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We investigate the ten independent local form factors relevant to the b-baryon decay Λb → Λlþl−,
combining information of lattice QCD and dispersive bounds. We propose a novel parametrization of the
form factors in terms of orthonormal polynomials that diagonalizes the form factor contributions to the
dispersive bounds. This is a generalization of the unitarity bounds developed for meson-to-meson form
factors. In contrast to ad hoc parametrizations of these form factors, our parametrization provides a degree
of control of the form-factor uncertainties at large hadronic recoil. This is of phenomenological interest for
theoretical predictions of, e.g., Λb → Λγ and Λb → Λlþl− decay processes.

DOI: 10.1103/PhysRevD.108.094509

I. INTRODUCTION

For the last decade, decays involving b → sμþμ− tran-
sitions have been a focus of the flavor physics community
due to the substantial number of so-called “b anomalies.”
These anomalies are a pattern of deviations between
theoretical expectations, within the Standard Model
(SM) of particle physics, and experimental measurements,
chiefly by the LHCb experiment [1–6]. Compatible experi-
mental results, for many of these measurements, have
since been obtained by the ATLAS [7,8], CMS [9–11],
and Belle [12] experiments.
There is substantial interest in corroborating the b

anomalies through decay channels that feature comple-
mentary sources of theoretical systematic uncertainties and
complementary sensitivity to effects beyond the SM. The
decay Λb → Λð→ pπ−Þμþμ− is a prime candidate for this
task [13]. In contrast to B → K�ð→ KπÞμþμ− decays, the
local form factors for Λb → Λμþμ− decays correspond to
transition matrix elements between stable single-hadron

states in QCD. This allows precise lattice QCD calculations
using standard methods, and results for the Λb → Λ form
factors have been available for some time [14]. Measure-
ments of Λb → Λð→ pπ−Þμþμ− observables [15,16]
have been included in global fits of the b → sμþμ−

couplings [17–20], and dedicated analyses for effects
beyond the SM, even accounting for production polariza-
tion of the Λb, have been performed in recent years [17,21].
Lepton-flavor universality violation in baryonic b→ slþl−

decay modes has also been studied theoretically; in
Ref. [22] the angular distribution of Λb → Λlþl−

has been computed for the full base of new-physics
operators (partial results are available in Refs. [23,24]).
Measurements by LHCb are also available for the branch-
ing fraction of the Λb → Λγ decay [16].
In this work, we investigate one of the two main sources

of theoretical uncertainties that arise in the predictions of
Λb → Λlþl− and Λb → Λγ transitions; the hadronic form
factors of local s̄Γb currents of mass dimension three. The
complete set of scalar-valued hadronic form factors
describing these currents is comprised of ten independent
functions of the dilepton invariant mass squared, q2. A
convenient Lorentz decomposition of the hadronic matrix
elements is achieved in terms of helicity amplitudes [25].
Here, we set out to improve the description of the form
factors as functions of q2 across the whole kinematic phase
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space available to the Λb → Λlþl− decay. To that end, we
derive dispersive bounds for the form factors in the six s̄Γb
currents: the (pseudo)scalar, the (axial) vector, and the
two tensor currents. We demonstrate that previous
analyses of dispersive bounds for baryon-to-baryon form
factors [26–29] overestimate the saturation of the bounds
(see also the discussion in Ref. [30]). Our formulation of
the bounds uses polynomials that are orthonormal on an arc
of the unit circle in the variable z (see Sec. II D for the
definition); such polynomials were previously used
to parametrize the nonlocal matrix elements contributing
to BðsÞ → fKð�Þ;ϕglþl− [31]. As a consequence, benefits
inherent to meson-to-meson form-factor parametrizations
with dispersive bounds now also apply to our approach. We
illustrate the usefulness of our formulation of the dispersive
bounds for the form factor parameters for Λb → Λ, but note
that it applies similarly to other ground-state baryon to
ground-state baryon form factors (e.g. Λb → Λc transi-
tions). As inputs, we use lattice-QCD determinations of the
form factors, which have already been extrapolated to the
continuum limit and to physical quark masses, at up to three
different points in q2. Our analysis also paves the way for
the application of the bounds directly, through a modified z
expansion, within future lattice QCD studies. This is likely
to increase the precision of future form-factor predictions,
especially at large hadronic recoil where q2 ≃ 0.
In Sec. II, we briefly recap the theory of the local form

factors for baryon-to-baryon transitions and their dispersive
bounds. We then propose a new parametrization for the
full set of form factors in Λb → Λ transitions, which

diagonalizes the dispersive bound. In Sec. III, we illustrate
the power of our parametrization based on lattice QCD
constraints for the Λb → Λ form factors. We highlight how
the form-factor uncertainties in the low momentum transfer
region are affected by our parametrization and the different
types of bounds we apply. We conclude in Sec. IV.

II. DERIVATION OF THE DISPERSIVE BOUNDS

We begin with a review of the Lorentz decomposition
of the hadronic matrix elements in Sec. II A. We then
introduce the two-point correlation functions responsible
for the dispersive bound and their theoretical predictions
within an operator product expansion in Sec. II B. The
hadronic representation of the correlation functions is
discussed in Sec. II C. Our proposed parametrization is
introduced in Sec. II D.

A. Lorentz decomposition in terms
of helicity form factors

A convenient definition of the form factors is achieved
when each helicity amplitude corresponds to a single form
factor:

hΛðkÞjs̄ΓμbjΛbðpÞiε�μðλÞ ∝ fΓλ ðq2Þ; ð1Þ

where q2 ¼ ðp − kÞ2, and ε is the polarization vector
of a fictitious vector mediator with polarization λ. For
1=2þ → 1=2þ transitions, this definition is achieved by the
Lorentz decomposition [25]:

hΛðk; sΛÞjs̄γμbjΛbðp; sΛb
Þi ¼ ūΛðk; sΛÞ

�
fVt ðq2ÞðmΛb

−mΛÞ
qμ

q2
þ fV0 ðq2Þ

mΛb
þmΛ

sþ

�
pμ þ kμ − ðm2

Λb
−m2

ΛÞ
qμ

q2

�

þ fV⊥ðq2Þ
�
γμ −

2mΛ

sþ
pμ −

2mΛb

sþ
kμ
��

uΛb
ðp; sΛb

Þ; ð2Þ

hΛðk; sΛÞjs̄γμγ5bjΛbðp; sΛb
Þi ¼ −ūΛðk; sΛÞγ5

�
fAt ðq2ÞðmΛb

þmΛÞ
qμ

q2
þ fA0 ðq2Þ

mΛb
−mΛ

s−

�
pμ þ kμ − ðm2

Λb
−m2

ΛÞ
qμ

q2

�

þ fA⊥ðq2Þ
�
γμ þ 2mΛ

s−
pμ −

2mΛb

s−
kμ
��

uΛb
ðpΛb

; sΛb
Þ; ð3Þ

hΛðk; sΛÞjs̄iσμνqνbjΛbðp; sΛb
Þi ¼ −ūΛðk; sΛÞ

�
fT0 ðq2Þ

q2

sþ

�
pμ þ kμ − ðm2

Λb
−m2

ΛÞ
qμ

q2

�

þ fT⊥ðq2ÞðmΛb
þmΛÞ

�
γμ −

2mΛ

sþ
pμ −

2mΛb

sþ
kμ
��

uΛb
ðp; sΛb

Þ; ð4Þ

hΛðk; sΛÞjs̄iσμνqνγ5bjΛbðp; sΛb
Þi ¼ −ūΛðk; sΛÞγ5

�
fT50 ðq2Þ q

2

s−

�
pμ þ kμ − ðm2

Λb
−m2

ΛÞ
qμ

q2

�

þ fT5⊥ ðq2ÞðmΛb
−mΛÞ

�
γμ þ 2mΛ

s−
pμ −

2mΛb

s−
kμ
��

uΛb
ðp; sΛb

Þ; ð5Þ
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where we abbreviate σμν ¼ i
2
½γμ; γν� and s� ¼ ðmΛb

