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We calculate the eigenmodes of the highly improved staggered quark matrix near the chiral crossover
transition in QCD with 2þ 1 flavors with the aim to gain more insights into its temperature dependence.
On performing the continuum extrapolation, we do not observe any gap opening up in the infrared part of
the eigenvalue density of the QCDDirac operator; instead we observe a peak. The existence of the peak and
oscillations of the infrared eigenmodes can be understood in terms of an interacting ensemble of instantons.
From the properties of the continuum extrapolated eigenspectrum we further show that the anomalous
UAð1Þ part of the chiral symmetry is not effectively restored simultaneously along with its nonsinglet
counterpart. We provide an explanation for this observation, further showing interesting connections
between the anomalous UAð1Þ restoration and the change in the infrared part of the eigenvalue distribution.
DOI: 10.1103/PhysRevD.108.094501

I. INTRODUCTION

The eigenvalue spectrum of the quark Dirac operator
contains valuable information about the fundamental
properties of quantum chromodynamics (QCD). The chiral
condensate which acts as an (pseudo) order parameter for
the chiral (crossover) transition in QCD is related to the
density of near-zero eigenvalues [1]. In fact it was shown
from very general considerations that the formation of the
chiral condensate is related to the occurrence of small
eigenvalues that scale proportional to the volume [2]. The
breaking of the nonsinglet part of chiral symmetry, i.e.,
SUAð2Þ × SUVð2Þ → SUVð2Þ of QCD with physical quark
masses at the crossover temperature Tc ¼ 156.5�
1.5 MeV [3] can also be explained in terms of modifica-
tions in the deep infrared part of the eigenvalue density.
The flavor-singletUAð1Þ part of the chiral symmetry on the
other hand, is anomalous yet is believed to play an
important role in determining the nature of the chiral phase
transition [4–6]. The temperature dependence of the amount
of UAð1Þ breaking near the chiral crossover transition
in QCD can be only determined using nonperturbative
lattice techniques and is a topic of contemporary interest in

lattice QCD; see, for e.g., Refs. [7,8] for recent reviews.
Whereas there are some very compelling evidence that
show UAð1Þ remains effectively broken in 2þ 1 flavor
QCDwith physical quarkmassm [9–15], evenwhenm → 0
[16], there are lattice studies which also favor an effective
restoration at Tc [17–22].
The eigenvalue spectrum of the QCD Dirac matrix also

encodes within it some remarkable universal properties. It
was shown that the route toward achieving the thermody-
namic limit for the infrared modes of the Dirac operator is
universal [23], for any number of light quark flavors. The
existence of a nonzero chiral condensate leads to a sum rule
involving the sum of inverse squares of these small
eigenvalues [2]. These sum rules are universal irrespective
of the details of the nature and type of gauge interactions
[23,24] and could be derived from chiral random matrix
theory [25]. A good agreement was demonstrated for the
distribution of the small eigenvalues and the spectral
density of the lattice QCD Dirac operator and chiral
random matrix theory at zero temperature on small lattice
volumes [26]. In fact universal correlations between higher
order spectral functions in a random matrix theory has been
derived [27], and its connection to QCD was discussed. At
finite temperature the universal features of infrared eigen-
values can be also accounted for within a random matrix
theory [28–30]. Additionally the infrared eigenvalue spec-
trum of QCD has more subtle features. A near-zero peak of
localized eigenvalues has been observed for finite lattices,
mixing with but very different from the delocalized bulk
modes whose spectral density follows random matrix
statistics [7,31]. Whether or not such a feature survives
in the continuum limit is yet to be ascertained. Previous
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studies of quark Dirac spectrum in an instanton liquid
ensemble [29,32] at zero temperature have observed a
similar peaklike feature.
With increasing temperature the localized modes start

separating out from the random bulk modes leading to the
opening up of a mobility edge [31]. The corresponding
temperature where a finite mobility edge separates the bulk
modes from the localized one was initially estimated from
lattice studies to be identical to Tc in dynamical [33–41] as
well as in quenched QCD [42,43], reminiscent of an
Anderson-like transition that is observed in disordered
semimetals [44]. However independent lattice studies do
discuss another possible scenario where the opening
of a finite mobility edge may occur at temperatures higher
than Tc [45], with an intermediate phase consisting of
scale-invariant infinitely extended infrared modes [46,47]
strongly interacting with the bulk modes leading to a
singularity at the mobility edge.
Most of the previous lattice QCD studies were either

