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We find a simple spin Hamiltonian to describe physical states of (2þ 1)-dimensional SU(2) lattice gauge
theory on a honeycomb lattice with a truncation of the electric field representation at jmax ¼ 1

2
. The simple

spin Hamiltonian contains only local products of Pauli matrices, even though Gauss’s law has been
completely integrated out.
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I. INTRODUCTION

The idea of using one well-understood quantum system
to simulate another one that is less well understood has a
long history [1]. It became appealing to many research areas
with the recent rapid development of quantum information
technologies. In the area of nuclear and particle physics,
quantum simulation has attracted significant and yet still
growing research interests [2–43] because of its potential to
avoid the sign problem that obstructs traditional numerical
approaches to compute the real-time dynamics of gauge
theories that form the cornerstone of the Standard Model.
Gauge theories are relativistic quantum field theories

invariant under local gauge transformations. The local
gauge invariance poses many challenges to efficiently and
accurately simulate gauge theories on near-term quantum
computers. In many Hamiltonian formulations of lattice
gauge theories such as the Kogut-Susskind Hamiltonian
[44], quantum link model [45,46] and loop-string-hadron
formulation [47–49], interactions are local, but not all
local degrees of freedom correspond to physical states.
Only states satisfying local gauge invariance (Gauss’s law)
are physical. As a result, noise in quantum hardware or
errors introduced by quantum algorithms (such as the
Trotterization errors) can lead to unphysical results in the
simulation. Many generic error mitigation techniques such
as the zero-noise CNOT extrapolation [50–52] are not
sufficient to fully recover physical results due to the limited
gate fidelity and systematic errors of algorithms [10].
There have been many studies trying to address this

problem, such as integrating out Gauss’s law (see, e.g.,
Refs. [53,54]), adding a gauge violation penalty term
[55–62], averaging over different gauge choices from a

dynamical drive and quantum control (the so-called
“dynamical decoupling” [63]), using symmetry protection
[64] and postselection [65], and mapping local Gauge
invariance into conservation laws on specific quantum
hardware [66–68]. However, many of these methods have
limitations: Integrating out Gauss’s law completely is hard
and, when possible, it usually leads to nonlocal interactions
that are less efficient to simulate on quantum hardware
without all-to-all connections. Gauge violation penalty terms
that are quadratic contain two-body interactions that are not
necessarily local, and approaches with one-body penalty
terms [69] require the preparation of an initial physical state,
which can itself require solving the gauge error problem.
Using symmetry protection and postselection does not
necessarily reduce errors since symmetry-preserving and
symmetry-violating errors can interfere destructively and
thus removing only the symmetry-violating error can
increase the error [65]. Mapping gauge invariant interactions
onto processes on quantum hardware that are protected by
conservation laws are constrained to specific types of
interactions and certain quantum technology platforms.
Therefore, it would be extremely useful if one could find
a generic formulation that is local but does not suffer from
the problem of the error-induced admixture of unphysical
states for universal quantum computers.
Here, we provide such an example for (2þ 1)-

dimensional SU(2) gauge theory at strong coupling.
By considering a honeycomb lattice and truncating the
electric basis at jmax ¼ 1

2
, we are able to map bijectively the

ð2þ 1ÞD SU(2) lattice gauge theory onto a 2D spin model
with local interactions. In this procedure, the local gauge
invariance, i.e., Gauss’s law, is fully accounted for and only
the physical Hilbert space is included in the description,
which means time evolution driven by the constructed
Hamiltonian is robust against error-induced unphysical
states. The simple Hamiltonian will also enable a numerical
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test of the eigenstate thermalization hypothesis (ETH)
for part of the Hilbert space of the ð2þ 1ÞD SU(2) theory
as a two-dimensional extension of the plaquette chain
study [70].
This paper is organized as follows: In Sec. II we will

present the Hamiltonian of (2þ 1)-dimensional SU(2)
gauge theory on a honeycomb lattice and describe how
it can be mapped onto a 2D spin model when the electric
field Hilbert space is truncated to jmax ¼ 1

2
. In Sec. III we

will construct momentum eigenstates in the case of periodic
boundary condition and calculate matrix elements of the
Hamiltonian and Wilson loop operators. A brief summary
will be given in Sec. IV.

