pf0 ðδgf
0

T;A;SÞ−2
; ð39Þ

where pf ¼ ΓðNd.o.f.;f=2; χ2f=2Þ=ΓðNd.o.f.;f=2Þ is the

p-value of the fit f and δgfT;A;S is the uncertainty in
the nucleon isovector charges calculated using Eq. (37).
Taking a weighted average of the six fit results, gfT;A;S,
provides a final estimate of the nucleon isovector charges,
gT;A;S, and associated uncertainty:

(a) (b)

(c) (d)

FIG. 8. As an example of some fits we have for the tensor: (a) XF results for each ensemble using Eq. (32) where c1 ¼ c2 ¼ 0 (Fit 1),

plotted against m
2
π−X2

π

X2
π
. (b) The three fits F1, F2 and F3 using Eq. (35) with ei ¼ 0 (Fit 1). (c) XF results using all corrections in Eq. (32)

(Fit 4), plotted against m
2
π−X2

π

X2
π
. The black line is a fit to Eq. (32) in the limit a → 0 and mπL → ∞. (d) The three fits F1, F2 and F3 using

Eq. (35), where once again the data points are shifted in the limit a → 0. The black stars represent the physical point. Where some points
have been offset slightly for clarity.
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ḡT;A;S ¼
X6
f¼1

wfgfT;A;S;

δstatḡ2T;A;S ¼
X6
f¼1

wfðδgfT;A;SÞ2;

δsysḡ2T;A;S ¼
X6
f¼1

wfðgfT;A;S − ḡT;A;SÞ2;

δḡT;A;S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δstatḡ2T;A;S þ δsysḡ2T;A;S

q
: ð40Þ

Figure 9 shows the results for each fit and their assigned
weight. The final estimate of the nucleon isovector charges,
ḡT;A;S, renormalized using the results given in Table II, at
μ ¼ 2 GeV in the MS, are

gT ¼ 1.010ð21Þstatð12Það01ÞFV; ð41Þ
gA ¼ 1.253ð63Þstatð41Það03ÞFV; ð42Þ
gS ¼ 1.08ð21Þstatð03Það00ÞFV; ð43Þ

where the systematic errors labeled as “a” and “FV”
represent the difference in the central value obtained by
incorporating a lattice spacing correction compared to
without, and likewise for the finite-volume correction.
These final results, with statistical and systematic errors
combined in quadrature, are shown by the red bands in
Fig. 9. We note our results for gT, gA and gS are all
comparable with the FLAG Review results [59], repre-
sented by the gray bands in Fig. 9. Of particular note is that
we have determined gT to the ≈2% level. However, work is
still needed in order reduce the uncertainties on, gS and gA,
to understand it at the same level.
As a check on our method for combining the results from

the six different fits given in Table V, we employ the widely
used Akaike information criterion (AIC). Here results
obtained from the various fits are weighted using the
Akaike weights [60],

wf ¼
exp



− 1

2
AICfðΓÞ

�
P

f0 exp


− 1

2
AICf0 ðΓÞ

� : ð44Þ

Akaike’s information criterion takes on the simple form for
models with normally distributed errors:

AICfðΓÞ ¼ χ2f þ 2pf; ð45Þ
where χ2f is the same as that calculated in Eq. (38) and pf is
the number of parameters in each fit. As a result the AIC
weight prefers the models with lower χ2 values, but
penalizes those with too many fit parameters. The above
method was repeated using the AIC weights. This gives
the following results for the nucleon isovector charges,
gT ¼ 1.003ð26Þ, gA ¼ 1.261ð68Þ and gS ¼ 1.07ð23Þ, where
the errors have been added in quadrature. These results are
in agreement with those in Eqs. (41)–(43).

