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We present the numerical equivalence between the Wilson flow and stout-link smearing, both of which
are known to be a well-established technique for smoothing the gauge fields on the lattice. Although the
conceptional correspondence between two methods was first pointed out by Lüscher in his original paper
[J. High Energy Phys. 08 (2010) 071], we provide a direct analytical proof of the equivalence between the
two methods at finite lattice spacing a in the zero limit of the stout-smearing parameter ρ. The leading order
corrections start at OðρÞ, which would induce Oða2Þ corrections. It is, therefore, not obvious that they
remain equivalent even with finite parameters (a ≠ 0 and ρ ≠ 0) within some numerical precision. In this
paper, we demonstrate the equivalence of both methods by directly comparing the expectation value of the
action density, which is measured in actual numerical simulations.

DOI: 10.1103/PhysRevD.108.094506

I. INTRODUCTION

The Yang-Mills gradient flow has been used extensively
in lattice gauge simulations in a variety of aspects beyond its
original proposal [1–3]. The Yang-Mills gradient flow is a
kind of diffusion equation where the gauge fields evolve
smoothly as a function of fictitious time (denoted as flow
time). One of the major benefits of the Yang-Mills gradient
flow is that the correlation functions of the flowed gauge
fields for a positive flow time become ultraviolet (UV) finite
to all orders in perturbation theory without any multiplicative
wave function renormalization [4]. Therefore, the gradient
flow technique can serve as a renormalization scheme with
help of the perturbation theory. Along this line of thought,
this method is extremely useful for determining high-
precision reference scale determination [5,6], computing
the nonperturbative running of the coupling constant [7] and
chiral condensate [8], defining the energy-momentum tensor
on the lattice [9], and so on [10].
The Wilson flow that is the lattice version of the Yang-

Mills gradient flow, makes the link variables UμðxÞ
diffused in the four-dimensional space-time at finite flow
time t. The associated flow Vμðt; xÞ of lattice gauge fields is
defined by the following differential equation with the
initial conditions Vμð0; xÞ ¼ UμðxÞ,

∂

∂t
Vμðt; xÞ ¼ −g20∂x;μSW ½V�Vμðt; xÞ; ð1Þ

where SW ½V� denotes the standard Wilson plaquette action
in terms of the flowed link variables Vμðt; xÞ. The operator
∂x;μ stands for the Lie-algebra valued differential operator
with respect to the link variable [2,3]. According to Eq. (1),
the diffusion process gives rise to another aspect of the
associated flow that can highly suppress the local ultra-
violet fluctuations on the gauge fields. In this sense, the
gradient flow method is regarded as an alternative approach
instead of the single-link smearing in both the computation
of topological charge and susceptibility [11–13] and the
glueball spectroscopy [14,15].
Indeed, the similarity between the Yang-Mills gradient

flow and the stout-link smearing was first pointed out in the
original Lüscher’s papers [2,3]. The stout-link smearing is a
well-established smearing scheme and is defined as the
following recursive procedure [16]. Here, for simplicity,
the stout-smearing parameters ρμν are taken as ρμν ¼ ρ. The

link variables UðkÞ
μ ðxÞ at step k are mapped into the link

variables Uðkþ1Þ
μ ðxÞ using

Uðkþ1Þ
μ ðxÞ ¼ exp

�
iρQðkÞ

μ ðxÞ�UðkÞ
μ ðxÞ; ð2Þ

where QðkÞ
μ ðxÞ corresponds to a Lie algebra valued quantity

given by

QðkÞ
μ ðxÞ ¼ ig20∂x;μSW

�
UðkÞ

μ ðxÞ� ð3Þ

with the Wilson action in terms of the stout link UðkÞ
μ ðxÞ.

Based on the expression of Eq. (3), which was first derived
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in Ref. [3], Lüscher pointed out that the Euler integration
of the Wilson flow can be regarded as a continuous
version of the recursive update procedure in the stout-link
smearing [2,3].
This idea was followed by Bonati and D’Elia, who

carried out a systematic investigation on the numerical
equivalence between the Wilson flow and standard cooling
for the determination of topological observables [12]. As a
subsequent work, a comprehensive comparison was per-
formed among the Wilson flow and various smearing
methods including the stout-link smearing in Ref. [13].
In these studies the classical a-expansion is used to lead
the approximate equivalence between the Wilson flow and
various smoothing techniques, which is considered to
appear at the relatively finer lattice spacing [12,13].
In the previous works [12,13], the numerical equivalence