II. ð2 + 1ÞD SU(2) GAUGE THEORY
ON HONEYCOMB LATTICE

A. Kogut-Susskind (KS) Hamiltonian

The Hamiltonian density of ð2þ 1ÞD SU(2) gauge
theory in the continuum can be written as

H ¼ 1

2g2
Ea
i E

a
i þ

1

4g2
Fa
ijF

a
ij; ð2:1Þ

where Ea
i denotes the electric field along the ith spatial

direction with the SU(2) adjoint index a∈ 1, 2, 3, Fa
ij

represents the non-Abelian magnetic field (field strength
tensor), and g is the coupling with mass dimension
½g� ¼ 0.5. Compared with the standard notation in the
continuum, we have absorbed a factor of g into the
definition of Fμν. Later, we will absorb another factor
of a=g2 into the definition of the electric field where a is
the lattice spacing.
Now we want to construct a lattice version of the

Hamiltonian on a 2D plane. For the standard square lattice
each vertex connects four links. A physical state at the
vertex then cannot be uniquely defined by the j values on
the four links, where j denotes the label of an electric basis
state, and a fifth j value is required to define a unique vertex
state. Alternatively, when each vertex connects only three
links as in the case of a square plaquette chain, physical
vertex states can be uniquely determined by the correspond-
ing j values. This motivates us to consider a honeycomb
lattice in two spatial dimensions.
As shown in Fig. 1, the vertices defining a honeycomb

lattice can be labeled as black or red such that no link
connects two black or two red vertices. In order to
formulate the discretized gauge field Hamiltonian on the
honeycomb lattice we define three unit vectors pointing
from a red site to an adjacent black site:

ê1¼
� ffiffiffi

3
p

2
;
1

2

�
; ê2¼ð0;−1Þ; ê3¼

�
−

ffiffiffi
3

p

2
;
1

2

�
; ð2:2Þ

which satisfy
P

i êi ¼ ð0; 0Þ. We represent Wilson lines
(link variables) that start at a red dot and point along these
directions to be U. Those link variables that point in the
opposite directions and end on a red dot are labeled as U†.
For example, the link variable from vertex 1 to vertex 2 in
plaquette A can be written as

Uðn1; ê1Þ ¼ exp½iaê1 · Aðn1Þ�

¼ exp

�
ia

� ffiffiffi
3

p

2
Axðn1Þ þ

1

2
Ayðn1Þ

��
; ð2:3Þ

where a is the lattice spacing between connected black and
red dots. The gauge field A≡ AaTa ≡ Aaσa=2 is a SU(2)
matrix [here the superscript a is a SU(2) adjoint index
implicitly summed over and σa denotes a Pauli matrix]. The
argument of the gauge field n1 denotes the position of
vertex 1 in plaquette A. The link variable from vertex 2 to
vertex 3 can be written as

U†ðn3; ê2Þ ¼ exp½−iaê2 · Aðn3Þ� ¼ exp½iaAyðn3Þ�; ð2:4Þ

where n3 denotes the position of vertex 3 in plaquette A.
Similarly the remaining link variables along a hexagonal
plaquette are given by

Uðn3; ê3Þ ¼ exp½iaê3 · Aðn3Þ�;
U†ðn5; ê1Þ ¼ exp½−iaê1 · Aðn5Þ�;
Uðn5; ê2Þ ¼ exp½iaê2 · Aðn5Þ�;
U†ðn1; ê3Þ ¼ exp½−iaê3 · Aðn1Þ�: ð2:5Þ

Expanding in powers of a, the plaquette operator at A is
given by

FIG. 1. Left panel: honeycomb lattice in two spatial dimensions
with three unit vectors defined pointing from a red dot to the three
adjacent black dots. Right panel: single plaquette shown by solid
lines with six external links depicted by dashed lines. The black
dot vertex is labeled as ða; x; bÞ.
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⬡A ¼ Tr½U†ðn1; ê3ÞUðn5; ê2ÞU†ðn5; ê1ÞUðn3; ê3Þ
×U†ðn3; ê2ÞUðn1; ê1Þ�

