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The path optimization method, which is proposed to control the sign problem in quantum field theories
with continuous degrees of freedom by machine learning, is applied to a spin model with discrete degrees
of freedom. The path optimization method is applied by replacing the spins with dynamical variables, via
the Hubbard-Stratonovich transformation, and the sum with the integral. The one-dimensional (Lenz-)Ising
model with a complex coupling constant is used as a laboratory for the sign problem in the spin model. The
average phase factor is enhanced by the path optimization method, indicating that the method can weaken
the sign problem. Our result reproduces the analytic values with controlled statistical errors.
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I. INTRODUCTION

To understand the nonperturbative properties of quantum
field theories and spin models, the Monte Carlo (MC)
method plays an important and crucial role. In the MC
calculation, expectation values are evaluated with the
Boltzmann weight. However, the Boltzmann weight is a
complex value in some cases even if the partition function
is still real. This problem is called the sign problem. A
typical example is quantum chromodynamics with a finite
quark chemical potential (μ), reviewed in Refs. [1,2].
Another example of a discrete spin system is the
Hubbard model away from the half-filling [3].
The sign problem can be milder by the path optimization

method or the sign optimized manifold [4–6], which has a
close relationship with the Lefschetz thimble method [7].
Both are the so-called complexified dynamical variable
approaches based on Cauchy’s integral theorem, which
ensures the independence of the expectation value via
modification of the integral path as long as the integrand
is an entire function with no contribution at infinity. If we
have an integral representation of the partition function,
such as quantum field theories with continuous degrees of
freedom, a sign-problem-reduced integral path could be on

the complexified dynamical variable plane. The path
optimization method utilizes machine learning to determine
the optimized integration path. The path optimization
works well for several models: a simple Gaussian model
[4], the 1þ 1-dimensional complex λϕ4 theory [8], the
Polyakov-loop extended Nambu–Jona-Lasinio model
[9,10], the 1þ 1- and 2þ 1-dimensional Thirring model
[5,11], the 0þ 1-dimensional Bose gas [6], the 0þ 1-
dimensional QCD [12], the two-dimensional U(1) gauge
theory with complexified coupling constant [13–15], and
the 2þ 1-dimensional XY model [16]. It is also employed
for error reduction of observables [17,18]. The recent
progress of the complexified dynamical variable approach
is reviewed in Ref. [19].
For the spin models, on the other hand, we have a sum in

the partition function, instead of the integral. We cannot
directly apply the complexified dynamical variable approach.
A solution is the Hubbard-Stratonovich transformation. It
converts the sum to the integral using the auxiliary field. We
demonstrate it in the one-dimensional classical (Lenz-)Ising
model with a complex coupling constant. Since we have the
analytic result, we can judge the correctness of results by
the path optimizationmethod.Another famous example is the
Hubbard model away from half-filling [3]. In this case, the
complexified dynamical variable approach is feasible; for
example, see the review [20].
In this paper, we apply the path optimization method

[4,8] to the Ising model with the complex coupling
constant. The dynamical variables are replaced by the
Hubbard-Stratonovich transformation as in Refs. [21,22].
We also introduce parallel tempering to the path optimi-
zation method [13] toward control of the global sign
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problem, as first applied in the Lefschetz thimble
method [23,24].
This paper is organized as follows. In Sec. II, we explain

the formulation of the Ising model with the complex
coupling constant, the Hubbard-Stratonovich transforma-
tion, and the path optimization method. The numerical
setup and results are shown in Secs. III and IV, respectively.
Section V is devoted to a summary.

II. FORMULATION

We employ the one-dimensional classical Ising model
with a complex coupling constant as a laboratory to
investigate the sign problem in spin models. The sign
problem is induced by the imaginary part of the external
field. We first explain the integral representation of the
Ising model through the Hubbard-Stratonovich transfor-
mation. We then explain the application of the path
optimization method to the model.

