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We consider electroweak gauge boson corrections to the masses of pseudoscalar mesons to next to
leading order in αs and 1=NC. The pion mass shift induced by the Z boson is shown to be
mπ� −mπ0 ¼ −0.00201ð12Þ MeV. While being small compared to the electromagnetic mass shift, the
prediction lies about a factor of ∼4 above the precision of the current experimental measurement and a
factor Oð10Þ below the precision of current lattice calculations. This motivates future implementations of
these electroweak gauge boson effects on the lattice. Finally, we consider beyond standard model
contributions to the pion mass difference.
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I. INTRODUCTION

At very low energies, the strong interaction of mesons is
successfully described by the chiral Lagrangian, a pertur-
bative expansion in derivatives of the Goldstone fields, and
light quark masses. The effective action is entirely deter-
mined by the symmetries, and, once the parameters of the
theory are fixed by observation of several meson quantities,
a highly predictive theory emerges, chiral perturbation
theory [1–3].
In QCD with three light flavors, the global symmetry

is SUð3ÞL × SUð3ÞR, giving eight Goldstone bosons after
spontaneous symmetry breaking by the formation of
quark condensates. Turning on quark masses, Mq ¼
diagðmu;md;msÞ, explicitly breaks the flavor symmetry,
and the meson fields get a mass. The effective action does
not allow one to obtain the meson masses purely as a
function of quark masses, but it is possible to find relations
that connect ratios of the meson masses to (renormaliza-
tion-scheme-independent) ratios of quark masses, one
example being the renowned Gell-Mann-Oakes-Renner

relation
m2

K�−m
2

K0

m2
π

¼ mu−md
muþmd

.

The process of gauging part of the global symmetries
also breaks the chiral flavor symmetry, generating masses

for the pseudoscalar mesons. This is well known for the
case of electromagnetism, which breaks the shift sym-
metries of the charged mesons, thereby generating the pion
and kaon mass shifts: δmπ ¼ mπ� −mπ0 . This quantity has
been computed using current algebra [4] and in chiral
perturbation theory with explicit resonance fields [5],
giving δmπ compatible with the experimental result [6]:

δmπjexp ¼ mπ� −mπ0 ¼ 4.5936� 0.0005 MeV: ð1Þ

The pion mass shift is a quantity that can also be
computed on the lattice. This direction was initiated in
[7] and currently has reached a level of considerable
accuracy [8,9]. The most precise lattice result [8]

δmπ ¼ mπ� −m0
π ¼ 4.534� 0.042� 0.043 MeV ð2Þ

is compatible with the experimental measurement in
Eq. (1). While the error on the lattice still has to be
substantially reduced to reach the experimental precision,
given the rate of improvement of lattice precision in recent
years it is not unreasonable to think that in the near future
the size of both errors might be comparable.
In this paper, we show that heavy electroweak (EW)

gauge bosons induce small but possibly observable mass
shifts between the neutral and charged mesons for both the
pion and the kaon. Because of the chiral structure of
the weak interaction, to leading order (LO) in GF, only the
Z boson contributes to the mass shifts. Similar results to LO
in αs were noted in [10].
By doing a calculation at next to leading order (NLO) in

both αs and 1=Nc, our results will show that the expected
mass shift induced by the Z lies well above the uncertainty
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of the current experimental measurement and slightly below
the lattice uncertainties. This implies that future lattice
simulations should be sensitive to the effects of the EW
gauge bosons, reflecting the need for an implementation on
the lattice. This direction is particularly interesting to learn
about flavor symmetry breaking by the weak interaction in
the chiral limit. Finally, we discuss future directions includ-
ing effects of new physics on themass differences ofmesons.

II. ELECTROWEAK INTERACTION AND THE
PION MASS DIFFERENCE

QCD with three light flavors has a SUð3ÞL × SUð3ÞR
global flavor symmetry. Starting at the order of Oðp2Þ and
neglecting momentarily quark masses, the effective
Lagrangian below the chiral symmetry breaking scale is
of the form

L2 ¼
F2

4
TrðDμUðDμUÞ†Þ; ð3Þ

where F is the chiral coupling constant and the SUð3Þ
matrix U ¼ exp ½i

ffiffi
2

p
F Φ� incorporates the pseudoscalar

Goldstone octet

Φ ¼

0
B@

π0ffiffi
2

p þ η0ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ η0ffiffi
6

p K0

K− K̄0 − 2ffiffi
6

p η0

1
CA: ð4Þ

In the SM, the SUð2Þ ×Uð1Þ subgroup of this flavor
symmetry is gauged. In general, gauging a subgroup of
SUð3ÞL × SUð3ÞR by gauge bosons L and R is done by
introducing a covariant derivative of the form