�
mΛÞ2 − q2. The labeling of the ten form factors follows
the conventions of Ref. [13]. Each form factor, fΓλ , arises in
the current s̄Γb in a helicity amplitude with polarization
λ ¼ t; 0;⊥. We refer to Ref. [13] for details and the
relations between the form factors and the helicity ampli-
tudes. Note that the matrix elements for the scalar and
pseudoscalar current can be related to the vector and axial-
vector current of the timelike-polarized form factors fVt and
fAt via the equations of motion:

hΛðk; sΛÞjs̄bjΛbðp; sΛb
Þi

¼ qμ

mb −ms
hΛðk; sΛÞjs̄γμbjΛbðp; sΛb

Þi

¼ fVt ðq2Þ
mΛb

−mΛ

mb −ms
ūΛðk; sΛÞuΛb

ðp; sΛb
Þ; ð6Þ

hΛðk; sΛÞjs̄γ5bjΛbðp; sΛb
Þi

¼ −
qμ

mb þms
hΛðk; sΛÞjs̄γμγ5bjΛbðp; sΛb

Þi

¼ fAt ðq2Þ
mΛb

þmΛ

mb þms
ūΛðk; sΛÞγ5uΛb

ðp; sΛb
Þ: ð7Þ

Although the ten functions, fΓλ ðq2Þ, are a priori inde-
pendent, some relations exist at specific points in q2. These
so-called endpoint relations arise due to two different
mechanisms. First, the hadronic matrix elements on the
left-hand sides of Eqs. (2)–(5) must be free of kinematic
singularities. Two such singularities can arise, as spurious
poles at q2 ¼ 0 and q2 ¼ q2max ≡ ðmΛb

−mΛÞ2. They are
removed by the following identities:

fVt ð0Þ ¼ fV0 ð0Þ; fAt ð0Þ ¼ fA0 ð0Þ; ð8Þ

fA⊥ðq2maxÞ ¼ fA0 ðq2maxÞ; fT5⊥ ðq2maxÞ ¼ fT50 ðq2maxÞ: ð9Þ

In addition to the above, an algebraic relation between σμν

and σμνγ5 ensures that

fT5⊥ ð0Þ ¼ fT⊥ð0Þ: ð10Þ

See also Ref. [32] for additional discussion of endpoint
relations for baryon transition form factors.

B. Two-point correlation functions
and OPE representation

Dispersive bounds for local form factors have a successful
history. They were first used for the kaon form factor
[33–35] and have also successfully been applied to exclusive
B → π [36,37] and B → Dð�Þ [26,38,39] form factors.1

In the latter case, the heavy-quark expansion renders the
bounds phenomenologically more useful due to relations
between all form factors of transitions between doublets
under heavy-quark spin symmetry [46]; see Refs. [47–49]
for recent phenomenological updates and analyses up to
order 1=m2 in the heavy-quark expansion, respectively. The
application of the bound to form factors arising in baryon-to-
baryon transitions is more complicated [27,30], chiefly
due to the fact that for any form factor, F, its first branch
point, tFþ, does not coincide with the threshold for baryon/
antibaryon pair production, tFth. Instead, the branch points
lay to the left of the pair production points, at the pair
production threshold for the corresponding ground-state
meson/antimeson pair. We show a sketch of this structure in
the left-hand side of Fig. 1.
The dispersive bounds connect a theoretical computation

of a suitably chosen two-point function with weighted
integrals of the squared hadronic form factors. For con-
creteness and brevity we derive the dispersive bound for
the vector current JμV and its hadronic form factors. The
generalization to the currents

JμV ¼ s̄γμb; JμA ¼ s̄γμγ5b; ð11Þ

JμT ¼ s̄σμνqνb; JμT5 ¼ s̄σμνqνγ5b ð12Þ

is straightforward following the same prescription as JμV . As
we will see below, the results for scalar and pseudoscalar
currents can be obtained from the vector and axial currents,
respectively.
We define Πμν

V to be the vacuum matrix elements of the
two-point function with two insertions of JV :

Πμν
V ðQÞ ¼ i

Z
d4x eiQ·xh0jT fJμVðxÞ; Jν†V ð0Þgj0i; ð13Þ

where Qμ is the four-momentum flowing through the
two-point function. This tensor-valued function can be
expressed in terms of two scalar-valued functions:

Πμν
V ðQÞ¼Pμν

J¼0ðQÞΠJ¼0
V ðQ2Þþ3Pμν

J¼1ðQÞΠJ¼1
V ðQ2Þ; ð14Þ

FIG. 1. Sketch of the analytic structure of the baryon-to-baryon
form factors in the variable q2 (left) and the variable z (right). The
q2 range of semileptonic decays is marked “SL.” The baryon/
antibaryon pair production is marked “pair prod.” The form
factors develop a branch cut below the baryon/antibaryon pair
production threshold due to rescattering of virtual baryon/
antibaryon pairs into, e.g., B̄Kð�Þ pairs.

1See also applications [40–44] of the dispersive matrix
method [45].
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using the two projectors

Pμν
J¼0ðpÞ ¼

pμpν

p2
; Pμν

J¼1ðpÞ ¼
1

3

�
pμpν

p2
− gμν

�
: ð15Þ

Note that the two tensor currents do not feature a J ¼ 0
component, i.e., the coefficients of the projectors PJ¼0

vanish for these currents.
The functions ΠJ¼0

V ðQ2Þ and ΠJ¼1
V ðQ2Þ feature singu-

larities along the real Q2 axis, which will be discussed
below. These singularities are captured by the discontinu-
ities ofΠJ¼0

V andΠJ¼1
V . It is now convenient to define a new

function, χJV , which is completely described in terms of the
discontinuities of the functions ΠJ¼1

V :

χJ¼1
V ðQ2Þ ¼ 1

n!

�
d

dQ2

�
n
ΠJ¼1

V ðQ2Þ

¼ 1

2πi

Z
∞

0

dt
DiscΠJ¼1

V ðtÞ
ðt −Q2Þnþ1

: ð16Þ

Here, the number of derivatives n (also known as the
number of “subtractions”) is chosen to be the smallest
number that yields a convergent integral. Note that in
general the functions χ for the scalar and pseudoscalar
currents require a different value of n than the functions for
the vector and axial currents, respectively, despite the fact
that they can be extracted from the vector and axial two-
point correlators.
The dispersive bound is constructed by equating two

different representations of χV with each other, based on the
assumption of global quark hadron duality:

χJV

���
OPE

¼ χJV

���
hadr

: ð17Þ

The left-hand side representation is obtained from an
operator product expansion (OPE) of the time-ordered
product that gives rise to Πμν

V ðQÞ. For s̄Γb currents, the
most recent analysis of these OPE results, including sub-
leading contributions, has been presented in Ref. [50] for all
the dimension-three currents considered in this work. We
summarize results of the analysis for Q2 ¼ 0 in Table I,
wherewe also list the values for n on a per-current basis. The
right-hand side representation is obtained from the hadronic
matrix elements of on-shell intermediate states. We will
discuss this representation and its individual terms in the
next section.