between the Wilson flow and smoothing techniques are
demonstrated for calculation of the topological observ-
ables. The topological observables should be insensitive to
the true quantum fluctuations, though the measurement of
the topological charge on the lattice is highly sensitive
to the UV fluctuations caused by the lattice artifacts. There
is no theoretical warrant for keeping the true quantum
fluctuations out of the UV fluctuations. Therefore, the
situation can be nontrivial for other observables, which are
associated with the long distance physics and also fully
responsible for the quantum fluctuation survived in the
continuum. The most simple example for the quantum
observable is the expectation value of the action density,1

which is indeed a key ingredient in the gradient flow
approach to determine the high-precision reference scale.
Recently, two of our collaborators had found that there

is numerical equivalence between the spatial Wilson
flow2 and the stout-link smearing in the glueball spectros-
copy [15,18]. To understand their numerical results, an
analytical proof of equivalence between the Wilson flow
and the stout-link smearing was also revisited in Ref. [15].
Although, two of our collaborations gave a derivation of
the Wilson-flow differential equation from the stout-link
smearing in Ref. [15], there is some apparent error3 leading
to the fact that the equivalence of the two methods is
satisfied only at the zero limits of both the lattice spacing
a and the stout-smearing parameter ρ. On correcting the
error in the previous proof presented in Ref. [15], we can
explicitly derive a continuous version of the stout smearing

procedure at finite lattice spacing a in the limit of ρ → 0 as
will be discussed in Sec. II. However, it is still not obvious
that the two methods remain equivalent even with finite
parameters within some numerical precision. Therefore, in
this paper, we would like to verify the equivalence of the
two methods by measuring the expectation value of the
action density hEi (see Sec. III B for definition) used to
determine the Wilson flow scales t0 and ω0, in numerical
simulations.
This paper is organized as follows. In Sec. II, we give a

short outline for the analytical proof of the equivalence
between the Wilson flow and the stout smearing. Section III
presents the numerical results of the action density given by
both the Wilson flow and the stout-smearing methods,
and then directly compare two results to verify the satis-
factory condition of the equivalence with respect to the
finite lattice spacing a and the finite stout-smearing
parameter ρ. Finally, we close with summary in Sec. IV.

II. EQUIVALENCE BETWEEN THE WILSON
FLOW AND THE STOUT-LINK SMEARING

As described in Sec. I, the Wilson flow equation (1) and
the stout-link smearing procedure (2) are connected
through the relation (3) that was first derived in Ref. [3].
Therefore, the gradient flow can be regarded as a continu-
ous version of the recursive update procedure in the stout-
link smearing as pointed out in the original papers of the
Wilson flow [2,3]. In this section, we elaborate on an
analytical derivation of the Wilson-flow differential equa-
tion from the stout-link smearing in line with Ref. [15] as an
extension of Refs. [3,12].
For this purpose, let us first introduce a continuous

variable s associated with smearing step k. Therefore, the

stout link UðkÞ
μ ðxÞ and the associated operator QðkÞ

μ ðxÞ at
step k will be represented by functions of the continuous
variable s denoted as Ũμðs; xÞ and Qμðs; xÞ.

A. Derivation of the flow equation from the stout
smearing

Our derivation process consists of the following
two steps:
(1) Derive a continuous version of the stout-smearing

procedure given as

∂

∂s
Ũμðs; xÞ ¼ iQμðs; xÞŨμðs; xÞ: ð4Þ

(2) Derive the explicit form of the link derivative of the
Wilson gauge action SW given as [3,12]

g20∂x;μSW ½Ũ� ¼ −iQμðs; xÞ: ð5Þ

which are presented in the proceeding two subsections;
Secs. II A 1 and II A 2.

1The numerical correspondence between the Wilson flow and
stout-link smearing has been reported without detailed discussion
in Ref. [17] similar to the one observed between the Wilson flow
and standard cooling in Ref. [12].

2The diffusion is restricted only to spatial directions.
3In Eq. (A10) of Ref. [15], the higher-order terms involving

iterated commutators of iQðkÞ
μ ðxÞ and logUðkÞ

μ ðxÞ that do not
vanish even in the limit of ρ → 0 are omitted. We thank M.
Ammer for pointing out this apparent error [19] in our proof
represented in Ref. [15].
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1. Step 1: The differential equation for the stout smearing