DμU ¼ ∂μU − iQLlμU þ iUrμQR: ð5Þ

For the SM gauge bosons, this amounts to introducing

DμU ¼ ∂μU − i
gffiffiffi
2

p ðWþ
μ T−

W þW−
μT

þ
WÞU

− ieðAμ − tan θWZμÞ½Qem; U� − i
g

cos θW
ZμT3LU;

ð6Þ

where we have explicitly included the photon and the EW
gauge bosons with the generators

T−
W ¼ ðTþ

WÞ† ¼

0
B@

0 Vud Vus

0 0 0

0 0 0

1
CA ð7Þ

and the diagonal matrices T3L ¼ diagð1=2;−1=2;−1=2Þ
and Qem ¼ diagð2=3;−1=3;−1=3Þ. The heavy EW gauge

bosons are introduced as spurions in order to track the
pattern of explicit symmetry breaking. However, since
these particles lie well above the cutoff of the effective
theory, usually taken to be ΛχSB ∼ 4πF, special care has to
be taken in deriving explicit results from this Lagrangian.
We shall return to this issue momentarily.
Expanding Eq. (3) to quadratic order in Φ, we can see

that nonzero Goldstone masses are generated by terms of
the form

−
F2

2
TrðQLUQRU†Þ ¼̇ 1

2
Trð½QL;Φ�½Φ; QR�Þ; ð8Þ

where QL and QR are spurion matrices representing the
action of gauge fields.
One notices that not all of these terms are breaking the

shift symmetries in the chiral limit, because meson self-
energies are generated by loop diagrams with no external
gauge bosons. Consequently, terms involving different
gauge bosons do not contribute at LO to the meson masses.
Since theW� couplings are purely left-handed, they cannot
contribute to QR and, therefore, do not generate any meson
mass shift.
The only contribution to QR comes from the spurion

Qem, which as seen from Eq. (6) occurs for both the photon
and the Z, and acts as

½Qem;Φ� ¼

0
B@

0 πþ Kþ

−π− 0 0

−K− 0 0

1
CA: ð9Þ

This implies that only charged mesons can get a mass, and
this occurs through the interaction with neutral gauge
bosons, which contribute as

eg
2 cos θW

Trð½T3L;Φ�½Φ; Qem�ÞðAμ − tan θWZμÞZμ ð10Þ

and

e2

2
Trð½Qem;Φ�½Φ; Qem�ÞðAμ − tan θWZμÞðAμ − tan θWZμÞ:

ð11Þ

Again, the term involving AμZμ cannot contribute to meson
masses. Combining Eqs. (10) and (11) and retaining only
the relevant terms involving AμAμ and ZμZμ, the interaction
reads

e2ðπþπ− þ KþK−ÞðAμAμ − ZμZμÞ: ð12Þ

An order of magnitude estimate can be given at this point
for the Z-boson-induced mass shift using naive dimen-
sional analysis:
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Δm2
π ¼

e2

4π2M2
Z
Λ4
χSB → δmπ ∼ 0.002 MeV: ð13Þ

The fact that this estimate lies above the current exper-
imental uncertainty and is comparable to the lattice
precision motivates us to perform a more careful analysis.
As in the electromagnetic (EM) contribution [5], we

capture the effects of both Aμ and Zμ by adding the
following local operators involving the spurion matrices
Qem and QZ

L;R ≡ g
cos θW

QL;R:

LC
2 ¼ e2CemhQemUQemU†i þ 4

ffiffiffi
2

p
GFCZhQLUQRU†i;

ð14Þ

with 4
ffiffiffi
2

p
GF the low-energy coupling of the Z boson,

QL ¼

0
B@

1
2
− 2

3
x 0 0

0 − 1
2
þ 1

3
x 0

0 0 − 1
2
þ 1

3
x

1
CA; ð15Þ

QR ¼

0
B@

− 2
3
x 0 0

0 1
3
x 0

0 0 1
3
x

1
CA; ð16Þ

and x ¼ sin2 θW . The determination ofCZ to NLO in αs and
1=Nc is the goal of this paper.
The coefficients Cem and CZ are low-energy constants

determined from the high-energy theory and determine the
electromagnetic and electroweak meson mass differences
Δm2

P ≡m2
P� −m2

P0 of pions and kaons in the chiral limit:

Δm2
π ¼ Δm2

K ¼ 2e2

F2

�
Cem −

CZ

M2
Z

�
: ð17Þ

In [5] it was shown that the EM mass shift from
resonance exchange saturates the constant Cem and is given
in terms of the resonance parameters FV and MV by

Δm2
πjem ¼ 3αem

4πF2
F2
VM

2
V ln

F2
V

F2
V − F2

: ð18Þ

A corresponding resonance loop calculation including the
Z boson in order to determine CZ is subtle. The reason is
that the parameter MZ lies well above the cutoff, ΛχSB, and
the Z therefore must be integrated out.
The resulting EFT is QCD with four-fermion operators

that encode all the information of the chiral symmetry
breaking by the EW bosons. Using the renormalization

group (RG) to run the Wilson coefficients of these
operators down to a scale μ ∼ 1 GeV allows matching to
the operators in Eq. (14) of the chiral Lagrangian and
thereby a determination of CZ.

