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Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary

2HUN-REN-ELTE Theoretical Physics Research Group, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
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We studied integration contour deformations in the chiral random matrix theory of Stephanov [Phys.
Rev. Lett. 76, 4472 (1996)] with the goal of alleviating the finite-density sign problem. We considered
simple ansätze for the deformed integration contours and optimized their parameters. We find that
optimization of a single parameter manages to considerably improve on the severity of the sign problem.
We show numerical evidence that the improvement achieved is exponential in the degrees of freedom of the
system, i.e., the size of the random matrix. We also compare the optimization method with contour
deformations coming from the holomorphic flow equations.
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I. INTRODUCTION

Euclidean quantum field theories at nonzero particle
density (or chemical potential) generally suffer from a
complex action problem: the weights in the path integral
representation are complex, and thus cannot be interpreted
as a joint probability density function on the space of field
configurations (up to a proportionality factor). This pre-
vents the use of importance sampling methods for the direct
simulation of these theories. In QCD, this complex action
problem severely hampers first-principles studies of dense
matter in the core of neutron stars, in neutron star mergers,
in core collapse supernovae, as well as in heavy ion
collisions at certain collision energies.
In the presence of a complex action problem one can still

(in principle) simulate a modified theory with real and
positive weights, and then use reweighting methods to
calculate observables in the theory of interest. If the target
theory has field variables ϕ, path integral weights wtðϕÞ,
and partition function Zt ¼

R
DϕwtðϕÞ, and the simulated

theory has the same field variables, but different—real and
positive—path integral weights wsðϕÞ and partition func-
tion Zs ¼

R
DϕwsðϕÞ, we can obtain expectation values in

the target theory via the formula

hOit ¼
hwt
ws
Oi

s

hwt
ws
i
s

; hOix ¼
1

Zx

Z
DϕwxðϕÞOðϕÞ; ð1Þ

where x may stand for t or s and OðϕÞ is some physical
observable of interest. The denominator in Eq. (1) gives the
ratio of the partition functions in the target and simulated
theories, i.e.,

�
wt

ws

�
s
¼ Zt

Zs
: ð2Þ

This ratio is typically exponentially small in the physical
volume, with the exponent given by the free energy
difference between the target and simulated theories.
This ratio is also a rough measure of the numerical
difficulty of a given reweighting scheme, with a given
simulated and target theory. In order for reweighting to be
effective, one wants the target and simulated theories to be
as close to each other as possible. Ideally, one should find a
simulated theory with Zs ≈ Zt.
Two simple choices of a simulated theory are the

phase-quenched (PQ) theory, with simulated weights pro-
portional to

wPQ
s ≡ jwtðϕÞj; ð3Þ

or—assuming that the partition function Zt is real—the
sign-quenched (SQ) theory, with simulated weights propor-
tional to

wSQ
s ≡ jRewtðϕÞj: ð4Þ

For the first case (phase reweighting) the reweighting
factors wt=w

PQ
s ≡ eiθ are pure phases. For the second case

(sign reweighting) the reweighting factors are wt=w
SQ
s ¼

eiθ=j cos θj. For certain observables, such as manifestly real
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observables or observables with a conjugation (ϕ → ϕ̄)
symmetry, one can substitutewt=w

PQ
s with cos θ andwt=w

SQ
s

with a pure sign cos θ=j cos θj. For phase or sign reweight-
ing, we can then say that the complex action problem
becomes a sign problem: the cancellations between con-
tributions with different signs of cos θ lead to a small Zt=Zs
ratio, and in turn to small signal-to-noise ratios in the
expectation values of observables.
The sign-quenched ensemble always has a less severe

sign problem, due to the inequality Zt < ZSQ
s < ZPQ

s , which
is a consequence of cos θ ≤ j cos θj ≤ 1. However, in the
limit of a severe sign problem—i.e., as the distribution of
the argument θ tends to a uniform distribution on ½−π; πÞ—
the severity of the sign problem for these two reweighting
schemes only differs by a constant factor [1], given
by ðZPQ

s =ZSQ
s Þ2 → ðπ=2Þ2.