performed in the quenched limit or with dynamical quarks
but away from the physical point and for finite lattice
spacings. On a finite lattice, the most often used lattice
discretization, i.e., the staggered fermions only has a
remnant of the continuum chiral symmetry group due to
mixing of spin and flavor degrees of freedom. Furthermore
the anomalous part of the chiral symmetry in the continuum
is not realized exactly by the staggered/Wilson quarks and
is expected to be recovered only in the continuum limit.
We, for the first time study the properties of the eigenvalue
spectrum of (highly) improved dynamical staggered Dirac
operator in large volume lattices by carefully performing a
continuum extrapolation. We show that the deep infrared
spectrum of a QCD Dirac operator has indeed a peak of
near-zero modes which survives in continuum. These are
distinct from other infrared modes which have a linearly
rising density and a quadratic level repulsion similar to a
certain class of random matrix theories. These so-called
bulk modes are delocalized in volume as compared with the
near-zero modes, and they tend to distinctly disentangle
from each other at a temperature ∼1.15Tc, which is also
where UAð1Þ is effectively restored. In the subsequent
sections we discuss our results and also provide a unified
physical explanation of these phenomena we observe.

II. NUMERICAL DETAILS

In this work we use the gauge configurations for 2þ 1
flavor QCD with physical quark masses generated by the
HotQCD Collaboration using highly improved staggered
quark (HISQ) discretization for the fermions and tree-level
Symanzik improved gauge action. These ensembles have
been previously used to measure the equation of state of
QCD both at zero and finite baryon density [3,48]. The
Goldstone pion mass is set to 140 MeV, and the kaon mass
is 435 MeV for these configurations. We focus on five
different temperatures, one below Tc and others above Tc.

For most of these temperatures we consider three different
lattice spacings corresponding toNτ ¼ 8, 12, 16, the details
of which are mentioned in Table I. The number of spatial
lattice sites was chosen to beNs ¼ 4Nτ such that the spatial
volume in each case was about 4 fm, which ensures that the
system is close to the thermodynamic limit. We calculated
the first 60,100,200 eigenvalues of the massless HISQ
Dirac matrix for Nτ ¼ 16, 12, 8 respectively on these gauge
ensembles using conjugate gradient method based algo-
rithms. We have fixed the bin size λa ¼ 0.001 for each Nτ

for measuring the eigenvalue density and performed a
jackknife analysis to remove any autocorrelation effects
among the data in the bins.

III. RESULTS

A. General features of the eigenvalue spectrum of QCD
using HISQ Dirac operator in continuum limit

In this section we study in detail the eigenvalue density
ρðλÞ of the quark Dirac operator in 2þ 1 flavor QCD by
performing a continuum extrapolation of the parameters
characterizing the eigenspectrum calculated on the lattice
with HISQ discretization.
At zero temperature it is known from chiral perturbation

theory [49] that the linearly rising part of the eigenvalue
density, due to the so-called bulk modes, is expressed as

ρðλÞ ¼ h0jψ̄ψ j0i
π

þ jλjh0jψ̄ψ j0i2 N2
f − 4

32π2NfF4
π
þ :: ð1Þ

The intercept of bulk eigenvalue density gives the chiral
condensate. The ratio of the slope and the intercept of the
density as a function of λ should be proportional to the
chiral condensate. We first focus on the intercept and
the slope (linear in λ) of the eigenvalue density at the lowest
temperature T ¼ 145 MeV, shown in the top left panel of
Fig. 1, and compare with the expectations from Eq. (1).

TABLE I. Number of configurations for different temperatures
(β values) and the corresponding lattice sizes used in this work.

T (MeV) β Ns Nτ Nconfs

145 6.285 48 12 1530
145 7.010 64 16 2860
162 6.423 32 8 250
162 6.825 48 12 1960
162 7.130 64 16 3390
166 6.445 32 8 400
166 6.850 48 12 2100
166 7.156 64 16 2190
171 6.474 32 8 280
171 6.880 48 12 1980
171 7.188 64 16 1040
176 6.500 32 8 240
176 6.910 48 12 330
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At this temperature we could only obtain a continuum
estimate of the slope and intercept as we have data for two
lattice spacings. From the continuum estimate of the
intercept we obtain a chiral condensate h0jψ̄ψ j0i=T3 ¼
18.4 using Eq. (1). From the slope we could similarly
extract the square h0jψ̄ψ j0i2 and by substituting Nf ¼ 3,
Fπ ¼ 94.14 MeV the chiral condensate (normalized by T3)
to be 17.3 which is consistent with the one extracted
from the intercept. This demonstrates the consistency
of our fit procedure. The value obtained here from the
eigenvalue spectrum is also consistent with the value of
h0jψ̄ψ j0i=T3 ¼ 18.8 obtained from the inversion of the
HISQ Dirac operator on stochastic noise vectors and
performing a continuum estimate using the Nτ ¼ 12, 16
data on a much larger set of HotQCD configurations [50].
Thus we conclude here that the leading features of the
eigenvalue density of QCD at 145 MeV are indeed very
well represented within chiral perturbation theory.
The bulk eigenvalue density in the chirally symmetric