Let us derive a continuous version of the stout-smearing

procedure. By subtractingUðkÞ
μ ðxÞ from both sides of Eq. (2),

ΔkU
ðkÞ
μ ðxÞ ¼ �exp �iρQðkÞ

μ ðxÞ� − 1
�
UðkÞ

μ ðxÞ; ð6Þ

where Δk represent a forward difference with respect to k is
defined by

ΔkFðkÞ≡ Fðkþ 1Þ − FðkÞ: ð7Þ

If a continuous variable s ¼ ρk is introduced, by performing
the variable conversion on F as FðkÞ ¼ F̃ðsÞ, the difference
of F becomes the derivative of F̃ with respect to s in the limit
of ρ → 0 as

lim
ρ→0

ΔkFðkÞ
ρ

¼ lim
ρ→0

F̃ðsþ ρÞ − F̃ðsÞ
ρ

¼ ∂

∂s
F̃ðsÞ: ð8Þ

To consider the limit of ρ → 0 for the stout smearing
parameter, Eq. (6) can be rewritten as

lim
ρ→0

ΔkU
ðkÞ
μ ðxÞ
ρ

¼ lim
ρ→0

1

ρ

�
exp

�
iρQðkÞ

μ ðxÞ� − 1
�
UðkÞ

μ ðxÞ

¼ lim
ρ→0

iQðkÞ
μ

 X∞
n¼0

�
iρQðkÞ

μ
�
n

ðnþ 1Þ!

!
UðkÞ

μ ðxÞ; ð9Þ

which leads to the following differential equation

∂

∂s
Ũμðs; xÞ ¼ iQμðs; xÞŨμðs; xÞ; ð10Þ

where the replacements ofUðkÞ
μ ðxÞ¼ Ũμðs;xÞ andQðkÞ

μ ðxÞ ¼
Qμðs; xÞ are used for the variable conversion s ¼ ρk. Recall
that for the finite smearing parameter ρ, the leading-order
corrections on Eq. (10) start at OðρÞ.

2. Step 2: The link derivative of the Wilson action

Let us consider the explicit form of the link derivative
of the Wilson gauge action ∂x;μSW which appears in the
Wilson flow equation (1). Although the final expression as
given in Eq. (5) was originally derived by Lüscher in
Ref. [3], its derivation was elaborated in Ref. [12].
At first, we introduce the anti-Hermitian traceless N × N

matrices Ta ða ¼ 1;…; N2 − 1Þ as generators of SUðNÞ
group.4 In general, with respect to a basis Ta, the elements
M of the Lie algebra of SUðNÞ are given by M ¼ MaTa

with real components Ma. Therefore, the link derivative
operator ∂x;μ can be expressed with respect to a basis Ta as

∂μ;x ¼ Ta
∂
a
μ;x; ð11Þ

where the operators ∂aμ;x are defined by

∂
a
μ;xfðUÞ ¼ d

ds
f
�
esX

a
U
���

s¼0
ð12Þ

with

Xaðy; νÞ ¼
�
Ta if ðy; νÞ ¼ ðx; μÞ;
0 otherwise

ð13Þ

and act as differential operators on functions f of the link
variable U.
When the link derivative ∂x;μ acts on the action, we may

simply focus on the term that explicitly depends on UμðxÞ
in the action as

SW ½U� ¼ −
2

g20

X
x;μ>ν

�
ReTr

�
UμðxÞΣ†

μðxÞ
	

þ �terms independent of UμðxÞ
	�
; ð14Þ

where the sum of all staples neighboring UμðxÞ is repre-
sented by ΣμðxÞ, which is given by

ΣμðxÞ ¼
X
μ>ν

�
UνðxÞUμðxþ ν̂ÞU†

νðxþ μ̂Þ

þU†
νðx − ν̂ÞUμðx − ν̂ÞUνðx − ν̂þ μ̂Þ�: ð15Þ

If we set ΩμðxÞ ¼ ΣμðxÞU†
μðxÞ, each basis component is

given as

g20∂
a
μ;xSW ½U� ¼ −2ReTr

�
TaΩ†

μðxÞ
	

¼ −Tr
�
Ta
�
Ω†

μðxÞ −ΩμðxÞ
�	

; ð16Þ

where Ω†
μðxÞ denotes the sum of all plaquettes that include

UμðxÞ. Therefore, we finally get

g20∂μ;xSW ½U� ¼ −iQμðxÞ ð17Þ

with

QμðxÞ ¼
i
2

�
Ω†

μðxÞ −ΩμðxÞ
�
−

i
2N

Tr
�
Ω†

μðxÞ −ΩμðxÞ
�
;

ð18Þ

which becomes a Lie algebra valued quantity [3,12]. If the

link variables UμðxÞ are replaced by the stout links UðkÞ
μ ðxÞ

[or Ũμðs; xÞ], the corresponding operators of QðkÞ
μ ðxÞ [or

4In this paper, we use the notational conventions adopted in the
original Lüscher’s paper [2]. Namely, they are normalized by
TrðTaTbÞ ¼ − 1

2
δab and also satisfy the commutation relations

½Ta; Tb� ¼ fabcTc with the structure constants fabc.
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Qμðs; xÞ] can be defined in terms of UðkÞ
μ ðxÞ (or Ũμðs; xÞ).