In QCD and in other (more or less) QCD-like models,
describing the interactions of several “flavors” of fermions,
the path integral weights can be written schematically as

wtðϕÞ ¼ detM1ðϕ; μ1Þ � � � detMNf
ðϕ; μNf

Þe−SBðϕÞ; ð5Þ

where the fields ϕ are real bosonic variables and SB is the
corresponding bosonic part of the action, Nf is the number
of fermion flavors in the model, detMk is the fermionic
determinant of the kth flavor, and μk is the corresponding
chemical potential, for k ¼ 1;…; Nf. The source of the
sign problem is the fermionic determinant, which at non-
zero μ is generally a complex number. Moreover, an
important feature of the sign problem in QCD and
QCD-like theories is that it tends to get much worse in
the ranges of μ where zeros of the determinant in the
complex μ plane become dense [2].
Nonetheless, reweighting from the phase- and sign-

quenched theories is starting to become feasible even in
full QCD [1,3], which has recently led to the calculation of
the equation of state of a hot-and-dense quark-gluon
plasma in the region of chemical potentials covered by
the RHIC Beam Energy Scan [4]. However, the range of
practical applicability of such an approach is limited in both
volume and chemical potential by the smallness of the ratio
Zt=Zs. Lacking a solution of the sign problem, it is then
desirable to develop methods that at least alleviate it, to
extend the range of parameters that reweighting methods
can practically reach.
One possible route to do this is the use of contour

deformations in the path integral (see Ref. [5] for a recent
review). If the path integral weights wtðϕÞ are holomorphic
functions of the field variables,1 the multivariate Cauchy
theorem guarantees that complexified integration manifolds
in the same homology class as the original one yield the

same partition function. However, the phase- and sign-
quenched integrands are not holomorphic, and therefore
the phase- and sign-quenched partition functions are not
invariant under such deformations. It may then be possible
to bring the ratios Zt=Zs closer to unity, thus making
reweighting more effective.
There are different ways to deform integration contours.

Historically, methods based on Lefschetz thimbles appeared
first [5,8–13]. Lefschetz thimbles are the disjoint compo-
nents of the integration contour defined by requiring that the
imaginary part of the classical action is constant in each
component. The thimble structure of theories with a fer-
mionic determinant is usually quite complicated [14–18].
Simple toy models reveal the following features: (i) cancel-
lations between competing thimbles are very important for
getting the correct results, and (ii) the thimbles themselves
are not smooth at the zeros of the fermionic determinant.
Thus, the use of thimbles might be impractical for such
theories. However, Lefschetz thimbles are, in general, not
the numerically optimal integration contours [19]; i.e., they
are not necessarily the contours with the largest Zt=Zs, so
there is no need to concentrate solely on them.
A second class of methods is based on numerical

optimization. The main idea here is to parametrize the
integration manifold by a finite number of parameters,
which are then optimized to make the sign problem as
mild as possible. Such methods were applied to a one-
dimensional integral [20], the 0þ 1D scalar theory [21],
the 0þ1D Polyakov-improved Nambu-Jona-Lasinio
model [22], 0þ 1D QCD [23], the 1þ 1D scalar field
theory [24], the 1þ 1D Thirring model [25], the 2þ 1D
Thirring model [26], Bose gases of several dimensions
[27], the 1þ 1D U(1) gauge theory with a complex
coupling constant [28], and the 2þ 1D XY model at finite
density [29]. Here, we apply contour optimization methods
to a fermionic toy model that shares relevant technical
features with finite chemical potential QCD: the chiral
random matrix model proposed by Stephanov in Ref. [30].
Since it is an exactly solvable model with a sign problem,

the Stephanov model is a very useful test bed for methods
aimed at solving or alleviating the sign problem. This
model has been studied with the complex Langevin
approach [31–33], which fails for this particular model
[34] even with the introduction of gauge cooling [33].
There are also preliminary results for this model with the
tempered Lefschetz thimble method [35] which is based on
parallel tempering [36] in the flow time of the holomorphic
flow [10,37]. This method—similar to other flow-based
methods—produces a weaker sign problem, albeit at the
cost of substantially increasing the per-configuration cost
of generating the ensemble compared to ordinary phase
reweighting.
In this paper we study the Stephanov model with

optimization methods. There are, roughly speaking, two
approaches to such an optimization: one can look for the