phase has been studied earlier in Ref. [51]. Most generally,
it can be expressed as a function of λ as

ρðλÞ
T3

¼ ρ0
T3

þ λ

T
:
c1ðT;mÞ

T2
þ λ2

T2
:
c2ðT;mÞ

T
þ λ3

T3
c3ðT;mÞ:

ð2Þ

Here c1 is the coefficient that characterizes the leading-
order growth of the eigenvalue spectrum in the deep
infrared and c2 is its next-to leading-order coefficient
which eventually has a λ3 dependence predicted from
perturbation theory. The intercept ρ0 gives the chiral

condensate. The coefficients c1;2;3 can in general be a
function of the temperature T and the light-quark mass m.
The results of the eigenvalue density ρðλÞ=T3 as a

function of λ for T > Tc are shown in Fig. 1. On the
finest available Nτ ¼ 16 lattice, we observe two distinct
features in the eigenvalue spectrum, a peak of near-zero
eigenvalues and the linearly rising part, due to the bulk
modes, as previously mentioned. For T ≲ Tc, the near-zero
and the bulk eigenvalues overlap strongly making it
impossible to distinguish them apart. At higher temper-
atures, the bulk eigenvalues separate out from the deep-
infrared part of the spectrum allowing for near-zero modes
to be distinctly visible. Comparing the results of different
lattice spacings, we observe the same trend at each temper-
ature above Tc, i.e., near-zero peak gets smeared with the
bulk for coarser lattices and becomes more prominent in
the continuum limit. This is thus a physical feature of the
eigenspectrum and not a lattice artifact. In order to interpret
its origin we recall that in the chiral random matrix theory
(cRMT) at zero temperature, the scaled eigenvalue ðcλÞ
density of the Dirac operator for Nf ¼ 2 flavors and zero
topological charge sector is distributed according to [52]

ρðcλÞ ¼ cλ
2
½J22ðcλÞ − J3ðcλÞJ1ðcλÞ�: ð3Þ

To compare our data with the above formula, we take
c ¼ Vh0jψ̄ψ j0i=T, where V is the spatial volume of the
system, and the value of hψ̄ψi at finite temperature is
obtained from Ref. [50] which uses the same HotQCD
gauge configurations, a subset of which is used in this
work. Further we also scale the eigenvalues such that the
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FIG. 1. Eigenvalue spectrum for HISQ Dirac operator for three different lattice spacings corresponding to Nτ ¼ 8, 12, 16 at T ¼ 162,
166, 171 MeV, for two different lattice spacings, Nτ ¼ 12, 16 at T ¼ 145 MeV and Nτ ¼ 8, 12 at T ¼ 176 MeV.
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first moment of probability distribution for lowest eigen-
values for the data matches with the first moment of Eq. (4).
A comparison of near zero modes for four different
temperatures, T ¼ 145, 162, 166, 171 MeV, is shown in
Fig. 2. We observe a good agreement with cRMT for
T ¼ 145 MeV, in particular, the initial few oscillations
of the small eigenvalue density as a function of cλ.
Incidentally an agreement between Eq. (3) and the eigen-
value density from the instanton liquid model (ILM) at
T ¼ 0 was observed in [53]. However at finite temperature
the oscillations in the eigenvalue density within ILM are
smeared out over a length scale ∼1=T [29] which is
qualitatively similar to what we observe for T > Tc
in Fig. 2.
Now focusing on the bulk modes, it was shown using

chiral Ward identities that in the symmetry-restored phase,
the sufficient condition for UAð1Þ restoration evident
from the degeneracy of up to six-point correlation functions
in the scalar-pseudo-scalar sector are c1 ¼ Oðm2Þ þ � � �
and c3 ¼ c30 þOðm2Þ þ � � �. The perturbative λ3 growth in
Eq. (2) can have a mass-independent coefficient which
however does not lead to UAð1Þ breaking. We verify
whether indeed it is true even nonperturbatively by per-
forming a fit to the bulk part, i.e., all eigenvalues λ > λ0
with ρðλÞ