Thus, one can get Eq. (3) [or Eq. (5)].

B. Equivalence without classical a-expansion

By combining with Eqs. (4) and (5), we get

∂

∂s
Ũμðs; xÞ ¼ −g20∂x;μSW ½Ũ�Ũμðs; xÞ; ð19Þ

which coincides with the Wilson flow equation (1) under
the correspondences of t ↔ s and Vμðt; xÞ ↔ Ũμðs; xÞ.
Since the variable s ¼ kρ directly corresponds to the
Wilson flow time t, the perturbative matching relation of
the flow time t, and the smearing parameters ρ and nst as
t ¼ ρnst found in Refs. [13,17] is also rigorously proved
without classical a-expansion.
We confirm that the differential equation derived from

the stout-smearing procedure in the limit of ρ → 0 as shown
in Eq. (19) exactly reduces to the Wilson flow equation (1)
even at finite lattice spacing a. When SW is replaced by the
spatial part of the standard Wilson action and ρμ is set to
be isotropic three-dimensional one (ρi ¼ ρ and ρ4 ¼ 0),
the equivalence between the spatial Wilson flow and the
spatial stout smearing remains unchanged as was justified
for the glueball spectroscopy in Refs. [15,18]. For the
finite-smearing parameter ρ, the leading-order corrections
on Eq. (19) start at OðρÞ, which induces Oða2Þ correc-
tions since the flow time t ¼ ρnst has dimension length
squared [2].
It should be emphasizing that a continuous version of the

stout-smearing procedure can be derived as the differential
equation (19) without classical a-expansion. Thus, the

equivalence between the Wilson flow and stout-link smear-
ing is led to be valid even at finite lattice spacing as long as
the smearing parameter ρ is taken to be sufficiently small.
This brings a new perspective on the application of
equivalence as discussed in the next section.

III. NUMERICAL RESULTS

A. Lattice setup

We perform the pure Yang-Mills lattice simulations
using the standard Wilson plaquette action with a fixed
physical volume (La ≈ 2.4 fm) at four different gauge
couplings (β ¼ 6=g20 ¼ 5.76, 5.96, 6.17, and 6.42).
Three of four ensembles (β ¼ 5.96, 6.17, and 6.42) (which
correspond to the same lattice setups as in the original work
of the Wilson flow done by Lüscher [2]) had been
generated for our previous study of tree-level improved
lattice gradient flow [20]. In this study, we additionally
generate a coarse lattice ensemble at β ¼ 5.76. The gauge
configurations in each simulation are separated by nupdate
sweeps after ntherm sweeps for thermalization as summa-
rized in Table I. Each sweeps consists of one heat
bath [21] combined with four over-relaxation [22] steps.
The number of configurations analyzed is 100 in each
ensemble. All lattice spacings are set by the Sommer
scale (r0 ¼ 0.5 fm).

B. Wilson-flow reference scales

We will later determine two types of the Wilson flow
scales t0 [2] and ω0 [5] using the expectation value of the
clover-type action density Eðt;xÞ¼ 1

2
TrfGcl

μνðt;xÞGcl
μνðt;xÞg.

The clover-leaf operator Gcl
μνðt; xÞ [2] is defined by

Gcl
μνðt; xÞ ¼

1

4

�
Vμðt; xÞVνðt; xþ μ̂ÞV†

μðt; xþ ν̂ÞV†
νðt; xÞ þ V†

νðt; x − ν̂ÞVμðt; x − ν̂ÞVνðt; xþ μ̂ − ν̂ÞV†
μðt; xÞ

þ V†
μðt; x − μ̂ÞV†

νðt; x − μ̂ − ν̂ÞVμðt; x − μ̂ − ν̂ÞVνðt; x − ν̂Þ
þ Vνðt; xÞV†

μðt; x − μ̂þ ν̂ÞV†
νðx − μ̂ÞVμðt; x − μ̂Þ�AH; ð20Þ

TABLE I. Summary of the gauge ensembles: gauge coupling, lattice size (L3 × T), plaquette value, lattice spacing (a), spatial extent
(La), the Sommer scale (r0), the number of the gauge field configurations (Nconf ), the number of thermalization sweeps (ntherm) and the
number of update sweeps (nupdate). All lattice spacings are set by the Sommer scale (r0 ¼ 0.5 fm) [23,24].