1A notable exception is lattice QCD with rooted staggered
fermions [6,7].
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optimum using either a very general ansatz with a large
number of parameters or a very specific ansatz tailored for
the model at hand, and with a small number of parameters.
The first approach has clearly the potential to find a good
optimum, e.g., using machine learning techniques, but it
also has some disadvantages. In fact, for such a general
approach the number of optimization parameters has to be
increased as one increases the number of degrees of
freedom of the system. This means that the cost of finding
good contours might turn out to be prohibitive, similar to
what happens with methods based on Lefschetz thimbles.
In this exploratory study we follow the second, ad hoc
approach, and optimize ansätze with only a few param-
eters. Moreover, the number of these parameters is kept
independent of the number of degrees of freedom of
the system. We can then be sure that the optimization itself
is numerically cheap, and that the per-configuration
cost of generating the ensembles is essentially as low
as on the original contours. Obviously, the drawback of
this approach is that to write down an ansatz with only a
few parameters that produces a substantial improvement
in the severity of the sign problem, some physical or
mathematical insight is needed.
For the toy model studied in this paper, the insight

required to use the ad hoc approach is available, and so we
can write down appropriate ansätze. We will then show that
a quite cheap numerical optimization procedure leads one
to contours with a reduced sign problem. We will also
present numerical evidence that the reduction in the
severity of the sign problem is exponential: while the sign
problem on the optimized contours is still exponential in
the number of degrees of freedom, the corresponding
exponent is reduced. This conclusion is similar to what
some of us have shown in Ref. [29] for a purely bosonic
model [the (2þ 1)-dimensional XY model at a nonzero
chemical potential]. Notably, such an exponential reduction
can be achieved without changing the number of optimi-
zation parameters with the system size.
In this work we will only consider phase-quenched

simulations, for simplicity. Similar arguments and methods
should, however, also apply to the sign-quenched case [29].
The plan of the paper is the following: In Sec. II we

introduce the model discussed in this work. In Sec. III we
provide details on the different contour deformation pro-
cedures we tested. In Sec. IV we illustrate the chemical
potential and volume dependence of the achieved improve-
ment and also compare our results with a method based on
Lefschetz thimbles: the holomorphic flow of Ref. [10]. We
summarize our conclusions in Sec. V.

II. THE CHIRAL RANDOM MATRIX MODEL

Throughout this paper we will only consider Nf ¼ 2
with μ1 ¼ μ2 ≡ μ for simplicity. The random matrix model
of Stephanov [30] for Nf degenerate flavors of quarks is
then defined by the partition function

Z
Nf

N ¼ eNμ2
Z

dWdW†ðdetðDþmÞÞNfe−NTrWW†
; ð6Þ

where the massless Dirac matrix is

D ¼
�

0 iW þ μ

iW† þ μ 0

�
; ð7Þ

m is the quark mass, and W is a general N × N complex
matrix. The model has no concept of physical volume. The
number of degrees of freedom of the model scales with N2.
The two observables we will study in this paper are the

chiral condensate

Σ ¼ 1

2N
∂ logZ

Nf

N

∂m
ð8Þ

and the quark density

n ¼ 1

2N
∂ logZ

Nf

N

∂μ
: ð9Þ

An important feature of the model is that it can be solved
analytically, both in the N → ∞ limit where the integral is
dominated by a saddle point and at finiteN where it reduces
to the calculation of moments of Gaussian integrals. Thus,
in this particular model we will be able to compare
numerical results with exact analytic solutions.
The model shares with QCD the feature that the phase-

quenched theory corresponds to an isospin chemical poten-
tial and has an analog of the pion condensation transition at
some μ ¼ μPQc . For chemical potentials exceeding μPQc the
sign problem of the model is severe. From the point of view
of the Dirac spectrum, for μ ¼ 0 the eigenvalues are purely
imaginary, while for μ ≠ 0 the eigenvalues of D acquire a
real part and are distributed inside a strip of width μ2 in the
real direction. When the quark mass is inside this strip, the
model has a severe sign problem. This roughly corresponds
to the analog of the pion condensed phase in the phase-
quenched theory. Due to these similarities, this model has
been considered several times in the literature as a good toy
model for the sign problem in QCD [34,35].
In this model, unlike in QCD, the expectation value of

the average phase does not always tend to zero in the limit
of an infinite system. Rather, it only goes to zero in a given
range of chemical potentials bounded by the solutions to
the equation [38]:

0 ¼ 1 − μ2 þ m2

μ2 −m2
−

m2

4ðμ2 −m2Þ2 : ð10Þ

Using a quark mass of m ¼ 0.2, the two solutions of this
equation are μ ¼ 0.35 ¼ μPQc and 1.02. This is the regime
where the sign problem in the model is strongest.
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III. CONTOUR DEFORMATION METHODS