¼ Tr

�
1þ ia2

3
ffiffiffi
3

p

2
Fxyðn1Þ −

1

2
a4

27

4
F2
xyðn1Þ þ � � �

�
:

ð2:6Þ

At lowest order in the lattice spacing a we therefore obtain
the result

Tr½F2
xyðn1Þ� ¼

4

27a4
½4 −⬡ðn1Þ −⬡†ðn1Þ�: ð2:7Þ

Using the fact that the plaquette variable in SU(2) is real,
⬡ ¼ ⬡†, the magnetic energy part of the KS Hamiltonian
can be written as

Hmag ¼
Z

d2x
1

4g2
Fa
ijðxÞFa

ijðxÞ

¼ 3
ffiffiffi
3

p

2
a2
X
n

1

g2
Tr½F2

xyðnÞ�

¼ 4
ffiffiffi
3

p

9g2a2
X
n

ð2 −⬡ðnÞÞ; ð2:8Þ

where the sum n runs over the red dots on the honeycomb
lattice and the factor 3

ffiffiffi
3

p
=2 comes from the area of the

hexagon or the parallelogram formed by four nearest black
or red dots.
For the electric part of the Hamiltonian we decompose

the two-component electric field into three parts:

Ea
1 ¼ ê1 · Ea; Ea

2 ¼ ê2 · Ea; Ea
3 ¼ ê3 · Ea; ð2:9Þ

which satisfy ðEaÞ2 ¼ ðEa
xÞ2 þ ðEa

yÞ2 ¼ ðEa
1Þ2 þ ðEa

2Þ2 þ
ðEa

3Þ2. Thus, the electric part of the Hamiltonian is

Hel ¼
g2

2

3
ffiffiffi
3

p

2

X
n

X3
i¼1

X3
a¼1

ðEa
i Þ2ðnÞ; ð2:10Þ

where again the sum over n denotes either the black or the red
vertices of the honeycomb lattice and the factor 3

ffiffiffi
3

p
=2 again

comes from the hexagon area.
The electric fields can be made to live on either black

vertices or red vertices without changing the above form of
Hel. The commutation relations between E and U can be
easily written out if we make the electric fields live on links
rather than on black or red vertices. Then there will be two
types of electric fields living on the same link: One induces
gauge transformation of the link variable on the black end
while the other induces gauge transformation on the red
end. Either one can be used in Hel. All in all, we can write

½Ea
Biðnþ êi=2Þ; Uðn; êjÞ� ¼ −δijTaUðn; êjÞ; ð2:11Þ

where B denotes the electric field that is gauged on a black
vertex. The argument of the electric field indicates it lives
on a link. Similarly we have

½Ea
Riðnþ êi=2Þ; Uðn; êjÞ� ¼ −δijUðn; êjÞTa; ð2:12Þ

where R denotes the electric field that is gauged on a red
vertex. The “black” and “red” electric fields are the analogs
of “left” and “right” electric fields on a square lattice. They
are generators of local gauge transformation and have
nontrivial commutation relations1

½Ea
Biðnþ êi=2Þ; Eb

Bjðmþ êj=2Þ�
¼ iεabcδijδnmEc

Biðnþ êi=2Þ;
½Ea

Riðnþ êi=2Þ; Eb
Rjðmþ êj=2Þ�

¼ −iεabcδijδnmEc
Riðnþ êi=2Þ; ð2:13Þ

where εabc is the Levi-Civita symbol and serves as the
structure constant of the SU(2) group.
Altogether, the KS Hamiltonian on the honeycomb

lattice reads

HKS ¼
X
n

 
3
ffiffiffi
3

p
g2

4

X3
i¼1

X3
a¼1

ðEa
i Þ2ðnÞþ

4
ffiffiffi
3

p

9g2a2
ð2−⬡ðnÞÞ

!
:

ð2:14Þ

The constant in the magnetic energy represents an overall
shift of all energy eigenvalues and is often omitted in the
literature. In addition to the Hamiltonian, physical states
jψphyi satisfy Gauss’s law