T3 ¼ λ
T :

c1ðT;mÞ
T2 þ ρ0

T3. This ansatz neglects higher
powers in λ which is well justified since we are in the
deep infrared of the eigenspectrum, represented by Oð100Þ
eigenvalues out of a total million available on such lattice
sizes. The results of the fit are discussed in Table II. The
extracted slope c1 for each temperature T > Tc, at three
different values of Nτ then allows us to perform a
continuum (∼1=N2

τ ) extrapolation of this coefficient. We
next study the m dependence of this continuum extrapo-
lated coefficient c1ðm; TÞ. The results of the fits are shown
in Fig. 3. It is evident from the fit that it is more favorable
that c1 is proportional to T2 (χ2=d:o:f ¼ 0.6) to leading

order rather than c1 is proportional to m2 (χ2=d:o:f ¼ 0.1).
From the fit we obtain the value of c1ðm; TÞ=T2 ¼ 16.8ð4Þ.
The finite result for the slope in the continuum limit, i.e.,

them-independent term in c1 ensures that the UAð1Þ part of
the chiral symmetry will remain minimally broken in the
chiral limit in the symmetry-restored phase as the maxi-
mum contribution to UAð1Þ breaking comes from the near-
zero eigenvalues, which we observe in the next section.
Moreover the slope of the eigendensity for T ≲ 1.12Tc is
distinctly different from the perturbative λ3 rise implying
significant nonperturbative effects.

B. The fate of UAð1Þ breaking in the continuum limit

Since the flavor singlet part of the chiral symmetry is
anomalous it has no corresponding order parameter. Hence
to measure whether this singlet part of the chiral symmetry
is simultaneously (and effectively) restored along with the
nonsinglet part, it has been suggested [54] to look at the
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FIG. 2. Near-zero (scaled) eigenvalue density for HISQ Dirac
operator at T ¼ 145, 162, 166, 171 MeV for the finest lattice
spacing corresponding to Nτ ¼ 16 and its comparison with
cRMT prediction available at T ¼ 0.

TABLE II. Lattice sizes (N3
σ × Nτ), temperatures (T), the

estimated values of c1=T2 and ρ0=T3 after the fit to the bulk
modes which are defined beyond the lower cutoff at λ0=T.

T (MeV) Nτ λ0=T
c1
T2 ρ0=T3

145 12 0.1 9.0(5) 7.30(7)
145 16 0.05 9(1) 6.67(9)
162 8 0.2 8.8(3) 4.1(1)
162 12 0.15 13.2(2) 2.69(5)
162 16 0.1 17.5(5) 1.93(7)
166 8 0.2 8.9(1) 3.31(5)
166 12 0.15 13.3(3) 1.92(6)
166 16 0.1 16.6(8) 1.4(1)
171 8 0.2 9.3(1) 2.38(5)
171 12 0.15 12.9(1) 1.19(3)
171 16 0.1 17.0(5) 0.45(8)
176 8 0.2 9.5(1) 1.67(4)
176 12 0.15 13.0(2) 0.36(6)
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FIG. 3. Continuum estimates for c1ðm; TÞ=T2 for T > Tc
obtained after fitting the points with an m-independent constant
(orange band) and a sum of quadratic (m2=T2) and quartic
(m4=T4) dependent fit functions (gray band).
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degeneracies of the integrated correlators of mesons, i.e.,
χπ − χδ. In the continuum, the integrated meson correlators
are related to each other through the following relations,
χδ ¼ χσ − 4χdisc and χπ ¼ χη þ 4χ5disc. These integrated
meson correlators are defined as χπ ¼