C. Hadronic representation of the bound

We continue to discuss the bounds for the case of the
vector current, and concretely, the scalar-valued two-point
function ΠJ¼1

V ,

ΠJ¼1
V ¼ ½PJ¼1�μνΠμν

V : ð18Þ

Its discontinuity due to a hadronic intermediate state, Hs̄b,
with flavor quantum numbers B ¼ −S ¼ 1 can be obtained
using

DiscΠJ
Γ ¼ i

X
spin

Z
dρ ð2πÞ4δð4Þ

�
q −

Xn
i

pi

�

× Pμν
J ðqÞh0jJμΓjHbs̄ðp1;…; pnÞi

× hHbs̄ðp1;…; pnÞjJν†Γ j0i; ð19Þ
where the dρ is the phase-space element of the n-particle
intermediate state. Below we consider the cases of one- and
two-particle intermediate states, with

Z
dρ¼

8<
:
R d3p
ð2πÞ32Ep⃗

for one-particle states;R d3p1

ð2πÞ32Ep⃗1

R d3p2

ð2πÞ32Ep⃗2
for two-particle states:

ð20Þ

1. One-particle contributions

Here, we discuss contributions due to a single asymptotic
on-shell state Hbs̄ with flavor quantum numbers
B ¼ −S ¼ 1, which excludes states that strongly decay
such as radially excited states. We continue to use the case
Γ ¼ V as an example, with J ¼ 1. In that case, the
discontinuity receives a single contribution:

DiscΠJ¼1
V ðq2Þ

����
1pt

¼ i
Z

dρ ð2πÞ4δð4Þðq − pÞ

×
X
λ

½PJ¼1�μνh0jJμV jB̄�
sðp; λÞi

× hB̄�
sðp; λÞjJν†V j0i ð21Þ

¼ i
Z

dρ ð2πÞ4δð4Þðq − pÞm2
B�
s
f2B�

s
ð22Þ

¼ 2πδðq2 −m2
B�
s
Þθðq0Þm2

B�
s
f2B�

s
; ð23Þ

TABLE I. The values of χJΓðQ2 ¼ 0ÞjOPE as taken from
Ref. [50], which include terms at next-to-leading order in αs
and subleading power corrections. The number of derivatives for
each current Γ ¼ V; A; S; P; T; T5 is provided as n. Note that the
results for χ in the rows for Γ ¼ T; T5 differ from those given in
Ref. [50] by a factor of 1

4
, which is due to differences in

convention for the tensor current. The value of the b-quark mass
is taken as mb ¼ 4.2 GeV.

Γ J Form factors χJΓjOPE [10−2] n

V 0 fVt 1.42 1
V 1 fV0 , f

V⊥ 1.20=m2
b 2

A 0 fAt 1.57 1
A 1 fA0 , f

A⊥ 1.13=m2
b 2

T 1 fT0 , f
T⊥ 0.803=m2

b 3
T5 1 fT50 , fT5⊥ 0.748=m2

b 3
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where λ is the polarization of the B̄�
s meson and mB�

s
its

mass. States other than the B̄�
s do not contribute, since either

their matrix elements with the Γ ¼ V current vanish, their
projection onto the J ¼ 1 state vanishes, or they decay
strongly. The generalization to Γ ¼ A and J ¼ 0 is straight-
forward:

DiscΠJ¼0
V ðq2Þ

����
1pt

¼ 2πδðq2 −m2
B�
s;0
Þθðq0Þm2

B�
s;0
f2B�

s;0
; ð24Þ

DiscΠJ¼0
A ðq2Þ

����
1pt

¼ 2πδðq2 −m2
Bs
Þθðq0Þm2

Bs
f2Bs

; ð25Þ

DiscΠJ¼1
A ðq2Þ

����
1pt

¼ 2πδðq2 −m2
Bs;1

Þθðq0Þm2
Bs;1

f2Bs;1
: ð26Þ

Here Bs is the ground-state pseudoscalar meson with a very
well-known decay constant fBs

¼ 230.7� 1.3 MeV [51],
Bs;1 is the axial vector meson, and B�

s;0 is the scalar meson.
In brief, the (pseudo)scalar current receives a contribution
from a (pseudo)scalar on-shell state, and the axial-vector
current receives a contribution from an axial-vector on-
shell state. Although sub-BK-threshold Bs;1 or B�

s;0 states
have not yet been seen in the experiment, there are
indications in lattice QCD analyses that such subthreshold
states exist [52]. However, the values of their respective
decay constants are presently not very well known;
estimates have been obtained, via QCD sum rule at
next-to-leading order, in Refs. [53,54]. Nevertheless, these
states produce a pole both in the two-point functions ΠJ

Γ
and in their associated form factors, which is a necessary
information for the formulation of the dispersive bounds
and the form-factor parametrization. From this point for-
ward, we assume the presence of a single pole due to a
JP ¼ f0þ; 1−; 0−; 1þg state contributing to form factors
with ðΓ; JÞ ¼ fðV; 0Þ; ðV; 1Þ; ðA; 0Þ; ðA; 1Þg, respectively.
The cases for currents with Γ ¼ T and Γ ¼ T5 benefit

from further explanation. For these currents one might
assume that tensor, i.e., JP ¼ 2�, states play a leading role.
However, these states do not contribute at all, since their
matrix elements vanish:

h0js̄σμνðγ5ÞbjB̄sðJP ¼ 2�Þi ¼ 0: ð27Þ

This can readily be understood, since the above matrix
elements are antisymmetric in the indices μ and ν, while the
polarization tensors of JP ¼ 2� mesons are symmetric
quantities. Nevertheless, the currents Γ ¼ T and Γ ¼ T5 do

feature poles due to one-particle contributions, which arise
from states with JP ¼ 1�. We obtain

DiscΠJ¼1
T ðq2Þ

����
1pt

¼ 2πδðq2 −m2
B�
s
Þθðq0Þm4

B�
s
ðfTB�

s
Þ2; ð28Þ

DiscΠJ¼1
T5 ðq2Þ

����
1pt

¼ 2πδðq2 −m2
Bs;1

Þθðq0Þm4
Bs;1

ðfTBs;1
Þ2;

ð29Þ
where fTB�

s
and fTBs;1

are the decay constants of the respective
state for a tensor current:

h0jJμT jB̄�
sðpÞi ¼ im2

B�
s
fTB�

s
ϵμ;

h0jJμT5jB̄s;1ðpÞi ¼ −im2
Bs;1

fTBs;1
ϵμ: ð30Þ

Plugging the results for the discontinuities into Eq. (23)
we obtain

χJ¼1
V ðQ2Þ

����
1pt

¼ m2
B�
s
f2B�

s

ðm2
B�
s
−Q2Þnþ1

;

χJ¼0
V ðQ2Þ

����
1pt

¼
m2

B�
s;0
f2B�

s;0

ðm2
B�
s;0
−Q2Þnþ1

; ð31Þ

χJ¼1
A ðQ2Þ

����
1pt

¼ m2
Bs;1

f2Bs;1

ðm2
Bs;1

−Q2Þnþ1
;

χJ¼0
A ðQ2Þ

����
1pt

¼ m2
Bs
f2Bs

ðm2
Bs
−Q2Þnþ1

; ð32Þ

χJ¼1
T ðQ2Þ

����
1pt

¼ m4
B�
s
ðfTB�

s
Þ2

ðm2
B�
s
−Q2Þnþ1

;

χJ¼1
T5 ðQ2Þ

����
1pt

¼ m4
Bs;1

ðfTBs;1
Þ2

ðm2
Bs;1

−Q2Þnþ1
: ð33Þ

The one-particle contributions each amount to about 10%
of the respective OPE result.