A. Optimization method

We will restrict ourselves to ansätze with simple,
analytically calculable Jacobians with OðN0Þ computa-
tional cost and a small number of parameters, independent
of the number of degrees of freedom.
Let A ¼ ReW and B ¼ ImW. These two real matrices

will be deformed to complex matrices α and β. Thus,

W ¼ Aþ iB → X ¼ αþ iβ;

W† ¼ AT − iBT → Y ¼ αT − iβT: ð11Þ

Here the complex matrices α and β will be parametrized by
the same number of real parameters as A and B. After
applying such a deformation X† ≠ Y. The severity of the
sign problem is then given by

heiθi ¼
��

detðDþmÞ detJ
j detðDþmÞ detJ j

�
Nf

e−iNImTrXY

�
; ð12Þ

where the Jacobian determinant is

detJ ¼
���� ∂ðα; βÞ
∂ðA; BÞ

����: ð13Þ

B. Holomorphic flow

Using the holomorphic flow (or generalized thimble
method) of Ref. [10] for the complexified action of the
Stephanov model,

S ¼ −Nμ2 − Nf log detðDþmÞ þ NTrðXYÞ; ð14Þ

we deform the integration manifold by evolving the
original one with the differential equation

dYij

dt
¼ ∂S

∂Yij
¼ NX̄ji − Nf½ðXGÞji þ iμḠji�; ð15Þ

where the overbar denotes complex conjugation, t is the
flow parameter, and

G ¼ ½m2 − μ2 − iμðX þ YÞ þ YX�−1: ð16Þ

Solving this system of equations with initial conditions
X0 ¼ W, Y0 ¼ W† for a fixed flow time tf we obtain a
deformed manifoldMtf . We parametrize each point on the
flowed manifold by the real matrices A and B. That is, we
parametrize the flowed manifold by the initial conditions of
the flow equation.
The computation of expectation values requires the

Jacobian of the holomorphic flow,

det J ¼
���� ∂ðX; YÞ
∂ðA;BÞ

����; ð17Þ

as well. Denoting the Hessian with H, the Jacobian matrix
J is obtained as the solution of the equation

dJ
dt

¼ HJ; ð18Þ

with initial conditions

JXij;Aij
¼ 1; JXij;Bij

¼ i; JYij;Aji
¼ 1; JYij;Bji

¼−i:

ð19Þ

Computing the Jacobian directly is numerically expensive,
so we estimate it [39] with

W ¼ exp

�Z
tF

0

dtTrHðtÞ
�
: ð20Þ

The difference between W and det J is taken into account
by reweighting when computing observables,

hOi ¼
hOe−ΔSiS0eff
he−ΔSiS0eff

; ð21Þ

where S0eff ¼ S − lnW,ΔS ¼ Seff − ReS0eff , and h:iS0eff is the
average with respect to e−ReS

0
eff . This way, we needed to

compute det J exactly only for the configurations used for
measurements.
In the large flow time limit, the flowed manifold tends

toward the Lefschetz thimbles. At smaller flow times, it still
reduces the sign problem, although less than a complete
thimble decomposition would.

IV. NUMERICAL RESULTS

A. Simple ansätze

As a rule, all of our ansätze have been parametrized such
that the undeformed integration manifold is at value zero
for all optimizable parameters.

1. Ansatz-1

From the definition in Eq. (7) it is easy to see that the
sign problem can be removed from the quark determinant
by a simple shift of the form α ¼ Aþ iμ1. This, however,
introduces a sign problem in the Gaussian term e−NTrðXYÞ.
By finding a trade-off between the two terms, the severity
of the sign problem may be optimized. This motivates our
first ansatz, with two real parameters k1 and k2 defined by

α ¼ Aþ ik11; ð22Þ

β ¼ Bþ ik21: ð23Þ
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The Jacobian determinant for this ansatz is simply unity.
The parameter k2 is introduced on a whim, as the matrices
A and B do not have to be treated symmetrically. The
results for the average phase in a scan in these two
parameters for N ¼ 2, m ¼ 0.2, and μ ¼ 1.0 is shown in
Fig. 1 (left). While there is a clearly nonzero optimal value
for k1, the optimal value of the k2 parameter is near zero.
This remains true for all values of the parameters N, μ, and
m we simulated.