R
d4xhπiðxÞπið0Þi,

χσ ¼
R
d4xhσðxÞσð0Þi, χδ ¼

R
d4xhδiðxÞδið0Þi, and χη¼R

d4xhηðxÞηð0Þiwhere i¼1, 2, 3. We measure ðχπ−χδÞ=T2

at the four different temperatures above Tc, and perform a
∼1=N2

τ continuum extrapolation at each temperature, the
results of which are shown in Fig. 4. For the highest
temperature, we have only two data points available corre-
sponding to Nτ ¼ 8; 12 for performing the continuum
extrapolation. We hence assigned 40% and 20% error to
the values for the slope and the intercept respectively, similar
to that obtained from a fit to the T ¼ 171 MeV data. This
observable receives 99% contribution from the near-zero
eigenvalues for Nτ ¼ 16. Performing continuum estimates
with only two data points corresponding to finer lattice sizes
Nτ ¼ 16, 12 at each temperature gives a higher intercept
than the corresponding extrapolation considering all three
Nτ values. Hence the finiteness of this observable is quite
robust, and we conclude that UAð1Þ does not get effectively
restored at Tc.
Motivated from the fact that the major contribution to

ðχπ − χδÞ=T2 comes from the near-zero modes, we expect a
1=T2 dependence to this quantity if the corresponding
eigenvalue density can be characterized as a well-defined
peak. Furthermore from the chiral perturbation theory at
finite temperature one expects a similar 1=T2 dependence
[55] near T ≳ Tc. We thus fit the continuum extrapolated
values of ðχπ − χδÞ=T2 at each temperature T > Tc, i.e., the
intercept of the fits shown in Fig. 4 to the ansatz aþ b=T2.
After performing the fit, shown in Fig. 5 we extract the
temperature T=Tc ¼ 1.147ð25Þ beyond which this UAð1Þ-
breaking observable drops to zero.
Earlier analytic works based on the properties of inte-

grated two-point meson correlators argued that the UAð1Þ

breaking comes from the eigenmodes of the Dirac operator
at λ ¼ 0 [56] or close to zero [57]. Whereas exact zero
modes do not contribute in the thermodynamic limit, the
density of near-zero modes at T > Tc was expected to be
zero [57] in the chiral symmetry-restored phase of QCD,
whereas we observe a robust presence of the near-zero
modes in the continuum limit which dominantly contrib-
utes to UAð1Þ breaking for T ≲ 1.15Tc.
We next compare our result with the earlier observation

of UAð1Þ (effective) restoration temperature of ∼200 MeV
obtained from the continuum extrapolated results for the
integrated screening correlators ðχπ −χδÞ=T2 in 2þ 1
flavor QCD using HISQ discretization [14] with heavier
than physical light quark mass, corresponding to mπ ¼
160 MeV. The corresponding pseudocritical temperature is
also higher by ∼4 MeV; hence the restoration temperature
comes out to be around 1.2Tc which agrees with us within
the error bar. Furthermore a recent work [15] has reported
breaking ofUAð1Þ due to am2δðλÞ feature in the eigenvalue
spectrum at about 1.5Tc which survives even in the chiral
limit. We note here that UAð1Þ breaking due to this specific
feature of the Dirac spectrum is expected to survive even at
asymptotically high temperatures where the QCD vacuum
can be explained in terms of a dilute gas of instantons
[12,13]. We however discuss here how a nontrivial break-
ing of the UAð1Þ part of chiral symmetry can arise due to
features in the infrared part of the eigenvalue spectrum
unlike the dilute instanton gas regime and show that beyond
1.15Tc such a contribution gets effectively restored which
then may transition into the temperature regime studied in
Ref. [15]. We next verify that the chiral Ward identities are
satisfied by the HISQ action.

C. Verifying the chiral Ward identities

In the chiral symmetry-restored phase, χσ ¼ χπ and
χδ ¼ χη one obtains χπ − χδ ¼ 4χ5;disc. Using chiral
Ward identities it is known that χ5;disc ¼ χt=m2 where χt
is the topological susceptibility of QCD. This allows one to
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relate the UAð1Þ breaking parameter to the topological
susceptibility through the relation 1=4ðχπ − χδÞm2=T4 ¼
χt=T4. A comparison of these two observables is shown in
Fig. 6. From the figure it is evident that for T > 1.05Tc,
when chiral symmetry is effectively restored, the two
quantities agree with each other within errors. This is
particularly interesting since for staggered quarks, even
though the chiral and taste symmetries are intermixed at
finite lattice spacing, the symmetries of QCD and related
chiral Ward identities are recovered in the continuum limit.