X3
i¼1

Ea
i jψphyi ¼ 0; ð2:15Þ

for all a’s and all black and red dots.
The matrix elements of the KS Hamiltonian can be easily

evaluated in the electric field representation, where the
matrix elements of the electric energy operator are diagonal

1The signs on the right-hand sides of Eq. (2.13) are consistent
with those of Eqs. (2.11) and (2.12), which are obtained from the
commutation relation between an electric field and a Wilson line
in the continuum. If we were working with a square lattice, it
would be more convenient to redefine Ea

Ri with −Ea
Ri (On a square

lattice, “red” corresponds to “right.” In this way, the negative sign
on the right hand sides of Eq. (2.12) and the last line of Eq. (2.13)
would disappear. For a square lattice, this is more convenient
since each vertex contains both “left” and “right” types of electric
fields and redefining them such that they transform link variables
in the same way simplifies the construction of singlets at vertices.
On the other hand, each vertex on a honeycomb lattice only
involves one type of electric fields, either “black” or “red” and
thus the construction of singlets at each vertex is already simple.
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[10,18,71,72]. Denoting the SU(2) representation of the
electric field by j ¼ 0; 1

2
; 1;… the contribution from each

link is given by

hJj
X3
a¼1

ðEaÞ2jji ¼ jðjþ 1ÞδJj: ð2:16Þ

The matrix elements of the plaquette operator can be
evaluated using the techniques described in [73]:

hfJgj⬡jfjgi≡ hfJgj
Y6
V¼1

MV jfjgi

¼
Y6
V¼1

ð−1ÞjaþJbþjx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Ja þ 1Þð2jb þ 1Þ

p

×

�
jx ja jb
1
2

Jb Ja

�
; ð2:17Þ

where MV denotes the part of the honeycomb plaquette
operator at the vertex V ¼ ða; x; bÞ, where a and b are the
two internal plaquette links attached to the vertex and x
denotes the external link at the vertex, as shown in Fig. 1.
The symbol fjg is a collection of the six initial j values of
the plaquette links (the a, b type) while fJg labels those of
the final state, after the honeycomb plaquette operator has
been applied. The jx value of the external link does not
change. The curly bracket containing six j values in two
rows denotes the Wigner 6j symbol whose explicit expres-
sion can be found in Refs. [74,75].

B. Map to spin model with truncation at jmax = 1
2

We now discuss the truncation of the Hilbert space for the
KS Hamiltonian to the electric field representations j ¼ 0; 1

2
.

While this truncation would not yield meaningful results for
physically interesting observables when the coupling con-
stant is small, it allows us to search for ETH-type behavior
for modestly large lattices. If the gauge theory constrained
to this reduced Hilbert space exhibits quantum chaos, it
appears plausible that this property is also present in the
unconstrained Hilbert space. Furthermore, this truncation
provides an example where Gauss’s law is completely
integrated out and yet the interactions are still local. In
this sense, the model with this truncation provides a good
starting point and benchmark for future quantum simulation
studies of lattice gauge theories that are robust against
unphysical states induced by errors.
In the truncated Hilbert space there exist four different

vertex states labeled as 0, A, B, and C satisfying Gauss’s
law, which we denote by their link representations j≡
ðja; jx; jbÞ where a and b are the internal links at the vertex
and x is the external link, as shown in Fig. 1:

j0 ¼ ð0; 0; 0Þ; jA ¼
�
1

2
; 0;

1

2

�
;

jB ¼
�
1

2
;
1

2
; 0

�
; jC ¼

�
0;
1

2
;
1

2

�
: ð2:18Þ

The nonvanishing reduced matrix elements ofMV between
these vertex states are

hjAjMV jj0i ¼ hj0jMV jjAi ¼ hjBjMV jjCi ¼ −i;

hjCjMV jjBi ¼
i
2
: ð2:19Þ

The asymmetry of the (BC) and (CB) vertices may look
strange, but if we use Eq. (2.19) to work out matrix
elements of the plaquette operator on the honeycomb
lattice, we find that the matrix elements are real and
symmetric. This is because under the Gauss’s law con-
straint any plaquette state has an even number (0, 2, 4, 6) of
external links with j ¼ 1

