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We investigate the low-lying baryon spectrum using three Nf ¼ 2þ 1þ 1 ensembles simulated with
physical values of the quark masses and lattice spacings of 0.080, 0.069 and 0.057 fm. The ensembles are
generated using twisted mass clover-improved fermions and the Iwasaki gauge action. The spatial length
is kept approximately the same at about 5.1 fm to 5.5 fm fulfilling the condition mπL > 3.6. We
investigate isospin splitting within isospin multiples and verify that for most cases the isospin splitting
for these lattice spacing is consistent with zero. In the couple of cases, for which there is a nonzero value,
in the continuum limit, the mass splitting goes to zero. The baryon masses are extrapolated to the
continuum limit using the three Nf ¼ 2þ 1þ 1 ensembles and are compared to other recent lattice QCD
results. For the strange and charm quark masses we find, respectively, msð2 GeVÞ ¼ 99.2ð2.7Þ MeV and
mcð3 GeVÞ ¼ 1.015ð39Þ GeV. The values predicted for the masses of the doubly charmed Ξ⋆

cc, Ωcc and
Ω⋆

cc baryons are 3.676(55) GeV, 3.703(51) GeV and 3.803(50) GeV, respectively, and for the triply
charmed Ωccc baryon is 4.785(71) GeV.

DOI: 10.1103/PhysRevD.108.094510

I. INTRODUCTION

Baryon spectroscopy is an active field of research.
Experimentally, new baryons are being studied at LHCb
and CERN, by the SELEX and FOCUS experiments at
Fermilab, the BABAR experiment at SLAC, and the Belle-II
at KEK. The discovery of new baryons like the doubly
charmed Ξ resonance by SELEX and LHCb triggered a
revival of the interest in charmed baryon spectroscopy. The
Beijing Spectrometer BES-III has an extensive program in
spectroscopy and so does PANDA planned at GSI [1].
There are also many theoretical studies in baryon

spectroscopy using QCD sum rules [2], as well as
relativistic [3,4] and nonrelativistic quark models [5].
Recent progress in algorithms and access to larger
computational resources have led to tremendous progress
in simulating lattice QCD at physical values of the quark
masses. Therefore, lattice QCD is in a good position to
investigate the masses of doubly and triply charmed
baryons using simulations with physical values of the
quark masses providing valuable input directly from first
principles. While baryon masses of low-lying hyperons

and singly charmed baryons are well-determined exper-
imentally and thus serve as benchmark quantities, the
doubly and triply charmed sector still remain mostly
unexplored. A number of lattice QCD groups have studied
the ground states of spin-1=2 and spin-3=2 charmed
baryons using a variety of lattice schemes, with the
most recent ones using dynamical simulations [6–14].
However, these calculations still performed a chiral
extrapolation since ensembles with multiple lattice spac-
ings at the physical point are limited.
In this work, we use three ensembles generated by the

Extended Twisted Mass Collaboration (ETMC) with two
degenerate twisted mass clover-improved light quarks with
mass tuned to reproduce the physical pion mass, plus a
strange and charm quark with masses fixed to approxi-
mately their physical ones. We will refer to these Nf ¼
2þ 1þ 1 ensembles as physical point ensembles. These
physical point ensembles have lattice spacings a ¼ 0.08,
0.069, and 0.057 fm and approximately equal volume. This
enables us, for the first time, to take the continuum limit
directly at the physical point, thus eliminating a systematic
uncertainty arising from the chiral extrapolation that in the
baryon sector can introduce an uncontrolled systematic
error. Including a clover term helps in the stabilization of
the simulations, while it still preserves automatic OðaÞ-
improvement of the twisted mass action and reduces the
Oða2Þ lattice artifacts related to the breaking of the isospin
symmetry. This study extends our previous computations
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on the low-lying baryon spectrum using Nf ¼ 2 with one
physical point ensemble [15].
We follow our previous studies and use Osterwalder-

Seiler (OS) valence strange and charm quarks and choose
the physical masses of the Ω− and the Λþ

c baryons to tune
the OS valence strange and charm quark masses, respec-
tively. We also use the nucleon mass to fix the lattice
spacing in order to convert our lattice values to physical
units. Isospin breaking in the twisted mass formulation is a
lattice artifact of order a2. It has been shown that adding the
clover term reduces isospin splitting in the Δ-multiplet [16]
as compared to the Nf ¼ 2þ 1þ 1 twisted mass simu-
lations at a similar lattice spacing. Here we study the effects
of isospin breaking effects to higher accuracy for the Δ
multiplet and in the strange and charm sectors. We also
extract the renormalized strange and charm quark masses
and find agreement with our previous determination [17].
We compare our final results on the masses of the forty
baryons studied in this work with those of other recent
lattice calculations, using a variety of discretization
schemes, as well as with experiments. We find agreement
with experimental results. Our predictions for the
doubly charmed Ξ⋆

cc, Ωcc and Ω⋆
cc baryons are MΞ⋆

cc
¼

3.676ð55Þ GeV, MΩcc
¼ 3.703ð51Þ GeV and MΩ⋆

cc
¼

3.803ð50Þ GeV, respectively, and for the triply charmed
Ωccc baryon is MΩccc

¼ 4.785ð71Þ GeV.
The paper is organized as follows. The lattice action

employed in this work, as well as the details of the
calculations, including the interpolating fields and the
effective mass analysis procedure, are given in Sec. II.
The determination of the lattice spacing and the tuning of
the strange and charm quark masses are given in Secs. III
and IV respectively, and we present our lattice results in
Sec. V. In Sec. VI, we study the isospin splitting of the spin-
1=2 and spin-3=2 baryons. In Sec. VII we present our
results for the baryon spectrum at the continuum limit and
in Sec. VIII a comparison between our results and other
lattice QCD results is presented. Lastly, we present our
conclusions in Sec. IX.