2. Ansatz-2

When we introduce a shift A → Aþ ik1, the argument of
the Gaussian term changes according to

TrðXYÞ ¼ TrðAAT þ BBTÞ − Nk2 þ 2ikTrA: ð24Þ

This motivates our second ansatz, with two real parameters
p1 and p2 defined by

α ¼ Aþ ip11þ p2TrA1; ð25Þ

β ¼ B: ð26Þ

The p1 parameter of this ansatz is identical to the k1
parameter of the previous ansatz. The Jacobian deter-
minant for this ansatz is simply detJ ¼ 1þ Np2, i.e.,
configuration-independent, and can be ignored. The results
for the average phase in a scan in these two parameters for
N ¼ 2, m ¼ 0.2, and μ ¼ 1.0 can be seen in Fig. 1 (right).
While there is a clearly nonzero optimal value for p1 ¼ k1,
the p2 parameter only appears to move on a saddle.

3. Ansatz-3

We now move on to a more complicated ansatz with 10
complex (or 20 real) parameters a; b; c; d; e; f; g; h; j; k
defined by

α ¼ ðaþ bTrAþ cTrBÞ1þ ð1þ dÞAþ eB; ð27Þ

β ¼ ðf þ gTrAþ hTrBÞ1þ jAþ ð1þ kÞB: ð28Þ

The Jacobian determinant for this ansatz is

detJ ¼ ðð1þ dÞð1þ kÞ − ejÞN2−1

× ½ðð1þ dÞ þ NbÞðð1þ kÞ þ NhÞ
− ðeþ NcÞðjþ NgÞ�: ð29Þ

The severity of the sign problem was then optimized via the
AdaDelta method [40], with the objective function

− logheiθi ¼ − log
Z
ZPQ

¼ − logZ þ logZPQ; ð30Þ

where we suppressed the N and Nf indices for the partition
function. The gradient with respect to the deformation
parameters is given by

∇ logZPQ ¼ −h∇Saeffi; ð31Þ

where

Saeff ¼ NReTrXY − Nf log j detMj − log j detJ j ð32Þ

FIG. 1. Left: the average phase with Ansatz-1 as a function of k1 and k2. There is a local minimum at k2 ≈ 0 and k1 > 0. Right: the
average phase with Ansatz-2 as a function of p1 and p2. There is an apparent saddle parallel to the p2 ¼ 0 line at p1 ¼ k1 > 0. The plot
is cut above p2 ¼ −1=2, since the Jacobian matrix becomes singular at that value.
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with gradient

∇Saeff ¼ NReTr½ð∇XÞY þ Xð∇YÞ�

−
Nf

2
Tr½M−1ð∇MÞ þ M̄−1ð∇M̄Þ� − Re

�∇ detJ
detJ

�
:

ð33Þ
Note that for Ansatz-3 the Jacobian is independent of the
configuration, and the last term can be dropped from
Eq. (33). For Ansatz-4, to be discussed below, the
Jacobian will depend on the configuration, and thus the
last term is needed. An example of such an optimization run
is shown in Fig. 2. As with the previous two ansätze, only a
single parameter emerges k1 ¼ p1 ¼ Ima.

4. Ansatz-4

Experiments with the first three ansätze revealed only
one parameter of interest, which can be thought of as a
simple one-parameter imaginary shift of the trace of the
matrix A. One might wonder whether more general
deformations of the trace could lead to a better improve-
ment. Thus we look at nonlinear deformations of the trace
τ ¼ TrA of the matrix A with an undeformed Bmatrix. The
integral measure is given by

YN
i;j¼1

dAij ¼ dτ
YN
i;j¼1

ði;jÞ≠ðN;NÞ

dAij

¼ dτ
YN
i;j¼1
i≠j

dAij

YN
k¼1

d
�
Akk − τ

N

�
ð34Þ

The deformed matrix α is obtained from A as

A ¼ τ

N
1þ

�
A −

τ

N
1

�
¼ τ

N
1þ Ã

→ α ¼ τ̃

N
1þ Ã; ð35Þ

where TrÃ ¼ 0 and

τ̃ ¼ τ þ ifðτ;…Þ; ð36Þ

for some function f that depends on τ and possibly other
parameters. For simplicity, we choose f to be piecewise
linear,

fðτ; xkðτÞ; xkðτÞþ1; ykðτÞ; ykðτÞþ1Þ

¼ ykðτÞðxkðτÞþ1 − τÞ
xkðτÞþ1 − xkðτÞ

þ ykðτÞþ1ðτ − xkðτÞÞ
xkðτÞþ1 − xkðτÞ

: ð37Þ

The parameters to optimize are the yi, while the node points
xi of the linear interpolation are fixed parameters, and
chosen with regular spacing, xlþ1 − xl ¼ Δ for all l, and