2
, and the numbers of (BC)- and

(CB)-type vertices are the same.
All states that can be reached from the ground state are

obtained by applying the plaquette operators ⬡i;j where i
and j denote the plaquette position as shown in Fig. 2. ForN
plaquettes the dimension of this truncated Hilbert space is

FIG. 2. Bijective map between physical states in ð2þ 1ÞD
SU(2) lattice gauge theory with a truncation of jmax ¼ 1

2
and spin

states in two spatial dimensions. Black dashed lines on the left
represent link variables in the electric basis j ¼ 0 while blue
solid lines stand for link variables in j ¼ 1

2
. On the left, a

plaquette operator at (0, 0) is first applied, followed by the
application of another plaquette operator at (0, 1), which results
in a two-plaquette Wilson loop with the joint link variable in
j ¼ 0. In the spin model, these two plaquette operators corre-
spond to two σx Pauli matrices at the site (0, 0) and (0, 1) with
coefficients as shown. The coefficients can be obtained from
Eqs. (2.17) and (2.19).
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2N since the repeated application of the plaquette operator
to the same plaquette results in the identity: ⬡2

i;j ¼ 1.
Plaquette operators for different plaquettes commute:
⬡i;j⬡i0;j0 ¼ ⬡i0;j0⬡i;j. It is convenient to map this space
onto the Hilbert space for N spins where the spin-down
configuration is assigned to the plaquette ground state and
the spin-up configuration denotes that the plaquette operator
has been applied to the plaquette [70], as shown in Fig. 2.
The KS Hamiltonian on the truncated Hilbert space can then
be expressed in terms of the Pauli matrices σνi;j, where i and
j denote the plaquette positions and ν ¼ x, y, z. The electric
Hamiltonian is represented in terms of σzi;j ’s while the
magnetic part is represented by σxi;j’s, with coefficients
determined by Eqs. (2.17) and (2.19).
A straightforward but cumbersome calculation shows

that the KS Hamiltonian can be mapped onto the following
Ising Hamiltonian:

aH ¼ hþ
X
ði;jÞ

Πþ
i;j − hþþ

X
ði;jÞ

Πþ
i;j

	
Πþ

iþ1;j þΠþ
i;jþ1 þΠþ

iþ1;j−1




þ hx
X
ði;jÞ

ð−0.5Þci;jσxi;j; ð2:20Þ

where Π�
i;j ¼ ð1� σzi;jÞ=2 are the projection operators onto

the spin-up and spin-down states of the plaquette at ði; jÞ,
respectively. The sum contains terms that refer to spins
that lie outside the boundary of the system; these need to
be fixed by imposing appropriate boundary conditions
(see below). The coefficients in Eq. (2.20) are given by

hþ ¼ 27
ffiffiffi
3

p

8
ag2; hþþ ¼ 9

ffiffiffi
3

p

8
ag2; hx ¼

4
ffiffiffi
3

p

9ag2
;

ci;j ¼ Πþ
i;jþ1Π−

iþ1;j þΠþ
iþ1;jΠ−

iþ1;j−1 þΠþ
iþ1;j−1Π−

i;j−1

þΠþ
i;j−1Π−

i−1;j þΠþ
i−1;jΠ−

i−1;jþ1 þΠþ
i−1;jþ1Π−

i;jþ1:

ð2:21Þ

The expression of ci;j can be compactly written as

ci;j ¼
X5
K¼0

Πþ
KΠ−

Kþ1; ð2:22Þ

where the index K comes from a periodic (K mod 6) chain
fK ¼ 0∶ði; jþ 1Þ; K ¼ 1∶ðiþ 1; jÞ; K ¼ 2∶ðiþ 1; j − 1Þ;
K ¼ 3∶ði; j − 1Þ; K ¼ 4∶ði − 1; jÞ; K ¼ 5∶ði − 1; jþ 1Þg.
We note in passing that an equivalent way of writing the