A. Ising model with complex coupling constant

The Hamiltonian of the classical one-dimensional
(Lenz-)Ising model with an external magnetic field [25,26]
is given by

H ¼ −J
X
i

σiσiþ1 − h
X
i

σi; ð1Þ

where J is a coupling constant for the nearest-neighbor
spins, h is strength of the external magnetic field, and
σi ¼ �1 is a spin at each site i ¼ 1;…; N; this is the one-
dimensional Ising chain. We impose the periodic boundary
condition σ0 ¼ σN and σNþ1 ¼ σ1. The HamiltonianH can
be represented in matrix style as

H ¼ −
J
2
s⊤Ks −Hs; ð2Þ

where K is the symmetric connectivity matrix, s is the spin
matrix defined as s¼ðσ1σ2 ���σNÞ⊤, and H¼h×ð11���1Þ.
This representation can be also applied to higher-
dimensional systems by using a suitably constructed
symmetric connectivity matrix. The coefficient 1=2 in
Eq. (2) is introduced to avoid double counting of the
nearest-neighbor interaction when we make K symmetric.
The sign problem arises from the imaginary part of J.

The realistic Ising model does not have such an imaginary
part, but is sometimes introduced for analysis of the Lee-
Yang zeros [27] or the Fisher zeros [28]. Such an imaginary
part also naturally arises when we consider the QCD-like
Potts model [29–31], as discussed in Appendix A.
The partition function of the Ising model is

Z ¼
X

fsig¼�1

e−βHðJ;hÞ ¼
X

fsig¼�1

e−HðJ0;h0Þ; ð3Þ

where the sum takes over all possible states. The inverse
temperature β can be absorbed intoH by replacing J0 ¼ βJ
and h0 ¼ βh.

B. Hubbard-Stratonovich transformation

With the expression (2), we can use the Hubbard-
Stratonovich transformation as in Ref. [22],

e
1
2
s⊤Ks ¼ 1

N

Z
∞

−∞

�YN
j¼1

dvi

�
e−

1
2
v⊤K−1vþs·v; ð4Þ

where the normalization constant N is defined by

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞN detK

q
: ð5Þ

It should be noted that the eigenvalue of K must be positive
for the Hubbard-Stratonovich transformation. We thus put a
constant shift for K as

K → K̃ ¼ K þ CI; ð6Þ

where I is the unit matrix and the constantC takes the same
sign as that of J. The C independence of the physical result
is confirmed in Ref. [22]. If we set C > n, where n is the
maximum number of nearest neighbors of one site, K̃ is
positive definite; n ¼ 2 for the one-dimensional Ising
model.
The final form of the partition function becomes

Z ¼
X

fσi¼�1g
e−H−J0

2
Cs2

¼ 1

N 0

Z
∞

−∞

�YN
j¼1

dvi

�
e−

1

2J0v
⊤K̃vþ

P
j
ln cosh½H0

jþðK̃vÞj�

¼ 1

N 0

Z
∞

−∞

�YN
j¼1

dvi

�
e−H

0
; ð7Þ

where N 0 includes a contribution of N and C, which is
irrelevant in the evaluation of the expectation values. We
can consider H0 as the effective Hamiltonian in molecular
dynamics. The expectation value of magnetization for the
single spin is obtained as

hσi ¼
�
1

N

X
j

tanh
h
H0

j þ ðK̃vÞj
i�

: ð8Þ

The analytic result of the magnetization [26] is known as

hσi ¼ λNþ − λN−
λNþ þ λN−

sinhðh0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðh0Þ þ e−4J

0
q ; ð9Þ
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where λ� are the eigenvalues of the transfer matrix of the
model,

λ� ¼ eJ
0
�
coshðh0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðh0Þ þ e−4J

