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We study the Schwinger model with Nf ≥ 2 degenerate fermion flavors, by means of lattice simulations.
We use dynamical Wilson fermions for Nf ¼ 2, and reweighted quenched configurations for overlap-
hypercube fermions with Nf ≤ 6. In this framework, we explore an analogue of the QCD pion decay
constant Fπ , which is dimensionless in d ¼ 2, and which has hardly been considered in the literature. We
determine Fπ by three independent methods, with numerical and analytical ingredients. First, we consider
the 2-dimensional version of the Gell-Mann–Oakes–Renner relation, where we insert both theoretical and
numerical values for the quantities involved. Next we refer to the δ-regime, i.e., a small spatial volume,
where we assume formulas from chiral perturbation theory to apply even in the absence of Nambu-
Goldstone bosons. We further postulate an effective relation between Nf and the number of relevant, light
bosons, which we denote as “pions”. Thus Fπ is obtained from the residual “pion” mass in the chiral limit,
which is a finite-size effect. Finally, we address the 2-dimensional Witten–Veneziano formula: it yields a
value for Fη, which we identify with Fπ , as in large-Nc QCD. All three approaches consistently lead to

Fπ ≃ 1=
ffiffiffiffiffi
2π

p
at fermion mass m ¼ 0, which implies that this quantity is meaningful.

DOI: 10.1103/PhysRevD.108.094503

I. INTRODUCTION

The Schwinger model represents quantum electrody-
namics in two space-time dimensions [1]. This model
shares several fundamental features with 4-dimensional
quantum chromodynamics (QCD), in particular, confine-
ment [2] as well as the division of the gauge configurations
into topological sectors.
This model has been solved exactly in the massless case,

but not at finite fermion mass, m > 0. In that case, analytic
approaches are usually based on bosonization and involve
some assumptions and approximations.
Here, we consider the Schwinger model with Nf ≥ 2

degenerate fermion flavors, in Euclidean space-time.
Chiral perturbation theory is a systematic low-energy

effective theory of QCD, in terms of light meson fields. Its
Lagrangian includes a string of terms, which are Lorentz
invariant and chirally symmetric (if we refer to the chiral
limit, where the mesons are massless Nambu-Goldstone
bosons). The number of these terms is infinite, but they can
be hierarchically ordered in powers of the momenta, and

truncated. Each term has a coefficient, known as a low-
energy constant, which is a free parameter within chiral
perturbation theory. It can only be determined from QCD as
the underlying, fundamental theory, or from experiment.
To leading order, there is only one term,

L ¼ F2
π

4
∂
μπ⃗ðxÞ · ∂μπ⃗ðxÞ; ð1:1Þ

where π⃗ is the pion field, and the corresponding low-energy
constant Fπ is known as the pion decay constant. It appears
in a variety of relations, which are not necessarily related to
the pion decay.
Some of these relations occur in an analogous form in the

multiflavor Schwinger model. Based on such analogies,
we discuss three independent formulations of Fπ in the
Schwinger model. It is dimensionless in d ¼ 2, and the
results obtained with these three approaches are all com-
patible with the value

Fπ ≃ 1=
ffiffiffiffiffiffi
2π

p
≃ 0.3989; ð1:2Þ

in the chiral limit.
In addition, this result is in good agreement with the only

previous determination that we are aware of: a study for
Nf ¼ 2 by Harada et al. at strong coupling in a light-cone
formulation [3], which considered the relation
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h0j∂μJ5μð0ÞjπðpÞi ¼ M2
πFπ; ð1:3Þ

where J5μ is the axial current, andMπ is the “pion” mass. In
this manner, Ref. [3] obtained a mild dependence on the
(degenerate) fermion mass m,

FπðmÞ ¼ 0.394518ð14Þ þ 0.040ð1Þm=g; ð1:4Þ

where g is the gauge coupling, and Fπð0Þ is close to our
value in Eq. (1.2).
On the other hand, if one refers directly to the axial

current, instead of its divergence,

h0jJ5μð0ÞjπðpÞi ¼ ipμFπ; ð1:5Þ

one seems to arrive at Fπ ¼ 0, so the outcome does depend
on the QCD relation to which one establishes an analogy.
The QCD-inspired relations that we refer to are the Gell-

Mann–Oakes–Renner relation (Sec. II), the residual pion
mass in the δ-regime (Sec. III), and the Witten-Veneziano
formula (Sec. IV). Finally, we present our conclusions and
an appendix about finite-size effects on Mπ . Preliminary
results of this work are presented in a thesis [4] and two
proceeding contributions [5].