II. LATTICE SETUP

A. The lattice action

We analyze three gauge ensembles produced by ETMC
[18–20] within the twisted mass fermion formulation [21],

whose parameters are given in Table I. TheNf ¼ 2þ 1þ 1
ensembles are generated using the Iwasaki gauge action,
the Nf ¼ 2 mass-degenerate twisted mass fermion action
for the light doublet with a clover term [22] and the Nf ¼
1þ 1 nondegenerate twisted mass fermion action for the
strange and charm quarks. Including a clover term, reduces
lattice artifacts and decreases the mass gap between the
charged and neutral pion. We use 1-loop tadpole boosted
perturbation theory to fix the value of the clover parameter
cSW. The light quark mass is tuned to reproduce the
isosymmetric pion mass mπ ¼ 0.135 MeV, the strange
quark mass is tuned to reproduce the physical value of
the ratio between Ds meson mass and decay constant, and
the charm quark is fixed by setting the ratio of charm to
strange quark mass μc=μs ¼ 11.8 [18].
For completeness, we provide the action used in the

simulations. The Iwasaki gauge action is given by

Sg ¼
β

3

X
x

�
b0
X
μ<ν

½1 − Re trðU1×1
μν ðxÞÞ�

þ b1
X
μ<ν

½1 − Re trðU1×2
μν ðxÞÞ�

�
; ð1Þ

where β ¼ 6=g20 is the inverse bare coupling constant and
we set the parameters b0 ¼ 1–8b1 and b1 ¼ −0.331 such
that the Iwasaki improved gauge action [23] is reproduced.
For the fermionic sector, we distinguish between light-

ðu; dÞ and heavy-flavored ðc; sÞ quarks. We construct the
light and heavy quark doublets χl ¼ ðu; dÞT and χh ¼
ðs; cÞT in the twisted basis, respectively. The light quark
action reads

Sltm ¼
X
x

χ̄lðxÞ
�
DW ½U� þ i

4
cSWσμνF μν þml þ iμlγ5τ3

�

× χlðxÞ; ð2Þ

and the heavy quark part of the action reads

Shtm ¼
X
x

χ̄hðxÞ
�
DW ½U� þ i

4
cSWσμνF μν þmh

− μδτ
1 þ iμσγ5τ3

�
χhðxÞ: ð3Þ

TABLE I. Simulation parameters used by ETMC for generating each ensemble [18]. The first column gives the ensemble name, the
second the lattice volume, the third the β-value, and the fourth, fifth, and sixth the quark mass parameters. In the seventh and eighth
columns, we give the critical value of κ for which ml ∼ 0 and the value of cSW. In the last but one column we give Lmπ and in the last
column the pion mass.

Ensemble V β μl μσ μδ κ cSW L ·mπ mπ ½MeV�
cB211.072.64 128 × 643 1.778 0.00072 0.1246826 0.1315052 0.1394265 1.69 3.62 140.1 (0.2)
cC211.060.80 160 × 803 1.836 0.00060 0.106586 0.107146 0.13875285 1.6452 3.78 136.7 (0.2)
cD211.054.96 192 × 963 1.900 0.00054 0.087911 0.086224 0.137972174 1.6112 3.90 140.8 (0.2)
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The third Pauli matrix τ3 acts in flavor space, DW is the
massless Wilson-Dirac operator and μl is the light quark
twisted mass. Automatic Oða2Þ improvement is achieved
by tuning ml to zero using the partially conserved axial
current (PCAC) relation. In the heavy-quark action, the
additional term μδτ

1 is acting on flavor space, thus, the
mass degeneracy, in contrast to the light quark sector, is
lifted. The massless Wilson-Dirac operator is given by

DW ½U� ¼ 1

2
γμð∇μ þ∇⋆

μ Þ −
ar
2
∇μ∇⋆

μ ; ð4Þ

where the forward derivatives read

∇μψðxÞ ¼
1

a
½U†

μðxÞψðxþ aμ̂Þ − ψðxÞ� ð5Þ

and

∇⋆
μ ψðxÞ ¼ −

1

a
½Uμðx − aμ̂Þψðx − aμ̂Þ − ψðxÞ�: ð6Þ

At or close to maximal twist, we transform from twisted to
physical basis using ψðxÞ ¼ 1ffiffi

2
p ½1þ iτ3γ5�χðxÞ and ψ̄ðxÞ ¼

χ̄ðxÞ 1ffiffi
2

p ½1þ iτ3γ5�. Throughout this paper, unless other-

wise stated, we use quark fields in the physical basis, in
particular when we define baryon interpolators. For the
valence strange and charm quarks, we utilize Osterwalder
Seiler (OS) fermions [24]. We discuss the tuning of the OS
strange and charm quark masses below.