magnetic part of the Hamiltonian is

hx
X
ði;jÞ

σxi;j
Y5
K¼0

��
1

2
−

i

2
ffiffiffi
2

p
�
σzKσ

z
Kþ1 þ

1

2
þ i

2
ffiffiffi
2

p
�
; ð2:23Þ

which is more straightforward to implement on a quantum
computer than the last term in Eq. (2.20), since it is a
local product of Pauli matrices. Expanding the product in
Eq. (2.23) leads to multiple terms of the form σzK…σzK0σxi;j
in which there are an even number of σz matrices. The
generic quantum circuit to implement the time evolution
driven by these terms is known [76]: One first applies
Hadamard gates h to convert σx rotation to σz rotation
hσxh ¼ σz and then realizes the generic rotation e−iθσ

z
1
���σzm

by two sequences of controlled-NOT (CNOT) gates and a
single qubit σz rotation:

CNOTð1; 2ÞCNOTð2; 3Þ � � �CNOTðm − 1; mÞe−iθσzm
× CNOTðm − 1; mÞCNOTðm − 2; m − 1Þ � � �
× CNOTð1; 2Þ; ð2:24Þ

where CNOTði; jÞ denotes a CNOT gate on the ith and jth
qubits with the ith one as the control.

1. Closed (confining) boundary condition

One natural choice of boundary condition is to demand
that all external links of plaquettes at the boundary of the
system that fall outside the boundary are in the singlet
representation j ¼ 0. This corresponds to the requirement
that there exist no gauge electric fields perpendicular to the
boundary, n⃗ · E⃗ ¼ 0, which is used in the MIT-bag model to
impose color confinement [77]. We call these boundary
conditions closed or confining. In the mapping to the 2D
Ising model, the equivalent boundary condition is the
requirement that all spins outside the boundary are pointing
downward; i.e., their expectation values of σz are −1.

2. Periodic boundary condition

With a periodic boundary condition, the Hamiltonian in
Eq. (2.20) can be further simplified by shifting the energy
reference point resulting in the following expression:

aH ¼ J
X
ði;jÞ

σzi;jðσziþ1;j þ σzi;jþ1 þ σziþ1;j−1Þ

þ hx
X
ði;jÞ

ð−0.5Þci;jσxi;j ≡ JHzz þ hxHx; ð2:25Þ

with J ¼ − 9
ffiffi
3

p
ag2

32
and hx ¼ 4

ffiffi
3

p
9ag2. The coefficient ci;j is the

same as in Eq. (2.22), and the magnetic part is equivalent to
Eq. (2.23). Unlike the case of a plaquette chain, the
Hamiltonian in Eq. (2.25) has no linear terms in σzi;j.
One subtlety with a periodic boundary condition is an

overall spin flip redundancy in numerating states. In other
words, two spin states that are related by an overall spin
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flip are different in the spin model, but they correspond
to the same state in the original ð2þ 1ÞD SU(2) lattice
gauge theory:

Y
ði;jÞ

σxi;jjsi≡ jsi: ð2:26Þ

This redundancy can be seen, e.g., on a periodic 2 × 2
lattice from Fig. 3, where two different spin states are
plotted and they are the same state in terms of the link
variables. This redundancy needs to be removed in
practical calculations.

3. Representation of Wilson loops

Often in practical applications, one wants to evaluate
expectation values of gauge invariant operators such as
Wilson loops. Here we list the representation of one-
plaquette and two-plaquette Wilson loops in the spin model
discussed above.
For a one-plaquette Wilson loop operator, the spin model

representation is the same as one term in the magnetic part
of the Hamiltonian. If the one-plaquette operator O1 is
located at ði; jÞ, its expression is