II. 2d GELL-MANN–OAKES–RENNER RELATION

Back in 1992, Smilga derived the relation [6],

mΣ ¼ CM2
π; ð2:1Þ

where Σ is the chiral condensate, which—in terms of the
fermion fields—takes the usual form Σ ¼ −hΨ̄Ψi. In the
effective Lagrangian for QCD at small but nonzero quark
masses, Fπ and Σ are the two leading low-energy constants.
However, Smilga did not specify the constant C. That

was accomplished in Refs. [7–9]: the bosonized 2-flavor
Schwinger model leads to a Schrödinger-type equation,
and in this framework, these works studied the interactions
of (quasi)zero modes due to the chiral anomaly and the
fermion masses. This led to an interesting formula [Eq. (37)
in Ref. [7]], which—in our notation and at zero vacuum
angle—reads

Σ ¼ M2
π

4πm
: ð2:2Þ

This relation is explained in detail in Ref. [9]. In addition,
Ref. [7] also derived expressions for Mπ in terms of m, g,
and the volume, in three different regimes. By insertingMπ

into Eq. (2.2), the authors obtained formulas for Σ in each
of these regimes.
However, that work did not relate Eq. (2.2) to the “pion

decay constant”, which we are interested in. This can be
achieved by invoking the Gell-Mann–Oakes–Renner rela-
tion [10], which is well-known in QCD,

F2
πðmÞ ¼ 2m

M2
π
Σ: ð2:3Þ

Ifwepostulate the same relation in themultiflavor Schwinger
model, and combine it with Eq. (2.2), we arrive at

Fπ ¼
1ffiffiffiffiffiffi
2π

p ; ð2:4Þ

without any mass dependence.
Alternatively—without relying on the approximations in

the bosonization approach—we can numerically compute
the quantities on the right-hand side of Eq. (2.3) in order to
derive results for FπðmÞ. Such results are shown in Fig. 1:
they were obtained based on quenched configurations on a
lattice of size V ¼ 24 × 24, generated at β ¼ 4 and β ¼ 6,
and reweighting with the overlap-hypercube fermion deter-
minant, for the cases of Nf ¼ 2;…; 6 degenerate fermion
flavors. In Appendix A, we discuss the reliability of
reweighting in such cases.
The overlap-hypercube Dirac operator is obtained by

using the overlap formula [11], which solves the Ginsparg-
Wilson relation [12]. This guarantees an exact, lattice-
modified chiral symmetry [13]. However, for the kernel,
we do not insert the usual Wilson operator, but a truncated
perfect hypercube fermion operator [14]. Compared to the
standard overlap formulation, this improves the scaling
behavior, approximate rotation invariance, and the level
of locality, as demonstrated in quenched QCD [15].
The 2-dimensional version that we use in the Schwinger
model was proposed in Ref. [16], and applied also in
Refs. [17,18].
Thanks to the chiral symmetry of the overlap-hypercube

operator, we can insert the bare fermion mass m, and
reliably calculate Mπ even at small m. Σ is computed from
the spectrum of the Dirac operator,

ΣðmÞ ¼ 1

V

�X
k

1

λk þm

�
; ð2:5Þ

where the Dirac eigenvalues λk are mapped from the
Ginsparg-Wilson circle (with center 1 and radius 1) to
the imaginary axis (their location in the continuum limit) by
means of a Möbius transform, λk → λk=ð1 − λk=2Þ.
Figure 1 shows that the results for FπðmÞ are consistently

in the magnitude of 0.4. With 30,000 (10,000) configura-
tions at β ¼ 6 (β ¼ 4) and for m≳ 0.2 (in lattice units),
the numerical values are quite precise. This figure refers
to the third regime in the case distinction of Eq. (36) in
Ref. [7], which is characterized (among other conditions)
by LtMπ ≫ 1 (in a volume L × Lt). We also observe
consistent agreement in the ranges β ¼ 4;…; 6 and
Nf ¼ 2;…; 6, which indicates that—in this range—the
value of FπðmÞ hardly depends on the gauge coupling
and on the number of flavors.
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At smaller fermion mass, we enter the second regime of
Eq. (36) in Ref. [7], where LtMπ ≪ 1 (the spatial size L
remains large, so there is no relevant residual pion mass due
to finite size effects). Here, the errors increase visibly, and if
m is too small, even the measured values are not reliable
anymore: we still obtain good results for Σ, as we see in
Fig. 2, which shows a comparison with predictions in
Ref. [7]. This also implies that reweighting works well, at
least for Nf ¼ 2 flavors, even down to tiny fermion masses,
in agreement with earlier results in Ref. [19].1 However, at
tiny values of m, the pion massMπ suffers from significant

