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We explore the limit at which the effective baryonic Y-string model of the junction
approaches the mesonic stringlike behavior. We calculate and compare the numerical values of the
static potential and energy-density correlators of diquark-quark and quark-antiquark configurations.
The gauge model is pure Yang-Mills SU(3) lattice gauge theory at coupling S = 6.0 and
finite temperature. The diquark setup is approximated as two quarks confined within a sphere of
radius 0.1 fm. The lattice data of the potential and energy show that the string binding the diquark-
quark configuration displays an identical behavior to the quark-antiquark confining string. However,
with the temperature increase to a small enough neighborhood of the critical point 7', the gluonic
similarities between the two systems do not manifest neither at short nor intermediate distance scales
R < 1.0 fm. The comparison between the potential and the second moment of the action-density
correlators for both systems shows significant splitting. This suggests that subsisted baryonic decoupled
states overlap with the mesonic spectrum. The baryonic junction’s model for the potential and the
profile returns a good fit to the numerical lattice data of the diquark-quark arrangement. However, near
the critical point, the mesonic string displays large deviations compared to fits of the corresponding

quark-antiquark data.

DOI: 10.1103/PhysRevD.108.094502

I. INTRODUCTION

Baryons are viewed as the bound states of the three
quarks in the conventional quark model, with two relative
coordinates as the expressions of the internal space-time
degrees of freedom. On the other hand, in the diquark-
quark (QQ)Q model, two of the three quarks are bound
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together to create a boson (diquark) system, with the third
quark assumed to revolve around this boson.

The concept of the diquark is long-established as the
quark model itself. Shortly afterward Gell-Mann intro-
duced the notion of the diquark [1], the constituent
quark-diquark models for baryons were constructed by
Ida-Kobayashi [2] and Lichtenberg et al. [3-5] who also
explored the electromagnetic characteristics of the baryons
within the model’s framework.

The diquark model was provoked later to describe
several strong interaction phenomena [6—13]. In the recent
past, there has been reviving interest in the characteristics
of diquarks in hadronic systems, since they may debut a key
role in the formation of exotic states.

The pertinence between strings and gauge field theory
[14] of hadrons is a longstanding conjecture [15,16]. The
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Nambu-Nielsen-Susskind-Goto string [17] with point
masses at its ends is produced by the interaction of two
oppositely (magnetically) charged monopoles with an
infinitely massive gauge field [18]. Another finding is that
a convenient limit of non-Abelian gauge theory’s would be
in agreement with the dual string model [19].

It may thus be presumed that a meson can be approxi-
mated as two point-quarks bound together by a string, and a
baryon as three point-quarks joined up by three strings.
Representing the point quarks as Dirac fields constrained to
world lines allows for the assignment of appropriate
internal quantum numbers [20,21]. The startling outcome
of this approach is that 1 4+ 1 dimensional string model
of the gluonic infrared aspects of QCD valid in some
approximation [22].

In addition to studies that have investigated the mass of
diquarks [23-27], and, more recently, the nature of diquark
correlations [28], now, we have theoretical developments
related to hadronic string models in both the mesonic and
baryonic configurations [29-34].

In SU(3) color group, a diquark, two quarks in close
vicinity to each other, transform according to the conjugate
representation [3]. The scalar-diquark channel is attractive
in the spin-singlet rather than the spin-triplet of the axial
vector diquark. Hence low-lying diquarks lie within the
conjugate representation [3] and acquire (+) parity and
belong to the color [3], and thereof, share common proper-
ties to the antiquark.

Owing to the expected formation of flux-tubes of the
same energy density and transverse size, the long-range
confining force of the (QQ)Q put forth to the same linearly
rising potential that of the QQ quark-antiquark [35-37].
The target of this investigation is to scrutinize this interest-
ing conjecture in lattice QCD at various temperature
scales [38-53].

In a previous report, we show the formation of hadronic
Y-string systems in static baryon on the lattice at finite
temperatures 7. However, the properties of the diquark-
quark (QQ)Q configuration and its relevance to the quark-
antiquark QQ system yet remains to be fully addressed on
the lattice and in particular under extreme conditions of
high temperature [54,55].

In this work, we extend our investigation of three-quark
systems to the scenario in which two quarks interact to
create a closely bound state, with a small triangular base
length A =0.2fm or a diquark [38—40] which then
engages in interaction with a third quark to create a baryon.

The paper is organized as follows: We review the free
bosonic string theory for the baryon and meson in Sec. II.
The simulations setup and lattice measurement operators
are described in Sec. III. In Sec. IV we represent and
compare the measured numerical data of the potential of the
QQ and the (QQ)Q systems. The string model implica-
tions for each of these systems are discussed and compared
with the numerical data. We display the action density

analysis of both the QQ and the (QQ)Q systems in Sec. V.
The broadening aspects of these Monte-Carlo data versus
the baryonic and mesonic string models are scrutinized
at several transverse planes. In the last section, Sec. VI
concluding remarks are drawn.

II. HADRONIC STRING PHENOMENOLOGY

It has long been hypothesized that in a pure Yang-Mills
(YM) vacuum, a stable stringlike structure can develop,
which binds static color charges and results in linearly
growing QQ potential [56-58]. For example, through the
dual Meissner effect, the QCD vacuum confines the color
fields into a string that is dual to the Abrikosov line in the
dual superconductor model of the QCD vacuum [59,60].
Further, it was suggested to employ an idealized system of
bosonic strings to describe flux tubes transmitting the
strong interaction between the color sources [16,61].

The formation of stringlike topological defects is not
exceptional to QCD [14,62-75], and arises in numerous
strongly interacting systems [76—80]. The classical solution
of the string configuration breaks the translational-
invariance of the YM vacuum [81-86], resulting in the
creation of massless Goldstone modes [87]. The Liischer
term [61] and logarithmic broadening [88] are the two main
predictions of effective string theory that have been con-
firmed in many lattice simulations [84,89—103].

At sufficiently high temperatures, the mean-square (MS)
width of the string at the middle plane between two quarks
is predicted to exhibit a linear broadening pattern [104],
which is tested at large quark separation [50,51,104].
In addition to this, the inclusion of higher-order string’s
self-interactions and other effects [89,95,105-120] is found
to extend the match between the lattice data and the
predictions of the mesonic string model to the intermediate
source separation and high temperature [102,121-128].

In baryonic configurations, the aspects of the confining
potential are widely believed to be manifestations of three
body forces that emerge due to the formation of three
Y-shaped strings connected at a junction. The Y-ansatz
emerges in the strong coupling approximation [129,130],
and recently, the Y-potential has been derived using two-
loop perturbative calculations [131]. The Y-ansatz, which
represents the leading string effect, can adequately char-
acterize the long-distance lattice data of the confining
potential at zero temperature [132—-135].

The impact of quantum fluctuations of the Y-string on
the 3Q potential has indicated a geometrical Liischer-like
term as a subleading correction to the leading Y-potential
ansatz [32]. Furthermore, the calculation of the MS width
of the Y-junction disclosed a logarithmic growth [34]
pattern in equilateral string geometry.

The Liischer-like corrections and the width of the junction
fluctuations are examined in lattice gauge theory [33,39]
and revealed indications in favor of the model. That is,
we expect no peculiarities thereabout the hypothesis that

094502-2



STRINGS OF DIQUARK-QUARK (QQ)0Q BARYON BEFORE ...

PHYS. REV. D 108, 094502 (2023)

the fluctuations of an underpinning Y-string system are the
origin of the gluonic aspects at a given temperature scale.

The foregoing main points mount the rationale for
discussing the lattice gauge theory data of (QQ)Q and
QQ versus the string models. This is expected to be valid,
particularly at color charge separation and temperatures
where a crossover from the junction behavior to the free
mesonic string model would come about.

A. Mesonic string potential

Physical infrared (IR) features of the string’s world sheet
ought to compare with what is predicted for a QCD flux
tube. The dynamics of the flux tube follow a massless and
free-string theory in the IR limit; given large enough color
source separation, an effective field theory with infrared
action may be described as

S[X] == Scl +SO X

X]
1 0X 0X
“ontr g fan [ac(GZ ) )
where S, is the classical configuration or perimeter-area
term, the coordinates ¢, and {; parametrize the world sheet
(a =0, 1), the vector X#({y,¢;) in the transverse gauge
describes the fluctuations of the two-dimensional bosonic
world sheet relative to the surface of minimal-area/the
classical configuration with (u=1,2,...,d —2). The
above action S[X], Eq. (1), is referred to as the massless
free bosonic string action.
The Casimir energy is extracted from the string partition
function as

V(R.Ly) = —LiTlog Z(R.Ly)) 2)

The partition function of the free NG model in the physical
gauge is a functional integral over all the world sheet
configurations swept by the noninteracting string

2(R.Ly) = [ [DX]exp(=S(X)) (3)

For a periodic boundary condition (BC) along the time
direction and Dirichlet BC at the source’s position. The
path integral Egs. (3) and (2) yields the static potential

2
VIS (R, Ly) = 0oR +—logn(z) + e, (4)
T

where u is a UV-cutoff and 7 is the Dedekind eta function
defined as

w0 = [0 - ). )

where ¢, = " with modular parameter 7 = iLTT. The slope
of the linear terms in R defines the renormalized string
tension [136,137] given by

o(T) = o, —gTZ +O(TY). (6)

where T is the temperature scale governed by inverse of the
temporal extent 7 = 1/L.

B. Baryonic Y-string potential

In the Y-string model [32,34,138,139] the quarks are
connected by three strings that come together at a junction
[132,140-144]. The string world sheets’ smallest area
corresponds to the classical arrangement. The world sheet
(blade) of each string is made up of a static quark line
and a fluctuating junction world-line (Figs. 1 and 2). The
parameter {; and &, (time) label the position on string world-
sheet (blade) i. The position of the junction is given by
1 =L +n;.¢(Ly). The transverse fluctuations X;(&y, 1)
vanish at the location of the quarks ({; = 0), and are periodic
in the time ¢, with period 1/L; (see Fig. 1).

In addition to the Dirichlet BC at the quark position we
have the BC from the continuity of the transverse fluctua-

tions X;(o.¢))

X;(Co. Li +n; - 9(8o)) = ¢1:(Lo). (7)

where 7; are spatial unit vectors in the direction of the
strings such that X;7; = 0 (mixed Dirichlet-Neumann BC
[145,146]).

FIG. 1. World sheet traced by one of the strings up to the
junction position.

o
]

-~
Q R

FIG. 2. The three and two blade worldsheet systems swept by
the fluctuating world lines of the gluonic strings of the baryon and
meson.
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The NG action after gauge-fixing and expanding around
the equilibrium configuration yields

c 0X.: 0X;
Spuet = 6LyLy + — are —t-—t, 8
Fluet = 0Ly T+ZZ/®[ Cdi_,'ﬂ o, (8)

where, Ly = >_; L; above denotes the total string length. In
this model [32,34], the junction is assumed to acquire a
self-energy term m. This results in an additional boundary
term to NG action

S = SFluct + SBoundary’

with a static energy and a kinetic energy terms of junction
defined as

m [Lr "
SBoundary: mLT+5 ) dCO‘¢| ’

respectively.
The system’s partition function is

3

z=cetrmne [ g e (-2 [ aclir) [[ 26
i=1

)

where Z;(¢) is the ith partition function of a given blade
bounded by the junction worldline ¢(¢y) and reads in
d-dimension as

Zi(h) = e ) %ol det(= A, ) 7@/, (10)

where X ,; is the minimal-area solution for a given
junction configuration ¢({y), and Ag, denotes the
Laplacian acting on the domain (blade) ®; (Fig. 3).