B. Hyperons

Here we calculate flavor-diagonal matrix elements
of hyperons using the same method. Reference [61]
demonstrates that isovector combinations of hyperon
charges are relevant in searches for new physics through
semileptonic hyperon decays. The calculated slope param-
eters ri, si and the δm2

l coefficients can also be used in the
reconstruction of the matrix elements in a particular
hyperon. The theory behind constructing these quantities

TABLE VI. Summary of results for the tensor, axial and scalar
charges of the Σþ and Ξ0 baryons. The first set of brackets
contains the statistical uncertainty, whereas the second set of
brackets contains the systematic uncertainty.

Tensor Axial Scalar

guΣþ 0.802(16)(12) 0.884(25)(36) 2.75(25)(08)
gsΣþ −0.2379ð10Þð08Þ −0.250ð22Þð30Þ 1.86(16)(12)
guΞ0 −0.1929ð77Þð13Þ −0.198ð22Þð15Þ 1.52(11)(08)
gsΞ0 0.968(25)(10) 0.924(23)(12) 2.58(24)(11)

(a) (b) (c)

FIG. 9. Weighted average results for gT, gA and gS. The x-axis displays the fit number as shown in Table Vand the y-axis displays the
corresponding nucleon isovector charge results. The bar graph shows the weight of each fit result. The red band shows the final weighted
average result using Eq. (40), with statistical and systematic errors combined in quadrature and the gray band is the FLAG Review
result [59].
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is described in detail in Ref. [55] and is summarized in
Appendix. C. The results for the charges of the Σþ and Ξ0

baryons are summarized in Table VI.
To properly exploit the increased experimental sensitiv-

ity to hypothetical tensor and scalar interactions, we require
lattice-QCD estimates of the nucleon isovector charge, gT
at the level of 10–20% [6]. The results presented here are at
the δgT=gT ≈ 2% level. As the overall goal of this research
is to support precision tests of the Standard Model, we have
successfully demonstrated the validity of our approach. We
can now look at the effect this has on phenomenology.

VIII. IMPACT OF LATTICE RESULTS
ON PHENOMENOLOGY

Asdiscussed in Sec. I, it is expected that future neutron beta
decay experiments will increase their sensitivity to BSM
scalar and tensor interactions through improved measure-
ments of the Fierz interference term, b, as well as the neutrino
asymmetry parameter, B. In order to assess the full impact of
these future experimentswehave performed an analysis of the
tensor charge gT and gS. Here we discuss existing constraints
on new scalar ϵS and tensor ϵT couplings which arise from
low-energy experiments. Finally, using the existing con-
straints on ϵS and ϵT as well as our calculated value for gT
and gS,we determine the allowed regions in the ϵS − ϵT plane.

A. Low-energy phenomenology of scalar
and tensor interactions

1. 0+ → 0+ transitions and scalar interactions

The most precise bound on the scalar coupling ϵS comes
from 0þ → 0þ nuclear beta decay. The differential decay
rate for 0þ → 0þ nuclear beta decay has coefficient a0þ and
Fierz interference term b0þ [6]:

a0þ ¼ 1; ð46Þ
b0þ ¼ −2γgSϵS; γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2Z2

p
; ð47Þ

where Z is the atomic number of the daughter nucleus. We
can see from Eq. (47) that b0þ couples to the BSM scalar
interaction. From a comparison of well-known half-lives
corrected by a phase-space factor, Hardy and Towner [62]
found b0þ ¼ −0.0022ð26Þ. This result was found using a
number of daughter nuclei and averaging over the set. This
can be converted to the following bound on the product of
scalar charge and the new-physics effective scalar coupling,

−1.0 × 10−3 < gSϵS < 3.2 × 10−3 ð90% CLÞ: ð48Þ
This is the most precise bound on the scalar interactions
from low-energy probes.