0
q �

: ð10Þ

C. Path optimization method

The path optimization method [4–6] is proposed as a
complex dynamical variable approach for the path integral
formulation to control the sign problem via machine learn-
ing. Although the path optimization method does not need
initial teacher data, the effectiveness of themodified path can
be automatically evaluated in the learning part.
In the path optimization method, we first complexify the

dynamical variable v∈RN as

v → v0 ¼ vR þ ivI; ð11Þ

where vR; vI ∈RN . This procedure means modification of
the integral path on the complexified dynamical variable
plane. There are several ways to express the modified
integral path minimizing the sign problem. We use the
representation constructed by the neural network; the input
is v ¼ vR, and the output is vI . The actual procedure is as
follows:

v|{z}
input layer

→ hidden layer → vI|{z}
output layer

: ð12Þ

The output layer is

vI;l ¼ vðLÞl ¼
h
wðL−1Þ
lk fðvL−1k Þ þ bðL−1Þl

i
; ð13Þ

where L is the total number of layers. The hidden layer is
composed of

vðlþ1Þ
k ¼ wðlÞ

kj v
ðlÞ
j þ bðlÞk ; ð14Þ

where

vðlÞj ¼ wðl−1Þ
ji fðvðl−1Þi Þ þ bðl−1Þj : ð15Þ

vðlÞ indicates quantities on the lth layer (l ¼ 1;…; L − 1)
with vð0Þ ¼ v. Weightw and bias b are the parameters of the
neural network optimized by the backpropagation method
with the appropriate cost function. The activation function
is the hyperbolic tangent, fð·Þ ¼ tanhð·Þ. In this work, we
employ the following cost function with and without a
penalty term, explained in Sec. II E:

F ðw; bÞ ¼
Z

dvRjeiθðvRÞ − eiθ0 j2jJ ðvRÞe−Sðv0Þj; ð16Þ

eiθðvRÞ ¼ J ðvRÞe−Sðv0Þ=jJ ðvRÞe−Sðv0Þj; ð17Þ

where J ðvRÞ is Jacobian, and Sðv0Þ represents the action
composed of v0. θ0 means the phase of the partition
function. Since we do not know the exact value of θ0,
we estimate it iteratively in the learning process.
The actual procedure is as follows:
(1) Generate configurations on the original path.
(2) Update the neural network parameters using the

generated configurations.
(3) Regenerate configurations on the modified path.
(4) Repeat 2 and 3 to obtain a converged result.
Since the Boltzmann weight is still complex even on

the modified path, phase reweighting is required for the
probability,

hOi ¼ hOeiθipq
heiθipq

; ð18Þ

hOipq ≔
1

Zpq

Z
dvROjJ ðvRÞe−Sðv0Þj; ð19Þ

where O represents an observable such as magnetization.
The left-hand side in Eq. (18) is the correct expectation
value ofO, while h� � �ipq is the phase-quenched expectation
value, and Zpq is the partition function with the corre-
sponding Boltzmann weight. The denominator of Eq. (18)
is the so-called average phase factor (APF). If the APF is
exactly 1, the sign problem completely disappears. The
sign problem becomes serious when the APF approaches 0.
Note that the path optimization method and other sign

optimized manifold approaches usually require a Jacobian
calculation to modify the integral path, which requires a
high numerical cost, OðN3Þ. In this work, we consider the
simple model and thus do not introduce the reduction
technique of the Jacobian calculation, but we need it for
more complicated models and theories. One of the possible
ways is that we completely neglect the Jacobian calculation
in the learning part; this is a most drastic reduction
technique because the Jacobian is completely neglected
except in the evaluation part of the expectation values. In
Ref. [15], such a drastic approximation is shown to work at
least in the 1þ 1-dimensional U(1) gauge theory. Another
treatment of the reduction of the Jacobian calculation, for
example, is discussed by using the affine coupling layer in
Ref. [32]. No Jacobian calculation is required in the
configuration generation of the worldvolume hybrid
Monte Carlo method by use of the flow equations [33,34].