The Casimir energy has been computed for the baryonic
potential V3o by Jahn and De Forcrand [32,33]. In that
approach, the domains of the blades are conformally

/A

y/A
4

<>
” f ”
L, )

mapped to rectangles (Fig. 3) prior to evaluating the
Laplacian’s determinant in Eq. (10).

The conformal map [32] of the string’s blade ©; to a
rectangle [32] (:)l- takes the form

_ 1 N Piw wz
fi(2) *Z+\/ZTzsinh(wL,»)e ’ (1)

w#0

then the determinant in Eq. (10) is obtained after taking into
account the change in the Laplacian [34,61] by the
conformal map

det(—A@i) 1

VA R S~ b |2 _
lndet(—Aéi) 12”20) 1 - §il* coth(wL;).  (12)

w

Further, conformally mapping the rectangle L} x Ly =
©; into a circle, the determinant of the Laplacian with
respect to the blade i would then read

det(—A@i)
_ 2 Lr ex —LZa)3coth(a)L-)| i)
n 2L2 p 127 ~ i) 1M iw .
(13)

The sum over all eigenmodes formally result in the
baryonic potential V3, which reads as

such that Ly = L; + L, + L3 is the sum of the lengths of
the three strings, and

i) =373z

+ Ziln [%Zcoth(wLi)coth(ij)} (15)

i<j

©)

72

/A
4

L +e. o)

FIG. 3. Conformal map Eq. (11) maps the domain ®; conformally to a rectangle L} x L; = ©,.
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is the potential component owing to the in-plane fluctua-
tions and

Vl(Li):ZL] ;1<’2LLT> Z—ln[ Zcoth (wL;) }
| (16)

is that due to the perpendicular components.
The corresponding mesonic limit would read

V o 1 lLT + 1 lLT
LM, ) T e,

+ Z—ln { (coth(wL,) + coth(a)Lz))} (17)

The quark-antiquark (QQ) potential is then

Voo =0(Li + Ly) + Lzln[ (ﬁ)} (18)

which is in agreement with the mesonic string potential in
4D Eq. (4).

Expressing the sum in Eq. (14) in terms of Dedekind #
functions, the potential in the 3Q channel can formally be
written such that

L, L, L L
SOOI IN L) R
Lr Ly

where y(L1, L,, L3) is a geometrical factor which depends
on the quark configuration and is obtained by solving
Egs. (19) and (14). The geometrical factor corresponding
to an equilateral quark triangle, L; = L; is explicitly
y(Li,L,,L3) =2. In the limit, 7 =0 the second term
turns out into the baryonic Liischer-like correction to the
V3o potential at zero temperature [32].

C. Mesonic string width

The quantum delocalization of the string-like object
brings about a characteristic physical width of the corre-
sponding flux-tube. The generic definition of the MS width
of the string reads as

W2(&7) = (X*(&7))
_ Je[DX]X? exp(-S[X])
Jo[DX]exp(=S[X])

(20)

At the center plane of the fluctuating string the above
expectation value yields in 4D a logarithmic broadening
versus the string length/interquark spacing R,

W2 ——log<R> (21)

no Ry

where R, is an ultraviolet (UV) cutoff scale. This is the
famed prediction, made many years ago by Liischer,
Miinster, and Weisz [88], implying a universal logarithmic
divergence (gauge-group independent) common to confin-
ing gauge groups. This term represents the leading order
term of the mean-square width of the noninteracting NG
string.

With the increase of the temperature, higher-order
gluonic modes come into play altering the broadening
pattern of the MS width versus both the string length and
the temperature scale. Allais and Casselle [104] calculated
the MS width of the string delocalization at all transverse
planes to the line connecting the quark pair which accord-
ingly reads as

6>(—

1 R 1
W2(x) =—1log <R—O) + %log

o

. (22)

= kzln
—

p

R

(3]

SN—

where 6; are the Jacobi elliptic functions with the nome,
g, = €27 and x € [0, R] signifies the coordinate (in length
units) of the transverse planes.

This expression converges for modular parameters near
unity and includes, in addition to the logarithmic diver-
gence term, a correction term that expresses the depend-
ency of the width at various transverse planes on the
modular parameter.

D. Baryonic string width

The width of the string at the junction can be calculated
[34] taking the expectation value of ¢?

J[Dg)?e™

= ol

(23)

The above second moment of the junction can be
decomposed (Fig. 4) into perpendicular z and parallel
(in-plane) xy fluctuations

(@) = (#.2) + (ny?)- (24)

That is,

) =23 — ! C25)

Ly £ mw? + ow ), coth(wL; )y (w, L;)

It is more convenient for our further discussion of the in-
plane fluctuations on the lattice to consider the rotated
decoupled form of (¢,,%) given in [39] as
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FIG. 4. Schematic diagram showing the configuration of the Y
string relative to the quark source positions. The junction’s locus
is fixed at Fermat point x;. The isosceles base is denoted as

A = 2d, the Fermat point is located at x; = A/2+/3.

@) =7 -
! LTW>0wa+va \/vaw+ wa_Qyw) ’
W) -1 1
T w>0 Qx w T Q} w T \/Qxy w wa Qy w)

(26)

Taking into account the convoluted fluctuations ¢ —
I, w(t — 7)dr which account for the thermal effects
[39] in the series sums Eqgs. (25) and (26). The correspond-
ing modes y(w, L;) are given by

(w,.L,) —kw, 2n—1
Wy, L) = -
LA 26 coth(w,L;) 4ncoth(w,L;)
2Ly (z;) + 1\ 20!
X IX(TI) + . (27)
2Liy(7;) -1

where k is an ultraviolet cutoff. The relation between k and
Ry Eq. (22) is shown in [34], where the addition of UV
cutoff to log growth is justified.

The quantities Q,, Q,, and Q,, in the above equation are
defined [34,39] as

0.= (ko owcom(uL w(.L)
+(‘2’w+—) [anxcoth(wL) (w, )],

0,= (1o oY cothiuL .1 )
. [Zn cot(uL y(w.L,)

0~ () [Zn,m,ycothwm oL 28)

Although formula Egs. (25) and (26) in [34] reproduces
the logarithmic growth Eq. (21) in the mesonic limit, the
mesonic string width formula Eq. (22) is not attained at
finite temperature. The convoluted modes [39] are derived
from the mesonic limit such that the resulting modified
width would approximate the MS width of the junction
fluctuations at finite temperature.

In Fig. 5 provided are three plots each illustrates the
effect of the convoluted modes on the MS width of the
junction at the depicted temperature scale.

The effects of the convoluted modes are evidently
disclosed in Fig. 5(a). We plot the ratio of the MS width
of the junction ¢?2, with the convoluted modes, Eq. (25) to
¢? taking w(w,,L;) = 1 corresponding to the formula
derived in [34]. The abscissas correspond to the continuous
change of the junction position x; = [0, R] along the x-axis
while the quark positions are kept fixed (See Fig. 4). The
corrections are gradually decreased with the temperature
and converge in the zero temperature limit L; — oo
yielding a ratio that tends to unity.

Figure 5(b) illustrates the width of the junction ¢?
Eq. (25). Same as Fig. 5(a) the quark positions are kept
fixed whereas the junction position is made to vary along x-
axis such that x; = [0, R]. The two subsets of curves (solid
and dashed) correspond to two 3Q configurations only with
different locations of Qs, (Fig. 4) R; and R,. The junction
width peaks at the middle of R, it is also where the effects of
the temperature increase on the MS width broadening are
most pronounced. Interestingly, the mesonic MS-width
given by Eq. (22) exposes a similar profile to that shown
in Fig. 5(b) (see Ref. [51]).

The MS-width of the junction is projected to fit the
baryonic flux-tube width by selecting a transverse plane x;
and comparing the width broadening versus the quark
positions R as shown in Fig. 5(c). The same procedure is
applicable to the MS width fits of the meson Eq. (22).

Nevertheless, in regard to the systematic of the fit of
the junction to the baryonic width data, it ought to
emphasize that only exactly where the string’s junction
it is possible to identify the width of the baryonic string
with the width at the junction in Egs. (25) and (26).
Otherwise, a formula characterizing the individual blades
has to be used. That is, the fit of the width data to the
width formula is valid only at the junction location.
Consequently, the junction used to calculate the width
formula must be located on the plane where the width is
determined (as we shall see in Sec. V). The returned y>
from the fit can then provide relevant information on the
locus of the junction.

III. LATTICE MEASUREMENTS

A. Potential operators

The expectation value of the Wilson loop is obtained
within the overlap formalism of a given gluonic wave
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25F e 3 E
~ 20F e
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< 15F : E
10F 3

[ ,—— R=14L=8 ---- R=18L =8
[ —— R=14L =10 ---- R=18L =10 R 1
5F ——R=14L =12 ---- R=18L =12 b
[ —— R=14L=14 ---- R=18L =14 ]
[ —— R= 14i =18 ---- R= 18"‘1'18 i
O 1 1 1 1 1 1 1 1 1 1 1
T2 34567 8 91011121314151617 18

X

J

(b) Q3 position R = 14,18

1 1 1 1 1 il
10 11 12 13 14 15
(c) Junction position z; = 2

FIG. 5. (a) The ratio of the formulas of the junction width
Egs. (25) and (27) to the unconvoluted width corresponding to
w,(T.X;) =1 [34]. (b) The width of the Y-junction’s at each
transverse plane x;, the solid and dashed lines correspond to two
Q3 location (Fig. 4(c)). The broadening of the junction’s MS
width at a selected transverse plane x; = 2 versus Q5 location R.
(Figure 4).

function with the quark-antiquark state. The Polyakov
loops address the free energy of the system.

The static mesonic state is constructed using a pair of
Polyakov loops such that

<7)QQ(1'171’2)> = (P(l'l)fﬁ(l'z» (29)

where the Polyakov loop on an Euclidean lattice of size
N3 x N,. The Polyakov loop is defined as a product of
gauge field variables U,_4(r;, n,):

H =4 l’,,l’l, ‘| (30)

=1

:—Tr

The Monte Carlo evaluation of the temperature-dependent
quark-antiquark potential at each R is calculated through
the Polyakov loop correlators in the standard manner
[147,148] as

(Po(0.R)) = (P(0)P(R))
- / d[U] P(0)P"(R) exp(-S,,)

—e TVQQ(R T) (31)

where §,, is the Wilson action and T is the physical
temperature.