D. Distribution of the lowest eigenvalue
at finite temperature

The probability distribution of the lowest eigenvalue of
the QCD Dirac operator λmin has inherent information
about the microscopic degrees of freedom. For a chiral
random matrix ensemble for Nf ¼ 2 (at zero temperature)
the lowest eigenvalue is distributed according to [52]

PðxÞ ¼ x
2
e−

x2
4 ½J22ðxÞ − J3ðxÞJ1ðxÞ�; x ¼ cλmin: ð4Þ

At the lowest temperature T ¼ 145 MeV, we calculate the
probability distribution of the scaled lowest eigenvalue
cλmin at different lattice spacings and perform a continuum
estimate of the distributions, for which we have extracted
the lowest eigenvalue from each configuration for Nτ ¼ 12,
16 for T ¼ 145 MeV and Nτ ¼ 8, 12, 16 for T ¼
171 MeV and later rescaled to the dimensionless quantity
cλmin, where the value of hψ̄ψi at finite temperature is
obtained from Ref. [50]. Keeping the bin size constant we
obtained the probability distribution of cλmin for each Nτ

and then performed a spline interpolation by taking
appropriate weights proportional to the errors for each
data point in order to have a smoother interpolating curve.
Next we performed a continuum extrapolation at each value
of cλmin of the interpolating function with the ansatz

cþ d=N2
τ . We assigned a 15% error for T ¼ 145 MeV,

as we only had two points while performing the continuum
extrapolation. In order to compare the probability distri-
bution of the lowest eigenvalue for both the temperatures
with Eq. (4) we have to match their first moments with the
cRMT distribution. We have calculated the first moment for
Eq. (4) and found the result to be 4.344. Next we have
scaled the cλmin and the probability distribution for the
lowest eigenvalue obtained at both these temperatures from
our calculations in 2þ 1 flavor QCD such that the first
moment is exactly 4.344 and the area under the curve is
unity. The probability distribution of the scaled lowest
eigenvalue is shown in Fig. 7. The continuum extrapolation
of the probability distribution at T ¼ 145 MeV shown as
the orange band is close to the probability distribution of a
Nf ¼ 2 chiral Gaussian unitary random matrix ensemble.
In contrast, we also plot the probability distribution of the
scaled lowest eigenvalue at T ¼ 171 MeV whose con-
tinuum extrapolation is shown as a blue band in Fig. 7. It is
evident that the lowest eigenvalue which is a part of the
near-zero peak follows a very different statistics rather than
known from a chiral RMT.

E. The level spacing distribution for bulk modes

In order to understand the properties of bulk modes we
look at their level spacing distribution. To study the
universal properties of the eigenvalue level spacing fluc-
tuations one has to remove the system dependent mean.
This is done by a method called unfolding. Let λ represent
eigenvalues in the ascending sequence for any particular
gauge configuration. The average density of the eigenval-
ues in the sequence, i.e., the reciprocal of the average
spacing as a function of λ is represented as ρ̄ðλÞ. The
eigenvalue sequence can then be unfolded using the
average level-staircase function, η̄ðλÞ ¼ R

λ
λ0
dλ0ρ̄ðλ0Þ which

tells us how many eigenvalues in this sequence are less than
λ on average. Here λ0 labels the eigenvalue beyond which

 0

0.005

 0.01

0.015

 0.02

0.025

 1.03  1.04  1.05  1.06  1.07  1.08  1.09  1.1  1.11  1.12  1.13
T/Tc

(χπ-χδ)ml
2/4T4

χt/T
4

FIG. 6. A comparison of the integrated renormalized
correlator ðχπ − χδÞm2=4T4 with the topological susceptibility
(measured independently using gradient flow in Ref. [58]) for
temperatures >Tc.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8  9

P(
cλ

m
in

)

cλmin

T=145 MeV
=171 MeV

cRMT prediction

FIG. 7. The continuum extrapolated probability distribution of
scaled lowest eigenvalue for T ¼ 145, 171 MeV shown as orange
and blue bands respectively, and these are compared with the
cRMT prediction for Nf ¼ 2.

KACZMAREK, SHANKER, and SHARMA PHYS. REV. D 108, 094501 (2023)

094501-6



all the higher eigenvalues are bulk modes and below which
are the near-zero modes. The unfolded sequence is labeled
by λufi ¼ η̄ðλiÞ, where the index i labels the original
eigenvalue whose unfolding is performed. When appropri-
ately normalized, the average spacing between the unfolded
eigenvalues equals unity. The nearest neighbor spacing
distribution is constructed by calculating the differences
between consecutive unfolded eigenvalues λufiþ1 − λufi and
organizing them into histogram bins. This gives us a picture
of how the eigenvalue spacings fluctuate about the average
which we have shown in Fig. 8 for four different temper-
atures T ¼ 162, 166, 171, 176 MeV and at each temper-
ature, for the two different lattice sizes Nτ ¼ 8, 12. We then
compare the nearest neighbor spacing distributions to the
Wigner surmise for the Gaussian unitary ensemble (GUE)
given by PðsÞ ¼ 32=π2s2e−4s