B. Two-point functions and effective masses

In this work, we consider positive parity baryon corre-
lators of two-point functions of the form

C�
B ðt; 0⃗Þ ¼

X
x⃗f

�
1

4
trð1� γ0ÞJ Bðx⃗f; tfÞJ̄ Bðx⃗i; tiÞ

�
; ð7Þ

where J̄ B is the interpolating field of the baryon acting at
the source ðx⃗i; tiÞ and J B at the sink ðx⃗f; tfÞ. We consider
three-quark baryon interpolating fields of the form
εabcðqT1;aΓq2;bÞq3;c. The Γ structures we use are Cγ5 and
Cγi; i ¼ 1;…; 3 for spin-1=2 and 3=2, respectively.
We exploit the symmetries of the action and the

antiperiodic boundary conditions in the temporal direction
to write

Cþ
B ðt; 0⃗Þ ¼ −C−

BðT − t; 0⃗Þ: ð8Þ

Thus, we average the correlators in the forward and
backward direction to improve the signal by taking

CBðt; 0⃗Þ ¼ Cþ
B ðt; 0⃗Þ − C−

BðT − t; 0⃗Þ: ð9Þ

For the spin-3=2 baryons, we project to spin 3=2 by
performing the following transformations at zero momen-
tum [25]

C3
2
ðtÞ ¼ 1

3
trðCðtÞÞ þ 1

6

X3
i≠j

γiγjCijðtÞ; ð10Þ

where t ¼ tf − ti and from now on we drop the momentum
dependence in the argument of the two-point function
correlator since we only consider p⃗ ¼ 0⃗.
Since, in this work, we are interested in the low-lying

spectrum and gauge noise grows with the time t, we need to
use techniques that suppress excited state contamination.
We apply Gaussian smearing to the quark fields at the
source and sink [26,27] using

qsmearðnÞ ¼
X
m∈Λ

Fðn;m;UÞqðmÞ; ð11Þ

where the gauge-invariant smearing function reads

Fðn;m;UÞ ¼ ð1þ αGHÞnGðn;m;UÞ ð12Þ

and H is the hopping function

Hðn;m;UÞ ¼
X3
j¼1

ðUjðnÞδnþaĵ;m þ U†
jðn − aĵÞδn−aĵ;mÞ:

ð13Þ

The parameters aG and nG for the three ensembles are given
in Table II. We also apply APE smearing to the links that
enter the hopping function Hðn;m;UÞ with APE smearing
parameter aAPE and number of iterations nAPE for all
ensembles given in Table II.
To extract the low-lying masses, we construct the

effective mass using correlators at zero momentum

TABLE II. Smearing parameters used for all ensembles.

Ensemble aG nG aAPE nAPE

cB211.072.64 1.0 95 0.5 50
cC211.060.80 1.0 140 0.5 60
cD211.054.96 1.0 200 0.5 60

TABLE III. Light quark twisted masses μl used for correcting
the effective mass [28].

Ensemble μ0l
cB211.072.64 0.0006675
cD211.054.96 0.0004964
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amB
effðtÞ ¼ log

�
CðtÞ

Cðtþ 1Þ
�
!
t→∞

aMB: ð14Þ

We adopt a multistate fit approach to identify the ground
state keeping up to the second excited state. Namely, we fit
the effective mass to a constant, and to the following
expressions taking into account the first and second excited
states, respectively

amB
effðtÞ ≈ aMB þ log

�
1þ α2e−ΔE1t

1þ α2e−ΔE1ðtþ1Þ

�
ð15Þ

and

amB
effðtÞ ≈ aMB þ log

�
1þ α2e−ΔE1t þ α3e−ΔE2t

1þ α2e−ΔE1ðtþ1Þ þ α3e−ΔE2ðtþ1Þ

�
:

ð16Þ

We fix the maximum time used in fit to given value tmax and
subsequently, we iteratively change the time from where we

start the fit tlow for all three types of fits. We refer to the
different fit ranges as models.

III. LATTICE SPACING DETERMINATION

For the tuning of the lattice spacing, we opt to use the
physical nucleon mass as input. From the value ofmπ given
in Table I, it can be seen that two ensembles have slightly
higher pion mass as compared to the one target by our
simulations, which is 135 MeV. We correct for this small
deviation by generating at lower statistics two-point func-
tions for lighter twisted masses with values shown in
Table III and applying a correction to the effective mass
as follows:

aδmB
effðtÞ ¼ log

�
CðtÞ

Cðtþ 1Þ
C0ðtþ 1Þ
C0ðtÞ

�
⟶
t→∞

aΔMB; ð17Þ

where C0ðtÞ denotes the correlator evaluated at the lower
value of the twisted mass parameter.

FIG. 1. The effective mass for the nucleon using the cD211.054.96 ensemble. On the top panel, we present one- (green band), two-
(red band) and three-state (gray band) fits for which the extracted nucleon mass is consistent. On the bottom left panel, we show the
value extracted from the plateau fit (green points) as a function of the value of tlow used in the fit, while, on the bottom right panel, we
show the energy difference ΔE between the first excited state and the ground state extracted from the two- (red) and three-state (black)
fits. On the bottom panels, the filled symbols give the selected values for the ground state (bottom left) and ΔE (bottom right), and the
error band is centered around the result of the most probable model. All values are given in lattice units.