The quark-diquark potential can be identified via a three-
loop correlator such as

(P3g) = (P(r)P(ry)P(r3))
— e—]fV,zQ(l‘lver'z)_ (32)

The above correlators respect the center symmetry
transformation [39] all across the confinement phase.

B. Energy-density operators

To characterize the Euclidean action density on the lattice
we utilize a plaquette operator at position p defined by

Pu(p) = [Uu(p)U,(p +m)UL(p +v)Ui(p)], (33)

with the indices ¢ and v corresponding to Lorentz indices.
The Euclidean action density is given by

0 =13 (1-3RTPu)).

u<v

where f is the coupling of Yang-Mills theory. The plaquette
P, can be expanded in a power series [149] in the

Y172
symmetric field strength tensor F,, such that

(p) = a*> TrF2%,(p) + O(a®) + O(a>¢?).  (35)

u<v

with ¢* =
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A dimensionless scalar field characterizing the Euclidean
action-density distribution in the Polyakov vacuum, i.e., in
the presence of color sources [142] can be defined as

(Pao(r1,12))(S(p)) — (Pap(r1,12)S(p))
<7)2Q(1'171‘2)><S(ﬂ)> ’
(36)

CQQ(P§ri) =

with the vector p referring to the spatial position of the flux
probe, r; are the spatial positions of the color sources
and the bracket (...) stands for averaging over gauge
configurations and lattice symmetries. Another dimension-
ful definition of the correlator (36) yields an equivalent
representation of the width (see, for example, Ref. [74]).

The measurements are repeated for each time slice and
then averaged,

S(p) = le S(p, 7). (37)

I n,=1

Cross-correlations between measurements made at vari-
ous distances on the same gauge configuration may be
likely to happen in this arrangement when the size of the
flux probe operator S(p) is large. For this reason, we refrain
from using improved field operators.

For baryonic systems, a dimensionless scalar field that
characterizes the gluonic field can be defined as

(P3o(r1,12,13))(S(p)) = (P30(r1,12,13)S(p))

Caplpsr;) = (P3o(ri.r2.13))(S(p))

(38)

Due to the cluster decomposition of the operators, C in
Egs. (36) and (38) should be approaching a value that is
C ~ 0 away from the interquark space.

C. Lattice parameters and Monte-Carlo updates

The potential and action density are measured on a set of
SU(3) pure gauge configurations. For a coupling value of
f = 6.0, the configurations are generated using the stan-
dard Wilson gauge action [150] on two lattices with a
spatial volume of 36°. The string tension of value, \/5; =
440 MeV [75,151,152] is applied to reproduce the value of
the lattice spacing of a = 0.1 fm.

The action is chosen such that the Monte-Carlo simu-
lations with the typical Wilson gauge action guarantee
locality [148] which reduces cross correlation among
adjacent locations.

The two lattices temporal extents are N, =8 and
N, = 10. These temporal lengths correspond to temper-
atures T/T. = 0.9 and T/T, = 0.8, respectively. The latter
temperature lies near the end of the plateau of QCD phase

diagram such that of the quark-gluon condensate [153] or
the string tension [137].

The SU(3) gluonic gauge configurations have been gene-
rated employing a pseudo-heat bath algorithm [154,155]
updating of the corresponding three SU(2) subgroup ele-
ments [156]. Each update step consists of one heat bath and
five microcanonical reflections.

The autocorrelation time is reduced as a result of mixing
the heat-bath and overrelaxation/microcanonical steps [157].
That is, the use of microcanonical reflections would help
to produce less correlated configurations through Monte-
Carlo time.

After the thermalization of the gauge configurations, a
set of N = 500 configuration is generated. The number of
Monte-Carlo updates between the configurations is 2000
updating sweeps.

Each configuration of the set N = 500 is updated 70
sweeps then a measurement is taken. This process is
repeated n times, then the resultant » measurements are
averaged and binned together into a single bin entry. The
jackknifed standard deviation is thus calculated with
N =500 bins. The illustration of the described scheme
is shown on Fig. 6.

The measurements correspond to evaluating Polyakov
lines correlators Eqs. (29) and (32) for the meson and
baryon respectively, in addition to evaluating the corre-
sponding action-density correlations of both systems
Egs. (36) and (38), respectively.

The correlators of QQ system are evaluated on bins
inclusive of n = 6 updates, on the other hand, the baryonic
correlators (QQ)Q are evaluated on bins containing n = 20
updated configurations.

The measurements at color source separation R > 12a
are disregarded for a careful investigation due to possible
correlations from the opposite side of the lattice generated
by the periodic boundary of the 3D torus.

FIG. 6. Schematic diagram illustrating the hierarchical updat-
ing of gauge configurations and measurements. Vertical line
segments denote configuration and horizontal arrows denote
skipped updates.
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FIG. 7. The lattice spacing versus separation between two
Polyakov loops measured in accord with Eq. (41) on an ensemble
of 100 gauge configuration.

To reduce the noise from the signal, we make use of
translational invariance by computing the correlation on
every node of the lattice, averaging the results over the
volume of the 3D torus, in addition, to averaging the action
measurements taken at each time slice in Eq. (37).

The volume of lattices employed in this investigation are
chosen reasonably large in order to gain high statistics in a
gauge-independent manner and also minimize the mirror
impacts and correlations across the boundaries [75,158].
These effects will be investigated below.

We examine the local string tension and translate it to the
lattice spacing a in Fermi units,

a(A)e~Rlr = (P(0)P*(R)), (39)
1 (P(O)PT(R+ 1))
o = toe | ) )
The lattice spacing in Fermi units is then
~0.1973 GeV fm [_L . ((P(O)PT(RJr 1)))}%
¢ /0440 Gev | Ly (PO)PT(R)) /]°
(41)

on each gauge configuration. To enhance the statistics in a
gauge-independent way, the aforementioned expectation
values are computed as the average across all lattice points.

The lattice spacing in Eq. (41) is an observable which
depends on measurements of operators that are placed at
two adjacent spatial positions on the lattice. That is, the
expectation value of the difference between the logarithm
of the two correlators is estimated. The statistical meas-
urement of this observable is likely to disclose whether the
two correlators fluctuate comparatively. The average over
an ensemble that is correlated may bring about overesti-
mated error bars. This would lead to incorrect measurement
of lattice spacing at large R.

In Fig. 7 the physical lattice spacing, a, measured
through formula Eq. (41) with Ly = 10a is plotted versus
the QQ separation R. The error bars are calculated on an
ensemble of 100 configurations [159] (from first level as
shown in Fig. 6). The line corresponds to the lattice spacing
a = 0.1 fm, considering the results at R > 5a the lattice
spacing can be extracted with good accuracy as a =
0.098(2) which reproduces the spacing obtained, for
example, in Ref. [147] at the same }.

D. Cooling method

Our measurements of the action density distribution
across the lattice are preceded by an ultraviolet (UV)
filtering procedure. To achieve a decent signal-to-noise
ratio in the aforementioned correlations, the UV-filtering of
the gauge configurations suppresses the short-range quan-
tum fluctuations of the vacuum.

At large source separations, it was demonstrated that the
effective string physics in the heavy meson are independent
of the UV fluctuations [160]. With careful choice of the
number of cooling sweeps, it can be shown that the lattice
data compare with the predictions of the free string model
at the intermediate and large source separation distance at
high temperatures [50].

As an alternative to [161,162], who employed the
Cabbibo-Marinari cooling [156], we have chosen to cool
the gauge field using a stout-link algorithm [163]. Filtering
techniques of this type are categorized within the set of so-
called analytic link-blocking methods.

In the present analysis, we adopt a smearing parameter of
value p = 0.06 in the standard stout-link cooling [163]. To
lessen cross-correlations between adjacent lattice measure-
ments we renounce using improved versions of stout-link
algorithms which employ large-sized operators.

The link-fuzzing approach is comparable to the Brownian
motion of a dispersed sharp field [132]. The diffused field is
Gaussian distributed around a sphere centered at point r
evolving in the smearing time 7 as described in [132].
Figure 8 schematically represent this (QQ)Q system along
with the accompanying blurring spheres.

The Gaussian diffuseness model of the smearing
procedure establishes a characteristic radius that can scale
the effects of each smearing level. Table I collects the
characteristic radius of the Brownian motion at each
selected number of sweeps. That is, one can find a mapping
between the smearing radii and the distances at which
smearing effects can be neglected. This distance scale could
be established by a careful examination of a lattice
observable such as the confining potential among 3Q
system.

The confining potential of the (QQ)Q system Eq. (32) is
tested by taking measurements over four ensembles of
cooled gauge configurations. These correspond to configu-
rations with varying cooling levels ng, = 20, 40, 60, up to
80 sweeps.
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FIG. 8. The geometry of the three well-separated quarks on the
nutshell. The large spheres represent the motion of the diffused
field of a characteristic smearing radius of R, centered at the
quarks (small spheres).

The potential is plotted versus the QQ — Q distance R in
Fig. 9. The potential is normalized with respect to a fixed
point such as R = 12a.

The two quarks Q; and Q, that make up the diquark
system at the basis are interspersed with overlapping
patches as a result of the link-fuzzing procedure (see
Fig. 8) which we found that it has negligible impact on
the potential measurement.

Further inspection of the potential of the (QQ)Q at the
two considered temperatures, in Figs. 9(a) and 9(b), reveals
that the numerical outcomes measured after 40 cooling
sweeps can be identified for (QQ) — Q distance R > 4a
(almost identical within the uncertainty of measurements).
Similarly, ng, < 60 cooling sweeps at T/T,. = 0.8 leave
the (QQ)Q potential intact on distance R > 5a.

TABLE 1. The characteristic smearing radius R, at each
smearing level ng,,.

Number of sweeps ng, 20 40 60 80
Characteristic radius R 0.27 0.38 0.47 0.54

The above observational outcomes can be related to
the cooling radii listed in Table 1. At both temperatures,
the potential measured at (QQ)— Q distance R > R,
receives a minimal impact of cooling at the number of
SWeepSs Mgy-

In the subsequent analyses, we evaluated measurements
on two sets of ensembles corresponding to two levels of
cooling sweeps. Because the signal-to-noise ratio decreases
with temperature, we have had to use two different smearing
levels for each temperature scale in the evaluation of the
action-density correlation functions. That is, ng, = 40
sweeps at T/T, = 0.9 and ng,, = 60 sweepsatT/T,. = 0.8.

Nevertheless, the correlation functions relevant to the
potential operators, which are less noisy, have been
analyzed considering gauge links subject to ng, = 40
sweeps at both temperatures all over the present analysis,
unless otherwise stated.

Many lattice measurements are affected by renormaliza-
tion effects [164] via lattice spacing, which creates a
natural cutoff for the underlying QFT. Cutoff and renorm-
alization effects are entangled such that an energy scale
inverse to the lattice spacing is set; hence, any change in
the scale also affects the cutoff. A shift in the cutoff
causes the width to be measured with a constant overall
offset [45].