2. Two-particle contributions

Here, we focus on the contributions to χ due to an
intermediate ΛbΛ̄ state. By means of unitarity we can
express the discontinuity of the two-particle correlator
ΠJ

ΓðtÞ as a sum of intermediate Hbs̄ states with flavor
quantum numbers B ¼ −S ¼ 1:

DiscΠJ
Γ ¼ i

X
spins

Z
dρ ð2πÞ4δð4Þðq − ðp1 þ p2ÞÞ½PJ�μνh0jJμΓjΛbðp1; sΛb

ÞΛ̄ð−p2; sΛÞi

× hΛ̄ð−p2; sΛÞΛbðp1; sΛb
ÞjJν†Γ j0i þ further positive terms: ð34Þ
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Note that further two-particle contributions for which
dispersive bounds have been applied include B̄K, B̄K�,
and B̄sϕ [50]. The effect of each of those two-particle
contributions would decrease the upper bound only by
1%–4% [50], i.e., by a smaller amount than the one-particle
contributions.
We can evaluate the phase-space integration in the rest

frame of the two-particle system as

Z
dρ ð2πÞ4δð4Þðq − ðp1 þ p2ÞÞ ¼

1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; q
2Þ

q
q2

× θðq2 − sΛbΛÞ; ð35Þ

with sΛbΛ ¼ ðmΛb
þmΛÞ2. From this we obtain

DiscΠJ
Γ ¼ i

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; q
2Þ

q
q2

θðq2 − sΛbΛÞ

× ½PJ�μνh0jJμΓjΛbΛ̄ihΛ̄ΛbjJν†Γ j0i ð36Þ

where in the last line we dropped all further positive terms.
In the following we summarize the contraction between
helicity operators and matrix elements that can be
expressed via local form factors:

½PJ�μνh0jJμV jΛ̄ΛbihΛ̄ΛbjJν†V j0i ¼
8<
:

2ðmΛb−mΛÞ2
q2 sþðq2ÞjfVt j2 for J ¼ 0;

2s−ðq2Þ
3q2 ððmΛb

þmΛÞ2jfV0 j2 þ 2q2jfV⊥j2Þ for J ¼ 1;
ð37Þ

½PJ�μνh0jJμAjΛ̄ΛbihΛ̄ΛbjJν†A j0i ¼
8<
:

2s−ðq2Þ
q2 ðmΛb

þmΛÞ2jfAt j2 for J ¼ 0;

2sþðq2Þ
3q2 ððmΛb

−mΛÞ2jfA0 j2 þ 2q2jfA⊥j2Þ for J ¼ 1;
ð38Þ

½PJ�μνh0jJμT jΛ̄ΛbihΛ̄ΛbjJν†T j0i ¼
(
0 for J ¼ 0;
2s−ðq2Þ

3
ð2ðmΛb

þmΛÞ2jfT⊥j2 þ q2jfT0 j2Þ for J ¼ 1;
ð39Þ

½PJ�μνh0jJμT5jΛ̄ΛbihΛ̄ΛbjJν†T5j0i ¼
8<
:

0 for J ¼ 0;
2sþðq2Þ

3
ð2ðmΛb

−mΛÞ2jfT5⊥ j2 þ q2jfT50 j2Þ for J ¼ 1;
ð40Þ

where the sum over the baryon spins is implied.

D. Parametrization

We relate the OPE representation to the hadronic representation of the functions χJΓ through Eq. (17). Using Γ ¼ V and
J ¼ 1 again as an example, the dispersive bound takes the form

χJ¼1
V ðQ2Þ

����
OPE

≥ χJ¼1
V ðQ2Þ

����
1pt

þ
Z

∞

sΛbΛ

dt
1

24π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; tÞ
q
t2ðt −Q2Þnþ1

s−ðtÞ ×
�ðmΛb

þmΛÞ2jfV0 ðtÞj2 þ 2tjfV⊥ðtÞj2
	
; ð41Þ

where the last term is the two-particle contribution
due to the ground-state baryons. Our intent is now to
parametrize the Λb → Λ form factors (here, fV0 ; f

V⊥) in such
a way that their parameters enter the two-particle contri-
butions to χΓ in a simple form. Concretely, we envisage a
contribution that enters as the 2-norm of the vector of
parameters.
In general, the bounds are best represented by

transforming the variable t to the new variable z,
defined as

zðt; t0; tþÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p : ð42Þ

In the above, t0 corresponds to the zero of zðtÞ and is a free
parameter that can be chosen, and tþ corresponds to lowest
branch point of the form factors. The mapping from t ¼ q2

to z is illustrated in Fig. 1. The integral comprising the
two-particle contribution starts at the pair-production
threshold tth.
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When discussing the dispersive bounds for e.g. B → D
or B → π form factors, one has tth ¼ tþ. The integral of the
discontinuity along the real t axis in the mesonic analog of
Eq. (41) then becomes a contour integral along the unit
circle jzj ¼ 1. For an arbitrary function g,

Z
∞

tth¼tþ
dtDisc gðtÞ ¼ 1

2

I
jzj¼1

dz
z

���� dtðzÞdz

����Disc gðtðzÞÞ
¼ i

2

Z þπ

−π
dα

���� dtðzÞdz

����Disc gðtðeiαÞÞ: ð43Þ

The contribution to the integrand from a form factor F is
then written as jϕFj2jFj2, where the outer function ϕF is
constructed such that the product ϕFF is free of kinematic
singularities on the unit disk jzj < 1 [36,38,39,46,55]. The
product of outer function and form factor is then commonly
expressed as a power series in z, which is bounded in the
semileptonic region. Powers of z are orthonormal with
respect to the scalar product

hznjzmi≡
I
jzj¼1

dz
iz

zn;�zm ¼
Z þπ

−π
dαzn;�zmjz¼eiα ¼ 2πδnm;

ð44Þ

that is, when integrated over the entire unit circle. As a
consequence, for an analytic function on the z unit disk that
is square-integrable on the z unit circle, the Fourier
coefficients exist only for positive index n and coincide
with the Taylor coefficients for an expansion in z ¼ 0. The
contribution to the dispersive bound can then be expressed
as the 2-norm of the Taylor coefficients. For more details of
the derivation, we refer the reader to Ref. [45].
For b → s transitions, B̄sπ intermediate states produce

the lowest-lying branch cut. However, production of a B̄sπ

state from the vacuum through a s̄b current violates isospin
symmetry and is therefore strongly suppressed, and is
forbidden in lattice-QCD calculations with mu ¼ md. The
production of B̄sππ states is allowed by isospin symmetry,
but the matrix elements for this process are still expected to
be small due to the three-particle structure. For the purpose
of this analysis we set tþ to the numerically most relevant
branch point, i.e., to2

tþ ≡ ðmB þmKÞ2: ð45Þ

The integral contribution for B̄K intermediate states can
then be mapped onto the entire unit circle in z as discussed
above, and their contributions to the dispersive bound can
be expressed as the 2-norm of their Taylor coefficients.
However, intermediate states with larger pair-production
thresholds cover only successively smaller arcs of the unit
circle, and the correspondence of the 2-norm of the Taylor
coefficients and their contributions to the dispersive bound
does not hold any longer. The branch point at tþ arises from
scattering into on-shell B̄K intermediate states.
In the following, we discuss the application of the series

expansion to baryon-to-baryon form factors in the presence
of a dispersive bound. The main difference between our
approach and other parametrizations is that we do not
assume the lowest branch point tþ to coincide with the
baryon/antibaryon threshold tth > tþ. As a consequence,
the contour integral representing the form factor’s contri-
bution to its bound is supported only on the arc of the unit
circle with opening angle 2αΛbΛ, where

αΛbΛ ¼ arg zððmΛ þmΛb
Þ2Þ: ð46Þ

Specifically, Eq. (41) becomes

1 ≥
1

48π2χJ¼1
V ðQ2ÞjOPE

Z þαΛbΛ

−αΛbΛ
dα

���� dzðαÞdα
dtðzÞ
dz

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; tÞ
q
t2ðt −Q2Þnþ1

s−ðtÞ
�ðmΛb

þmΛÞ2jfV0 ðtÞj2 þ 2tjfV⊥ðtÞj2
	

≡
Z þαΛbΛ

−αΛbΛ
dαðjϕfV

0
ðzÞj2jfV0 ðzÞj2 þ jϕfV⊥ðzÞj2jfV⊥ðzÞj2Þz¼eiα

; ð47Þ

where t ¼ tðzðαÞÞ, and we dropped the one-particle
contributions for legibility. Here, ϕfV

0
ðzÞ;ϕfV⊥ðzÞ are

the outer functions for the form factors fV0 and fV⊥.
The full list of expressions for the outer functions
of all baryon-to-baryon form factors is compiled in
Appendix B.
A form factor’s contribution to the bound is expressed in

terms of an integral with a positive definite integrand.
Hence, we immediately find that a parametrization that
assumes integration over the full unit circle rather than the

relevant pair production arc jαj < αΛbΛ overestimates the
saturation of the dispersive bound due to that form factor.
To express the level of saturation due to each term in
Eq. (47) as a 2-norm of some coefficient sequence,
we expand the form factors in a basis of polynomials
pnðzÞ [31]. These polynomials must be orthonormal with
respect to the scalar product