TABLE IV. Nucleon effective mass results from the most probable one-, two- and three-state fits. For each fit, we
give in lattice units the maximum and minimum times tmax and tlow used in the fit, as well as the baryon mass
extracted from each fit.

Ensemble tmax=a

One-state fit Two-state fit Three-state fit

tlow=a aMB tlow=a aMB tlow=a aMB

cB211.072.64 34 18 0.3819(18) 8 0.3796(24) 3 0.3798(34)
cC211.060.80 38 18 0.32756(78) 8 0.3258(12) 3 0.3257(17)
cD211.054.96 44 23 0.2724(11) 9 0.2723(11) 2 0.27330(84)
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The corrected nucleon effective mass reads

am0B
effðtÞ ¼ amB

effðtÞ þ aδmB
effðtÞ

¼ log

�
CðtÞ

Cðtþ 1Þ
�
− log

�
CðtÞ

Cðtþ 1Þ
C0ðtþ 1Þ
C0ðtÞ

�
:

ð18Þ

This correction changes the nucleon mass on a percent level
and ensures that all baryon masses computed with these

TABLE V. The values of the lattice spacing for the three
ensembles using the maximum probability fit (second column)
and averaging over all models (third column).

a [fm] a [fm]

Ensembles AIC selection Model averaging

cB211.072.64 0.07982(51) 0.07998(52)
cC211.060.80 0.06852(24) 0.06853(27)
cD211.054.96 0.05747(18) 0.05719(43)

FIG. 2. We show the effective mass analysis for the Λþ
c (top) and Ω− (bottom) baryon for the cD211.054.96 and cC211.060.80

ensembles respectively. On the top left we depict the effective mass data for the two values of μc as well as the one-, two-, and three-state
fits. On the top left we show the linear interpolation. On the middle and bottom panels, we show the results for the mass for the two μc
values and the difference between the ground and first excited state extracted from each fit. The green and red bands represent the most
probable model result. The rest of the notation is the same as that of Fig. 1.
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three ensembles correspond to the same physical pion
mass.
For the determination of the lattice spacing we imple-

ment the following analysis method: We use the Akaike
information criterion (AIC) [29,30] and calculate the model
probability for each fit function and for each fit range

PðMijfygÞ ¼
1

Z
exp

�
−
1

2
χ2i þ Nd:o:f.;i

�
;

Z ¼
X
i

PðMijfygÞ; ð19Þ

where χ2i is the chi-squared and Nd:o:f:;i is the number of
degrees of freedom used for the specific model.
Subsequently, we select the model with the highest prob-
ability and fix the nucleon mass to its physical value.

TABLE VI. The values of the two bare quark masses used for
the strange (second column) and charm (third column) quark
flavors for the interpolation to the tuned value. In the fourth
column, we give the renormalization constants [17] ZP in the MS
scheme at 2 GeV for each ensemble, with the value in the first and
second parenthesis being the statistical and systematic error,
respectively.

Ensemble μs μc Zp

cB211.072.64 0.017 0.20 0.4788(34)(42)
0.019 0.22

cC211.060.80 0.015 0.18 0.4871(26)(42)
0.017 0.24

cD211.054.96 0.0125 0.146 0.4967(7)(36)
0.0152 0.18

TABLE VII. We give the Ω− (top) and Λþ
c (bottom) baryon mass results from the most probable one-, two- and three-state fits. For

each fit we give tmin and tmax and the interpolation parameters from Eq. (21) as determined from the most probable model.

Tuning of the strange quark mass

Ensemble aμs tmax=a

One-state Two-state Three-state

AΩ− ðGeVÞ BΩ−tlow=a aMB tlow=a aMB tlow=a aMB

cB211.072.64 0.017 35 14 0.6768(12) 5 0.6741(16) 3 0.6729(22) 1.6948(38) 3.957(48)
0.019 35 14 0.6932(11) 5 0.6906(15) 3 0.6899(19)

cC211.060.80 0.015 43 20 0.5729(23) 5 0.5750(18) 2 0.5726(41) 1.6803(51) 3.866(50)
0.017 43 20 0.5893(21) 5 0.5909(17) 2 0.5888(37)

cD211.054.96 0.0125 52 23 0.4784(14) 7 0.4774(14) 2 0.4774(17) 1.6772(46) 3.894(48)
0.0152 52 23 0.4997(12) 7 0.4985(13) 2 0.4984(16)

Charm quark mass evaluation

Ensemble aμc tmax=a

One-state fit Two-state fit Three-state fit

AΛþ
c
ðGeVÞ BΛþ

c
tlow=a aMB tlow=a aMB tlow=a aMB

cB211.072.64 0.20 30 12 0.8663(21) 5 0.8631(35) 1 0.8598(98) 2.389(11) 0.9463(99)
0.22 30 12 0.9020(22) 5 0.8987(38) 1 0.895(12)

cC211.060.80 0.18 31 12 0.7584(20) 3 0.7579(22) 3 0.757(14) 2.4104(74) 0.9456(59)
0.24 31 12 0.8633(24) 3 0.8629(27) 3 0.862(15)

cD211.054.96 0.146 40 13 0.6289(13) 7 0.6232(38) 2 0.6247(46) 2.445(15) 1.034(12)
0.18 40 13 0.6916(14) 7 0.6870(42) 2 0.6890(54)

TABLE VIII. Tuned renormalized quark masses for each ensemble in GeV in the MS scheme. The strange quark
masses are given at 2 GeV and the charm at 3 GeV.