O1 ≡−σxi;j
Y5
K¼0

��
1

2
−

i

2
ffiffiffi
2

p
�
σzKσ

z
Kþ1 þ

1

2
þ i

2
ffiffiffi
2

p
�
; ð2:27Þ

where the index K comes from a periodic (K mod 6) chain
fK ¼ 0∶ði; jþ 1Þ; K ¼ 1∶ðiþ 1; jÞ; K ¼ 2∶ðiþ 1; j − 1Þ;
K ¼ 3∶ði; j − 1Þ; K ¼ 4∶ði − 1; jÞ; K ¼ 5∶ði − 1; jþ 1Þg.
For a two-plaquette Wilson loop operator O2 located

at ði; jÞ; ði; jþ 1Þ, its representation in the spin model is
given by

O2 ≡ −σxi;jσxi;jþ1

1þ 3σzi;jσ
z
i;jþ1

4

Y7
K¼0

ð−0.5ÞΠþ
KΠ

−
Kþ1

¼ −σxi;jσxi;jþ1

1þ 3σzi;jσ
z
i;jþ1

4

×
Y7
K¼0

��
1

2
−

i

2
ffiffiffi
2

p
�
σzKσ

z
Kþ1 þ

1

2
þ i

2
ffiffiffi
2

p
�
; ð2:28Þ

where the index K here forms a periodic (K mod 8) chain
fK ¼ 0∶ði; jþ 2Þ; K ¼ 1∶ðiþ 1; jþ 1Þ; K ¼ 2∶ðiþ 1; jÞ;
K ¼ 3∶ðiþ 1; j − 1Þ; K ¼ 4∶ði; j − 1Þ; K ¼ 5∶ði − 1; jÞ;
K ¼ 6∶ði− 1; jþ 1Þ; K ¼ 7∶ði − 1; jþ 2Þg.

III. MOMENTUM STATES AND MATRIX
ELEMENTS WITH PERIODIC BOUNDARY

CONDITION

With the periodic boundary condition, the spin model on
the honeycomb lattice has translational invariance in three
directions orthogonal to the three unit vectors êi. Only two
of them are linearly independent. We choose them to be x

and y directions: x̂≡ ð1; 0Þ and ŷ≡ ð1
2
;
ffiffi
3

p
2
Þ. Then we have

½T̂x; H� ¼ 0; ½T̂y; H� ¼ 0; ð3:1Þ

where T̂i denotes the translation operator along the ith
spatial direction by one lattice unit. The vanishing com-
mutators mean we can simultaneously diagonalize the
Hamiltonian and translation operators. The eigenstates of
the two translation operators are states with specific
momenta, which can be written as

jaðkx; kyÞi ¼
1ffiffiffiffiffiffi
Na

p
XNx−1

rx¼0

XNy−1

ry¼0

e−ikxrx−ikyry T̂rx
x T̂

ry
y jai; ð3:2Þ

where jai is a representative state in the translational
equivalent classes defined by T̂x and T̂y. We assume there
are Nx plaquettes along the x direction and Ny along the y
direction. The momenta are given by kx ¼ 2πnx=Nx; ky ¼
2πny=Ny where nx ∈ f1; 2;…; Nx − 1g and ny ∈
f1; 2;…; Ny − 1g. The normalization factor Na can be
numerically obtained by sweeping through all the states
involved in Eq. (3.2) and calculating the norm of the linear
superposition state accounting for the redundancy dis-
cussed in Sec. II B 2. If the two sums on the right-hand side
of Eq. (3.2) vanish, then the corresponding momentum
state does not exist. The state jaðkx; kyÞi, whenever it
exists, is an eigenstate of T̂i with eigenvalue eiki for
i ¼ x, y.
The matrix element of the electric part of Eq. (2.25) in

the momentum state basis is given by

FIG. 3. Two equivalent states on a 2 × 2 honeycomb lattice
with periodic boundary condition are mapped onto two different
spin states. This redundancy in the spin representation needs to be
removed.
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hbðk0x; k0yÞjHzzjaðkx; kyÞi ¼ δabδkxk0xδkyk0y
XNx−1

i¼0

XNy−1

j¼0

ðzi;jðaÞzi;jþ1ðaÞ þ zi;jðaÞziþ1;jðaÞ þ zi;jðaÞziþ1;j−1ðaÞÞ; ð3:3Þ

where zi;jðaÞ ¼ �1 is the eigenvalue of the operator σzi;j applied to the state jai.
The matrix element of the magnetic part of Eq. (2.25) in the momentum state basis can be worked out similarly:

hbðk0x; k0yÞjHxjaðkx; kyÞi ¼ δkxk0xδkyk0y

ffiffiffiffiffiffi
Nb

Na

s XNx−1

i¼0

XNy−1

j¼0

e−ikxli−ikylj
Y5
K¼0

��
1

2
−

i

2
ffiffiffi
2

p
�
zKðaÞzKþ1ðaÞ þ

1

2
þ i

2
ffiffiffi
2

p
�
; ð3:4Þ

where the index K depends on ði; jÞ and is given as above. The integers li and lj are determined by