D. Parallel tempering

Since the path optimization method makes the phases of
the Boltzmann weight in the partition function localize, we
may encounter the global sign problem even if it seems to
be absent on the original integral path. The global sign
problem arises if there are some relevant contributions on
the integral path that are separated by the energy barrier in
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the molecular dynamics. To treat the global sign problem,
we consider the parallel tempering method [35–37], as
adopted to the Lefschetz thimble method [23] and the path
optimization method [13].
In this study, we introduce replicas as follows, instead of

varying the temperature. We modify the integral path using
the path optimization method, and we have Eq. (11). We
then make replicas as

v0r ¼ vR þ i
vI
r
; ð20Þ

where r ¼ 1;…; Nr and Nr means the total number of
replicas. The region between the original path and the
modified path is divided into Nr slices as replicas. The
exchange probability between the rth replica and (rþ 1)th
replica is set as

P ¼ min

�
1;
Pðv0r; rþ 1ÞPðv0rþ1; rÞ
Pðv0r; rÞPðv0rþ1; rþ 1Þ

�
; ð21Þ

where

Pðv0r; rÞ ¼ J ðv0r; rÞe−ReH0ðv0r;rÞ: ð22Þ

E. Improvements

We introduce the following three improvements to thepath
optimization method. Improvements are in part based on
knowledge obtained in the machine learning community.
First, we add the penalty term to the cost function (16),

similar to the L2 normalization,

F penalty ¼ λ

Z
dvR

XN
i¼1

ðImviðvRÞÞ2
N

; ð23Þ

where λ is the strength of the term. The penalty term
prohibits too large separations of the integral path from the
original path in the training.
Second, we mix the previous and regenerated configura-

tions as 50∶50 in the training part to make the training speed
moderate; we only use the regenerated configurations in the
evaluation of the expectation value. If the regenerated
configurations are significantly changed compared with the
previous configurations, itmayviolate the stability of training.
Finally, we introduce the scheduler, ExponentialLR [38],

to ensure stable training. The scheduler decreases the
learning rate as the training progresses, and thus the change
of the parameters in the neural network becomes mild. If the
model approaches good minima, a decrease in the learning
rate leads to better determination of the parameters.

FIG. 1. The magnetization and APF with ImJ ¼ 0.5 at T ¼ 0.8,
1.0, and 1.2. Here, we do not introduce three improvements. Left:
the real part of the magnetization. Right: APF. The circle and
square symbols in the right column are the results of the real and
imaginary parts of APF, respectively.

FIG. 2. The magnetization and APF with ImJ ¼ 0.5 at T ¼ 0.8,
1.0, and 1.2. The three improvements are included in the training.
Left: the real part of the magnetization. Right: APF. The circle
and square symbols in the right column are the results of the real
and imaginary parts of APF, respectively.
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III. NUMERICAL SETUP

We consider N ¼ 4 spins in the one-dimensional Ising
model. Our numerical codes are implemented in the
framework of PyTorch [39]. For evaluation of the expectation
values, we generate Nconf ¼ 1000 configurations after
thermalization by the hybrid Monte Carlo (HMC) method.
The trajectory length is 1 with a step size of 0.2. For the
number of replicas, we employ Nr ¼ 10. The statistical
error is estimated using the jackknife method with bin size
50. Measurements are performed at each 100 trajectories.
We set ReJ ¼ 1.0 and h ¼ 0.1∈R. The shift value C in K̃
in (6) is 2þ 10−5.
In the training part, we use the batch training [40] with

the batch size 32. The number of hidden layers is L ¼ 2 and
each layer contains 64 units. We employ AdamW [41] as an
optimizer. We set the strength of the penalty term λ ¼ 1.0.

The decay rate on the scheduler is γ ¼ 0.9. In the following,
we show the results with the three improvements explained
in Sec. II E. The results are evaluated after the 30th training.
If no significant improvement is achieved in the early stage
of training, we reset the initial values of the neural network.
After finishing the training, we regenerate the configu-

rations and estimate APF and the magnetization.

IV. NUMERICAL RESULTS

Figure 1 shows the real and imaginary parts of APF for
T ¼ 0.8, 1.0, and 1.2 with ImJ ¼ 0.5 for each learning
step, where each learning step contains batch training and
MC update. The results in the figures are obtained without
improvements explained in Sec. II E. In learning steps, the
training is almost stable with large APF, but sometimes
shows a sudden drop; see Appendix B for the distribution
of the phase of the Boltzmann weight in the training. This
problem may be solved with a large number of replicas
because the bias of sampling in the HMC method is
relaxed. We may also need a deeper neural network or a
network based on physical knowledge of the model and/or
theory to enhance the expressive power of the neural
network. We will keep them for future work.
Figure 2 shows the real and imaginary parts of APF for

T ¼ 0.8, 1.0, and 1.2 with ImJ ¼ 0.5 for each learning
step. Comparison of Figs. 1 and 2 suggests that training
becomes more stable than that without the improvements.