Ensemble

Strange quark Charm quark

AIC selection Model averaging AIC selection Model averaging

cB211.072.64 0.0894(10) 0.0894(11) 1.092(10) 1.091(19)
cC211.060.80 0.0930(13) 0.0931(14) 1.0689(72) 1.0708(93)
cD211.054.96 0.0938(12) 0.0939(13) 1.047(13) 1.050(17)
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Another approach is to average over all models and fix the
nucleon mass using the model average (MA) value

hαi ¼
X
i

αiPðMijfygÞ;

σ2α ¼
X
i

ðα2i þ σ2α;iÞPðMijfygÞ − hαi2: ð20Þ

We show the nucleon effective mass and results of various
fits in Fig. 1. In Table IV, we give the values of the nucleon
mass extracted from the plateau, two- and three-state fits for
the case of the fits for the largest probability.
The values of the lattice spacings that we extract using

the nucleon mass as input are given in Table V. Since both
approaches employed are consistent with each other we
select the MA result as our final values of the lattice spacing
since they take into account systematic errors in the
variation of the fit ranges.

IV. DETERMINATION OF THE STRANGE
AND CHARM QUARK MASSES

For tuning the valence strange and charm quark masses
we use the Ω− and Λþ

c baryon masses respectively. In order
to tune the quark masses we generate two sets of correlators
for two different values of the nonrenormalized strange and
charm quark masses. The values used are listed in Table VI.

Since the data are correlated two sets suffice per ensemble
to perform the linear interpolation. In Fig. 2, we illustrate
the analysis of the effective mass for Λþ

c and Ω−. The
procedure is analogous to the extraction of the nucleon
mass. The most probable one-, two- and three-state fit
results for Ω− and Λþ

c baryons are given in Table VII.
We implement three different methods to perform the

quark mass tuning. In method-I, we first renormalize the
quark masses and interpolate to the physical baryon masses
for each ensemble using

MΩ ¼ AΩ þ BΩðms − m̃sÞ;
MΛc

¼ AΛc
þ BΛc

ðmc − m̃cÞ; ð21Þ

wherewe take m̃s ¼ 0.095 GeV and m̃c ¼ 1.2 GeV. This is
done for all combinations of fits ranges, i.e. for all models.
Subsequently, using Eq. (19) we select the model with the
highest probability as our final result. Alternatively, we can
average over all models with the corresponding probabilities
and calculate amodel average of the tunedquarkmasses. The
strange and charm quark masses calculated using method-I
are given in Table VIII.
In method-II, we perform the interpolation for the results

of the most probable model using Eq. (21) and then
extrapolate the interpolation parameters to the continuum
limit using

FIG. 3. Continuum extrapolation of the interpolation para-
meters as described in method-II for Ω−.

FIG. 4. Continuum extrapolation of the interpolation parame-
ters as described in method-II for Λþ

c .
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AΩ−;Λþ
c
ðaÞ ¼ cΩ−;Λþ

c
þ dΩ−;Λþ

c
a2;

BΩ−;Λþ
c
ðaÞ ¼ eΩ−;Λþ

c
þ fΩ−;Λþ

c
a2: ð22Þ

The continuum extrapolation of the parameters AΩ−;Λþ
c
and

BΩ−;Λþ
c

are shown in Figs. 3 and 4. Subsequently, we
calculate the strange quark mass quark mass using

ms;c ¼ m̃þ
Mphys

Ω−;Λþ
c
− As;cð0Þ

Bs;cð0Þ
; ð23Þ

where Mphys
Ω is the physical value of Ω−. We repeat the

procedure for the tuning of the charm quark using the mass
of Λc.
In method-III, we adopt an iterative strategy. Namely, we

consider a given value of the renormalized strange and charm
quark mass for all ensembles and use Eq. (21) to find theΩ−

and Λþ
c masses that correspond to this given quark masses.

We perform the continuum extrapolation of the Ω− and Λþ
c

masses linearly in a2 and iteratively change the values of the
renormalized strange and charm quark masses until the
continuum limit of the Ω− and Λþ

c masses match their
physical values.We present the results ofmethod-III in Fig. 5.
We present the results on the renormalized ms and mc in

the continuum limit extracted from all methods in Table IX.
As can be seen, all procedures yield the same values. We
take as our final values the ones from method-I with the
model average, namely

msð2 GeVÞ ¼ 99.2ð2.7Þ MeV and

mcð3 GeVÞ ¼ 1.015ð39Þ GeV;

in the MS scheme at the continuum limit.

FIG. 6. Δ baryon effective mass analysis. We use the same notation as Fig. 1.

FIG. 5. The continuum limit extrapolation for the mass of the
Ω− (top) and the Λþ

c (bottom) used for method-III after tuning
the mass of the strange and charm quarks. The cross represents
the physical value of their mass.