2Note that our method is still equally applicable for other,
lower choices of tþ.
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hpnjpmi≡
I

jzj¼1
j arg zj≤αΛbΛ

dz
iz

p�
nðzÞpmðzÞ

¼
Z þαΛbΛ

−αΛbΛ
dαp�

nðzÞpmðzÞjz¼eiα ¼ δnm: ð48Þ

The polynomials pnðzÞ are the Szegő polynomials [56],
which can be derived via the Gram-Schmidt procedure; see
details in Appendix A. A computationally efficient and
numerically stable evaluation of the polynomials can be
achieved using the Szegő recurrence relation [56], which
we use in the reference implementation of our parametri-
zation as part of the EOS software. The first five so-called
Verblunsky coefficients that uniquely generate the poly-
nomials are listed in Appendix A.
Truncating the series at order N, our parametrization of

the local form factors now takes the form

fΓλ ðq2Þ
����
N
¼ 1

Pðq2ÞϕfΓλ
ðzÞ

XN
i¼0

aifΓλ
jNpiðzÞ; ð49Þ

where Pðq2Þ ¼ zðq2; t0 ¼ m2
pole; tþÞ is the Blaschke factor,

ϕfΓλ
ðzÞ is the outer function, and piðzÞ are the orthonormal

polynomials. The Blaschke factor takes into account
bound-state poles below the lowest branch point tþ without
changing the contribution to the dispersive bound [45].
Here, we assume each form factor to have a single bound-
state pole, with the masses given in Table II. For our
parametrization, we choose t0 ¼ q2max ¼ ðmΛb

−mΛÞ2. Our
choice of t0 means that the entire semileptonic phase space
is mapped onto an interval of the positive real z axis.
Our parametrization features most of the benefits inherent
to the Boyd–Grinstein–Lebed (BGL) parametrization for
meson-to-meson form factors [38], with one exception. The
BGL parametrization uses the zn monomials, which are
bounded on the open unit disk. As a consequence, the form
factor parametrization for processes such as B̄ → D are an
absolutely convergent series [45]. This benefit does not
translate to the baryon-to-baryon form factors.3 The poly-
nomials pn are not bounded on the open unit disk. In
fact, the Szegő recurrence relation combined with the
Szegő condition provides that pnðz ¼ 0Þ increase expo-
nentially with n for large n. Nevertheless, our proposed
approach provides a benefit over a parametrization in terms
of the z monomials in absence of any bound on their
coefficients. In Appendix C, we show that this growth does
not spoil the convergence of the parametrization, and we
provide an estimate for an upper bound on the trunca-
tion error.

Based on Eqs. (37)–(40), we arrive at strong unitarity
bounds on the form-factor coefficients:

XN
i¼0

jaifVt j
2 ≤ 1 −

χJ¼0
V j1pt

χJ¼0
V jOPE

;
XN
i¼0

jai
fAt
j2 ≤ 1 −

χJ¼0
A j1pt

χJ¼0
A jOPE

;

ð50Þ

XN
i¼0

n
jaifV

0

j2 þ jaifV⊥ j
2
o
≤ 1 −

χJ¼1
V j1pt

χJ¼1
V jOPE

;

XN
i¼0

n
jai

fA
0

j2 þ jai
fA⊥
j2
o
≤ 1 −

χJ¼1
A j1pt

χJ¼1
A jOPE

; ð51Þ

XN
i¼0

n
jaifT

0

j2 þ jaifT⊥ j
2
o
≤ 1 −

χJ¼1
T j1pt

χJ¼1
T jOPE

;

XN
i¼0

n
jai

fT5
0

j2 þ jai
fT5⊥

j2
o
≤ 1 −

χJ¼1
T5 j1pt

χJ¼1
T5 jOPE

: ð52Þ

Note that here we also subtracted the one-particle contri-
butions, which are discussed in Sec. II C 1. However, this
subtraction decreases the bound by only ∼10%. In our
statistical analysis of only Λb → Λ form factors, we find
that this subtraction is not yet numerically significant.
Nevertheless, we advocate to include the one-particle
contributions in global fits of the known local b → s form
factors, where their impact will likely be numerically
relevant.
At this point, we have not yet employed the endpoint

relations given in Eqs. (8)–(10). By using the endpoint
relations, we can express the zeroth coefficient of
fVt ; fAt ; fA⊥; fT⊥; fT50 in terms of coefficients of other form
factors.
Our proposed parametrization has two tangible benefits.

First, each form factor parameter ak is bounded in magni-
tude, jakj ≤ 1. The N dimensional parameter space is
therefore restricted to the hypercube ½−1;þ1�N . We refer
to this type of parameter bound as the weak bound.4

TABLE II. List of Bs meson pole masses appearing in the
different form factors. The values are taken from Refs. [52,57].

Form factor Pole spin-parity JP mpole in GeV

fV0 ; f
V⊥; fT0 ; fT⊥ 1− 5.416

fVt 0þ 5.711
fA0 ; f

A⊥; fT50 ; fT5⊥ 1þ 5.750
fAt 0− 5.367

3It also does not transfer to form factors for processes such as
B̄s → Ds or B̄s → K̄, which suffer from the same problem:
branch cuts below their respective pair-production thresholds.
Our approach can be adjusted for these form factors.

4Our definitions of weak and strong bounds differ from the
definitions proposed in Ref. [47]. There, what we call the weak
bound is not considered in isolation, and what we call the strong
bound is labeled a “weak bound,” in contrast to a “strong bound”
that affects more than one decay process.
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It facilitates fits to theoretical or phenomenological inputs
on the form factors, since the choice of a prior is not
subjective. Second, the form factor parameters are
restricted by the strong bounds Eqs. (50)–(52). In the
absence of the small number of exact relations between the
form factors that we discussed earlier, this strong bound is
in fact an upper bound on the sum of the squares of the
form-factor parameters. As a consequence, the parameter
space is further restricted to the combination of four
hyperspheres, one per bound.5 The strong bounds imply
that the sequence of form factor parameters asymptotically
falls off faster than 1=

ffiffiffi
k

p
. This behavior does not prove

absolute convergence of the series expansion of the form
factors, which would require a falloff that compensates the
exponential growth of the polynomials. Nevertheless, we
will assume sufficient convergence of the form factors from
this point on (see Appendix C for further discussion).
Below, we check empirically if the strong bound suffices to
provide bounded uncertainties for the form factors in
truncated expansions.

III. STATISTICAL ANALYSIS

A. Datasets

To illustrate the power of our proposed parametrization,
we carry out a number of Bayesian analyses of the lattice
QCD results for the full set of Λb → Λ form factors as
provided in Ref. [14]. These analyses are all carried out
using the EOS software [58], which has been modified for
this purpose. Our proposed parametrization for the Λb → Λ
form factors is implemented as of EOS version 1.0.2 [59].
The form factors are constrained by a multivariate Gaussian
likelihood that jointly describes synthetic data points of the
form factors in the continuum limit and at physical quark
masses, up to three per form factor. Each data point is
generated for one of three possible values of the momentum
transfer q2: q2i ∈ f13; 16; 19g GeV2. The overall q2 range is
chosen based on the availability of lattice QCD data points
in Ref. [14]. The synthetic data points are illustrated by
black crosses in Figs. 2 and 3.
Reference [14] provides two sets of parametrizations of

the form factors in the continuum limit and for physical
quark masses, obtained from one “nominal” and one
“higher-order” fit to the lattice data. The nominal fit uses
first-order z expansions, which are modified with correction
terms that describe the dependence on the lattice spacing and
quark masses. The higher-order fit uses second-order z
expansions and also includes higher-order lattice-spacing
and quark-mass corrections. The parameters that only
appear in the higher-order fit are additionally constrained
with Gaussian priors. In the case of lattice spacing and quark