2. Radioactive pion decay and the tensor interaction

An analysis of radioactive pion decay πþ → eþνeγ
is sensitive to the same tensor operator that can be

investigated in beta decays. The experimental results from
the PIBETA Collaboration [63] put constraints on ϵT ,

−1.1 × 10−3 < ϵT < 1.36 × 10−3 ð90% CLÞ: ð49Þ
Currently this is the most stringent constraint on the tensor
coupling from low-energy experiments. Using these con-
straints, aswell Eqs. (2) and (3), bounds can be put on the new
scalar and tensor interactions at the 10−3 level. Following the
work of Ref. [6], in Fig. 10 we show the constraint on the
ϵS-ϵT plane. The current best constraints on scalar and tensor
interactions arise from 0þ → 0þ nuclear beta decays and
radioactive pion decay, which is shown by the green band
[6,62]. The neutron constraints are future projections at the
10−3 level, derived fromEqs. (2) and (3), using the tensor and
scalar charges as obtained in this work, shown by the red and
blue bands in Fig. 10. When accounting for uncertainties in
these latticeQCDcalculations, the boundaries on the bands in
Fig. 10 become wider and the bands take on a “bow-tie”
shape. However most of the constraining power is lost due to
the largeuncertainty in our value for gS. Inorder to fully utilize
the constraining power of 10−3 experiments, understanding
the lattice-QCD estimates of the nucleon tensor and scalar
charge at the level of 10% is required [6]. We have success-
fully calculated the tensor charge at the≈2% level andare able
to fully utilize the constraining power future experiments.

B. Quark electric-dipole moment

In this section we briefly discuss the impact our results
have on constraining the quark EDM couplings using the
current bound on the neutron EDM. Using the same method
followed in Sec. VII we are able to constrain gqT . We note that
in this work we have only considered quark-line connected
contributions, although other works have shown the dis-
connected contributions to be small at near-physical quark
masses [64]. This is in linewith expectations basedon the fact
that the tensor operator is a helicity-flip operator and hence
disconnected contributions mush vanish in the chiral limit.

FIG. 10. Allowed regions in the ϵS − ϵT plane, using the tensor
and scalar charges as obtained in this work in Eqs. (41) and (43),
gS ¼ 1.08ð21Þstatð03Þsys and gT ¼ 1.010ð21Þstatð12Þsys. The green
band is the existing band on b0þ [6,62].
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Using Eq. (37) we can calculate the up and down contribu-
tions to the nucleon tensor charge for each fit listed inTableV.
Applying theweighted averagingmethod, the final estimates
for, gTq , are

guT ¼ 0.812ð21Þ; ð50Þ

gdT ¼ −0.199ð14Þ: ð51Þ
Using these results, Eq. (4) and the existing bound on the
neutron EDMwe are able to put bounds on the new effective
couplings which contain new CP-violating interactions.
Figure 11 shows the 90% confidence level bounds in the
du-dd plane, assuming gsT ¼ 0.

IX. CONCLUSION

In this work we have presented results for the axial, tensor
and scalar nucleon and hyperon charges using the Feynman-
Hellmann theorem, as well as using a flavor symmetry
breaking method to systematically approach the physical
quark masses. We applied a weighted averaging method on
the fit results, removing possible systematic uncertainties
which arise from a bias in choosing the fit windows. In the
flavor symmetry-breakingmethod, symmetry constraints are
automatically built in order-by-order in SUð3Þ breaking. We
extended the flavor symmetry-breaking method in this
analysis in order to have full coverage of a,mπ and volume,
meaning we have control over these systematics. Our final
result of gT ¼ 1.010ð21Þstatð12Þsys is comparable to results
present in the FLAG review.We have precisely calculated gT
to the ≈2% level, successfully reaching the goal of under-
standing gT at the 10% level. However, work is still needed
in order reduce the error on, gS ¼ 1.08ð21Þstatð03Þsys and
gA ¼ 1.253ð63Þstatð41Þsys, to understand it at the same level.
Future work is still needed with access to physical quark
masses in order to better constrain the extrapolation to the
physical point.
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APPENDIX A: LATTICE ENSEMBLE DETAILS

FIG. 11. 90% confidence level bounds on du and dd using
lattice QCD estimates for guT and gdT and the current limit on the
neutron EDM of jdnj < 1.8 × 10−26e cm [12].