This deduction is supported by the observation of an
identical impact on the width of the profile, Egs. (36)
and (38), when a different number of cooling sweeps are
applied, owing to increasing lattice spacing or modifying
the UV cutoff scale. In the configuration under scrutiny, we
investigate the behavior of the IR quantum broadening of

o T T T * 7 o " T T T T &
T/T,=0.8;3=6.0 ] T/T.=0.9; 3=6.0 = ]
A=2a ' A=2a ®
. -1 i H - -1+ ® -
g : g . |
= ¥ = ® ]
5 Lf g 1= »f @ ]
c 3 c 3 R
s f s f § ]
1< H E {1 % H g
o L ] a L O
o -3F a 19 3o © © b
g I o © 16 o 2 H
¢ [, o o 8 =20 15 [, & =20
4o © H —— ng, =40 -4F, ® —— ng, =40
[ m : —&— ng, =60 1 [ —&— ng, =60 1
-5 = T ! I I ! ! ! ! I 1 ns‘\N=80 1 - -5 = 1 ! I I ! | ! ! ! 1 ns‘\N=80 1 -
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(QQ)Q distance, [Ra"]

(a)

(QQ)Q distance, [Ra']

(b)

FIG.9. The (QQ)Q potential of a planar arrangement (Fig. 8) with base diameter A = 2a versus the (QQ) — Q distance R measured at
the depicted cooling levels (a) temperature 7/T, = 0.8, (b) temperature 7/T,. = 0.9.
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the width, which are not impacted [50] by the identical
global shifts.

IV. DIQUARK-QUARK (QQ)Q POTENTIAL

To determine the heavy quarks potential of the QQ and
that for (QQ)Q systems, we evaluate and analyze the corre-
lators Eq. (31) corresponding to the meson and Eq. (32) of
the baryon. The baryonic arrangement corresponds to
isosceles triangles with bases A and diquark-quark distance
(QQ) — Q distance R, as shown in the schematic Fig. 4.

The potential data of the static meson QQ and the
diquark-baryon (QQ)Q are plotted in Fig. 10 at the two
close temperatures 7/7T,. = 0.8 in (a) and 7/T. = 0.9 in
(b). The comparison in Fig. 10 depicts the (QQ)Q potential
as the quark Q5 is pulled a distance R apart from the
diquark (Q,, Q3) at the base. The diquark diameter is set
to A = 2a.

It is interesting to find that while comparing the QQ and
(QQ)Q systems with gauge connections subjected to the
same number of cooling sweeps, the potential of the two
systems conformally change with respect to each other.
That is, the data behaves similarly and preserve the
potential differences at a given distance R. To clearly
contrast the quark systems, only in Fig. 10 the rendered
potential is evaluated on gauge ensemble cooled ng, = 80
sweeps.

- ;_TITC =0.8; $=6.0 7
~ 8
= 2t
5 | ?
& 25 4
8 I
:% -3} S
35} 2 i
-9 +QQ 1
af +(QQ)Q ]

2 3 4 5 6 7 8 9
(QQ)Q distance, [Ra]

(a)

FIG. 10.

At the temperature, T/T. = 0.8, the (QQ)Q system in
Fig. 10(a) exposes an identical potential to the mesonic
string. At this temperature, thermal factors only account
for around 10% of the decrease in string tension [136].
This outcome coincides with the result in Ref. [165] which
displays (QQ)Q identical to the meson configuration
at a much lower temperature using Polyakov loops of
length N, =20 time slices and lattice at the same cou-
pling # = 6.0.

The potential corresponding to each system, however,
differs noticeably close to the deconfinement point
T/T.=0.9. The remarkable findings displayed in
Fig. 10(b) is that the (QQ)Q, at either short or intermediate
distance scales R < 10a, does not manifest the similarity in
the confining potential with the QQ system.

Thus, we discovered a splitting of the identical confining
force in the bosonic and fermionic arrangements that do
occur with the approach of the temperature scale the
deconfinement point from below. At this point, one is
naturally inclined to question both the mesonlike and
baryonlike aspects of each system.

The effective bosonic string model is a well-suited
framework to further explore and assess the lattice data.
Within this paradigm, for example, one can pose the
question: If the meson-like gluonic field of the diquark
is excited, would a crossover into the Y-junction behavior
take place?

T T T T
I g
-1rT/T.=0.9; =6.0 .
I *l
—-1.51 o .
© L
S | ]
5] o
c [ ]
L -2r E
S — o
0 I ]
© I o
= I
—2.5j o - N
° i
m +QQ
| i
3 +(QQ)Q ]
I \ \ \ \ L
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(QQ)Q distance, [Ra"]

(b)

(a) Compares the static potential of quark-antiquark QQ and diquark-quark (QQ)Q configuration of base length A = 2a at

T/T, = 0.8 and = 6.0. (b) Compares of the static potential of quark-antiquark QQ and diquark-quark (QQ)Q configuration of base

length A =2a at T/T. = 0.9 and f = 6.0.
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TABLE II.  The returned y?(x) for fits of the lattice data to 3Q isosceles of width A = 6a at T/T,. = 0.9. The fits
compare Eq. (42) for the A-ansatz, Eq. (14) for the Y-string model.

Fit range R € [4a — 124] R e [5a - 124] R e [6a — 124a]

Fit parameters 7’ coa’ 7’ cya’ 1 cya’
A-ansatz 22.4 0.352(3) 13.0 0.341(5) 6.58 0.329(5)
Y-string model 5.68 0.319(6) 5.17 0.317(6) 3.39 0.311(2)

In the baryon, the analysis of the lattice data would
suggest two types of parametrization depending on the
interquark distances, i.e., the A and Y-type potentials.
[132-135]. The A-potential describes a sum of two-body
forces and is proportional to the perimeter of the 30
triangle with a string tension half that of the corresponding
QOQ system. The A-potential is given by

1
|r; —-I;

—A7 c
V3Q(r1,r2,r3) = ZQQZ |+702|ri_rj|+/‘ca
i<j

i<j

(42)

with Ay signifying the strength of the one-gluon-
exchange (OGE) Coulomb term derived from perturbative
QCD (see Refs. [132,133,166]).

We systematically examine each model on a selected 3Q
configuration with a significant separation between the two
quarks Q; and Q,. Considering the data corresponding to
the potential of an isosceles 3Q quark configuration with
base length A = 6a at the highest temperature 7/7,. = 0.9.

Before proceeding with fitting the baryonic Y-string
potential to the lattice data, the Y-string’s length could be
minimized, i.e., setting the node’s position at the Fermat
point of the 3Q triangular configuration. Using elementary
variational calculus, the position of the Fermat point of the
planar isosceles arrangement may be simply proven to
reside at the point x; = zA_\/§ (see Fig. 4).

At the outset, the limits where the long string approxi-
mation is valid ought to be elucidated. The match of the
free mesonic string with the lattice data suggests a minimal
distance corresponding to R = 0.5 fm [53]. In the same
context the isosceles 3Q geometry with A = 2a, 4a assumes

a minimal total Y-string length Ly = R + @ which offsets

the limit to R = 0.4 fm at the smallest base A = 2a.

In Table II we collected the returned values of y? from
the resultant fits of the 3Q potential to the Y-string model
formula Eq. (14) and A-model Eq. (42). The string tension
has been taken as a fit parameter together with ultraviolet
(UV)-cutoff pu,.

Inspection of y? all over the fit intervals subsets from
R €[4a, 12a], reveals that the Y-string model appears to
provide the best match compared to the A-model.
A physical realization of this observation is that the
confining force in the baryon appears to be consistent with

a three-body force proportional to the total length of the
Y-string and its subleading terms owing to the junction
fluctuations.

The good fit displayed in Fig. 11, represents the 3Q
potential of an isosceles triangle shape with a wider base
length A = 8a. The lines are the best fits of the Y-string
formula Eq. (14) to the 3Q potential data, at the two
considered temperature scales.

The Y-string model, thereof, comes out as the most
suitable framework to delve into the characteristics of the
three body forces of a given 3Q configuration. In what
follows we oppose the Y-string model and its mesonic
counterpart while dissecting the lattice data of the (QQ)Q
system’s potential.

On the account that we are interested in spotting the
mesonic string signatures of the (QQ)Q system, a fit of the
mesonic string potential Eq. (4) to the baryonic (QQ)Q
potential data has to be looked over. The outcome of the fit,
x? and string tension 6ya” values, are collected in Tables III
and IV corresponding to temperatures 7/T, = 0.9 and
T/T. = 0.8, respectively.

It is essential to mention beforehand that the fit
of mesonic string potential to QQ potential Eq. (4) at

e —

QQ(Q) p=6.0

(QQ)Q potential, [Va]
|
[,

s} rb <+ T/T,=0.8
sbe” 4 TM,=09 |
5 6 ‘ 7 ‘ 8 ‘ 9 ‘ 10 ‘ 11 ‘ 12

(QQ)Q distance, [Ra]

FIG. 11. The 3Q potential of planar isosceles configurations of
a base length A = 8a. The two lines correspond to the best fits to
baryonic Y-string Eq. (14) at two temperature scales T/T, = 0.8
and T/T, = 0.9 over fit range R € [5a, 124].
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TABLE III.  The string tension and y? form the fit of (QQ)Q TABLE V. The string tension and y? from the fit of (QQ)Q
potential to the meson string Eq. (4) at T/T,. = 0.9. potential to the baryonic Y-string Eq. (14) at T/T,. = 0.9.

Fit range [4a — 124] [5a — 124] [7a —124] Fit range [4a — 124] [5a —124] [7Ta — 124]
Fit parameters y> coa®  y? cpa®>  y*  opa’ Fit parameters  y cpa®  y? cpa®>  y*  opa’

Meson string

Baryon string

A =2a 14.4 0.0361(4) 8.62 0.0353(6) 0.86 0.033(1) A =2a 11.1 0.358(4) 7.22 0.351(6) 0.73 0.34(1)
A =4a 3.24 0.0302(6) 2.85 0.0299(7) 0.96 0.029(1) A =4a 2.02 0.295(6) 2.01 0.295(7) 0.80 0.28(1)
TABLE IV. The string tension and y? form the fit of (QQ)Q TABLE VL. The string tension and y? from the fit of (QQ)Q

potential to the mesonic string Eq. (4) at T/T,. = 0.8.

potential to the baryonic Y-string Eq. (14) at T/T,. = 0.8.

Fit range [4a — 124] [5a — 124] [7Ta —124]

Fit range [4a — 124] [5a — 124] [Ta — 124]

Fit parameters  y> coa* 7 coa’  p? 6oa’

Fit parameters > coa* 7 coa* 7 6oa’

Meson string
A=2a 3.04 0.045(1) 0.39 0.045(1) 0.2 0.044(3)
A=4a 4.21 0.040(5) 7.68 0.044(5) 0.6 0.043(3)

Baryonic string
A=2a
A =4a

0.10 0.45(1) 0.05 0.45(1) 0.02 0.44(2)
0.15 0.43(1) 0.08 0.44(1) 0.05 0.43(2)

T/T,. = 0.9 [53] returns a string tension of a value amount
to opa’> = 0.036, this is smaller than cya® = 0.044 mea-
sured at 7 = 0 [165]. However, the fit of the mesonic string
at the lower temperature 7/T,. = 0.8 reproduces the correct
string tension 6ya® = 0.044 as in Eq. (6). The free bosonic
string model yields 6ya®> = 0.044, at the higher temperature
T/T, = 0.9, only if other effects beyond the free string
theory [53] are included, such as self-interaction [107,109],
rigidity [167,168] and boundary effects [53,109].