finite-size effects, since the product LMπ is not large
anymore. Moreover, in that regime, there is a discrepancy
between different ways to measure Mπ, as we point out in
Appendix B.
For all Nf that we included, we observe in Fig. 1 a slight

maximum of FπðmÞ between m ¼ 0.1 and 0.15. At even
smaller fermion mass m, FπðmÞ decreases, and the chiral
extrapolation is again compatible with Fπð0Þ ¼ 1=

ffiffiffiffiffiffi
2π

p
,

although at tinym the finite-size effects onMπ and the large
statistical errors prevent a precise chiral extrapolation.
On the other hand, in some circumstances, the increase

of Mπ due to finite-size effects can also be used to extract
physical information. This is addressed in the next section.

III. Fπ FROM THE RESIDUAL PION MASS
IN THE δ-REGIME

The approach of this section refers to chiral perturbation
theory, which is a systematic effective field theory for low-
energy QCD, cf. Sec. I. One writes a general Lagrangian—
with all terms allowed by the symmetries—in terms of
pseudo-Nambu-Goldstone boson fields. In 2-flavor QCD,
the fields represent the pions, which pick up a small mass
Mπ through nonzero masses of the u- and d-quark, and by
finite-size effects (if the volume is finite).
The latter are negligible in the most commonly used

setting, the p-regime of chiral perturbation theory: here the
space-time volume is large, in all directions, compared to
the correlation length 1=Mπ . From a theoretical perspec-
tive, it is also instructive to study the ϵ-regime of a small
space-time volume, and the δ-regime, with a small spatial
box L3 but a large extent Lt in (Euclidean) time,

FIG. 1. Values for Fπ obtained from the Gell-Mann–Oakes–
Renner relation (2.3) for Nf ¼ 2;…; 6 flavors, at fermion masses
0.05 ≤ m ≤ 0.4. The data are obtained from quenched simula-
tions at β ¼ 4 (above) and at β ¼ 6 (below) with overlap-
hypercube reweighting, which works well, but for fermion mass
m≲ 0.05, the results are affected by finite-size effects onMπ . We
see convincing agreement for different Nf , and hardly any
difference for the different gauge couplings; hence, the con-
tinuum limit seems smooth. In all cases, the extrapolations to the
chiral limit are compatible with Fπ ≃ 0.4.

FIG. 2. The chiral condensate, measured for Nf ¼ 2, at β ¼ 5
on a 24 × 24 lattice, based on the Dirac spectrum according to
Eq. (2.5). It is compared to an asymptotic formula for small m
given in Ref. [7], whereMη represents the “η-meson” mass in the
chiral limit, see Eq. (4.4). We see that reweighting works very
well even for fermion masses down to m ¼ 0.001 (cf. Appen-
dix A), but the Gell-Mann–Oakes–Renner relation for Fπ,
Eq. (2.3), also involves Mπ , which is amplified by finite-size
effects.

1The reliability of reweighting, depending on Nf and m, is
further discussed in Appendix A.
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Lt ≫ L ¼ Oð1=MπÞ. In the ϵ- and δ-regimes, finite-size
effects give rise to a significant energy gap; hence, the pions
have a residual massMR

π even in the chiral limit of massless
quarks.
Here, we focus on the δ-regime: it represents a quasi-

1-dimensional field theory, which formally corresponds to
a quantum mechanical system. Leutwyler introduced this
regime in Ref. [20]: he employed the picture of a quantum
mechanical rotor with the energy gap,

MR
π ¼ Nπ

2Θ
; ð3:1Þ

where Nπ is the number of pions (or generally, of pseudo-
Nambu-Goldstone bosons) involved. The challenge is to
compute the “moment of inertia” Θ. Leutwyler also
established the appropriate rules for the δ-expansion, and
to leading order (LO) he obtained Θ ¼ F2