TABLE VII. Details of the lattice ensembles used in this work:
the same number of configurations was used for each λ value and
operator. Measurements are separated by a single HMC trajectory
with a randomized source location. The number in parentheses
indicates the quantity of randomized sources used per configu-
ration to generate additional samples.

β a (fm) Volume ðκlight; κstrangeÞ #Trajectories

5.40 0.082 323 × 64 (0.119930, 0.119930) 1639
(0.119989, 0.119812) 1005(2)
(0.120048, 0.119695) 1000(3)
(0.120084, 0.119623) 1345(3)

5.50 0.074 323 × 64 (0.120900, 0.120900) 1754
(0.121040, 0.120620) 1216
(0.121095, 0.120512) 1849(2)

5.50 0.074 323 × 64 (0.120950, 0.120950) 1614
(0.121040, 0.120770) 1762
(0.121099, 0.120653) 1003(2)

5.65 0.068 483 × 96 (0.122005, 0.122005) 531
(0.122078, 0.121859) 633
(0.122130, 0.121756) 561(2)
(0.122167, 0.121682) 534(2)

643 × 96 (0.122197, 0.121623) 428(3)

5.80 0.059 483 × 96 (0.122810, 0.122810) 298
(0.122880, 0.122670) 458(2)
(0.122940, 0.122551) 522

5.95 0.052 483 × 96 (0.123411, 0.123558) 283(2)
(0.123460, 0.123460) 457
(0.123523, 0.123334) 415
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APPENDIX B: INDIVIDUAL QUARK CONTRIBUTIONS
TO THE OVERALL CHARGE IN THE BARYON

Here we present the bare results for the individual quark contributions to the overall tensor, axial and scalar charges in the
nucleon, Σ and Ξ baryons.

TABLE VIII. Table of the bare results for the individual quark contributions to the overall tensor charge in the nucleon, Σ and Ξ
baryons.

β κl guTP
gdTP

guTΣ
gsTΣ

guTΞ
gsTΞ

5.40 0.119930 0.8851(55) −0.2020ð43Þ 0.8851(55) −0.2020ð43Þ −0.2020ð43Þ 0.8851(55)
0.119989 0.832(23) −0.222ð10Þ 0.838(25) −0.216ð18Þ −0.222ð18Þ 0.851(24)
0.120048 0.849(24) −0.225ð17Þ 0.845(25) −0.2145ð83Þ −0.209ð11Þ 0.870(11)
0.120084 0.842(32) −0.209ð25Þ 0.830(17) −0.2098ð61Þ −0.2112ð97Þ 0.8760(83)

5.50 0.120900 0.869(10) −0.2145ð34Þ 0.869(10) −0.2145ð34Þ −0.2145ð34Þ 0.869(10)
0.121040 0.810(38) −0.202ð22Þ 0.809(25) −0.2163ð98Þ −0.2042ð83Þ 0.8796(85)
0.121095 0.800(27) −0.198ð22Þ 0.822(17) −0.2159ð66Þ −0.1947ð59Þ 0.8747(61)

5.50 0.120950 0.8830(59) −0.2115ð39Þ 0.8830(59) −0.2115ð39Þ −0.2115ð39Þ 0.8830(59)
0.121040 0.863(11) −0.2066ð46Þ 0.8597(81) −0.2109ð29Þ −0.2043ð25Þ 0.8815(63)
0.121099 0.875(12) −0.2142ð66Þ 0.8692(70) −0.2222ð14Þ −0.2103ð24Þ 0.8988(33)