The values in Table III indicates that the free string
model do parametrize well the (QQ)Q potential data at
base length, A = 2a and 4a, returning small y> on the
considered distance scale. Despite this, it is important to
highlight how the fit of the free string model to QQ
potential returns very large > on most fit intervals [53] with
increased string tension. Specifically, for the fit range
R €[5a, 12a], 6ya® = 0.0385.

On the other hand, the results in Table IV of the mesonic
string fits to the baryonic data at T/T,. = 0.8 replicate the
fits to QQ potential data [53], since the data at this
temperature coincide [Fig. 10(a)]. The model matches well
the data and returns correct 6ya’ = 0.044 for (QQ)Q at
both base diameters A = 2a, 4a.

The string tension and y* retrieved from the fit of the
baryonic string potential Eq. (14) to the (QQ)Q potential
data, at the temperature 7/T. = 0.9 and T/T, = 0.8, are
collected in Tables V and VI, respectively.

The data compare with the baryonic string model at both
temperatures. The fit parameters collected in Table V show
that, for (QQ)Q configuration with base diameters A = 24,
the Y-string retrieves the smallest y* on the interval R €
[7a, 12a] with 65 = 0.033(1). The fit to the baryonic arrange-
ment with A = 4a is less tight on all intervals returning
smaller string tension ¢y = 0.0302(6) on R € [4a, 124].

That the x3 , ; is tiny on this long fit interval, it is possible
to retry the fit and set the string tension to a value such as
ooa’> = 0.036, obtained from the mesonic fits of the Q0
potential at long source separation R € [9a, 124] (least y2).
The resultant fit appears to match the lattice data y3 ; =
1.29 and y3,; = 1.13 on the fit interval R € [7a, 12a] and
R € [8a, 12a], respectively.

Regarding the same temperature scale 7/T,. = 0.9,
Fig. 12(a) opposes the mesonic string Eq. (4), at fixed
string tension cya® = 0.0385 which is reproduced [53]
from the fits of QQ data on the fit interval R € [5a, 124,
with the baryonic string Eq. (14) adopting the string tension
value cya’> = 0.036.

The goal of this comparison is to point out that the
mesonic string potential brought about by fitting the QQ
data on the entire range R € [Sa, 124] deviates significantly
from the baryonic potential data (QQ)Q. The baryonic
string, nevertheless, compares with the (QQ)Q lattice data
on the whole interval R € [5a, 12a]. The plot attests to the
baryonic nature of the string, which in agreement with a 3Q
potential proportional to the length of the Y-string with a
string tension the same as that of the QQ.

Furthermore, the string tension retrieved from the fits of
the baryonic Y-string model at T/T . = 0.8 matches, within
uncertainties, the correct value o, = 0.044 at both base
width A = 2a, 4a. It’s an interesting result, in its own right,
since the findings support the validity of the free baryonic
Y-string model to interpret the lattice 3Q data [32,33] for
the presented geometry, at low temperatures.

At the lower temperature scale 7/T,. = 0.8, both fits to
the (QQ)Q potential data for the mesonic string Eq. (4) and
that of the baryonic Y-string are plotted in Fig. 12(b).

The graphic shows the agreement between the two
models and a good fit to the potential data for the
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(a) The (QQ)Q potential at base width A = 2a. The dashed and dotted lines compares the fit of Eq. (19) of the baryonic

Y-string to Eq. (4) of the mesonic string potential. (b) The same as (a); however, the temperature scale is set to /T, = 0.8. Bottom pads
show the data-theory residuals, and the lattice data uncertainties respectively.

(QQ)Q system at the same string tension as the QQ
system, 6ya’® = 0.044.

V. DIQUARK-QUARK (QQ)0Q GLUONIC PROFILE

A. Vacuum’s action-density

Further characteristics of the confining force can be
explored by analyzing the profiles of the flux tubes. We
examine the action density of the vacuum in the presence
of quarks through the correlation functions Csp(p) and
Coo (e) of Egs. (36) and (38). The correlations correspond
to QQ and the planar (QQ)Q systems.

As demonstrated in Fig. 4, the vector p = (x,y, 18)
describes either the plane of the color sources or its
perpendicular plane p = (x,18,z). The intersection of
the orthogonal lines is the point O = (0, 18, 18), that is, the
coordinate x = 0 coincides with the diquark center or the
antiquark position in the case of QQ system. The location
of the quark Qj is at the position p = (R, 18, 18) such that
R is varied from R = 0 to R = na steps for each selected
base diameter A between the quarks O, and Q5 (constitut-
ing the diquark) residing on the y = axis.

Figures 13 and 14 display two snapshots of the expulsion
of vacuum fluctuations at 7/T,. = 0.8 and R = 10a. The
density profiles correspond to the formation of flux tubes
owing to the presence of the static color charges QQ and
30 in the vacuum. The flux density of the baryon in Fig. 14

is exposed in the plane-xy at base diameters A = 2a and
A = 6a. The density map shows the formation of (QQ)Q
flux tube, with the decrease of base diameter A, which
identifies with QQ system.

Similar patterns of the action density are represented;
however, at the higher temperature 7/T,. = 0.9 in Fig. 15
corresponding to a meson QQ with color source separation
R = 7a. The planar map exposes the action density of
(QQ)Q diquark-quark with the quark Qs residing at R =
7a and base length corresponding to A = 2a as shown in
Fig. 16(a) and A = 4a in Fig. 16(b).

In the Appendix, 2D density maps of the action are
shown off at R = 4a, 5a, 6a,9a, and R = 12a. Figures 25
and 26 assimilate the (QQ)Q system at the temperature
scales T/T. =09 and T/T. = 0.8, respectively. Each row

FIG. 13. The action density Eq. (36) of meson QQ at T/T, =
0.8 and color source separation R = 10a.
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L]

(a) Baryon (QQ)Q with base A = 2a

| L[]

(b) Baryon 3Q with base A = 6a

FIG. 14. The gluonic action density Eq. (38) in the baryon with
base diameters A = 2a and A = 6a and QQ — Q distance R =
12a at T/T, = 0.8.

0.3
7 Lattice data
R=7
6 0.25
5 02
©
2 I
= N
c.“ 4 0.15 >:‘
x X
a2
(@]

1
8 10 12 14 16 18 20 22 24 26 28
y-axis

FIG. 15. The in-plane action density Eq. (36) for meson Q0 at
T/T.= 0.9 and color source separation R = 7a.

corresponds to the action density in the xy plane at base
length A = 2a and A = 4a. On the other hand, Figs. 27
and 28 amount to the density map of QQ system at the
corresponding R and temperature scales.

~

0.4

X-axis
ES (6)] »

w

N

III|III|III
18 20 22 24 26
y-axis

(a)

b b
10 12 14 16

~

X-axis

10 12 14 16 18 20 22 24 26

y-axis

(b)

FIG. 16. The in-plane action density Eq. (36) for baryon
(QQ)Q at T/T. = 0.9. The baryonic geometry corresponds to
a triangle with (QQ) — Q distance R = 7a and base length A =
2a in (a) and A = 4a in (b).

The action density plots are rendered using ROOT
package [169]. We’ve implemented the (CONT) flag for
the 2D interpolation. The option corresponds to drawing
plots using surface colors that distinguish the contours with
the so-called Delaunay triangles [169]. That is, the unique
triangulation DT'(S) of a set of points S in the Euclidean
plane such that no point in S is inside the circumcircle of
any triangle in DT'(S) [169].
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The action density distribution within the QQ system is
not uniformly distributed. The planar distribution peaks at
the center of the planar distribution p = (§,18,18). The
(QQ)Q system in Fig. 14(a) discloses also a nonuniform
correlation function; C3(p(x, y, 18)), that peaks, however,
at a point displaced roughly one lattice spacing from
the center p = (§ — a, 18, 18) toward the diquark [52,160].
At both temperature scales, the longitudinal profiles of
(QQ)Q and QQ flux tubes along the line p = (x, 18, 18)
unveils vacuum expulsion that is stronger near the diquark
than it is near the quark (Figs. 25 and 26). The two flux
tubes, however, exhibit almost similar profiles close to the
quark.

The noteworthy finding is that, despite having reported
the same QQ potential as the (QQ)Q system in the
preceding section at 7/T,. = 0.8. The vacuum expulsion
map does not absolutely align with each other as dis-
cussed above.

Apart from the above discussed qualitative aspects,
taking measurements specifying the characteristics of the
action density is mandatory to fully dissect the manifested
profile. The amplitude and second moment of the density
distribution come out as the most significant features that
are possible to estimate with fits to an appropriate func-
tional shape.

Introducing cylindrical coordinate system p(x,r> =
(z—18)% + (y — 18)2,6). At each x; we proceed to fit the
action density values along the line p(x;, 7> = (y — 18)2,
0 = 0) to a double-Gaussian function of amplitude A and
fit parameters (o}, 05,), such as

G(r;0=0,x;) = A(e™"/% 4 /o), (43)

Similarly, we fit G(r;6 =%, x;) along the orthogonal line
p(x;,r* = (z—18)?,0 = Z). The fit interval is taken such
that y, z € [7, 28], respectively.

The fits to the action density distribution of the (QQ)Q
Eq. (38) at the center of the tube p(R/2,7* = (y — 18)2,
6 = 0) are shown for QQ — Q separation R = 6a,9a and
R =12a in Figs. 17 at both temperatures 7/7T. = 0.8
and T/T,. = 0.9.

The retrieved y? from the fits of the QQ and (QQ)Q
systems are collected in Tables VII, XII, and XIII, the
values indicate suitable fits at most planes.

The in-plane p(x;,r,0 =0) and the orthogonal
p(x;,r,0 =7%) MS width can be extracted from Eq. (43)
such that

[drr*G(r;0 =0,x;)
[drG(r;6=0,x;) °

[drr*G(r;60 =%, x,)
JdrG(r;0=%.x,)) "

Wﬁ(xi) =2

Wi (x;) =2 (44)

respectively. The multiplicative factor of 2 in the above
equation is to keep intuitive contact with the cylindrical-
integrated definition of the meson string width [41] which
reproduces width values of subtle differences. The formulas
of the Y-string model are scaled accordingly when we come
to compare the data with the models as described below.

In addition to the favorable parametrization behavior
over the specified distance scale, the form Eq. (43) is
selected on the grounds that the returned values of the fit
parameters ¢, and o, signifying the width,

W(2||,L) (x;) =01 + 03— 01 —0s, (45)

divulge [53] a significant splitting, that is, 6, > o,.