πL3.
This expansion was extended to the next-to-leading

order (NLO) by Hasenfratz and Niedermayer, who referred
to an OðNÞ model in d > 2 dimensional Euclidean space
[21]. According to the Goldstone theorem, the spontaneous
symmetry breaking pattern OðNÞ→OðN−1Þ yields N − 1
Nambu-Goldstone bosons, which is the number to be
inserted for Nπ in Eq. (3.1), along with

Θ¼F2
πLd−1

�
1þ Nπ−1

2πF2
πLd−2

�
d−1

d−2
−
1

2
αðd−1Þ1=2 ð1Þ

��
; ð3:2Þ

where Fπ has the mass dimension d=2 − 1. [The constant

αðd−1Þ1=2 ð1Þ is a shape coefficient; its numerical values are
given for symmetric boxes in various dimensions in
Ref. [22].] Since that work refers to d > 2, Nambu-
Goldstone bosons are present, and there was no problem
with the pole at d ¼ 2.
Later, the NNLO was investigated in Refs. [23,24]. At

this order, the subleading low-energy constants l1;…; l4
enter. Comparison of simulation data with the formulas of
Ref. [23] yielded, in particular, a sensible value for the
controversial coupling l3 [25]. Another numerical study
explored the transitions from the δ-regime to the ϵ- and
p-regimes [26].
The current study refers to d ¼ 2, with a volume Lt × L,

Lt ≫ L. Here, the Mermin-Wagner-Coleman theorem
excludes Nambu-Goldstone bosons in the strict sense,
but it is known that the “pions” at small but finite fermion
mass behave similarly to pseudo-Nambu-Goldstone
bosons in higher dimensions. (At m ¼ 0 they decouple,
thus avoiding a contradiction with the Mermin-Wagner-
Coleman theorem [27].) For considerations about the
applicability of chiral perturbation theory in the Schwinger
model, we refer to Ref. [28].
Due to the singularity at the NLO, we can only refer to

the LO, so we start from the hypothesis,

MR
π ¼ Nπ

2F2
πL

: ð3:3Þ

The basic prediction reduces to MR
π ∝ 1=L, which is

plausible on dimensional grounds. If this is observed
numerically, we have another way to determine Fπ , up
to the question how Nπ should be interpreted in this setting,
with Nf massless fermion flavors.
Part of the literature, for instance, Refs. [29,30],

assumes N2
f − 1 “pions”. This matches the number of

Nambu-Goldstone bosons in the spontaneous symmetry
breaking SUðNfÞ ⊗ SUðNfÞ → SUðNfÞ in d ≥ 3 dimen-
sions according to the Goldstone theorem. On the other
hand, the literature which analyzes the multiflavor
Schwinger model with bosonization usually deals with
Nf − 1 “pions” [7–9,31,32].
In fact, in the case Nf ¼ 2, we obtain values for Fπ,

which are consistent with the results based on the Gell-
Mann–Oakes–Renner relation, if and only if we insert
Nπ ¼ 1.
When we proceed to Nf > 2, however, we see that the

bosonization formula Nf − 1 does not work anymore. So
we take a pragmatic point of view and adjust the number
of “pionic” degrees of freedom, which are manifest in
formula (3.3). We obtain consistent values for Fπ, to an
impressively high accuracy, if we insert the effective
formula,

Nπ ¼
2ðNf − 1Þ

Nf
; ð3:4Þ

although—according to this formula—Nπ is a noninteger
for Nf ≥ 3.

FIG. 3. Simulation results for the “pion” mass Mπ in the
δ-regime, L ≪ Lt (with Lt ¼ 64), using dynamical Wilson
fermions. For a small fermion mass m (determined by the PCAC
relation) and a small spatial extent L, significant errors occur, as
expected for Wilson fermions. Still, the full range of fermion
masses enables sensible extrapolations to the residual “pion”
mass MR