A. Z-induced left-right four-quark operators

Integrating out the Z boson introduces four-fermion
operators that break the chiral SUð3ÞL × SUð3ÞR sym-
metry. The relevant left-right (LR) operators are

½QLR
1 �ijkl ¼ ðq̄LiγμqLjÞðq̄RkγμqRlÞ; ð19Þ

½QLR
2 �ijkl ¼ ðq̄LiqRkÞðq̄RlqLjÞ; ð20Þ

with i, j, k, and l being light-quark flavor indices. While
QLR

1 is generated by a Z exchange at tree level, QLR
2 is

obtained after applying a Fierz identity on the gluon
corrections to QLR

1 .
The effective Lagrangian below MZ reads

Leff ¼ −4
ffiffiffi
2

p
GF

X
ijkl

ðQLÞijðQRÞkl½C1QLR
1 þ C2QLR

2 �ijkl;

ð21Þ

with C1;2 being the Wilson coefficients.
When QCD effects are taken into account, the renor-

malized Wilson coefficients at the MZ scale become [11]

C1 ¼ 1þ αs
4π

3

Nc

�
− ln

M2
Z

μ2
−
1

6

�
; ð22Þ

C2 ¼
αs
4π

�
−6 ln

M2
Z

μ2
− 1

�
; ð23Þ

where the nonlogarithmic corrections are scheme depen-
dent. The operators above will mix under RG flow, and
their evolution down to the scale of interest (∼1 GeV) can
be calculated by standard procedures [12], using their
anomalous dimension matrices:

dC⃗
d ln μ

¼ γTC⃗: ð24Þ

Up to the order of Oðα2sÞ, this matrix can be expanded as

γ ¼ αs
4π

γ0 þ
�
αs
4π

�
2

γ1 þOðα3sÞ; ð25Þ

with γ0 and γ1 given by [13]

γ0 ¼
� 6

Nc
12

0 −6Nc þ 6
Nc

�
; γ1 ¼

0
B@

137
6
þ 15

2N2
c
− 22

3Nc
f 200

3
Nc − 6

Nc
− 44

3
f

71
4
Nc þ 9

N − 2f − 203
6
N2

c þ 479
6
þ 15

2N2
c
þ 10

3
Ncf − 22

3Nc
f

1
CA: ð26Þ
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Solving Eq. (24) yields the evolution:

C⃗ðμÞ ¼ T exp

�Z
αsðμÞ

αsðMZÞ
dαs

γT

βðαsÞ
�
C⃗ðMZÞ; ð27Þ

where we have introduced the QCD β function as

β ¼ −2αs
�
β0

αs
4π

þ β1

�
αs
4π

�
2

þOðα3sÞ
�
: ð28Þ

The coefficients used are given by β0 ¼ 11Nc−2f
3

and β1 ¼
34
3
N2

c − 10
3
Ncf − N2

c−1
Nc

f [14], where f is the number of
active flavors.
To NLO and after integrating out the b and c quarks, the

Wilson coefficients at the scale μ ∼ 1 GeV are

C1 ¼ 0.92; C2 ¼ −2.45: ð29Þ

Similar enhancements of C2 are noticed in [15].

B. Matching to the chiral Lagrangian at large Nc

We proceed to match the resulting EFT to the chiral
Lagrangian. We do so by calculating the expectation value
of the matrix elements of the four-fermion operators in the
large-Nc limit in which products of color-singlet currents
factorize.
In this limit, the operatorQLR

1 reduces to the product of a
left and a right current:

½QLR
1 �ijkl ¼ J μ

L;jiJ
R
μ;lk: ð30Þ

Since the low-energy representation of these currents starts
at OðpÞ in the chiral-perturbation-theory expansion, the
large-NC expression of QLR

1 is of Oðp2Þ and, therefore,
does not contribute to the Oðp0Þ operator in Eq. (14).
Owing to its different scalar-pseudoscalar structure, the
operator QLR

2 does contribute at Oðp0Þ, receiving a chiral
enhancement of the form

½QLR
2 �ijkl ¼ hq̄iLqkRihq̄lRqjLi

�
1þO

�
1

Nc

��
ð31Þ

¼ 1

4
B2
0F

4UkiU
†
jl

�
1þO

�
1

Nc

��
þOðp2Þ; ð32Þ

with B0 ¼ −hq̄qi=F2 ¼ m2
π�=ðmu þmdÞ.