It is conceivable that the flux tube is made up of a
solid, vortex like core whose fluctuations are described
by bosonic string. For instance, a good agreement was
found [102,170,171] between the action density profile
with an exponential decline as opposed to the Gaussian
profile anticipated by the bosonic string model. Never-
theless, it has been shown [172] that the profile may be
analyzed by a heuristic convolution of the bosonic string
(Gaussian) profile and vortex (exponential) profile, which
suggests that the flux tube shares traits with both.

This is in consonance and would explain the splitting of
the profile Eq. (43) into a wide and a narrow Gaussian
distribution appropriate for quantum oscillations and also
accommodating for the exponential decline of the vortex
flux-tube at the center.

We have tested the fit function with the exponential
decay such as that in [172,173], as shown in Fig. 18.
The fits using two Gaussian Eq. (43) and exponential
form [172,173] reveal a correspondence between the two
functions, which may suggest an approximate mathemati-
cal equivalence on a given subset of the parameter space.
The measurements of the width are almost equal within
the uncertainties. Equating the second moment of the two
forms, we find

200>
A+20

4 4
0'1—1—02:3 5

2 2
oy +o5; 2

(46)

which defines the physically meaningful parameter A4,
accounting for the penetration length, in terms of the
two parameters of the Gaussian form Eq. (43).

However, the resultant fits of the exponential form to the
baryonic or mesonic action densities reveal either inad-
equacy or large error bars of the measured parameters
owing to redundancy (see Fig. 18). This increasing size
of uncertainties appears in the width measurements in
[172,173] as well for color source separation R > 0.75 fm.
As shown in Fig. 18, some baryonic configuration such as
that with diquark base length A = 4a quite poor fits of the
action density are returned when adopting the exponential
form. In mesonic configurations, the error bars relevant to
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FIG. 17.
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(b) ||-plane, A = 4a
0.35 FLattice data: T/TcZ0.9, §=6.0 j j —
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(d) ||-plane, A = 4a

(a),(b) The (QQ)Q action density C3,(R/2,y,18) Eq. (38) (denoted as ||-plane), QQ-Q distance R = 6a,9a, 12a, base

diameter A = 2a(a) and A = 4a(b), at T/T, = 0.8. The red dotted lines correspond to fits using the standard Gaussian, o = o,
Eq. (43), the blue solid lines correspond to unconstrained form, o, # o,. (c),(d) Same as (a),(b) except that 7/T,. = 0.9.

the width as measured by the exponential function are too
large that it is not possible to clearly single out/disentangle
the broadening of the quantum string of the leading and
next to the leading Nambu-Goto string solutions [105,106],
when the temperature is close to deconfinement point [41],
at the represented level of statistics.

Tables XII and XIII include the width measured at the
first four planes of both the (QQ)Q and QQ systems. The
width measurements in Table XII, at 7/T,. = 0.9, depict
equal MS width components of the orthogonal W2 and in-
plane action density Wﬁ On the account of the fact that the

flux tube of the (QQ)Q exposes cylindrical symmetry we
represented the symmetrized width, W? = (Wﬁ +W3)/2,

in Table VII relevant to the tube’s middle plane x = § at

both temperatures 7/7T,. = 0.8 and 7/T, = 0.9. Table XIII
similarly contains the averaged width at x; = 1, 2, 3, 4 and
temperature 7/T,. = 0.8. The averaging of the width at this
lower temperature scale improves the signal-to-noise ratio.

Inspection of the MS width discloses that, at 7/T . = 0.8,
the flux tubes of the QQ and the (QQ)Q systems are almost
identical within uncertainties of the measurements. How-
ever, at the higher temperature 7/T,. = 0.9 the measure-
ments of the MS width reproduce identical values only for
long enough flux-tubes R > 10a.

The amplitude profiles in Table XII demonstrate, at
T/T. = 0.9, the similarity near the quark for each system.
Close to the diquark, nevertheless, the magnitude of
amplitudes signifies vacuum expulsions are greater than
that in the proximity of the quark. The width differences
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TABLE VII.  The symmetrized MS width W2 = (W2 (R/2) + W?(R/2))/2 and amplitude of the action-density at
the middle plane R/2 from fits to a double-Gaussian ansatz Eq. (4%) at temperatures 7/T. = 0.8 and T/T,. = 0.9.
T/T.=038 T/T.=09
R-Config A wra~? Lot A w?a™? Lot
4a 00 0.0812(2) 13.0(1) 0.87 0.0712(2) 15.7(1) 1.74
(00)0 0.0935(2) 13.3(1) 1.60 0.0863(2) 22.0(1) 7.16
5a 00 0.1066(2) 13.4(1) 0.51 0.0895(3) 16.4(2) 1.46
(00)0 0.1183(2) 13.7(1) 1.43 0.1062(2) 21.7(2) 5.85
6a 00 0.1332(3) 14.0(1) 0.23 0.1063(4) 17.4(2) 1.08
(00)0 0.1413(4) 14.2(2) 1.06 0.1244(3) 22.1(2) 451
Ta 00 0.1530(5) 14.7(2) 0.07 0.1149(5) 18.9(2) 0.75
(00)0 0.1604(5) 14.8(2) 1.09 0.1375(4) 25.5(2) 2.98
8a 00 0.1721(9) 15.6(3) 0.02 0.1209(8) 20.5(3) 0.58
(00)0 0.1764(8) 15.3(3) 0.75 0.1475(6) 24.2(3) 1.92
9a (0]0) 0.183(2) 16.7(4) 0.005 0.120(1) 22.3(5) 0.47
(00)0 0.187(2) 16.0(5) 0.88 0.1523(8) 25.6(4) 1.09
10a 00 0.193(2) 18.1(7) 0.003 0.117(1) 24.2(7) 0.40
(00)0 0.195(1) 17.1(6) 0.86 0.154(1) 27.5(5) 0.64
1la 00 0.197(4) 20.0(1.0) 0.002 0.111(2) 26.3(1.0) 0.31
(00)0 0.200(3) 18.7(9) 1.18 0.151(1) 29.6(7) 0.35
12a 00 0.199(5) 22.6(1.5) 0.003 0.103(2) 28.8(1.5) 0.24
(00)0 0.200(4) 20(1.4) 1.50 0.145(2) 32.2(1.0) 0.33
AW? = W2(x;) — W2(%) along the flux tube are very small ~ Fig. 19. The width growth is presented at the middle planes

and within the uncertainties of the fit. This is not alike with
the curved MS width profile along the QQ transverse

planes shown in [41,51].

The values of the MS width of the flux-tube at the first
four lattice slices from the diquark system are plotted in

0.35
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width = 16.34 +0.1298

35

x_f in Fig. 20. The MS width of the in-plane WH

and perpendicular component W3 of the Q(QQ) system
display a cylindrical symmetry; even so, the string MS
width profile is not identical to that of the QQ system.

[ Cattice data: T/7c=0.9, 3=6.0
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2/N poF = 467 84 B

width = 17.14 + 64.64
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FIG. 18. The resultant fits using five different fit functions and returned y3  ; and width measurements of a selected mesonic and
baryonic configuration. (a) The QQ action density Cy(R/2, y, 18) Eq. (36), at the middle plan, at /T, = 0.9. (b) The (QQ)Q action
density C3p(x; = 2,7, 18) Eq. (38), (QQ)-Q distance R = 4a, plane x; =2, A = 4a, at T/T, = 0.9.
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FIG. 19. The in-plane and perpendicular-plane MS width at
T/T.=0.9 for (QQ)Q and QQ systems at planes x = 1, 2, 3
and x = 4, diquark base diameters A = 2a, 4a.

The coincidence with the mesonic string does not
manifest either at small or intermediate separation regions

R < 10a.

At temperature scale T/T,. = 0.8, we find the MS width
of the energy profiles of (QQ)Q to be very similar
considering the middle plane as depicted in Fig. 21. The
same assertion in regard to the broadening profile at planes
other than the middle holds as well. The action density
exhibits cylindrical symmetry even for 3Q arrangement
with a larger base length A = 4a.

— T ™ ]
401 40 sweeps =
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FIG. 20. Compares the in-plane and perpendicular MS width at
T/T, = 0.9 for (QQ)Q and QQ systems at the middle plane for
diquark base diameters A = 2a, 4a.

B. Broadening of effective strings

The objective of this section is to lay out the character-
istics of the broadening profile of the (QQ)Q flux tube.
This is another instance on the feasibility of bosonic string
models to dissect the growth behavior versus color source
separation.

The lattice data of the MS width is opposed with the
string model Egs. (25), (26), and (22) for both mesonic
and baryonic strings, respectively. The fit of the MS width
data is discussed considering two values of the string
tension, that is, the standard value returned from the lattice
simulations at zero temperature 6ya® = 0.044 [165] and
also returned from the fits of the QQ system at T/T, = 0.8
[53], and the other value 6ya® = 0.036 obtained from the
fits of QQ at T/T, = 0.9 [53].

As the third quark Q5 is being dragged distance R apart
from the triangle’s base, we look over the broadening at the
first four subsequent planes from the diquark x = 1, 2, 3, 4.
This should unveil whether there are fairly substantial
signatures of the baryonic junction on the broadening of
MS of the action density.

The Y-string implies perpendicular and in-plane MS
width of the junction fluctuations given by Egs. (25) and
(26), respectively. Since the junction’s oscillations are not
projected to smooth out and will likely produce a local
peak, the features of the fit ought to be scrutinized at each
selected transverse plane to the tube’s measured widths.
In the same context, we recall from the discussion at the end
of Sec. II that the junction must be placed in formulas
Egs. (25) and (26) at the corresponding flux plane x; where
the fit takes place.

Tables VIII and IX include the outcome values of
X3 o¢(xi) from the fits of Egs. (26) and (25) to the two
width components Wﬁ (x;) and W3 (x;) enlisted in Table XII)

for the indicated (QQ)— Q distance R € [a,b] at four
consecutive transverse planes x = 1 to x = 4, at the highest
temperature 7/T. = 0.9.

Inspection of the two tables exposes that best fits are
retrieved for planes x = 1 and x = 2, which are one to two
lattice spacings from the diquark base. This is consistent
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FIG. 21. (a) The in-plane and the perpendicular MS width of
action density at the middle plane for QQ and (QQ)Q of base
diameters A = 2a,4a at T/T,. = 0.8. (b) Same as (a), however,
the plots depicts the width at the planes x = 2, 3, 4.

with the results in Ref. [39], where we performed a
comparative analysis with base length A > 4a. In that
analysis, it is shown that the values of y3 ;(x;) are
optimized at the closest plane to the intersection of two

distant identical Gaussians used to fit the flux profile. That
is, certain planes display higher contributions received from
the fluctuations in the vicinity of the junction.

The length of the base of the triangular isosceles quark
configuration affects the plane at which we attain the
minimum in y3_(x;) [39]. The two strings of the Y-
configuration connecting the diquark of base diameter A <
4a are close enough that we obtain the best fits at the first
two planes from the diquark base which are near the Fermat
point of the configuration.