β ¼ 6=g20 L3 × T Plaquette a [fm] La [fm] r0=a (Reference [24]) Nconf ntherm nupdate

5.76 163 × 32 0.560938(9) 0.1486(7) 2.38 3.364(17) 100 5000 200
5.96 243 × 48 0.589159(3) 0.1000(5) 2.40 5.002(25) 100 2000 200
6.17 323 × 64 0.610867(1) 0.0708(3) 2.27 7.061(35) 100 2000 200
6.42 483 × 96 0.632217(1) 0.0500(2) 2.40 10.00(5) 100 2000 200
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where we have introduced the traceless anti-Hermitian
projection defined as

ðMÞAH ¼ 1

2
ðM −M†Þ − 1

2N
TrðM −M†Þ ð21Þ

for an N × N matrix M in SUðNÞ color space.
The vacuum expectation of Eðt; xÞ in small-t regime,

where the gauge coupling becomes small, can be evaluated
in perturbation theory. In the original paper of Lüscher [2],
hEiwas given at the next-to-leading order (NLO) in powers
of the renormalized coupling in the MS scheme, while its
next-to-NLO (NNLO) correction has been evaluated by
Harlander and Neumann [25].
The dimensionless combination t2hEðtÞi is expressed in

terms of the MS running coupling g at a scale of q ¼ 1=
ffiffiffiffi
8t

p
for the pure SU(3) Yang-Mills theory,

t2hEðtÞi ¼ 3g2ðqÞ
16π2

�
1þ k1

4π
g2ðqÞ þ k2

ð4πÞ2 g
4ðqÞ

þO
�
g6ðqÞ��; ð22Þ

where the NLO coefficient k1 was obtained analytically
as k1 ¼ 1.0978 [2], while the NNLO coefficient k2 has
been evaluated with the aid of numerical integration as
k2 ¼ −0.982 [25].
The lattice version of t2hEðtÞi obtained in numerical

simulations shows a monotonically increasing behavior as a
function of the flow time t and also good scaling behavior
with consistent values of the continuum perturbative
calculation (22) that suggests the presence of the proper
continuum limit [2].
The observed properties of hEðtÞi offer a new reference

scale t0, is given by the solution of the following equation [2]

t2hEðtÞijt¼t0 ¼ 0.3: ð23Þ

In addition, an alternative reference scale was also proposed
by the BMW Collaboration [5], as

t
d
dt

t2hEðtÞi
���
t¼w2

0

¼ 0.3; ð24Þ

where the derivative operation of t d
dt can suppress the lattice

discretization effect on t2hEðtÞi in the small-t regime.
In this study, the forth-order Runge-Kutta scheme is used

for the Wilson flow with three integration step sizes of
ϵ ¼ 0.1, 0.025, and 0.01. The flow time t is given by
ϵ × nflow where nflow denotes the number of flow iterations.
As shown in Table II, the results of t0=a2 are reasonably

converged when the integration step size is smaller than
0.025. We have also checked our code of the Wilson flow
by determining a reference scale of t0=a2 with the clover-
type action density, which can be directly compared with
the results of Ref. [2], as tabulated in Table II. Hereafter, we
use the Wilson flow results for ϵ ¼ 0.025 to compare with
the stout link smearing results.

C. Comparison of the stout-link smearing
to the Wilson flow

We perform the stout smearing with ρ ¼ 0.1, 0.025, and
0.01 for each ensemble listed in Table I to evaluate
XðtÞ≡ t2hEðtÞi, where t indicates the flow time given
by the matching relation of t ¼ ρnst. We also evaluate XðtÞ
with the Wilson flow with a fixed integration step size
of ϵ ¼ 0.025. Figure 1 shows typical behaviors of XðtÞ
calculated by both the Wilson flow (blue dotted curve)
and the stout-link smearing with the smearing parameter
ρ ¼ 0.1 (red solid curve) for β ¼ 5.76 (upper-left panel),
β ¼ 5.96 (upper-right panel), β ¼ 6.17 (lower-left panel),
and β ¼ 6.42 (lower-right panel). The vertical dotted line is
marked at the position of t=r20 ¼ a2=r20 in each panel.
In the small-t region, corresponding the left side of that

vertical line, the lattice discretization errors on t2hEðtÞi are
considered non-negligible, since the lattice spacing depend-
ence of the tree-level contribution is classified by powers
of a2=t [26]. Therefore, the numerical results for the case
of the finer lattice spacing show better overlap with the
result of the continuum perturbative calculation displayed
as the gray solid curve with the yellow band in each panel.
Surprisingly, at a glance, the stout-link smearing procedure
can well reproduce the behavior of t2hEðtÞi that was
obtained by the Wilson flow even at the coarse lattice
spacing (β ¼ 5.76) where the Wilson flow result certainly
deviates from the perturbative calculation of the continuum
Yang-Mills gradient flow.