masses, these priors are well motivated by effective field
theory considerations [14]. In the higher-order fit, the
coefficients a2fΓλ

of the z expansion are also constrained

with Gaussian priors, centered around zero andwidths equal
to twice the magnitude for the corresponding coefficients
a1fΓλ

obtained within the nominal fit. This choice of prior was

less well motivated but has little effect in the high-q2 region.
Reference [14] recommends one use the following pro-
cedure for evaluating the form factors in phenomenological
applications: the nominal-fit results should be used to
evaluate the central values and statistical uncertainties,
while a combination of the higher-order fit and nominal
fit results should be used to estimate systematic uncertainties
as explained in Eqs. (50)–(56) in Ref. [14].
To generate the synthetic data points for the present

work, we first updated both the nominal and the higher-
order fits of Ref. [14] with minor modifications: we now
enforce the endpoint relations among the form factors
at q2 ¼ 0 exactly, rather than approximately as done in
Ref. [14], and we include one additional endpoint relation
fT5⊥ ð0Þ ¼ fT⊥ð0Þ, which is not used in Ref. [14].
The synthetic data points for fV0 , fA0 , and fT⊥ at

q2 ¼ 13 GeV2, and fA0 and fT50 at 19 GeV2, have strong
correlation with other data points. This can be understood,
since five exact relations hold for these form factors either
at q2 ¼ 0 or q2 ¼ ðmΛb

−mΛÞ2 between pairs of form
factors. We remove the synthetic data points listed above,
which renders the covariance matrix regular and positive
definite. We arrive at a 25-dimensional multivariate
Gaussian likelihood. The likelihood is accessible under
the name

Lambda_b->Lambda::f_time+long
+perp^V+A+T+T5[nominal,no-prior]
DM:2016A

as part of the constraints available within the EOS software.

B. Models

In this analysis, we consider a variety of statistical
models. First, we truncate the series shown in Eq. (49)
at N ¼ 2, 3, or 4. The number of form factor parameters is
10ðN þ 1Þ, due to a total of ten form factors under
consideration. Since we implement the five form factors
relations exactly, the number of fit parameters is smaller
than the number of form factor parameters by five. Hence,
we arrive at between P ¼ 25 and P ¼ 45 fit parameters.
We use three different types of priors in our analyses. An
analysis labeled “w/o bound” uses a uniform prior, which is
chosen to contain at least 99% of the integrated posterior
probability. An analysis labeled “w/weak bound” uses a
uniform prior on the hypercube ½−1;þ1�P, thereby apply-
ing the weak bound for all fit parameters. An analysis
labeled “w/strong bound” uses the same prior as the weak

5The form factor relations mix the parameters of form factors
that belong to different strong bounds, thereby making a geo-
metric interpretation less intuitive.
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FIG. 2. Uncertainty bands for the a posteriori form-factor predictions of the ten form factors. The bands comprise the central 68%
probability interval at every point in q2. We show the form-factor results at N ¼ 2 in the absence of any bounds, using weak bounds
jaiV;λj < 1, and using the strong bounds (see text), respectively. The markers indicate the synthetic lattice data points.
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FIG. 3. Uncertainty bands for the a posteriori form-factor predictions of the ten form factors. The bands comprise the central 68%
probability interval at every point in q2. We show the form-factor results at N ∈ f2; 3; 4g when using the strong bound. Note that for
N > 2 we have more parameters than data points. Finite uncertainty envelopes are enforced by the bound. The markers indicate the
synthetic lattice data points.
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bound. In addition, we modify the posterior to include the
following element, which can be interpreted either as an
informative nonlinear prior or a factor of the likelihood.
For each of the six bounds BðfangÞ, we add the penalty
term [49]



0 ρB < 1;

100ðρB − 1Þ2 otherwise
ð53Þ

to −2 ln posterior. Here, ρB ¼ P
n janj2, and the sum

includes only the parameters affected by the given bound B.
The additional terms penalize parameter points that violate
any of the bounds with a one-sided χ2-like term. The factor
of 100 corresponds to the inverse square of the relative
theory uncertainty on the bound, which we assume to be
10%. This uncertainty is compatible with the results
obtained in Ref. [50]. In the above, we use unity as the
largest allowed saturation of each bound. As discussed in
Sec. II C, one-body and mesonic two-body contributions to
the bounds are known. They could be subtracted from the
upper bounds. However, we suggest here to include these
contributions on the left-hand side of the bound in a global
analysis of the available b → s form-factor data. A global
analysis clearly benefits from this treatment, which induces
nontrivial theory correlations among the form-factor
parameters across different processes. It also clearly goes
beyond the scope of the present work.
For N ¼ 2, the number of parameters is equal to the

number of data points, and we arrive at zero degrees of
freedom. For N > 2, the number of parameters exceeds the
number of data points. Hence, a frequentist statistical
interpretation is not possible in these cases. Within our
analyses, we instead explore whether the weak or strong
bounds suffice to limit the a posteriori uncertainty on the
form factors, despite having zero or negative degrees of
freedom.

C. Results

We begin with three analyses at truncation N ¼ 2, using
each of the three types of priors defined above. In all three
analyses, we arrive at the same best-fit point. This indicates
clearly that the best-fit point not only fulfills the weak
bound, but also the strong bound. We explicitly confirm
this by predicting the saturation of the individual bounds at
the best-fit point. These range between 12% (for the 1−

bound) and 33% (for the 1þ bound), which renders the
point well within the region allowed by the strong bound.
Accounting for the known one-particle contributions does
not change this conclusion. At the maximum-likelihood
point, the χ2 value arising from the likelihood is compatible
with zero at a precision of 10−5 or better. For each of the
three analyses, we obtain a unimodal posterior and sample
from the posterior using multiple Markov chains and the
Metropolis-Hastings algorithm [60,61]. We use these
samples to produce posterior-predictive distributions for

each of the form factors, which are shown in Figs. 2 and 3
on the left-hand side. We observe that the strong bound has
some impact on the form factor uncertainties, chiefly far
away from the region where synthetic data points are
available. For N ¼ 2, we do not find a significant reduction
of the uncertainties due to the application of the strong
bound. Rather, it influences the shape of the form factors
and suppresses the appearance of local minima in the form
factors close to q2 ¼ 0, which become visible when
extrapolating to negative q2. The modified shape aligns
better with the naive expectation that the form factors rise
monotonically with increasing q2 below the first subthresh-
old pole. It also provides confidence that, with more precise
lattice QCD results, analyses of the nonlocal form factors at
negative q2 can be undertaken. This opens the door toward
analysis in the spirit of what has been proposed in
Refs. [31,62].
We continue with three analyses using the strong bound,

for N ¼ 2, N ¼ 3, and N ¼ 4. Note that, due to the nature
of the orthonormal polynomials, in general any two sets of
coefficients faigjN and faigjN0 are not nested, i.e., the first
minðN;N0Þ elements of the sets are not identical (see
Appendix C for further discussion). Hence, the best-fit
point for N ¼ 2 is not expected to be nested within the
N ¼ 3 and N ¼ 4 solutions, and the N ¼ 3 best-fit point is
not nested within the N ¼ 4 solution. In all three cases, we
find a single point that maximizes the posterior. For all
three points we find that the bounds are fulfilled and
consequently we obtain χ2 values consistent with zero. The
form-factor shapes are compatible between the N ¼ 2; 3
and 4 solutions. We show the a posteriori form factor
envelopes at 68% probability together with the median
values in Fig. 3. A clear advantage of our proposed
parametrization is that the uncertainties in the large recoil
region, i.e. away from the synthetic data points, do not
increase dramatically when N increases. This is in stark
contrast with a scenario without any bounds on the
coefficients an, where the a posteriori uncertainty for
the form factors would be divergent for negative degrees
of freedom. This indicates that the bounds are able to
constrain the parametrization even in an underconstrained
analysis and gives confidence that the series can be reliably
truncated in practical applications of this method. Figure 4
shows the saturation of the strong bound for the different
form factors with N ¼ 2; 3, and 4. For N ¼ 2, the bounds
are saturated between 10% and 30%. This is as large or
even larger than the one-particle contributions, which
saturate the bounds to ∼10% and much larger than the
two-particle mesonic contributions, which saturate the
bounds by only 1%–4% [50]. As N increases, the average
saturation of the bounds increases. This is expected as
additional parameters have to be included in the bound.
The observed behavior of the bound saturation provides
further motivation for a global analysis of all b → s form-
factor data.
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Based on the updated analysis of the lattice data of
Ref. [14], we produce an a posteriori prediction for the
tensor form factor fT⊥ at q2 ¼ 0 from our analyses. We use
this form factor as an example due to its phenomenological
relevance in predictions of Λb → Λγ observables.
Moreover, its location at q2 ¼ 0 provides the maximal
distance between a phenomenologically relevant quantity
and the synthetic lattice QCD data points, thereby maxi-
mizing the parametrization’s systematic uncertainty.
Applying the strong bound, we obtain