Actually, the occurrence of certain planes at which the
lattice data best agrees with the baryonic Y-string formulas
Egs. (25) and (26) suggests that the junction impacts are
manifesting at the highest temperatures 7/T, = 0.9. The
effects of the junction eventually fade away at distant
planes from the diquark.

Following the same line of reasoning regarding the 3Q
potential in the previous section, we would like to assess
the mesoniclike aspects of the width of the fluctuations at
T/T.=0.9. The width of the mesonic string Eq. (22) is
fitted to the MS width Wﬁ of the baryonic flux-tube

(Tables VIII and IX). Similar to the baryonic string
analysis, in Table X the resultant x5 (x;) are collected
from the fits corresponding to diquark-quark (QQ)Q of
bases diameter A = 2a and A = 4a at two values of the
string tension.

The fits return large residuals x3 _ ;(x;) which can readily
seen from the chart of y3  (x;) in Figs. 22(a) and 22(b) at
most planes. The consideration of string tension value
ooa’® = 0.036 reduces the residuals compared to the fits
adopting oya’> = 0.044, even so, the poor fits are still
persisting for diquark base diameter A = 2a. This contrast
with the good Y-string model’s fits signals, thereof, a cross
over of the flux-tube into the junction behavior.

On the other hand, at the distant planes x = 3 and x = 4
from the diquark of wider base A = 4a the fits return good
Zﬁ,o.f values at large QQ — Q separation R. These findings
would indicate that the mesonic traits of the baryonic flux
tube tend to show up in the vicinity of the quark rather than
the diquark at large enough R. Similar manifestation in
general 30 configurations may be anticipated when two
quarks are close enough relative to the third quark.

At the temperature 7/T . = 0.9, the lines corresponding
to best fits of the baryonic string Eq. (26) and mesonic
string Eq. (22) to the MS width are plotted in Figs. 23(a),
24(a), and 24(b). The figures correspond to the middle
plane R/2 and the planes x =1, 2, respectively. The
fits interval of the latter R €[5a, 12a] and R €([7a, 124]
for the former. The string tension is set to the value
coa’ = 0.036.

Both figures display the poor fit of the mesonic string to
the lattice data of the diquark-quark (QQ)Q at this temper-
ature scale. The plots, on the other hand, show the good
correspondence of the baryonic string model with the data
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TABLE VIIL. The returned values of the y?(x) from fits of the width of in-plane action density Wﬁ(x) of base
A=2aand A=4a at T/T.=0.9 to Y-string model Eq. (25) at two values of the string tension.

A =2a o = 0.036 o = 0.044

205 (xi)/FR® Sa-12a 6a-12a Ta-12a 8a-12a Sa-12a 6a-12a Ta-12a 8a-12a
Zios(D) 1.26 0.92 1.08 0.68 2.11 1.83 1.04 0.66
230:(2) 1.73 0.30 0.68 0.26 0.57 0.15 0.06 0.03
X30:(3) 7.27 0.50 0.75 0.24 4.14 0.17 0.14 0.10
Xios(4) 28.4 1.63 0.07 0.06 18.6 0.83 0.76 0.62
A =4da c = 0.036 c = 0.044

230D 3.04 0.27 0.22 0.12 2.89 0.37 0.13 0.10
Xiof(2) 0.49 0.05 0.04 0.05 0.13 0.03 0.65 0.03
230:03) 1.16 0.11 0.15 0.07 0.69 0.53 0.42 0.15
Yiot®) 11.3 0.63 0.67 0.13 6.74 0.64 0.14 0.01

*FR—denotes the fit range. We considered the following ranges 5a-12a, 6a-12a, 7a-12a, 8a-12a.

TABLE IX. Same as Table VIII; however, the values of the )(2 are returned from the fits of formula Eq. (25) to the
perpendicular width of the action density W2 (x).

A=2a o =0.036 o = 0.044

23 05(xi)/FR 5a-12a 6a-12a 7a-12a 8a-12a 5a-12a 6a-12a 7a-12a 8a-12a
2os(1) 0.43 0.50 0.56 0.20 6.83 1.18 0.26 0.10
2or(2) 1.81 0.26 0.33 0.18 14.2 3.78 0.80 0.16
Lior(3) 292 9.06 2.12 0.38 28.1 8.59 1.97 0.35
or(®) 423 18.1 5.57 1.24 41.6 17.3 5.19 114
A=4da o =0.036 o = 0.044

Por(D) 3.38 1.03 0.35 0.16 3.22 0.97 0.33 0.15
2or(2) 6.49 1.80 0.41 0.01 6.09 1.66 0.38 0.10
Lor(3) 8.48 2.87 0.73 0.15 8.48 2.63 0.64 0.12
2 or(®) 13.9 4.45 1.07 0.20 13.5 4.17 0.95 0.16

TABLE X. The returned y*(x) from fits of the baryonic in-plane width Wﬁ (x), (QQ)0 of base length A = 2a and
A=4aatT/T, =0.9, to the mesonic string Eq. (22) at planes x.

A=2a 0 = 0.036 G0 = 0.044
)(g'o'f(xi)/FR 5a-12a 6a-12a 7a-12a 8a-12a 5a-12a 6a-12a 7a-12a 8a-12a
;(g_o‘f(l) 13.9 16.2 14.87 10.9 24.7 22.8 19.1 16.1
)(éo‘f(2) 8.68 104 8.89 6.88 31.1 30.0 23.2 16.7
){éo.f(:;) 28.4 2.74 2.56 2.68 38.7 39.0 30.4 21.0
)(io.f(4) 258 27.54 2.04 0.54 43.1 48.7 41.3 29.9
A =4a oy = 0.036 oy = 0.044

){éo.f(l) 8.02 6.67 7.63 5.38 11.4 14.2 73 6.55
){éo.f(z) 3.56 4.17 3.66 2.78 13.3 11.9 9.0 6.75
){éof(?)) 9.35 1.15 1.22 1.30 17.7 16.8 12.6 9.3
)(3'0 t(4) 95.9 10.71 0911 0.42 21.1 23.2 19.9 15.1
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FIG. 22. (a),(b) Chart of y? retrieved from the fits of mesonic
sting Eq. (22) to MS width Wi(x;) at oy =0.036 and
T/T.=0.9; A=2ain (a) and A = 4a in (b). (¢c),(d) Same as
(a),(b), however, ¥ values are from the fits of the baryonic string
model Eq. (26); diquark base diameters A = 2ain (c) and A = 4a
in (d).

reflecting the returned y3,; values in Tables VIII and
plotted in Figs. 22(c) and 22(d). This supports that junction
interactions ensue in this temperature.

At the lower temperature 7/7.= 0.8, the returned

x*(x;) from the fits to MS width Wﬁ (x;) of the diquark-

quark are enlisted in Table XI. The two panels in the table
compare the fits of both the mesonic and baryonic strings
Egs. (22) and (26) fixing the string tension to the value
coa* = 0.044 on the fit interval R € [5a, 12a], respectively.

The fits of the mesonic string returns good y3 . ((x;) at
x = 1,2 planes. This is depicted in the plots Figs. 24(c) and
24(d). Also Fig. 23(b) show good match considering fit
interval R € [7a, 12a]. The diminishing of the deviations in
Figs. 23(a), 24(a), and 24(b) of the lattice data from the
mesonic string’s width profile is palpable.

The findings from the analysis in this section concur
with that of the potential analysis in the preceding section.
In addition, we stress on the close analogy between the
presented results at the temperature 7/T. = 0.8, which
is near the end of the plateau region of QCD phase dia-
gram [153], with around 10% reduction in the string
tension [53,136,137], and the analysis utilizing the Wilson-
loop overlap formalism [174] or three Polyakov-loops
[165] at low temperature.

35 N T T T T T T T ]
| TIT,=0.9, A=2a 'IL:
& F ]
z
£
ke
H
g - ]
5 15 v —— LGT, middle Plane 1
— — baryon-string 1
10F —— meson-string
5 6 7 8 9 10 11 12
(QQ)Q distance, [Ra™]
(a)
35 L TllT 0 8' A 2 T T T T T T ]
S —&— LGT, middle Plane
_%op — — baryon-string
R ; —— meson-string
2 5[ ]
= .
ke,
H
2
%

5 6 7 8 9 1I0 11 12
(QQ)Q distance, [Ra™]

(b)

FIG. 23. (a) The MS width of the (QQ)Q action density
(Wi(R/2) + W}(R/2))/2 at the middle plane x = R/2 and
T/T.=0.9. The dashed line corresponds to fitted to the sum
of the baryonic string Egs. (25) and (26), the solid line
corresponds to the mesonic string Eq. (22). (b) The data and
fits of MS width correspond to the temperature 7/7T,. = 0.8.

VI. CONCLUSION AND PROSPECT

In this work, we inspect the similarity between the gluon
flux tubes for the quark-antiquark QQ and three quark
systems at finite temperature. We approximate the baryonic
quark-diquark (QQ)Q configuration by constructing the
two quarks at a small separation distance of at least 0.2 fm.

The potential and energy-density characteristics of the
Q0 and (QQ)Q systems are examined. Both the potential
and the action-density correlator provide the same almost
identical structure up to temperatures near the end of the
plateau region of the QCD phase diagram [153]. However,
when the temperature gets close to the deconfinement
point, the similarity between the two systems breakdown.
The gluonic characteristics display splitting for (QQ) — Q
distance R < 1.0 fm.

The numerical data of the (QQ)Q potential are inves-
tigated in light of the fits of mesonic and baryonic string
models. The baryonic string model approaches the free
mesonic string reproducing the same value for the string
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FIG. 24. (a) The MS width of the action density of the (QQ)Q at plane x = 1, the lines are the fit of baryonic string Eq. (26) for the in-

plane fluctuation of the junction and mesonic string Eq. (22) at plane x = 1 temperature 7/T,. = 0.9. (b) Same as (a) however at the
plane x = 2. (c),(d) The data and fits of MS correspond to the temperature 7/7. = 0.8.

tension. However, near the critical point 7/T. = 0.9, in
contrast to the free mesonic string the Y-baryonic string
model’s fit of the potential yields a decent y? value with
a string tension value same as the corresponding QQ
arrangement.

Similarly, the analysis of the MS width of the energy
profile indicates baryonic-like aspects consistent with the
Goldstone modes of Y-bosonic string at 7/T,. = 0.9 at
all considered transverse planes. The mesonic string profile
displays large deviations from the diquark-quark data
at planes close to the diquark system. At the lower
temperature, the (QQ)Q baryon displays a broadening
profile consistent with both mesonic and Y-string models
with the same string tension as the quark-antiquark QQ
system.

TABLE XI.  x2(x) from the fit of mesonic Eq. (22) and baryonic
strings Eq. (26) at T/T. = 0.8 to the MS width Wﬁ of (00)0, at
planes x = 1, 2 and interval R € [5a, 12a].

Meson: A =2a A =4a

20 129 036
22 020 018

Baryon: A=2a A=4a

0.48 0.06
0.45 0.48

These findings limit the validity that, in the quenched
approximation, the (QQ)Q precisely share many properties
in common with the QQ only to temperatures correspond-
ing to the plateau region of the QCD phase diagram
[165,174]; otherwise, excited baryonic states can manifest
around small neighborhoods of the QCD critical point
signaling a cross over into the junction behavior.