TABLE IX. We give the values of the renormalized strange and
charm quark masses at the continuum limit in GeV, using all three
methods. Both values are given in the MS scheme at a scale of 2
and 3 GeV, respectively for the strange and charm quarks.

msð2 GeVÞ mcð3 GeVÞ
Method-I (AIC) 0.0991(26) 1.006(27)
Method-I (MA) 0.0992(27) 1.015(39)
Method-II 0.0994(26) 1.012(24)
Method-III 0.0994(26) 1.011(24)
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V. EXTRACTION OF BARYON MASSES

Having determined the lattice spacing and tuned the
valence strange and charm quark masses, we discuss in this
section the analysis to extract the low-lying baryon spec-
trum. For the Δ, where we have only u and d valence
quarks, only method-I is relevant since the sea and valence
quarks are the same and there is no need to perform any
interpolation. However, as in the case of the nucleon mass,
we do correct the Δ effective mass to take into account
the slightly larger pion mass for the cB211.072.64 and

cC211.054.96 ensembles. This correction is noticeable
enough once we take the continuum limit and yield a
result consistent with experiments. The procedure followed
is the same as that used for correcting the nucleon effective
mass. In Fig. 6, we show the effective mass for Δ and the
corresponding one-, two- and three-states fits. For baryons
that contain strange and charm quarks, we employ all three
methods described in the previous section. We find the
baryon masses that correspond to the tuned masses of the
strange and charm quarks using Eq. (21) for the ones that

FIG. 7. Results on the effective mass of noncharmed baryon containing a strange quark. From top to bottom for the Σ, and Σ⋆ baryons
computed using the cC211.060.80 ensemble. The notation is the same as that in Fig. 2.
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contain only strange or only charm quarks. For baryons that
contain both quark flavors, we use

MB ¼ Aþ Bðms − m̃sÞ þ Cðmc − m̃cÞ; ð24Þ

with values of m̃s and m̃c the same as those used in Eq. (21)
employing all three methods. Our analysis of the effective
masses for selective cases is presented in Figs. 6–8.

VI. ISOSPIN SPLITTING

The twisted mass fermion formulation breaks isospin
symmetry at finite lattice spacing. This is an Oða2Þ effect
and it should vanish in the continuum limit. We examine
the splitting for the strange and charmed baryons as a
function of the lattice spacing and in the continuum limit. In
Figs. 9 and 10, we show the results on the mass spitting for
the strange and charmed baryons, respectively, as a
function of a2. As we can see, for all spin-3=2 noncharmed

FIG. 8. Results on the effective mass of charmed baryon containing a strange quark. From top to bottom, we show results for the Σc,
and Σ⋆

c baryons computed using the cC211.060.80 ensemble. The notation is the same as that in Fig. 2.
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baryons the mass splittings are consistent with zero at all
three lattice spacings. For the Delta baryon, we average the
masses of the Δþþ and Δ− as well the masses of the Δ−

and Δ0, since these are degenerate by symmetry. For the
spin-1=2 baryons, the only mass splitting that is not

consistent with zero is Ξ0 − Ξ−, which becomes zero only
at the finest lattice spacing. If we extrapolate linearly to the
continuum limit we see that indeed the mass splitting also
in this case becomes consistent with zero. The mass
splitting of the Σþ − Σ− and Σ0 − Σþ is consistent with

FIG. 9. Isospin symmetry splitting for strange spin-1=2 baryons (left) and spin-3=2 baryons (right).

FIG. 10. Isospin symmetry splitting for charm spin-1=2 baryons (left) and spin-3=2 baryons (right).
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zero for both cB211.072.64 and cC211.060.80 ensembles.
The small deviation from zero for the cD211.054.96
ensemble of less than a standard deviation can, thus, only
be a statistical fluctuation since this ensemble has even
smaller lattice spacing as compared to the other two.
Similarly, the mass splitting between the Σ0 and the
charged Σ− is consistent with zero for all ensembles
within one standard deviation. For the charmed baryons,
we also observe that all mass splittings are consistent with
zero for all lattice spacings or it vanishes for the finest
lattice spacing i.e. the cD211.054.96 ensemble. For the
mass splitting of the Ξþ

c − Ξ0
c, that case is similar to the

one of Ξ0 − Ξ− i.e. MΞþ
c −Ξ0

c
is consistent with zero after

taking the continuum limit. We include the linear

extrapolation to the continuum limit in Fig. 10 to highlight
the fact that also this splitting becomes zero at the
continuum limit.
Having shown that in the continuum limit isospin

splitting vanishes we present in what follows the results
on the baryons averaging among the isospin mutliplets. For
the Ξ and Ξc multiples, we average only in the con-
tinuum limit.

VII. CONTINUUM LIMIT

We obtain our final values on the baryon masses by
extrapolating linearly in a2 to the continuum limit. We use
all three methods except the case of the Δ where only
method-I is relevant. In Figs. 11 and 12 we present the

FIG. 11. Continuum extrapolation of the doubly charmed
baryons Ξ⋆

cc, Ωcc and Ω⋆
cc using the results of method-I with

model average.

FIG. 12. Continuum extrapolation of the triply charmed baryon
Ωccc using the results of method-I with model average.