σxi;jjai ¼ T̂−li
x T̂

−lj
y jbi: ð3:5Þ

Finally, we give explicit expressions for the matrix elements of the one-plaquette and two-plaquette operatorsO1 andO2

in the momentum eigenstate basis. Without loss of generality, we assume the O1 operator acts at ði; jÞ ¼ ð0; 0Þ and the O2

operator acts on the plaquette pair at (0, 0),(0, 1). Similarly as for the matrix element of the magnetic Hamiltonian, we find

hbðk0x; k0yÞjO1jaðkx; kyÞi ¼ −
1

NxNy

ffiffiffiffiffiffi
Nb

Na

s XNx−1

rx¼0

XNy−1

ry¼0

eiϕðk⃗;k⃗
0
;rx;ryÞ

Y5
K¼0

��
1

2
−

i

2
ffiffiffi
2

p
�
zKðaÞzKþ1ðaÞ þ

1

2
þ i

2
ffiffiffi
2

p
�
; ð3:6Þ

where the indices K denote the six plaquettes surrounding ð−rx;−ryÞ, the phase ϕ is

ϕðk⃗; k⃗0;rx;ryÞ¼ ðk0x−kxÞrxþðk0y−kyÞry−k0xlrx −k0ylry ; ð3:7Þ

and the two integers lrx and lry are determined by the condition

σx−rx;−ry jai ¼ T̂
−lrx
x T̂

−lry
y jbi: ð3:8Þ

A similar construction gives the matrix element of O2 as

hbðk0x; k0yÞjO2jaðkx; kyÞi ¼ −
1

NxNy

ffiffiffiffiffiffi
Nb

Na

s XNx−1

rx¼0

XNy−1

ry¼0

eiϕðk⃗;k⃗
0
;rx;ryÞ

1þ 3z−rx;−ryðaÞz−rx;1−ryðaÞ
4

×
Y7
K¼0

��
1

2
−

i

2
ffiffiffi
2

p
�
zKðaÞzKþ1ðaÞ þ

1

2
þ i

2
ffiffiffi
2

p
�
; ð3:9Þ

where the indices K denote the eight plaquettes around
ð−rx;−ryÞ; ð−rx; 1 − ryÞ and lrx and lry are determined by

σx−rx;−ryσ
x
−rx;1−ry jai ¼ T̂

−lrx
x T̂

−lry
y jbi: ð3:10Þ

The momentum basis and the corresponding matrix
elements may not be very useful for quantum simulation,
but they have been applied in studies of testing ETH for
non-Abelian gauge theories [70] and turned out to be very
useful to enlarge the system size accessible on a classical
computer.

IV. CONCLUSIONS

In this work we construct a simple 2D spin Hamiltonian
that exactly describes the (2þ 1)-dimensional SU(2)
lattice theory with a truncation at jmax ¼ 1

2
in the electric

basis. During the construction, Gauss’s law is fully
accounted for, and the Hilbert space of the spin model
contains only physical states of the original SU(2) theory.
Although Gauss’s law is fully implemented, the inter-
actions in the spin model are still local. As a result, the
system can be efficiently simulated on quantum hardware
that does not have all-to-all connectivity. Therefore, the
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simple 2D spin Hamiltonian can serve as a benchmark for
future quantum simulation studies of lattice gauge theory
that tests their robustness against unphysical state admix-
ture caused by hardware noise and algorithm errors.
Furthermore, this simple spin Hamiltonian allows us to
exactly diagonalize it for reasonably large system sizes,
which is necessary to test the ETH for a subset of the
physical Hilbert space of the original SU(2) theory. We
will pursue this in future work.
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