TABLE II. Results of t0=a2 obtained from the Wilson flow with three integration steps ϵ ¼ 0.01, 0.025, 0.001 in comparison with the
original work of Lüscher [2].

t0=a2 (ours) t0=a2 (Lüscher)

β L3 × T Statistics ϵ ¼ 0.1 ϵ ¼ 0.025 ϵ ¼ 0.01 ϵ ¼ 0.01

5.76 163 × 32 100 1.2730(31) 1.2741(31) 1.2742(31) � � �
5.96 243 × 48 100 2.7962(62) 2.7968(62) 2.7968(62) 2.7854(62)
6.17 323 × 64 100 5.499(13) 5.499(13) 5.499(13) 5.489(14)
6.42 483 × 96 100 11.242(23) 11.242(23) 11.242(23) 11.241(23)

EQUIVALENCE BETWEEN THE WILSON FLOW AND STOUT- … PHYS. REV. D 108, 094506 (2023)

094506-5



If one takes a closer look, the stout-smearing result
obtained at β ¼ 5.76 is slightly deviated from the curve
of the Wilson flow result. This deviation tends to become
larger as the flow time increases. However, for the cases
(β ≥ 5.96), the red solid and blue dotted curves almost
overlap each other and then are visually indistinguishable.
To discuss the differences in more detail, we calculate the

following ratio:

DXðtÞ≡ XstoutðtÞ − XflowðtÞ
XflowðtÞ

; ð25Þ

where XstoutðtÞ denotes the corresponding quantity of XðtÞ
calculated by using the stout-link smearing as a function of
t ¼ ρnst, while XflowðtÞ is calculated by the Wilson flow.
The quantity of DXðtÞ can expose the relative difference on
the dimensionless quantity of t2hEðtÞi obtained from the
two methods. Figure 2 shows the behavior of DXðtÞ as a
function of t=t0 for all cases of four β values with fixed
smearing parameter of ρ ¼ 0.1. Although some peak
structure is commonly observed in the small-t region
(t=t0 < a2=t0) for the finer lattice spacing (β ≥ 5.96), the
relative differences are saturated in the large-t region
(t=t0 > a2=t0) for all cases. As clearly seen in Fig. 2,
the saturated value of DXðtÞ becomes smaller as the lattice

spacing decreases as expected from what we learned in
Sec. II. It is worth stressing that the saturated difference at
t ¼ t0 becomes smaller than the statistical uncertainties on
XðtÞ given by the Wilson flow, that are represented by the
area shaded in gray.
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FIG. 1. The behavior of t2hEðtÞi computed by the Wilson flow (blue dotted curve) and the stout-link smearing with ρ ¼ 0.1 (red solid
curve) at β ¼ 5.76 (upper-left panel), β ¼ 5.96 (upper-right panel), β ¼ 6.17 (lower-left panel), and β ¼ 6.42 (lower-right panel). The
gray solid curve with the yellow band corresponds to the continuum perturbative calculation [2] in each panel.
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FIG. 2. The lattice spacing dependence of DXðtÞ calculated
between the Wilson flow and the stout smearing (ρ ¼ 0.1) at
β ¼ 5.76, 5.96, 6.17, and 6.42. The area shaded in gray
corresponds to the relative size of the statistical uncertainties
on XðtÞ determined by the Wilson flow in this study.
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In Fig. 3, we next show the smearing parameter
dependence of DXðtÞ calculated at β ¼ 5.96 as a typical
example. The behavior of DXðtÞ is plotted as a function of
t=t0 for three smearing parameters: ρ ¼ 0.01 (solid curve),
ρ ¼ 0.025 (dashed curve), and ρ ¼ 0.01 (double-dotted
curve). The relative difference of XðtÞ between the Wilson
flow and the stout-link smearing is smaller than 2% even
for the case of ρ ¼ 0.1. When the smearing parameter
decreases, the relative difference steadily get smaller as
expected. For the stout-link smearing results obtained with

the smaller smearing parameter (ρ ≤ 0.025), their devia-
tions from the Wilson flow result becomes smaller than the
statistical uncertainties on XðtÞ obtained from the Wilson
flow in the large-t region (t=t0 > a2=t0 ≈ 0.358). We will
also show the difference between two methods for deter-
mining another scale ω0 in the Appendix.
From above observations, we can expect that the Wilson

flow and the stout-link smearing remain equivalent even
with the finite parameters (a ≠ 0 and ρ ≠ 0) to determine
the Wilson flow scale t0 and ω0 within certain numerical
precision. All values of t0 and ω0 determined in this work
are tabulated in Table III for the scale t0 and Table IV
for the scale ω0. As for the scale t0, we also plot the values
of DXðt0Þ, which correspond to the relative differences
between the Wilson flow and the stout smearing results,
as a function of ρ at four lattice spacings (β ¼ 5.76, 5.96,
6.17, and 6.42) in Fig. 4. A horizontal dotted line represents
the relative size of the statistical uncertainties on the values
(∼0.24%) of t0 determined by the Wilson flow in this study.
Figure 4 shows that the difference between the two