FIG. 13. We show the masses of the Δ extracted with method-I
and of the strange baryons calculated using all three methods.
The red circles and blue squares denote results obtained with
method-I i.e. from the fit having the largest probability and with
averaging over all models, respectively. Black stars denote results
obtained using method-II and green diamonds denote results
using method-III. The empty symbols correspond to the baryons
we used as input.
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continuum extrapolation for the doubly and triply charmed
baryons which we predict their masses.
A comparison among the continuum extracted results

using the three methods is shown in Fig. 13 for the
noncharmed baryons, in Fig. 14 for the spin-1=2 charmed
baryons, and in Fig. 15 for the spin-3=2 charmed baryons.
We observe very good agreement among values for all three
methods. We thus opt to use as our final values the results
obtained from method-I with the model averaging, since
within this method, one takes into account all ranges for the
fits (models) eliminating a source of bias that may arise in
choosing one particular fit.
The values for the baryons masses determined

using method-I and the model averaging are given in
Table X.

VIII. COMPARISON WITH OTHER
LATTICE QCD RESULTS

Several collaborations have computed baryon masses,
using ensembles that include larger than physical pion
masses. This work is the first one to evaluate the low-lying
baryon mass spectrum at the continuum limit using only
physical point ensembles. We compare our results to other
recent lattice QCD results. The BMW Collaboration [32]
performed the first groundbreaking computation of baryon
masses using unquenched gauge ensembles. They used
several Nf ¼ 2þ 1 ensembles of clover-improved Wilson
fermions simulated with pion masses down to 190MeVand
with lattice spacings ranging from 0.125 fm down to
0.065 fm. They performed simultaneous extrapolations
to the physical pion mass and to the continuum limit
and since they had several volumes they included

FIG. 14. We show the masses for the spin-1=2 charmed baryons
calculated using the three methods methods. The notation is the
same as that of Fig. 13.

FIG. 15. We show the masses for the spin-3=2 charmed baryons
calculated using the three methods methods. The notation is the
same as that of Fig. 13.

TABLE X. Our final values for the low-lying baryon spectrum determined using method-I with model averaging.
The experimental mass from the PDG [31], if known, is given in the parenthesis next to the baryon symbol in the
first row.

Strange baryons

Λð1.116Þ Σð1.193Þ Ξð1.314Þ Δð1.232Þ Σ⋆ð1.385Þ Ξ⋆ð1.530Þ
1.1079(84) 1.187(12) 1.317(18) 1.218(61) 1.360(38) 1.550(16)

Spin-1=2 charmed baryons
Σcð2.455Þ Ξcð2.470Þ Ξ0

cð2.578Þ Ω0
cð2.695Þ Ξccð3.622Þ Ωcc

2.443(51) 2.460(35) 2.584(36) 2.675(32) 3.634(51) 3.703(51)

Spin-3=2 charmed baryons
Σ⋆
c ð2.520Þ Ξ⋆

c ð2.645Þ Ω⋆
c ð2.770Þ Ξ⋆

cc Ω⋆
cc Ωccc

2.509(46) 2.645(55) 2.747(31) 3.676(55) 3.803(50) 4.785(71)
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finite-volume corrections in their analysis. Another col-
laboration [8] used a relativistic heavy-quark action for
charm quarks and the clover-improved Wilson fermion
action for the light and strange quarks in order to calculate
the charmed baryon spectrum. They used five ensembles
with pion masses down to 220 MeV with lattice spacings in
the range a ≈ 0.12 − 0.06 fm to extrapolate to the con-
tinuum limit and they performed simultaneous extrapola-
tions to the physical light and strange quark masses. In
Ref. [13], a relativistic heavy-quark action is employed for
the charm sector, while for the light and strange quarks,
they used domain-wall fermions. They used eight ensem-
bles having two different lattice spacings of (a ≈ 0.11 and
0.085 fm) and of pion masses down to 227 MeV to
extrapolate to the physical point and to the continuum limit.
Very recently, the RQCD collaboration [33] used 58

Nf ¼ 2þ 1 ensembles of clover-improved Wilson fer-
mions with six different lattice spacings starting from
a ¼ 0.10 fm down to a ∼ 0.04 fm. These ensembles
yielded pion masses ranging from 429 MeV down to
127 MeV and using them they performed a chiral extrapo-
lation to the physical point, infinite volume, and continuum
extrapolations to obtain the strange baryon spectrum.
In Figs. 16 and 17, we compare our results with those

of the aforementioned collaborations as well as with
experimental results [31].
We observe excellent agreement between our results and

previous lattice QCD results. They are also in agreement

FIG. 16. We compare our results for the masses of noncharmed
baryons (top panel) (blue squares) with the results from RQCD
[33] (purple circles), and from BMW [32] (yellow stars). The
horizontal bands denote experimental results from PDG [31]. For
the resonances Δ, Σ⋆ and Ξ⋆ the width of the band is the
resonance width.

FIG. 17. We compare our results for the spin-1=2 (top panel)
and spin-3=2 (bottom panel) charmed baryons (blue squares)
with the results from Ref. [8] (green diamonds) and Ref. [32]
(black crosses). We also compare with the same experimental
results as in Fig. 16. For baryons that are resonances (Σ⋆

c , Ξ⋆
c , and

Ω⋆
c ) we use the resonance width as the error.