FIG. 3. The magnetization and APF with ImJ ¼ 0.25, 0.5,
0.75, and 1.0 at T ¼ 1.0. The three improvements are included in
the training. Left: the real part of the magnetization. Right: APF.
The dotted line in the left column denotes the analytic result. The
circle and square symbols in the right column are the results of the
real and imaginary parts of APF, respectively.

FIG. 4. Themagnetizationwith ImJ ¼ 0.25–1.0 atT ¼ 0.8, 1.0,
and 1.2. The three improvements are included in the training. The
left (right) column is the result on the original (modified) path.
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Enhancement of APF is also observed in Fig. 3, which
shows the real part of magnetization and the real and
imaginary parts of APF at fixed T ¼ 1.0 with ImJ ¼
0.25–1.0 for each learning step.
Figure 4 shows the magnetization on the original and

modified paths. Here, we consider ImJ ¼ 0.25–1.0 with
T ¼ 0.8, 1.0, and 1.2. On the original path, the statistical
errors are large due to the small APF, at least in the present
number of configurations. In some regions, the error
becomes very small, but the results do not reproduce the
analytic result; this indicates that the HMC method on the
original path does not sample all relevant configurations.
On the modified path constructed by the path optimization
method with some improvements, we can see that the
statistical errors are well reduced.

V. SUMMARY

In this paper, we have applied the path optimization
method [4–6] to the (Lenz-)Ising model with a complex
coupling constant, which is prepared as a laboratory to
investigate the sign problem in spin models with the
discretized degrees of freedom. The sum of spins is trans-
formed into an integral using the Hubbard-Stratonovich
transformation [21,22], which allows us to modify the
integral path on the real dynamical variable plane to that
on the complex dynamical variable plane.We found that the
path optimizationmethodworks in the spinmodel, at least in
the Ising-type model. The average phase factor is enhanced
on the modified integral path compared to that on the
original integral path with improvements: the parallel
tempering, the penalty term in the cost function, the mixed
configurations in the training part, and the scheduler. On the
original path, the statistical error of themagnetization can be
huge, or can be underestimated even with 1000 configura-
tions indicating lack of all relevant contributions in sam-
pling, due to the sign problem. On the modified path by the
path optimization, the expectation value of the magnetiza-
tion reproduces the exact result with a well-reduced stat-
istical error.
It should be noted that the same procedure can work also

in the gauge theory case if we can rewrite the sum for spins
in the path integral. However, we should be careful with the
gauge symmetry because it is hard to enhance the average
phase factor without adequate treatment of the gauge
symmetry. We may need the suitable gauge fixing [13],
the gauge-invariant input [14], or the gauge-covariant
network [15,42] for the path optimization method.
Since the one-dimensional Ising model does not have a

phase transition, it is interesting to apply the present
method to the spin model that shows a phase transition,
such as the higher-dimensional Ising model and also the
Potts model. While we only use machine learning to
represent the integral path, we can also use it to accelerate
the sampling of configurations near the phase transition
point [43]. We will report on these issues elsewhere.
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APPENDIX A: QCD-LIKE POTTS MODEL

We explain the possible formulation of the QCD-like
Potts model as a laboratory to investigate the sign problem
that appears in QCD. It is well known that QCD can be
approximated using the Potts model if the bare quark mass
is large enough. The Hamiltonian of the QCD-like Potts
model with heavy-quark contributions [29–31] is given by

H ¼ −κ
X
n:n:

δkxkxþi
−
X
x

ðh−Φx þ hþΦ̄xÞ; ðA1Þ

where κ∈R is the coupling constant, h∓ ∈R means the
strength of the external field, i is the unit vector for the
spatial directions, and kx are the Nc-state Potts spin, which
is ZNc

quantities for each site. Here Nc denotes the number
of colors;Nc is set to 3. The last term of Eq. (A1) represents
the heavy-quark contributions. The sum