methods at the coarse lattice spacing (β ¼ 5.76) becomes
smaller than the statistical error when the smearing param-
eter is set as ρ ¼ 0.01. On the other hand, for the fine lattice
spacing (β ¼ 6.42), the larger value of ρ ¼ 0.1 is enough to
reproduce the Wilson flow result within the statistical
precision. It is also worth emphasizing that the values of
DXðt0Þ seem to linearly depend on ρ with fixed lattice
spacing and vanish in the limit of ρ → 0 with finite lattice
spacings. These observations are expected since the con-
tinuous version of the stout-smearing procedure is equiv-
alent to the Wilson flow equation up to OðρÞ even at finite
lattice spacing as shown in Sec. II.
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FIG. 3. The behavior of DXðtÞ obtained with three smearing
parameters; ρ ¼ 0.1 (solid curve), ρ ¼ 0.025 (dashed curve), and
ρ ¼ 0.01 (double-dotted curve) as functions of t=t0 calculated
at β ¼ 5.96. The area shaded in gray corresponds to the relative
size of the statistical uncertainties on XðtÞ obtained by the
Wilson flow.

TABLE III. Results of t0=a2 obtained from the stout smearing with three smearing parameters ρ ¼ 0.1, 0.025,
0.01 and the Wilson flow (ϵ ¼ 0.025).

t0=a2 (stout-link smearing) t0=a2 (Wilson flow)

β ρ ¼ 0.1 ρ ¼ 0.025 ρ ¼ 0.01 ϵ ¼ 0.025

5.76 1.2502(30) 1.2690(30) 1.2722(31) 1.2741(31)
5.96 2.7744(62) 2.7919(62) 2.7949(62) 2.7968(62)
6.17 5.476(13) 5.494(13) 5.497(13) 5.499(13)
6.42 11.218(22) 11.236(23) 11.240(23) 11.242(23)

TABLE IV. Results of w0=a obtained from the stout-link smearing with three smearing parameters ρ ¼ 0.1, 0.025,
0.01 and the Wilson flow (ϵ ¼ 0.025).

w0=a (stout-link smearing) w0=a (Wilson flow)

β ρ ¼ 0.1 ρ ¼ 0.025 ρ ¼ 0.01 ϵ ¼ 0.025

5.76 1.1098(18) 1.1199(18) 1.1220(18) 1.1224(18)
5.96 1.6755(24) 1.6819(24) 1.6832(24) 1.6833(24)
6.17 2.3684(41) 2.3729(41) 2.3738(41) 2.3738(41)
6.42 3.4042(48) 3.4075(48) 3.4081(48) 3.4081(48)
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Moreover, the slope of the linear ρ dependence has some
lattice spacing dependence, which shows that the slope
becomes steeper as the lattice spacing increases. Indeed, the
values of DXðt0Þ seem to linearly depend on a2 with fixed
smearing parameter 0 < ρ < 1 as shown in Fig. 5, where
we plot the values of DXðt0Þ=ρ as a function of a2=t0 with
three smearing parameters (ρ ¼ 0.1, 0.025, and 0.01).
Since the higher-order corrections with respect to ρ become
non-negligible for the larger value of ρ, the scaling of
DXðt0Þ=ρ as a function of a2=t0 get worse at the coarser
lattice spacing. What we observe here is consistent with our
expectation discussed in Sec. II, that the leading order
corrections on the equivalence of the two methods start at
Oða2Þ when the smearing parameter ρ remains finite.
Next, it is worth remarking that the computational cost

for the Wilson flow is relatively higher than the stout
smearing. In our actual numerical code, we find that the
stout-link smearing is roughly a factor of Oð10Þ faster than
the Wilson flow even with the same numbers of flow
iterations nflow and smearing steps nst as summarized in
Table V. Although the required number of flow iterations
increases quadratically as the lattice spacing decreases, the
Wilson flow can be replaced by the stout smearing at the

finer lattice spacing and then the computational cost can be
significantly reduced. This is just an application in terms of
the effectiveness of numerical calculations.
On the other hand, there is a reverse application of this

equivalence. The stout smearing procedure can be imple-
mented in the hybrid Monte Carlo based updating algo-
rithms because of its differentiability with respect to the
link variables. Recently, the stout smearing is partly used in
the definition of the lattice fermion action. Therefore, some
technique for calculating one-loop quantities in lattice
perturbation theory is required to be developed for the
smeared-link fermion actions. The findings of this study
warrants the use of perturbation calculations in the gradient
flow formalism for such purpose.