π in the chiral limit m → 0.
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Let us substantiate this statement by presenting our
simulation results. We first refer to Nf ¼ 2 flavors of
dynamical Wilson fermions, which are convenient to
simulate. We set the Wilson parameter to 1 and used the
hybrid Monte Carlo (HMC) algorithm [33], following the
scheme, which was established in Ref. [34] for the 2-flavor
Schwinger model: trajectories consist of 10 steps, with the
step size being dynamically adjusted for a Metropolis
acceptance rate close to 0.8. We monitored the autocorre-
lations of several observables—including the topological
charge—and separated the measurements by twice the
maximal autocorrelation time, in order to obtain practically
decorrelated data sets. In this way, we generated 10,000
configurations for each parameter set.
Of course, the results for Wilson fermions are plagued by

additive mass renormalization. As usual for nonchiral
lattice fermions, the renormalized fermion mass m is
measured based on the PCAC relation. Figure 3 shows
results for the “pion” mass Mπ in the δ-regime, with Lt ¼
64 ≫ L (L ¼ 6, 8, 10, 12), which is plotted against the
dimensionless parameter ðm2gÞ1=3, at β ¼ 1=g2 ¼ 5 (still in
lattice units). As a generic property, at decreasing, small
values ofm and ðm2gÞ1=3, the statistical errors ofMπ and, in
particular, of m itself increase rapidly (at fixed statistics),
but the complete set of results allows for smooth fits with
sensible extrapolations to the chiral limit m ¼ 0.
Figure 4 shows these extrapolated values of Mπðm ¼ 0Þ

as a function of the spatial size L over the range of
L ¼ 6;…; 12. A fit confirms the expected behavior
Mπðm ¼ 0Þ ∝ 1=L to high accuracy, in particular, up to
L ¼ 11. The proportionality constant is a fitting parameter,
which—inserted in Eq. (3.3)—yields an Fπ value close to
the one in Eq. (1.2), Fπ ¼ 0.3923ð6Þ.

We obtained very similar results at β ¼ 3 and β ¼ 4. The
corresponding figures are included in the first proceeding
contribution cited in Ref. [5]. We do not reproduce these
plots here, since they look almost identical to Figs. 3 and 4,
but we display the Fπ values obtained in this manner at
three gauge couplings in Table I (the values are slightly
modified due to improved data analysis). They coincide to
percent level, thus providing clear evidence that the
continuum limit is again very smooth, as we observed
before in the consideration of Sec. II.
Next, we proceed to results that we obtained with

overlap-hypercube fermions, by using 10,000 gauge con-
figurations that we generated quenched2 at β ¼ 4, which
were reweighted again for the case of Nf ¼ 2 flavors.
As we see in Fig. 5, the exact, lattice modified chirality of
the overlap-hypercube fermions strongly suppresses the
statistical fluctuations at relatively small fermion mass m,
which—in this case—is directly taken from the Lagrangian.
Thus, in this approach, the values for Mπðm ¼ 0Þ are quite
precise. They represent the residual “pion” mass in the
δ-regime with Lt ¼ 32 and L ¼ 4;…; 12. For a further
discussion of the reweighting approach, we refer again to
Appendix A.
Figure 6 shows that these safely extrapolated values

again follow very well a behavior Mπðm ¼ 0Þ ∝ 1=L, at
least for L < 12. Here, the fitting constant leads to

Fπ ¼ 0.3988ð1Þ; ð3:5Þ

in remarkable proximity to the result obtained with Wilson
fermions, and in perfect agreement with formula (1.2).
Finally, we extend the study with quenched and overlap-

hypercube reweighted configurations up to Nf ¼ 6 degen-
erate flavors, as in Sec. II. Figure 7 illustrates the residual
“pion” masses against the spatial lattice size L ¼ 4;…; 12.
As Nf increases, the behavior ∝ 1=L is observed only up to
L ¼ 6; at somewhat larger L, the residual “pion”mass stays
below this proportionality relation.
However, when we restrict the fit to the range where the

relation MR
π ∝ 1=L is well approximated, we consistently

obtain Fπ ¼ 0.399ð1Þ over this range of Nf , if we insert the
effective formula (3.4). This underscores that the valueFπ ¼
1=

ffiffiffiffiffiffi
2π

p
is meaningful, and that Eq. (3.4) correctly captures

FIG. 4. The residual “pion” masses MR
π in the δ-regime,

obtained from simulations of two flavors of dynamical Wilson
fermions and extrapolated to the chiral limit according to Fig. 3,
in spatial volumes L ¼ 6;…; 12. The data follow well a fit
proportional to 1=L, and the coefficient corresponds to Fπ ¼
0.3923ð6Þ.

TABLE I. Results for Fπ, obtained by fits to Eqs. (3.3) and
(3.4), with Nf ¼ 2, at three values of β.