FIG. 18. Results on the strange (left) and charm (right) quark
masses (blue circles) compared to the FLAG21 average (black
squares) [34] and our previous results (red triangles) [17].
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with the experimental values when available. We find that
lattice QCD results on the mass of Ξ� favor a larger central
value by about 20 MeV.

IX. CONCLUSIONS

Using three Nf ¼ 2þ 1þ 1 ensembles simulated with
physical values of the quark masses, we perform for the
first time directly at the physical pion mass the continuum
limit for all low-lying baryon masses. The volume for these
three ensembles is approximately the same with a spatial
extent of 5.1 fm for the cB211.072.64 ensemble and 5.5 fm
for the other two ensembles. The lattice spacings are
determined using the nucleon mass after applying a
correction for the small mistuning in the pion mass. We
use the twisted mass fermion formulation with clover
improvement and Osterwalder-Seiler valence strange and
charm quarks. We tune the valence quark masses using the
physical masses of the Ω− and the Λþ

c baryons, respec-
tively. The renormalized strange and charm quark
masses that we find are msð2 GeVÞ ¼ 99.2ð2.7Þ MeV
and mcð3 GeVÞ ¼ 1.015ð39Þ GeV, respectively in the
MS scheme at the continuum limit. We compare these
values in Fig. 18. There is agreement with the values of
our previous analysis [17] that did not include the
cD211.054.96 ensemble but included ensembles simu-
lated at larger than physical pion mass that enabled us to
include ensembles with a ∼ 0.093 fm. While there is
agreement with the FLAG average [34] for the charm
quark mass, the one standard deviation tension for the
strange quark mass persists.
Our values for the baryon masses are in agreement

with experimental results. For the Ξ⋆ baryon, we find
MΞ⋆ ¼ 1.550ð16Þ GeV, as compared to the experimental
value of 1.530 GeV and consistent with other two lattice
QCD determinations [32,33]. Although within about a

standard deviation the lattice QCD results agree with the
experimental value, all three results yield a larger central
value as compared to what PDG quotes. This overall
agreement with the experimental results allows us to predict
the unmeasured baryon masses of doubly and triply
charmed baryons. The values predicted for the masses of
the doubly charmed Ξ⋆

cc, Ωcc and Ω⋆
cc baryons are 3.676

(55) GeV, 3.703(51) GeVand 3.803(50) GeV, respectively,
and for the triply charmed Ωccc baryon 4.785(71) GeV.

ACKNOWLEDGMENTS

C. A. acknowledges support by the project 3D-nucleon,
ID No. EXCELLENCE/0421/0043, cofinanced by the
European Regional Development Fund and the Republic
of Cyprus through the Research and Innovation
Foundation. G. C. was funded by the projects NextQCD,
ID No. EXCELLENCE/0918/0129, and NiceQuarks ID
No. EXCELLENCE/0421/0195, cofinanced by the
European Regional Development Fund and the Republic
of Cyprus through the Research and Innovation
Foundation. S. B. is funded by the project QC4LGT, ID
No. EXCELLENCE/0421/0019, cofinanced by the
European Regional Development Fund and the Republic
of Cyprus through the Research and Innovation
Foundation. S. B. also acknowledges funding by the
EuroCC project (Grant Agreement No. 951740). This
project used computer time under the project pr74yo
on the JUWELS Booster system at the Jülich
Supercomputing Centre and on the Cyclone supercomputer
at The Cyprus Institute. The authors gratefully acknowl-
edge the Gauss Centre for Supercomputing e.V. ([35]) for
funding this project by providing computing time through
the John von Neumann Institute for Computing (NIC) on
the GCS Supercomputer JUWELS-Booster at Jülich
Supercomputing Centre (JSC).

[1] M. F. M. Lutz et al. (PANDA Collaboration), arXiv:
0903.3905.

[2] Z.-G. Wang, Eur. Phys. J. A 45, 267 (2010).
[3] A. P. Martynenko, Phys. Lett. B 663, 317 (2008).
[4] D. Ebert, R. N. Faustov, V. O. Galkin, and A. P.

Martynenko, Phys. Rev. D 66, 014008 (2002).
[5] W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817

(2008).
[6] H. Na and S. A. Gottlieb, Proc. Sci. LATTICE2007 (2007)

124 [arXiv:0710.1422].
[7] H. Na and S. Gottlieb, Proc. Sci. LATTICE2008 (2008) 119

[arXiv:0812.1235].
[8] R. A. Briceno, H.-W. Lin, and D. R. Bolton, Phys. Rev. D

86, 094504 (2012).

[9] L. Liu, H.-W. Lin, K. Orginos, and A. Walker-Loud, Phys.
Rev. D 81, 094505 (2010).

[10] S.Basak, S.Datta,M.Padmanath, P.Majumdar, andN.Mathur,
Proc. Sci. LATTICE2012 (2012) 141 [arXiv:1211.6277].

[11] S. Durr, G. Koutsou, and T. Lippert, Phys. Rev. D 86,
114514 (2012).

[12] Y. Namekawa et al. (PACS-CS Collaboration), Phys. Rev. D
87, 094512 (2013).

[13] Z. S. Brown, W. Detmold, S. Meinel, and K. Orginos, Phys.
Rev. D 90, 094507 (2014).
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