2=π shown as dotted lines in
Fig. 8. It is evident that the level repulsion between the bulk
modes for small s is quadratic similar to that of random
matrices belonging to the GUE. We see however that as the
temperature increases, the agreement to GUE with the
Nτ ¼ 12 data for s > 1 is not so good, whereas the low
s < 1 part agrees very well. This occurs due to the
contamination of the bulk modes, which are more closely
spaced than the near-zero modes which start to build up
forming a peaklike structure in the infrared part of the
eigenvalue spectrum. For the Nτ ¼ 16 lattices which has a
clear well-defined peak of near-zero modes at T≥166MeV,
the contamination with the bulk modes is expected to be
even more severe. As expected the comparison of the tail of
the spacing distribution of the Nτ ¼ 16 data to the GUE
prediction produces not-so-good agreement. In order to
account for the long tail of the spacing distributionwe fit it to
a distribution PðsÞ ∼ s2 exp ð−αsÞ which shows strong
quadratic level repulsion at small values of s but falls off
slowly at large values of s parametrized by a fit parameter α.
After performing the fit of the level separation with this
ansatz, we obtain the value of α ¼ 3.02ð7Þ; 3.17ð9Þ; 3.3ð1Þ
for temperatures T ¼ 162, 166, 171 MeV respectively. The
lattice data now do agree to this new fit ansatz reasonably
well for Nτ ¼ 16 at all temperatures above Tc, which is
evident in Fig. 9.
This is a generic feature of the eigenvalue spacing

distribution of a strongly disordered system [59] whose

bulk eigenmodes in the center of the band follows a similar
behavior as RMTs except for the tails of the distribution
due to contamination with the localized states. We will
explain this feature in more detail in the next section.

F. Separating the near-zero from the bulk eigenvalues
of the QCD Dirac spectrum

Having shown the distinct features of near-zero and bulk
modes, the next question we ask is whether the near-zero
modes which arise due to instanton interactions can
distinctly disentangle out from the delocalized bulk modes.
The QCD medium above Tc consists of quarks interacting
with each other as well residing in a disorder potential very
similar to an interacting electron system in a background
random potential studied in detail in Ref. [59]. Such
systems have a mixing between the localized and delocal-
ized many-body states which is in contrast to the traditional
Anderson model, consisting of noninteracting electrons in
the presence of a random disorder. In the Anderson model,
one-electron states with the same energy but with different
localization properties cannot coexist in three or more
spatial dimensions, d ≥ 3. There exist bands of localized
and extended states, and a unique energy separating two
such bands for d ≥ 3 which is termed as a mobility edge.
The QCDmedium above Tc however cannot be understood
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through a conventional Anderson model; it has far more
interesting properties, like the possibility of the existence of
a scale-invariant infrared phase above Tc discussed in the
recent literature [41,47]. In fact we do observe a mixing
between the localized states with the bulk spectrum of the
QCDDirac operator in the level spacing distribution data as
shown in Fig. 9.
In order to estimate the temperature when the bulk modes

separate out from the deep-infrared peak of eigenvalues, we
first estimate the typical spread of the near-zero peak visible
in the eigenvalue density plots corresponding toNτ ¼ 16 in
Fig. 1. Recall that we have already estimated the slope and
the intercept of the bulk eigenvalue density, using which we
subtract the bulk mode contribution from the total eigen-
value spectrum for the Nτ ¼ 16 data at each temperature.
The near-zero peak which we get after subtracting the bulk
modes has a typical spread which we estimate to be λ=T ¼
0.08 for all the temperatures above Tc. Next, using the fact
that the bulk modes have a linear-in-λ dependence with a
slope c1=T2 ¼ 16.8ð4Þ in the continuum and the near-zero
and bulk modes will separate out at a particular temper-
ature, leading to the density to drop to zero at λ=T ¼ 0.08,
we estimate the value of the bulk intercept ρ0=T3 ¼ −1.34
(corresponding to λ ¼ 0) in the continuum limit. We then
take the values of the intercept ρ0=T3 of bulk mode density
for all T > Tc from Table II and perform a continuum
extrapolation with an ansatz ρ0=T3 þ d=N2