β ¼ 1=g2 3 4 5

Fπ 0.3887(7) 0.3877(11) 0.3923(6)

2The quenched configurations used here and in other sections
were generated with the same HMC algorithm, by setting the
fermion determinant to a constant.
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the number of “pionic” degrees of freedom which are
manifest in the δ-regime (even if this number is noninteger).
We add that any attempts to extend the fits∝ 1=L at largeNf
up to larger spatial size L lead to an unsatisfactory fitting
quality (a modified power of L would be required); hence,
they do not provide alternative Fπ results.

IV. WITTEN-VENEZIANO FORMULA IN THE
SCHWINGER MODEL

The Witten-Veneziano formula is well-known in the
framework of QCD [35]: it refers to the ’t Hooft large-Nc

limit, which keeps the product g2sNc constant (gs is the
strong gauge coupling and Nc the number of colors). This

limit overcomes the axial anomaly of chiral 3-flavor QCD.
Hence, the spontaneous symmetry breaking pattern takes
the form Uð3ÞL ⊗ Uð3ÞR → Uð3ÞL¼R (where the subscripts
L and R denote the quark chiralities), and we obtain a nonet
of Nambu-Goldstone bosons: they correspond to the pions,
the kaons, and the mesons η and η0, which are all massless
in this limit.
The Witten-Veneziano formula expresses the mass that

the η0-meson picks up due to the leading 1=Nc corrections.
For the more general case of Nf massless quark flavors, this
mass is given by

M2
η0 ¼

2Nf χ
q
t

F2
η0

; ð4:1Þ

where χqt is the quenched topological susceptibility, which
can be measured by means of lattice simulations. In this
particular case, the quenched value is relevant, because
quark loops do not contribute to this order in the 1=Nc
expansion. Moreover, in this order, the pion decay constant
coincides with the η0-decay constant,

Fπ ¼ Fη0 : ð4:2Þ

Inserting the experimental value of Fπ ≃ 92.4 MeV and
simulation results for χqt , see, in particular, Ref. [36],
(roughly) confirm the observed mass Mη0 ≃ 958 MeV.
Thus, the fact that η0 is far heavier than the light meson
octet (and even a little heavier than a nucleon) is explained
as a topological effect. This is the quantitative solution to
the U(1) problem.

FIG. 5. Like Fig. 3, but here the “pion” mass Mπ is measured
with overlap-hypercube fermions, using quenched, reweighted
gauge configurations, generated at β ¼ 4. In contrast to Fig. 3,
this yields small errors and smooth chiral extrapolations for all
spatial sizes L ¼ 4;…; 12 under consideration.

FIG. 6. Like Fig. 4, but now with data obtained from the
extrapolation of overlap-hypercube fermions results, see Fig. 5.
Again, the fit to the conjectured behavior MR

π ∝ 1=L works very
well for L < 12, and we extract Fπ ¼ 0.3988ð1Þ. This value is
well compatible with further results that we obtained for Fπ by
employing different methods, and in perfect agreement with
formula (1.2).

FIG. 7. Residual “pion” masses MR
π in the δ-regime (Lt ¼ 32)

for a variety of spatial sizes L ≪ Lt, and Nf ¼ 2;…; 6 flavors.
We show chiral extrapolations of quenched, reweighted results
with overlap-hypercube fermions, at β ¼ 4. The fits were
performed in the range where they are successful, i.e., in the
full range for Nf ¼ 2 and for L ≤ 6 for Nf > 2. They lead to
highly consistent values for Fπ, if we apply the effective
formula (3.4).
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According to Seiler and Stamatescu, the Witten-
Veneziano relation is actually on more solid ground in
the framework of the Schwinger model with Nf ≥ 2 mass-
less fermion flavors [37]. In the chiral limit, it takes the form

M2
η ¼

2Nf

F2
η
χqt ; ð4:3Þ

where the “η-meson” is themeson-type singlet state. Itsmass
has been computed analytically [31],

M2
η ¼

1

π
Nfg2: ð4:4Þ

Reference [37] further derived the following relation for the
quenched, topological susceptibility (in the continuum and
infinite volume),