P
n:n: means that

the spins of the nearest neighbor are summed. The quantity
Φ (Φ̄) is called the Polyakov loop (its conjugate) in QCD
and is defined as

Φx ¼ exp

�
2πikx
Nc

�
; Φ̄x ¼ exp

�
−
2πikx
Nc

�
: ðA2Þ

The functional form (A1) was first shown in Ref. [29] and
was further discussed in Ref. [30]. Detailed discussions of
the form of h∓ are shown in Ref. [31]. The strength of the
external field can be expressed as

h∓ ¼ e−βðM∓μÞ; ðA3Þ

where β is the inverse temperature β ¼ 1=T,M denotes the
bare quark mass, and μmeans the quark chemical potential;
the bare quark mass must be large enough compared with
some other energy scales, in principle. If the nearest-
neighbor spins take the same value, the first term decreases
the energy. At zero temperature, the spin-aligned state is
favored if κ > 0. To investigate the detailed structure of the
Ising model and Potts model, the Metropolis method [44] is
widely used if there is no sign problem.
Equation (A1) is the simplest form of the QCD-like Potts

model, but it is not suitable for the path optimization. We
thus modify the first term as

κ
X
n:n:

δkxkxþi
→

κ

2

X
n:n:

ðΦxΦ̄xþi þ Φ̄xΦxþiÞ: ðA4Þ
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This replacement does not significantly change the proper-
ties of the Potts model. The energy is decreased if the
nearest-neighbor spins take the same value even with
the right-hand side term. This form is similar to a part
of the Polyakov-loop potential and therefore may be
suitable for the QCD-like model; see Refs. [45,46]. The
total energy becomes

H ¼ −
κ

2

X
n:n:

ðΦxΦ̄xþi þ Φ̄xΦxþiÞ −
X
x

ðh−Φx þ hþΦ̄xÞ

¼ −
1

2
s⊤As − hs; ðA5Þ

where s is a complex vector with 2N components consist-
ing of Φx and Φ̄x, A is the 2N × 2N symmetric matrix, and
h ¼ ðh−;…; h−; hþ;…; hþÞ, where N is the number of
sites. We impose the periodic boundary condition for
this model.
To keep the first term in Eq. (A5) real, we sum up a

possible combination of Φ and Φ̄. The partition function is
then given by

Z ¼
X
fkg

e−H; ðA6Þ

where the sum takes over all possible states of the Potts
spins and β is absorbed intoH. Since the expression (A5) is

similar to that of the Ising model, we can use the same
formulation. Therefore, we can use the hybrid Monte Carlo
method for the QCD-like Potts model if the effective
Hamiltonian is real. The Hamiltonian becomes complex
at finite μ, which causes the sign problem. It should be
noted that the expectation value of the energy must be
positive.
Since degrees of freedom in the present model can be

expressed by continuous dynamical variables, the path
optimization method can be applied to the QCD-like
Potts model.

APPENDIX B: HISTOGRAM
OF BOLTZMANN WEIGHT

We show the histogram of the phase of the Boltzmann
weight in some learning steps for the model without using
the penalty term, mixed configurations, and the scheduler.
Figure 5 shows the phase of the Boltzmann weight with
ImJ ¼ 0.5 at T ¼ 1.0 for the 0th, 10th, and 20th learning
steps. After the tenth learning step, the APF suddenly
drops, as shown in Fig. 1. The phase distributions at the 0th
and 20th learning steps are not very localized, unlike the
tenth learning step, which can be the source of the small
APF. The unreweighted magnetization also shows the two
peak structures when the training result is not good. There
may be flat directions that obstruct the training.

FIG. 5. The top (bottom) row shows the histogram for the phase of the Boltzmann weight (unreweighted magnetization) with
ImJ ¼ 0.5 at T ¼ 1.0 for the 0th, 10th, and 20th learning steps from left to right subfigures without the improvements.
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