5.65 0.122005 0.8738(65) −0.2145ð25Þ 0.8738(65) −0.2145ð25Þ −0.2145ð25Þ 0.8738(65)
0.122078 0.8861(62) −0.2050ð34Þ 0.8812(54) −0.2124ð26Þ −0.2030ð26Þ 0.9043(51)
0.122130 0.815(34) −0.192ð14Þ 0.811(17) −0.2104ð76Þ −0.1989ð95Þ 0.8677(96)
0.122167 0.8609(84) −0.2078ð78Þ 0.8513(62) −0.2206ð19Þ −0.2008ð41Þ 0.9034(44)
0.122197 0.868(71) −0.197ð19Þ 0.821(72) −0.206ð22Þ −0.198ð13Þ 0.913(58)

5.80 0.122810 0.866(13) −0.2062ð55Þ 0.866(13) −0.2062ð55Þ −0.2062ð55Þ 0.866(13)
0.122880 0.8543(55) −0.2059ð31Þ 0.8503(53) −0.2062ð54Þ −0.1994ð34Þ 0.8835(51)
0.122940 0.848(11) −0.1963ð57Þ 0.8399(74) −0.2155ð55Þ −0.1943ð27Þ 0.9043(50)

5.95 0.123411 0.8649(47) −0.2058ð28Þ 0.8696(54) −0.2019ð51Þ −0.2082ð41Þ 0.8517(92)
0.123460 0.828(21) −0.197ð15Þ 0.828(21) −0.197ð15Þ −0.197ð15Þ 0.828(21)
0.123523 0.8522(70) −0.2041ð38Þ 0.8502(61) −0.2112ð23Þ −0.2005ð27Þ 0.8897(47)

TABLE IX. Table of the bare results for the individual quark contributions to the overall axial charge in the nucleon, Σ and Ξ baryons.

β κl guAP
gdAP

guAΣ
gsAΣ

guAΞ
gsAΞ

5.40 0.119930 1.025(24) −0.360ð22Þ 1.025(24) −0.360ð22Þ −0.360ð22Þ 1.025(24)
0.119989 1.024(26) −0.344ð20Þ 1.018(21) −0.333ð16Þ −0.324ð18Þ 1.0421(15)
0.120048 1.019(48) −0.322ð32Þ 0.982(39) −0.338ð21Þ −0.312ð15Þ 1.031(18)
0.120084 1.028(35) −0.334ð35Þ 0.983(53) −0.340ð10Þ −0.316ð12Þ 1.065(10)

5.50 0.120900 1.002(36) −0.306ð58Þ 1.002(36) −0.306ð58Þ −0.306ð58Þ 1.002(36)
0.121040 0.959(74) −0.306ð58Þ 0.943(49) −0.302ð29Þ −0.315ð30Þ 1.035(24)
0.121095 1.014(52) −0.399ð43Þ 0.978(21) −0.3155ð94Þ −0.2930ð90Þ 1.0445(72)

5.50 0.120950 1.009(49) −0.298ð24Þ 1.009(49) −0.298ð24Þ −0.298ð24Þ 1.009(49)
0.121040 0.835(91) −0.343ð47Þ 0.913(45) −0.309ð20Þ −0.299ð23Þ 1.017(28)
0.121099 0.964(88) −0.341ð41Þ 0.907(62) −0.292ð30Þ −0.306ð21Þ 1.021(24)

5.65 0.122005 0.950(48) −0.294ð34Þ 0.950(48) −0.294ð34Þ −0.294ð34Þ 0.950(48)
0.122078 1.045(70) −0.322ð26Þ 1.046(57) −0.317ð19Þ −0.295ð18Þ 1.044(41)
0.122130 0.973(91) −0.319ð31Þ 0.979(91) −0.330ð17Þ −0.287ð18Þ 1.070(24)
0.122167 1.113(93) −0.287ð59Þ 1.024(42) −0.310ð17Þ −0.282ð13Þ 1.064(14)
0.122197 1.049(59) −0.335ð76Þ 1.020(42) −0.316ð18Þ −0.257ð22Þ 1.107(16)

(Table continued)
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APPENDIX C: HYPERON MATRIX ELEMENTS

Reconstruction of the hyperon matrix elements as shown to first order in Ref. [55] and given to second order here:

hΣþjūΓujΣþi ¼ 2
ffiffiffi
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TABLE X. Table of the bare results for the individual quark contributions to the overall scalar charge in the nucleon, Σ and Ξ baryons.