IV. SUMMARY

We have studied the equivalence between the Wilson
flow and the stout smearing, which are analytically proven
at finite lattice spacing a in the zero limit of the stout-
smearing parameter ρ. To demonstrate the equivalence of
both methods by directly comparing the expectation value
of the action density, numerical simulations have been
performed with the Wilson gauge configurations generated
at four different gauge couplings (β ¼ 5.76, 5.96, 6.17, and
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FIG. 4. The smearing parameter dependence of DXðtÞ evalu-
ated at t ¼ t0 with three smearing parameters; β ¼ 5.76 (circles),
β ¼ 5.96 (squares), β ¼ 6.17 (diamonds), β ¼ 6.42 (upper tri-
angles). A horizontal dotted line represents the relative size of the
statistical uncertainties (∼0.24%) on the values of t0 calculated by
the Wilson flow in this study.
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FIG. 5. The lattice spacing dependence of DXðtÞ divided by ρ
evaluated at t ¼ t0 with three smearing parameters: ρ ¼ 0.1
(circles), ρ ¼ 0.025 (squares), and ρ ¼ 0.01 (diamonds).

TABLE V. Comparison of CPU execution time between the stout-link smearing and the Wilson flow applying for
full space-time dimensions and only spatial dimensions with fixed nst ¼ nflow ¼ 100 steps using a single
configuration for the lattice size of 163 × 32 (run on a single core of Intel Xeon E5-2609 CPU). For the Wilson
flow, we examine the second-order, third-order, and fourth-order Runge-Kutta (RK) schemes, respectively.

Directions Stout-link smearing (ρ ¼ 0.025)

Wilson flow (ϵ ¼ 0.025)

Second-order RK Third-order RK Fourth-order RK

Space-time 136.80 [sec] 985.55 [sec] 1496.51 [sec] 2061.08 [sec]
Space 90.39 [sec] 511.84 [sec] 763.51 [sec] 1074.07 [sec]
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6.42). It is found that the two methods remain equivalent
within some numerical precision even with finite param-
eters (a ≠ 0 and ρ ≠ 0) if the proper combination of two
parameters (a and ρ) is chosen. Especially, we verified that
ρ ¼ 0.1 for β ¼ 6.42, ρ ¼ 0.025 for β ¼ 5.96, and 6.17,
and ρ ¼ 0.01 for β ¼ 5.76 are enough small to identify the
stout smearing with the Wilson flow in the determination of
the reference scales, t0 and ω0.
Note that the computational cost of the stout-link

smearing is roughly a factor of Oð10Þ lower than the
Wilson flow even with the same numbers of flow iterations
nflow and smearing steps nst. Therefore, the Wilson flow
can be potentially replaced by the stout smearing at the
finer lattice spacing and then the computational cost can
be significantly reduced. Vice versa, we consider that the
findings of this study warrants the use of perturbation
calculations developed in the gradient flow formalism in
order to calculate one-loop quantities in lattice perturbation
theory for the smeared-link fermion action.
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APPENDIX: DIFFERENCE IN DETERMINATION
OF THE SCALE ω0

Let us introduce WðtÞ, which is defined as WðtÞ ¼
t d
dt ht2EðtÞi. In order to measure the difference between two
methods for determining another scale ω0, we then calcu-
late the following ratio:

DWðtÞ ¼
WstoutðtÞ −WflowðtÞ

WflowðtÞ
; ðA1Þ

where WstoutðtÞ denotes the corresponding quantity of
WðtÞ calculated by using the stout-link smearing as a
function of t ¼ ρnst, while WflowðtÞ is calculated by the
Wilson flow.

Figure 6 shows the lattice spacing dependence of DWðtÞ
calculated between the Wilson flow and the stout smearing
(ρ ¼ 0.1) at β ¼ 5.76, 5.96, 6.17, and 6.42, while Fig. 7
shows the smearing parameter dependence of DWðtÞ
calculated at β ¼ 5.96. In similar to the case of DXðtÞ,
the relative differences are barely saturated at t ≈ ω2

0, which
is located in the large-t region (t=ω2

0 > a2=ω2
0).
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FIG. 6. The lattice spacing dependence of DWðtÞ calculated
between the Wilson flow and the stout smearing (ρ ¼ 0.1) at
β ¼ 5.76, 5.96, 6.17, and 6.42. The area shaded in gray
corresponds to the relative size of the statistical uncertainties
on WðtÞ obtained by the Wilson flow.
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FIG. 7. The behavior of DWðtÞ obtained with three smearing
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size of the statistical uncertainties on WðtÞ obtained from the
Wilson flow.
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