τ . The con-
tinuum values of the quantity ρ0=T3 for T > Tc, so
obtained after the fit are shown in Fig. 10. At the highest
temperature T ¼ 176 MeV, a 10% error is assigned to the
data point since we could perform a continuum estimate,
with data available only for two Nτ values. Next, fitting the
continuum extrapolated data for ρ0=T3 as a function of
temperature with a fit ansatz ρ0=T3 ¼ d1ðT=TcÞ þ d2
we obtain the fit parameters to be d1 ¼ −23.1ð3Þ and
d2 ¼ 25.3ð3Þ respectively. After obtaining this parametric
dependence of the continuum estimates of the intercept as a

function of temperature, we can now extract the temper-
ature where the value of the intercept ρ0=T3 ¼ −1.34, i.e.,
when the near-zero modes distinctly emerge out from the
bulk spectrum. The extracted temperature comes out to be
T ¼ 1.15ð3ÞTc. This is within the temperature range when
theUAð1Þ part of the chiral symmetry is effectively restored.

IV. WHY IS UAð1Þ EFFECTIVELY RESTORED
AT TEMPERATURES ABOVE Tc?

In order to interpret these results, one could visualize
quarks as a many-body state moving in the background of
an interacting ensemble of instantons, where the strength of
the interactions changes as a function of temperature. At the
microscopic level it is conjectured that the instantons
remain strongly correlated below Tc, subsequently tran-
sitioning to a liquidlike phase with a finite but weaker
correlation length [60] just above Tc, and eventually to a
gaslike phase around 2Tc [13,15]. Below Tc the intercept of
the infrared eigenvalue density quantifies the chiral con-
densate which corresponds to the breaking of the non-
singlet part of the chiral symmetry. Owing to very strong
correlations the microscopic details of the interactions are
lost and the eigenvalues repel strongly similar to random
matrices of a GUE. As the temperature is increased, at
∼171 MeV, the near-zero eigenvalues start to become
prominent. These eventually separate from the bulk at
∼1.15Tc. Earlier studies have observed screening of
interinstanton interactions and buildup of local pockets
of Polyakov loop fluctuations [39,61,62] above such
temperatures. This is also the region where the constituent
dyons of the closely spaced instantons interact semiclassi-
cally and thus start to become detectable [63–66].
Incidentally this suppression of long range instanton

interactions also weakens the strength of UAð1Þ breaking,
allowing for its effective restoration at T ≳ 1.15Tc. Lattice
studies [67,68] have reported a jump in the electrical
conductivity around this temperature. Similar phenomena
have also been reported in many-electron systems [59] in a
disordered potential where the interplay between disorder
and interactions causes a separation between the localized
and delocalized states leading to a jump in the electrical
conductivity from near-zero to a finite value.

V. CONCLUSIONS

In this work we have addressed a long-standing question
of whether the flavor singlet UAð1Þ subgroup of the chiral
symmetry gets effectively restored simultaneously with the
nonsinglet part for QCD with two light quark flavors at Tc.
The effective restoration of the anomalousUAð1Þ symmetry
is a nonperturbative phenomenon driven by the deep
infrared part of the QCD Dirac eigenvalue spectrum. By
carefully performing the continuum extrapolation of the
staggered Dirac spectrum on the lattice and studying in
detail its properties, we explicitly demonstrate that UAð1Þ
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eigenvalue densities at different temperatures above Tc. The
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spectrum when it completely separates from near-zero modes.
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remains effectively broken in the chirally symmetric phase
(T > Tc) for T ≲ 1.15Tc. We also provide arguments for
why this conclusion should remain unchanged even in the
chiral limit.
With the increase in temperature the strength of inter-

actions between the instantons starts toweaken due towhich
the deep infrared peak of the spectrum is separated out from
the bulk modes, which happens at around T ∼ 1.15Tc. The
tunneling probability due to instantons also decreases with
increasing temperature which results in lowering of the
height of the near-zero peak of eigenvalue density. We show
for the first time that both these phenomena are possibly the
reason behind theUAð1Þ restoration, which also surprisingly
happens to be around the same temperature. Observations of
such a rich interplay of phenomena in QCDmatter above Tc
should be quite robust, since these aremade after performing
a continuum extrapolation. It will be interesting to observe
further finer details of chiral transition in the massless limit
with QCD Dirac operators which have exact chiral sym-
metry on the lattice.
All data from our calculations, presented in the figures of

this paper, can be found in Ref. [69].
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