It would be intriguing to perform the computations
afterward while using smaller lattices and taking greater
temperatures or dynamical quarks into consideration.
It is justifiable that the meson-baryon similarity would
be questioned in the context of an excited spectrum
[90,175,176], or in the presence of strong magnetic fields
[177-181]. Future work ought to probe these arrangements,
which are likely to be of substantial importance to
phenomenological models of hadron structure.
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APPENDIX: FLUX TUBES IN 2D-PLANE

The in-plane action density maps at various separation
distances, specifically R = 4a, 5a, 6a,9a, 12a, for baryon
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TABLE XII. The MS width Wﬁ, W3 and amplitude of the in-plane and perpendicular action-density of (QQ)Q measured at the
corresponding planes using fits to a double-Gaussian ansatz Eq. (43) at temperature 7/7T, = 0.9.

Plane x=1 x=2 x=3 x=4

2 -2

n=R/a A wra™r  xh A woa~ 2a~?

2 - 2 2
Xdof A wa Xdof A wa Xdot

R =4a 00  0.0654(1) 157(1) 43 0.0711(1) 15.4(1) 4.40 0.0654(1) 15.7(1) 4.3
(00)Q; 0.0837(2) 22.1(1) 5.8 0.08642) 22.0(1) 574 0.08102) 22.7(1)  5.84
(00)0, 0.0833(2) 22.2(1) 8.13 0.0862(2) 22.9(1) 857 0.08102) 222(1) 1051

R =5a 00  007772) 16.7(5) 3.98 0.0894(2) 16.1(1) 4.03 0.0894(2) 16.1(1) 43 0.0777Q2) 16.7(1) 3.98
(00)Q; 0.12) 22.13(2) 239 0.1064(2) 21.8(1) 4.87 0.10532) 21.7(1)  5.10 0.0951(2) 22.0(1) 5.33
(00)0, 0.0986(2) 22.1(1) 7.09 0.1062(2) 27.7(7) 6.83 0.1052(2) 21.6(1)  7.68 0.0952(2) 22.0(1) 9.45

R = 6a 00  0.0842(2) 18.0(2) 327 0.10032) 17.32) 32 0.1062(3) 17.12) 3.1 0.0843(2) 1732) 3.21
(00)Q; 0.1097(3) 225(2) 298 0.1212(3) 223(2) 3.51 0.1245(3) 22.12)  3.86 0.11903) 22.12) 4.30
(00)0, 0.1092(3) 22.7(2) 510 0.12093) 222(2) 5.19 0.1243(3) 22.02)  5.17 0.11903) 22.12)  5.98

R="Ta 00 0.0867(3) 19.4(2) 2.5 0.1048(3) 18.8(2) 2.47 0.1147(4) 18.6(2) 23 0.0867(3) 18.6(2) 2.3
(00)Q; 0.1161(3) 23.2(2) 1.6 0.1306(4) 23.2(2) 2.15 0.1449(6) 23.0(2) 1.44 0.1367(5) 22.9(2) 3.02
(00)0, 0.1156(3) 23.7(2) 520 0.1303(4) 23.2(2) 4.02 0.1448(6) 23.02) 235 0.1366(5) 22.9(22) 3.48

R = 8a 00 0902 209(3) 1.94 0.10494) 20.4(3) 191 0.1165(5) 2033)  1.71 0.1206(5) 203(3) 1.62
(00)Q; 0.1195(4) 24.03) 074 0.1354(5) 24.12) 1.10 0.1449(6) 24.2(2)  1.44 0.1476(6) 24.2(2) 1.83
(00)0, 0.1190(4) 24.9(3) 4.67 0.1351(5) 24.6(1) 332 0.1448(6) 243(2) 235 0.1475(7) 242(3)  2.00

R =9a 00  0.0856(4) 22.3(4) 138 0.1025(5) 22.04) 143 0.1140(6) 22.14) 130 0.1199(7) 22.34) 1.17
(00)Q; 0.1209(5) 24.8(4) 033 0.1368(6) 25.1(4) 0.49 0.1474(8) 254(4) 048 0.1524@8) 25.6(4)  0.96
(00)0, 0.1204(5) 26.0(4) 411 0.1366(7) 25.7(4) 2.92 0.1473(8) 25.7(4) 179 0.1523(9) 25.7(4) 121

(Table continued)
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TABLE XII. (Continued)

Plane x=1 x=2 x=3 x=4

n=R/a A wra=? )(ﬁof A wra=? )(ﬁof A wla=? )(ﬁof A wla=? ){ﬁof

R =10a 00 0.0840(5) 23.6(5) 091 0.0992(6) 23.5(5) 0.98 0.1094(8) 24.0(5) 0.91 0.1151(9) 24.5(6) 0.83
(QQ)QH 0.1210(6) 25.6(5) 0.17 0.1361(8) 26.0(4) 0.20 0.1464(9) 26.5(4) 0.20 0.152(1) 27.0(6) 0.46
(00)0, 0.1205(7) 27.1(4) 3.27 0.1359(8) 27.0(4) 2.52 0.146(1) 27.1(4) 1.5  0.152(1) 27.3(5) 0.80

R=11a 00 0.0821(7) 24.7(7) 0.57 0.0953(8) 25.0(7) 0.6 0.1038(9) 25.8(7) 0.55 0.1084(1) 26.8(8) 0.50
(QQ)QH 0.1205(8) 26.7(6) 0.09 0.134(1) 27.06) 0.09 0.143(1) 27.6(6) 0.14 0.149(1) 28.4(6) 0.22
(00)0, 0.1199(8) 28.2(6) 2.21 0.134(1) 28.1(6) 1.95 0.143(1) 28.5(6) 1.27 0.149(1) 28.9(6) 0.61

R =12a 00 0.0799(8) 25.4(9) 0.34 0.091009) 26.1(9) 0.34 0.097(1) 27.5(1.0) 029 0.101(1) 29.1(1.1) 0.24
(QQ)QH 0.119(1) 28.2(8) 0.08 0.131(1) 28.2(8) 0.06 0.138(1) 28.7(8) 0.07 0.143(2) 29.7(1.0) 0.12
(Q0)0, 0.119(1)  29.3(8) 1.21 0.131(1) 29.2(8) 1.28 0.138(1) 29.7(8) 0.97 0.143(2) 30.5(8) 0.49

TABLE XIII. The symmetrized MS width W? = (W? + W3 )/2 and amplitude of the (QQ)Q action-density measured at the

corresponding planes using fits to a double-Gaussian ansatz Eq. (43) at temperature 7/7. = 0.8.

Plane x=1 x=2 x=3 x=4
n=R/a A wla=r A A wiat i A wra=r A A wiat gl
4a Q0 0.075(1) 13.0(1) 0.84 0.0812(2) 129(1) 0.87 0.0752(1) 13.0(1) 0.84
(0Q)0 0.0904(2) 13.4(1) 1.73 0.0936(1) 13.3(1) 1.60 0.0903(5) 12.9(2) 191
Sa Q0 0.093(2) 13.5(1) 045 0.1066(2) 13.4(1) 051 0.1066(2) 13.4(1) 0.51 0.0935(2) 13.5(1) 0.5
(0Q)0 0.1081(2) 13.8(1) 1.82 0.1183(2) 13.7(1) 143 0.1155(3) 13.7(2) 122 0.1081(2) 13.8(1) 1.82
6a Q0 0.1063) 14.2(1) 0.15 0.1262(3) 14.0(1) 020 0.1262(3) 14.0(1) 0.20 0.1262(3) 14.0(1) 0.2
(0Q)0Q 0.1206(3) 14.3(2) 2.04 0.1373(3) 14.3(2) 1.51 0.1413(4) 142(2) 1.06 0.1322(3) 14.1(2)  0.87
Ta Q0 0.1154) 15.02) 0.04 0.1397(5) 14.8(2) 0.05 0.1397(5) 14.7(2) 0.05 0.1530(5) 14.7(2)  0.07
(0Q)0 0.1283(4) 14.92) 2.14 0.1501(5) 14.92) 1.68 0.1604(5) 14.8(2) 1.09 0.1604(6) 14.7(2)  1.09
8a Q0 0.116(5) 16.7(1) 0.17 0.1478(7) 15.7(3) 0.01 0.1478(7) 15.6(3) 0.01 0.1721(9) 15.6(3)  0.02
(0Q)0 0.1323(6) 15.5(3) 2.01 0.1573(7) 15.5(4) 1.80 0.1724(8) 15.53) 1.22 0.1764(8) 15.3(3) 0.75
9a 00  0.122(9) 17.24) 0.01 0.1478(7) 169(4) 0.01 0.151(1) 16.74) 0.01 0.183(2) 16.7(4) 0.01
(0Q)0 0.1338(9) 16.1(5) 1.81 0.160(1) 16.1(5) 1.81 0.179(1) 16.2(5) 1.36 0.187(1) 16.0(5) 0.88
10a QO  0.12(1) 189(6) 0.06 0.152(2) 18.5(6) 0.02 0.152(2) 18.2(6) 0.02 0.189(2) 18.1(7)  0.01
(0Q)0 0.134(1) 16.58) 1.68 0.160(1) 16.8(7) 1.69 0.181(2) 16.9(8) 1.36 0.189(2) 16.1(5) 1.15
1la Q0 0.12(2) 20.5(9) 020 0.151(3) 20.4(8) 0.07 0.151(3) 20.2(9) 0.07 0.189(4) 20.009) 0.01
(0Q)0 0.133(2) 17(1)  1.84 0.160(2) 18(1.0) 1.57 0.181(2) 18(1.1) 1.19 0.193(3) 18(1.2) 0.94
12a Q0 0.11(3) 21.7(1.6) 038 0.147(4) 22.1(1.3) 0.21 0.147(4) 22.4(1.3) 0.21 0.186(5) 22.4(1.3) 0.01
(0Q)0 0.133(2) 19(1.6) 2.70 0.159(3) 19(1.5) 1.75 0.1803)  20(1.6) 1.01 0.192(4) 19.5(1.8) 0.77

and meson systems. Figures 25 and 26 assimilate the
(QQ)Q system at the temperature scales 7/T,. = 0.9
and T/T.= 0.8, respectively. Each row corresponds
to the action density in the xy plane at different base
lengths, which are A =2a and A =4a. In contrast,
Figs. 27 and 28 depict the density map of the QQ system
at the corresponding separation distances, R, and temper-
ature scales.

The y? values obtained from the fits of the QQ and
(QQ)Q systems are presented in Tables XII and XIIL
These tables provide width measurements for the first four
planes of both the QQ and (QQ)Q systems. The width
measurements in Table XII, at 7/T. = 0.9, depict equal
MS width components of the orthogonal W? and in-plane
action density Wﬁ. Table XIII, at temperature 7/7T. = 0.8,

similarly contains averaged width values for x; = 1,2, 3,4.
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