fT⊥ðq2 ¼ 0ÞjN¼2 ¼ 0.190� 0.043;

fT⊥ðq2 ¼ 0ÞjN¼3 ¼ 0.173� 0.053;

fT⊥ðq2 ¼ 0ÞjN¼4 ¼ 0.166� 0.049: ð54Þ

We observe a small downward trend in the central value and
stable parametric uncertainties. The individual bands are
compatible with each other within their uncertainties. We
remind the reader that our results are obtained for negative
degrees of freedom and should therefore not be compared

FIG. 4. Relative saturation of the form factors with their respective spin-parity number JP obtained from posterior samples. The
saturations are shown for different truncations of N, where the coefficients are constrained through the strong unitarity bound. The
vertical bands comprise the central 68% probability interval.
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with the behavior of a regular fit. Our results should be
compared with

fT⊥ðq2 ¼ 0Þj½14� ¼ 0.166� 0.072: ð55Þ

This value and its uncertainty is obtained from the data and
method described in Ref. [14]; however, it includes the
exact form-factor relation Eq. (10), which has not been
previously used. Our parametrization exhibits a consider-
ably smaller parametric uncertainty.

IV. CONCLUSION

In this work we have introduced a new parametrization
for the ten independent local Λb → Λ form factors. Our
parametrization has the advantage that the parameters are
bounded, due to the use of orthonormal polynomials that
diagonalize the form factors’ contribution within their
respective dispersive bounds. Using a Bayesian analysis
of the available lattice QCD results for the Λb → Λ form
factors, obtained in the continuum limit at physical quark
masses, we illustrate that our parametrization provides
excellent control of systematic uncertainties when extrapo-
lating from low to large hadronic recoil. To that end, we
investigate our parametrization for different truncations and
observe that the extrapolation uncertainty does not increase
significantly within the kinematic phase space of Λb →
Λlþl− decays. We point out that the dispersive bounds are
able to constrain the form-factor uncertainties to such an
extent that massively underconstrained analyses still
exhibit stable uncertainty estimates. This is a clear benefit
compared to other parametrizations.
For future improvements of the proposed parametriza-

tion, one can insert the framework of dispersive bounds
directly into the lattice-QCD analysis. Moreover, by
including the one-particle contributions, as discussed in
Sec. II C 1, and other two-particle contributions, as dis-
cussed in Sec. II C 2, in a global analysis of the available
b → s form-factor data, we would expect even more precise
results to be obtained for the form factors as the upper
bound would be even more saturated.
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APPENDIX A: ORTHONORMAL POLYNOMIALS

In this section we discuss briefly how to obtain the
orthonormal polynomials pnðzÞ, which enter the series
expansion in Eq. (49) to parametrize the form factors of the
Λb → Λ transition. The functions can be derived with the
Gram-Schmidt orthogonalization process in the basis
f1; z;…; zNg and fulfill Eq. (48). The orthonormal func-
tions are defined on the arc of the unit circle that covers
the angle between −αΛbΛ and þαΛbΛ, see Eq. (46). The
orthonormal polynomials are given by

pnðzÞ ¼
p0
nðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihp0

nðzÞjp0
nðzÞi

p ; ðA1Þ

where

p0
nðzÞ¼ zn−

Xn−1
j¼0

hp0
jðzÞjzni

hp0
jðzÞjp0

jðzÞi
·p0

jðzÞ; p0
0ðzÞ¼1: ðA2Þ

The orthonormal polynomials for Λb → Λ can be evalu-
ated efficiently using the orthogonal Szegő polynomials via
a recurrence relation [56]. We use

Φ0ðzÞ¼1; Φ�
0ðzÞ¼1;

ΦnðzÞ¼ zΦn−1−ρn−1Φ�
n−1; Φ�

nðzÞ¼Φ�
n−1−ρn−1zΦn−1;

ðA3Þ

which holds for real z. The orthonormal polynomials then
follow from

pnðzÞ ¼
ΦnðzÞ
Nn

; Nn ¼
�
2αΛbΛ

Yn−1
i¼0

ð1 − ρ2i Þ
�1=2

; ðA4Þ

where 2αΛbΛ ¼ 3.22198 and the Verblunsky coeffi-
cients are

fρ0;…ρ4g ¼ fþ0.62023;−0.66570;þ0.68072;−0.68631;þ0.68877g; ðA5Þ

as obtained from the Gram-Schmidt procedure.
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APPENDIX B: OUTER FUNCTIONS