χqt ¼
g2

4π2
: ð4:5Þ

Figure 8 shows results for χqt =g
2 obtained for two lattice

formulations of the topological charge,

QT ¼
X
P

θP=2π; QS ¼
X
P

sinðθPÞ=2π: ð4:6Þ

The sums run over all plaquettes P, and θP is the plaquette
discretization of the topological density ϵμν∂μAν. QT ∈Z is
the standard formulation, which can be numerically evalu-
ated to high precision (see, e.g., Ref. [38]). For the alter-
native formulation QS, the lattice topological charges are,
in general, noninteger, but Ref. [39] derived an analytic
formula at finite g; i.e., at finite lattice spacing, in terms of
Bessel functions, βχqt ¼ I1ðβÞ=½4π2I0ðβÞ�. In both cases,

we computed χqt at finite g also with Monte Carlo simu-
lations. The results agree accurately, and the continuum limit
smoothly leads to the value given in Eq. (4.5), for both
formulations, as Fig. 8 shows. This result is also in agree-
ment with Ref. [19].
Inserting Eqs. (4.4) and (4.5) into Eq. (4.3), we obtain

Fη ¼
1ffiffiffiffiffiffi
2π

p : ð4:7Þ

At this point, we push the analogy to large-Nc QCD further
and assume Fπ ¼ Fη. We are not aware of a basic
justification of this step, but it exactly confirms once more
formula (1.2).

V. SUMMARY AND CONCLUSIONS

In this work, we have attracted attention to a dimension-
less constant, which plays a relevant role in the multiflavor
Schwinger model, but which has been ignored in most of
the literature. The only exception is a study by Harada et al.
[3] in the light-cone formulation, which led to the result that
we quoted in Eq. (1.4).
By analogy to specific aspects of QCD, we denote this

constant as Fπ , as it was done before in Ref. [3]. We derived
its value by another three independent methods, which all
provide consistent results. In particular, referring to the 2d
Gell-Mann–Oakes-Renner relation and inserting formulas
from bosonization approaches [6–9] leads to Fπ ¼ 1=

ffiffiffiffiffiffi
2π

p
,

which is also compatible with simulation results. The
residual “pion” mass in the δ-regime confirms this value
to a good precision, if we rely on relations of chiral
perturbation theory even in the absence of Nambu-
Goldstone bosons, and on our effective formula (3.4) for
the number of light degrees of freedom. Finally, the Witten-
Veneziano formula yields Fη ¼ 1=

ffiffiffiffiffiffi
2π

p
, and if we identify

Fπ ¼ Fη, as in large-Nc QCD, we arrive once more at the
same value for Fπ.
The first method seems most robust. The latter two

involve some ad hoc assumptions, which are, however,
motivated from analogies to QCD. The impressive agree-
ment of the results for Fπ cannot be by accident, so
we conclude that these ad hoc assumptions are—in this
context—sensible. This concerns, in particular, our effec-
tive formula (3.4) for the “pionic” degrees of freedom,
which are manifest in the δ-regime, as well as the relation
Fπ ¼ Fη. It further implies that the constant Fπ ¼ 1=

ffiffiffiffiffiffi
2π

p
is indeed relevant for the multiflavor Schwinger model, in
particular for the case Nf ¼ 2. The underlying reason, as
well as further appearances of Fπ in the Schwinger model,
remain to be explored.
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APPENDIX A: RELIABILITY OF REWEIGHTING
WITH AN OVERLAP FERMION DETERMINANT

Our results presented in Sec. II, and part of the results in
Sec. III, were obtained with 104 or 3 × 104 quenched
configurations for each setting, which were reweighted
with the fermion determinant of the overlap-hypercube

Dirac operator. In this appendix, we discuss the reliability
of this procedure by decomposing the contributions to the
chiral condensate Σ (as an example), according to for-
mula (2.5). To this end, the contributions are summed up
in hierarchical order. The question is how many of the
configurations, which are dominant in this respect, are
needed to arrive at a good approximation of our value for Σ
based on the entire statistics, i.e. how many of these
configurations are statistically relevant.
In Fig. 9, we consider the percentage of dominant

configurations, which is sufficient to obtain our total value
of Σ up to 1%. We illustrate both the dependence on the
(degenerate) fermion mass m and on the number of flavors
Nf , i.e., the power of the fermion determinant. For low Nf
and moderate values of m, a large fraction of the con-
tributions is needed to obtain 99% of our Σ value; hence,
the effective statistics is not much below the total data set.
Vice versa, for increasing Nf and small m, the results are

FIG. 9. The number of leading contributions which have to be included to obtain 99% of our value for the chiral condensate Σ, at β ¼ 4
(left) and β ¼ 6 (right), on a 24 × 24 lattice. For small fermion mass m and a relatively large number Nf of flavors, only a minor part of
the configurations is necessary and therefore relevant.