kðτÞ ¼ floor

�
τ − x0
Δ

�
: ð38Þ

By numerical experimentation we have found that the
choice of the node points is not important, as long as the
full interpolation range is large enough to cover the most
probable values of TrA on the original contours and Δ is
small enough. If these conditions are met, optimal contours
with ansätze with different node points appear to be
piecewise approximations of the same smooth curve.
The Jacobian is

detJ ¼ 1þ i
ykðτÞþ1 − ykðτÞ

Δ
: ð39Þ

The parameters are then optimized as with Ansatz-3. A
comparison of the results from this ansatz with the constant
shift found using ansätze 1 to 3 is shown in Fig. 3 for
several values of the chemical potential. For highly
probable values of TrA the two ansätze roughly agree,
while for the highly improbably values of TrA, the
optimization does not move the ansatz away from the
original contour, as there are no configurations to use for
the optimization of that part of the contour. These two
asymptotic regimes are smoothly connected. The measured
sign problem on this contour is identical to the one
measured with ansätze 1 to 3, up to statistical errors—
not surprisingly since deviations of f from a constant
happen on unimportant configurations.

FIG. 2. Left: parameters as a function of the optimization step for Ansatz-3. Right: the average phase as a function of the optimization
step for Ansatz-3.
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B. Chemical potential and matrix size dependence

Now that we have discovered a good contour deforma-
tion parameter, let us look at what kind of improvements
can be achieved by such a one-parameter deformation.
From here on out we show results with Ansatz-1, with k2
set to zero.
The matrix size and chemical potential dependence of

the average phase for the original and optimized contours
are shown in Fig. 4. The “volume,” i.e., matrix size
dependence at a fixed chemical potential in the left panel,
reveals an improvement on the sign problem that is
exponential in the matrix size: while the severity of the
sign problem is roughly linear on a logarithmic plot for
both the original and optimized contours, the slopes are
quite different. The right panel shows the chemical poten-
tial dependence for several values of N. Apparently,
contour optimization improves on the sign problem the
most in the regime where it is the most severe.
The statistical improvement factor, defined as the square

of the ratio of the phases obtained for the deformed and for
the original contour, ðheiθiorig=heiθidefÞ2, is shown on the
left panel of Fig. 5 for N ¼ 2, 4, and 6. For larger matrices,
heiθi was zero within statistical errors on the original

FIG. 3. Ansatz-4 (piecewise optimization of the trace: full
points) compared to Ansatz-1 (imaginary constant shift of A
proportional to the unit matrix: dashed line) for several values of
the chemical potential. The two procedures find very similar
contours. The differing tails are at large values of jTrAj and have a
small statistical weight, while the small wiggles in the middle
around the average value k1 ¼ p1 do not substantially change the
severity of the sign problem.

FIG. 4. Left: dependence of the average phase on the size of the random matrix for the original and optimized contours. Right:
dependence of the average phase on the chemical potential for the original and optimized contours.

FIG. 5. Left: dependence of the statistical improvement factor ðheiθiorig=heiθidefÞ2, achieved by contour optimization as a function of μ
for different matrix sizes. Right: dependence of the optimal contour parameter k1 ¼ p1 ¼ Ima on μ for different matrix sizes.
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contours, and this ratio could not be calculated. We see that
the ratio monotonically increases with N, and as a function
of μ it is maximal close to the value of μ where the sign
problem is the strongest. The optimal values for the
deformation parameter k1 ¼ p1 ¼ Ima for different values
of μ and N are shown in the right panel of Fig. 5.
As a sanity check, we also calculated the expectation

value of the chiral condensate and of the quark number on
both the original and the optimized contours, and compared
them to the analytic results; see Fig. 6. They both show
excellent agreement, but the optimized contours have
significantly smaller error bars.