β κl guSP gdSP guSΣ gsSΣ guSΞ gsSΞ
5.40 0.119930 4.34(11) 2.854(77) 4.34(11) 2.854(77) 2.854(77) 4.34(11)

0.119989 4.32(14) 2.987(92) 4.03(12) 2.695(46) 2.683(71) 4.181(66)
0.120048 4.44(41) 3.28(18) 3.98(15) 2.467(91) 3.01(22) 4.43(13)
0.120084 4.29(64) 2.62(47) 4.04(20) 2.702(42) 2.633(90) 4.282(50)

5.50 0.120900 4.26(10) 2.766(74) 4.26(10) 2.766(74) 2.766(74) 4.26(10)
0.121040 4.93(43) 3.41(24) 4.35(25) 2.642(60) 2.73(10) 4.201(70)
0.121095 5.60(29) 4.13(23) 4.10(19) 2.514(34) 2.474(93) 4.028(39)

5.50 0.120950 4.209(16) 2.81(11) 4.209(16) 2.81(11) 2.81(11) 4.209(16)
0.121040 5.39(36) 3.83(29) 4.31(21) 2.867(59) 2.77(14) 4.388(87)
0.121099 5.50(52) 4.46(41) 5.44(59) 2.937(68) 3.09(26) 4.611(94)

5.65 0.122005 4.83(23) 3.15(13) 4.83(23) 3.15(13) 3.15(13) 4.83(23)
0.122078 4.78(20) 3.163(19) 4.16(13) 2.705(51) 2.82(13) 4.53(10)
0.122130 5.21(55) 4.02(53) 4.31(25) 2.663(56) 2.55(14) 4.242(63)
0.122167 5.73(39) 4.15(22) 4.01(23) 2.759(46) 2.61(13) 4.344(70)
0.122197 6.34(59) 4.36(40) 4.04(38) 2.755(75) 2.50(21) 4.279(92)

5.80 0.122810 4.47(27) 2.89(16) 4.47(27) 2.89(16) 2.89(16) 4.47(27)
0.122880 4.55(20) 3.34(13) 3.96(15) 2.937(73) 2.76(10) 4.43(10)
0.122940 5.26(68) 4.15(73) 4.20(33) 2.872(70) 2.61(23) 4.384(90)

5.95 0.123411 4.18(34) 2.82(22) 5.00(28) 3.84(63) 3.39(17) 5.56(64)
0.123460 5.21(27) 3.38(17) 5.21(27) 3.38(17) 3.38(17) 5.21(27)
0.123523 4.84(28) 3.57(23) 4.24(24) 2.901(90) 2.93(18) 4.29(10)

TABLE IX. (Continued)

β κl guAP
gdAP

guAΣ
gsAΣ

guAΞ
gsAΞ

5.80 0.122810 0.966(63) −0.223ð35Þ 0.966(63) −0.223ð35Þ −0.223ð35Þ 0.966(63)
0.122880 1.042(56) −0.336ð25Þ 1.032(46) −0.333ð15Þ −0.309ð61Þ 1.041(21)
0.122940 1.028(71) −0.326ð35Þ 0.987(86) −0.295ð38Þ −0.296ð25Þ 1.028(35)

5.95 0.123411 0.975(33) −0.294ð18Þ 0.967(40) −0.270ð38Þ −0.308ð32Þ 0.941(56)
0.123460 0.992(41) −0.308ð22Þ 0.992(41) −0.308ð22Þ −0.308ð22Þ 0.992(41)
0.123523 1.035(94) −0.364ð62Þ 1.004(63) −0.340ð34Þ −0.302ð36Þ 0.960(56)
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