FIG. 10. The percentage of our Σ value as a function of the number of dominant contributions, out of a total of 104 configurations at
β ¼ 4 (left) and 3 × 104 configurations at β ¼ 6 (right), atm ¼ 0.05 on a 24 × 24 lattice. We see that even more flavors than 6 would be
troublesome.
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essentially just due to a minor subset of configurations;
hence, the effective statistics is substantially reduced
compared to the total statistics. Still, we saw in Fig. 2 that
at Nf ¼ 2 and β ¼ 5 reweighting works well even down to
m ¼ 0.001, where the effective statistics is about 30% of
the data set. On the other hand, a large number of flavors
can drastically suppress the effective statistics. For instance,
atm≲ 0.1, we see thatNf > 6would be worrisome indeed;
hence, we do not show any result for even more flavors than
Nf ¼ 6 in this work.
Part of our results in Secs. II and III included a minimal

fermion mass ofm ¼ 0.05. For that particular mass, Fig. 10
shows the percentage of our Σ value as a function of the
number of leading contributions. Again, we see that for a
considerable Nf , in particular, for Nf ¼ 6, most of our
result is due to only few contributions, which confirms the
limitation of the reweighting method.

APPENDIX B: THE “PION” MASS
IN THE ϵ-REGIME

In Secs. II and IV, we showed simulation results obtained
on L × L square lattices. In these cases, the measured
“pion” mass Mπ is close to its value in the thermodynamic
limit (L → ∞), since the condition L ≫ 1=Mπ is reason-
ably well approximated. Down to the corresponding values
for the fermion massm, we also observed agreement ofMπ

calculated either with the correlation function of the density
ψ̄σ3ψ , or with ψ̄σ1ψ . As usual, we refer to a Dirac operator
in terms of σ1 and σ2, and both formulations have been used
in the literature. The former is closer to the concept of the
physical pion, but the latter is a valid alternative in the range
of the plots in Secs. II and IV.
However, the situation changes when we proceed to even

smaller values ofm. Here, we enter the ϵ-regime, where it is
natural that Mπ is significantly enhanced by finite-size
effects. Moreover, we observed that these two formulations
of Mπ react very differently to the squeezing in a small
physical volume, as we illustrate in Fig. 11.
For the formulation with σ3, one obtains a plateau with a

residual “pion” mass Mσ3
π , similarly to the δ-regime, which

is the generic behavior. For the σ1 formulation, however,
Mσ1

π approaches 0, closely following the relation Mσ1
π ∝ m,

which is an artifact due to the use of σ1. In this sense, the
σ1-formulation is a valid alternative only in large volumes.
However, it is an amazing observation that Mσ1

π at tiny
m≲ 0.02 accurately follows the prediction in Eq. (36) of
Ref. [7] in the second regime, where MπLt ≪ 1. We
referred to it before in Sec. II; in that prediction, there is
no residual “pion mass” because Ref. [7] deals with a large
spatial size L. This is not the setting of our simulation, but

Mσ1
π follows this prediction to high accuracy. The reason for

this observation remains to be explored.
As the fermion mass increases to m≳ 0.05, the “pion

masses” measured in both ways are close, Mσ1
π ≈Mσ3

π , and
they are now in the vicinity of the third regime Eq. (36) of
Ref. [7], where MπL ≫ 1, and Mπ ∝ m2=3.
This is a technical observation, which could be of interest

for future lattice studies, but it does not seem to be
documented in the literature.

FIG. 11. Illustration of the “pion”mass measured with σ1 (M
σ1
π )

and with σ3 (M
σ3
π ), for Nf ¼ 2, at β ¼ 5 on a 24 × 24 lattice. The

upper plot shows that there is good agreement at fermion mass
m ≥ 0.1, but at m ≤ 0.05, they differ drastically: Mσ3

π attains a
residual value, which is the expected ϵ-regime behavior, whereas
Mσ1

π drops to 0 with an approximately linear dependence on
m≲ 0.02. The lower plot zooms into the small-m region, and
compares the data to Eq. (36) of Ref. [7], where Mη ¼ g

ffiffiffiffiffiffiffiffi
2=π

p
is

the “η-mass” in the chiral limit, cf. Eq. (4.4), and γ is Euler’s
constant. For m ≳ 0.05,Mσ1

π andMσ3
π are close to each other, and

to the prediction in the third regime of Ref. [7].
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