C. Comparison with the holomorphic flow

As experiments with simple ansätze so far revealed only a
single important contour deformation parameter, it is a
natural question to ask whether Lefschetz-thimble-based
methods also “find” this deformation or not, and whether by
utilizing such methods it is possible to improve the sign
problem further compared to such a one-parameter defor-
mation. For this reason, we performed the holomorphic flow
on our N ¼ 2 random matrices and obtained an estimate of
the k1 parameter from the flowed variables via kflow1 ¼
ImhTrðαðtfÞ − AÞi=N. This k1 can then be substituted back
in the one-parameter ansatz α ¼ Aþ ik11, and the severity
of the sign problem can be compared to the one found with
the properly flowed manifold.
In Fig. 7 we show the sign problem as a function of mu

for the original contour, for the optimized contour, for the
flowed contour, and for the contour with k1 extracted from
the flow. We also compare two different values of the flow
time. A few observations can be drawn from this figure. For
smaller chemical potentials, the flow performs better than
the optimization, which does not noticeably improve the
sign problem. In contrast, for larger chemical potentials,
optimization outperforms the flow. Interestingly, while the
full flow at small chemical potentials gives a slightly
weaker sign problem compared to the ansatz with kflow1 ,
at larger chemical potentials the situation is reversed: the
sign problem is slightly weaker with kflow1 than with the

solution of the full flow equation. The trends for the larger
flow time tf ¼ 0.14 are the same, but the magnitude of the
difference at lower chemical potentials is larger: the flow
outperforms the simple ansatz for low to intermediate
values of μ more, while at larger μ the one-parameter
ansatz with k1 extracted from the flow still outperforms the
full flow toward the Lefschetz thimbles. While the simple
ansatz outperforming the full flow (for any value of μ) may
be somewhat surprising at first, it is not in contradiction
with what we already know about contour deformations:
The flow goes toward the Lefschetz thimbles, which are not
generally the numerically optimal contours, and thus there
is no reason for the full flow curve to be always above the
curve with the simple ansatz with kflow1 .
For larger matrix sizes, the holomorphic flow method

runs into ergodicity problems, related to the zeros of the
fermion determinant. In principle one could attempt to
solve these ergodicity issues, e.g., with a combination of
regularized flow equations [41] and parallel tempering [37].
This, however, makes the flow equations even more
expensive. Since our main focus is on ameliorating the
sign problem without blowing up the per-configuration cost
of simulations, we have not gone in this direction.

FIG. 6. The chiral condensate (left) and the quark number (right) as a function of μ for several values of the matrix sizeN. Results from
simulations on the original and on the improved contours are compared with analytic results.

FIG. 7. The severity of the sign problem forN ¼ 2 andm ¼ 0.2
as a function of μ on the original contours, the optimized
contours, the flowed contours, and the contours where the k1
parameter of the ansatz is extracted from the flow for two
different flow times tf .
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V. SUMMARY AND DISCUSSION

We have discussed contour deformations in the chiral
random matrix model of Stephanov as a way to alleviate its
sign problem. Using simple ad hoc ansätze we identified a
single important deformation parameter, which allowed for
an exponential reduction in the severity of the sign problem
as a function of the matrix size.
Our results are quite encouraging, as they show that a

simple one-parameter optimization can lead to an expo-
nential reduction of the sign problem even in a fermionic
theory, where the thimble decomposition is complicated
and contour deformation approaches based on them might
not be numerically effective. The fermionic nature of the
matter fields does not appear to be a fundamental obstruc-
tion in the construction of contours that improve exponen-
tially on the sign problem.
Furthermore, the phase diagram of the random matrix

model is similar to what we expect in full QCD: the chiral
phase transition is “hidden behind” the pion condensation
phase in the phase-quenched theory. Hence, this bulk
thermodynamic feature—the existence of a phase transition
in the phase-quenched theory—also does not appear to be a
fundamental obstruction.
The results and the ansätze in this paper, however, cannot

be used directly to construct a good optimization ansatz in
full QCD, as the toy model studied here and QCD differ on

an important technical aspect. Concretely, in the Stephanov
model there are contour deformations that can remove the
sign problem from the fermion determinant for a single
flavor (so from the full determinant when all chemical
potentials are equal)—albeit at the cost of reintroducing it
somewhere else in the Boltzmann weights. There are no
such deformations in full QCD. The complexification of
the SU(3) gauge group is the SLð3;CÞ group, which still
requires a unit determinant for the link variables. To remove
the chemical potential from a single quark determinant the
timelike links would have to be deformed to GLð3;CÞ
matrices, with a nonunit determinant, which lie outside the
complexified gauge group. In the future it will therefore be
important to work with more realistic toy models of QCD
or even full QCD itself, as the choice of a suitable sign
problem improving ansatz appears to be strongly dependent
on the exact symmetries and exact matter content of a given
theory.
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