The modulus squares of the outer functions for the different form factors are

jϕfVt
ðzÞj2 ¼ ðmΛb

−mΛÞ2
16π2χJ¼0

V ðQ2ÞjOPE

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; tÞ
q
t2ðt −Q2Þnþ1

sþðtÞ

1
CA

t¼tðzðαÞÞ

���� dzðαÞdα
dtðzÞ
dz

����; ðB1Þ

jϕfV
0
ðzÞj2 ¼ ðmΛb

þmΛÞ2
48π2χJ¼1

V ðQ2ÞjOPE

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; tÞ
q
t2ðt −Q2Þnþ1

s−ðtÞ

1
CA

t¼tðzðαÞÞ

���� dzðαÞdα
dtðzÞ
dz

����; ðB2Þ

jϕfV⊥ðzÞj2 ¼
1

24π2χJ¼1
V ðQ2ÞjOPE

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; tÞ
q
tðt −Q2Þnþ1

s−ðtÞ

1
CA

t¼tðzðαÞÞ

���� dzðαÞdα
dtðzÞ
dz

����; ðB3Þ

jϕfAt
ðzÞj2 ¼ 3jϕfV

0
ðzÞj2 with replacement χJ¼1

V ðQ2ÞjOPE → χJ¼0
A ðQ2ÞjOPE; ðB4Þ

jϕfA
0
ðzÞj2 ¼ 1

3
jϕfVt

ðzÞj2 with replacement χJ¼0
V ðQ2ÞjOPE → χJ¼1

A ðQ2ÞjOPE; ðB5Þ

jϕfA⊥ðzÞj2 ¼
1

24π2χJ¼1
A ðQ2ÞjOPE

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; tÞ
q
tðt −Q2Þnþ1

sþðtÞ

1
CA

t¼tðzðαÞÞ

���� dzðαÞdα
dsðzÞ
dz

����; ðB6Þ

jϕfT⊥ðzÞj2 ¼
ðmΛb

þmΛÞ2
24π2χJ¼1

T ðQ2ÞjOPE

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; tÞ
q
tðt −Q2Þnþ1

s−ðtÞ

1
CA

t¼tðzðαÞÞ

���� dzðαÞdα
dtðzÞ
dz

���� ðB7Þ

jϕfT
0
ðzÞj2 ¼ 1

48π2χJ¼1
T ðQ2ÞjOPE

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; tÞ
q
ðt −Q2Þnþ1

s−ðtÞ

1
CA

t¼tðzðαÞÞ

���� dzðαÞdα
dtðzÞ
dz

����; ðB8Þ

jϕfT5⊥ ðzÞj2 ¼
ðmΛb

−mΛÞ2
24π2χJ¼1

T5 ðQ2ÞjOPE

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; tÞ
q
tðt −Q2Þnþ1

sþðtÞ

1
CA

t¼tðzðαÞÞ

���� dzðαÞdα
dtðzÞ
dz

����; ðB9Þ

jϕfT5
0
ðzÞj2 ¼ 1

48π2χJ¼1
T5 ðQ2ÞjOPE

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

Λb
; m2

Λ; tÞ
q
ðt −Q2Þnþ1

sþðtÞ

1
CA

t¼tðzðαÞÞ

���� dzðαÞdα
dtðzÞ
dz

����; ðB10Þ

where the value of χJΓðQ2ÞjOPE can be found in Table I. We

can reexpress the Källen function as λðm2
Λb
; m2

Λ; tÞ ¼
s−ðtÞsþðtÞ. Our choice of outer functions ϕfΓλ

ðzÞ must

satisfy Eqs. (B1)–(B10) and must be analytical within the

open unit disk jzj < 1. This can be achieved by replacing

poles within the unit disk with

�
1

t − X

�
m
→

�
−
zðt; XÞ
t − X

�
m
: ðB11Þ

Note that any poles of 1=sþðtÞ are at t ¼ ðmΛb
þmΛÞ2,

which is mapped by the z transformation to the boundary of
the unit disk. Hence, we do not require any modification to
these terms.
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Following Refs. [39,45], we compactly express the outer
functions of the form factors in a general form:

ϕfΓλ
ðzÞ ¼ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð16þ 8 · cÞ · d · π2χJΓjOPE
p
× ϕ1ðzÞe=4ϕ2ðzÞf=4ϕ3ðzÞðnþgÞ=2ϕ4ðzÞ ðB12Þ

with N ¼ ðmΛb
þmΛÞaðmΛb

−mΛÞb and

ϕ1ðzÞ ¼
�

s−ðtÞ
zðt; ðmΛb

−mΛÞ2Þ
�
; ðB13Þ

ϕ2ðzÞ ¼ sþðtÞ; ðB14Þ

ϕ3ðzÞ ¼
�
−
zðt; 0Þ

t

�
; ðB15Þ

ϕ4ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðtþ − t0Þ

p
ð1þ zÞ1=2ð1 − zÞ−3=2: ðB16Þ

The coefficients a–g are listed in Table III.

APPENDIX C: CONVERGENCE

We briefly comment on the expected rate of convergence
for the series expansion of the analytic factor of the form-
factor parametrization. Consider first the common para-
metrization in terms of monomials:

complete series ¼ Pðq2ÞϕfΓλ
ðzÞfΓλ ðq2Þ ¼

X∞
j¼0

b
fΓλ
j zj: ðC1Þ

After truncating this series at order N, a change of basis
from the monomials to the orthonormal polynomials is
possible. In this way, we have

truncated series ¼
XN
j¼0

b
fΓλ
j zj ¼

XN
i¼0

a
fΓλ
i jNpiðzÞ; ðC2Þ

with coefficients a
fΓλ
i jN defined through this equality.6 In the

following, we drop the fΓλ superscripts to enhance legibility.
For any given truncation order N, the two sets of coef-
ficients fulfill the linear relations

aijN ¼
XN
j¼0

XijjNbj: ðC3Þ

The transformation matrix X and the set of coefficients
faigjN are manifestly dependent on the choice of truncation
order N. Note that in general any two sets of coefficients
faigjN and faigjN0 are not nested, i.e., the first minðN;N0Þ
elements of the sets are not identical. The coefficients
faigjN are bounded by jaijN j ≤ 1, as discussed in the
main text.
We argue in the following that the coefficients fbig are

bounded such that their sum of squares is finite, and
the coefficients fall off sufficiently fast to ensure geo-
metric convergence of the truncated series Eq. (C2).
Following Ref. [63], we can use Abel’s theorem to show
that the power series

P
j bjz

j converges continuously
toward the form factor for jzj → 1 within the unit disk.
Making mild assumptions about the asymptotic behavior
of the form factors, in particular smoothness, bounded-
ness, and continuity on the unit semicircle, Ref. [63]
suggests that the coefficients bj are bounded through their
2-norm

B≡X∞
j¼0

jbjj2 ðC4Þ

in the case of meson-to-meson form factors. To apply the
reasoning of Ref. [63] to our case of baryon-to-baryon
form factors, we need to focus only on the behavior for
z → −1; all other considerations are identical.
At z ¼ −1 the Λb → Λ form factors develop a disconti-

nuity due to on-shell intermediate states. Using one of the
vector form factors as an example, fV⊥ develops a branch
cut at zðtþÞ ¼ −1, where tþ ¼ ðMB þMKÞ2, due to an on-
shell B̄K pair. Other branch cuts appear further along the
unit circle. Watson’s theorem provides that the disconti-
nuity of fV⊥ðq2Þ corresponds to the discontinuity of the
B → K form factors up to a real-valued analytic function in
q2, which must be free of kinematic zeros. This holds below
the onset of the next branch cut. As a consequence, the

TABLE III. Summary of the outer functions for each form
factor, in terms of the parameters for the general decomposition of
all outer functions in Eq. (B12).

Outer function a b c d e f g

ϕfVt
0 1 0 1 1 3 3

ϕfV
0

1 0 1 2 3 1 3
ϕfV⊥ 0 0 1 1 3 1 2
ϕfAt

1 0 1 2
3

3 1 3
ϕfA

0
0 1 0 3 1 3 3

ϕfA⊥ 0 0 1 1 1 3 2
ϕfT

0
0 0 1 2 3 1 1

ϕfT⊥ 1 0 1 1 3 1 2
ϕfT5

0
0 0 1 2 1 3 1

ϕfT5⊥
0 1 1 1 1 3 2

6In practice, the values of these coefficients will of course
depend on the statistical approach used to infer the form factors
from data, which corresponds to known values of the series on the
real z axis with jzj < 1.
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arguments in Ref. [63] apply equally to baryon-to-baryon
form factors, i.e.,

X∞
j¼0

bj < ∞ and
X∞
j¼0

bjð−1Þj < ∞ ðC5Þ

hold also for the form factors considered here. Moreover,
by Parseval’s theorem

B ¼
Z þπ

−π
dαjϕPfj2jz¼eiα ¼

X∞
j¼0

jbjj2 < ∞: ðC6Þ

We therefore find that the series on the left-hand side
of (C2) converges rapidly asN → ∞, and hence so does the
series on the right-hand side.
This statement can be made more quantitative by

considering the truncation error for jzj < 1, i.e.,

truncation error ¼ jðcomplete seriesÞ − ðtruncated seriesÞj

¼
���� X∞
j¼Nþ1

bjzj
����: ðC7Þ

Let us write

B0
N ≡ X∞

j¼Nþ1

jbjj2 ≤ B < ∞: ðC8Þ

This implies

jbjj ≤
ffiffiffiffiffiffi
B0
N

p
for all j ≥ N þ 1: ðC9Þ

Using the triangle inequality, we find

truncation error ≤
X∞

j¼Nþ1

jbjzjj ðC10Þ

≤
ffiffiffiffiffiffi
B0
N

p X∞
j¼Nþ1

jzjj ¼
ffiffiffiffiffiffi
B0
N

p
jzjNþ1

X∞
j¼0

jzjj

¼
ffiffiffiffiffiffi
B0
N

p jzjNþ1

1 − jzj ; ðC11Þ

where B0
N is bounded by the finite constant B and also

tends to zero for N → ∞. For our choices of tþ and t0, the
Λb → Λ semileptonic region corresponds to 0 ≤ z≲ 0.23.
The truncation error in this region thus decreases at least as
fast as the geometric sequence 0.23Nþ1.
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