Matching the contribution of QLR
2 to the effective theory,

a LO estimate in Nc can be given for CZ:

CZ ¼ −
1

4
B2
0ðμÞF4C2ðμÞ: ð33Þ

One can easily check that, in the large-Nc limit, the μ
dependence of C2ðμÞ is exactly canceled by the quark-mass
factors in B2

0ðμÞ, as it should.

C. 1=Nc corrections to QLR
1

As shown in [10], the low-energy constants in Eq. (14)
can be related to the two-point correlation function of a left
and a right QCD current, ΠLRðQ2Þ, which converges nicely
in the UV. This fact allows one to evaluate the leading
nonzero Oðp0Þ contributions of QLR

1 , originating from
loops of Goldstone bosons and vector and axial-vector
resonance fields, which are NLO corrections in 1=Nc. The
full details of the calculation are given in the Appendix.
Integrating only the low-energy region 0 ≤ Q2 ≤ μ2 (con-
tributions from Q2 > μ2 are already included in the Wilson
coefficients), one finds

ΔCZjQLR
1

¼ 3

32π2

�X
A

F2
Ai
M4

Ai
log

�
1þ μ2

MAi

�

−
X
V

F2
Vi
M4

Vi
log

�
1þ μ2

MVi

��
C1ðμÞ: ð34Þ

Since we are interested in the matrix element of the
operator QLR

1 at around the μ ∼ 1 GeV scale, we work in
the lightest-resonance approximation with their couplings
fixed through the Weinberg conditions [16,17]:

F2
V ¼ M2

A

M2
A −M2

V
F2; F2

A ¼ M2
V

M2
A −M2

V
F2: ð35Þ

Within the single-resonance approximation that we have
adopted, MA ¼ ffiffiffi

2
p

MV [17]. For the numerical evaluation
we will take MV ¼ Mρ ¼ 775.26� 0.23 MeV and F ¼
Fπ ¼ 92.1� 0.8 MeV [14]. As expected from its loop
suppression, ΔCZjQLR

1
is of OðF2Þ ∼OðNcÞ and, therefore,

is a NLO correction in 1=Nc of about Oð10%Þ with respect
to the leading OðF4Þ ∼OðN2

cÞ contribution from QLR
2

in Eq. (33).

D. EW contribution to the pion mass difference

Using Eq. (17) and the results above in Eqs. (33)–(35),
the pion mass shift induced by the Z reads

Δm2
πjZ ¼ e2

M2
Z

�
F2

2
B2
0ðμÞC2ðμÞ þ

3

16π2
C1ðμÞ

M2
AM

2
V

M2
A −M2

V

×

�
M2

V log

�
1þ μ2

M2
V

�
−M2

A log

�
1þ μ2

M2
A

���
:

ð36Þ

This translates into a Z-induced pion mass difference:

δmπjZ ≈
Δm2

πjZ
2mπ

¼ −0.00201ð7Þð2Þð10Þ MeV; ð37Þ

where we have used mπ ¼ 134.9768� 0.0005 MeV [14]
and ðmu þmdÞ=2 ¼ 3.381� 0.040 MeV [18]. The first
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error displays the parametric uncertainty induced by the
different inputs. The second uncertainty accounts for
the renormalization-scale dependence in the interval
μ∈ ½0.8; 1.2� GeV which, as shown in the figure, is tiny.
We have added half the difference between the LO and
NLO results as an estimate of unknown higher-order effects
(third error).
We notice that theZ-boson contribution is about a factor of

∼4 larger than the experimental error in Eq. (1) and ∼Oð10Þ
smaller than the current lattice precision in Eq. (2), reinforc-
ing the motivation to incorporate these effects on the lattice.
The renormalization scale dependence of this result for
energies in the range [0.8, 1.2] GeV is plotted in Fig. 1.

III. DISCUSSION

Before closing, we comment on several points that
deserve mention.

(i) The estimate in Eq. (37) is based on a NLO evaluation
of the Wilson coefficients C1;2ðμÞ, which depends on
the precise values of the strong coupling at MZ,
αsðMZÞ ¼ 0.1184� 0.0008 [18], and at the different
matching scales (known to percent level or better).

(ii) Our result δmπjZ appears to be of the same order as the
two-loop EM effect, which naively one expects to be

δmπjð2Þem ≈
�
αem
2π

�
δmπjð1Þem : ð38Þ

A full understanding of these additional Oðα2emÞ
electromagnetic corrections to the pion mass shift,
including both the leptonic and hadronic contribu-
tions, would feature considerable challenges and is
beyond the scope of this paper.

(iii) Theories beyond the standard model that generate
four-quark LR operators at energies below the new
physics scale, ΛNP ≫ ΛχSB, will induce similar pion
mass shifts. This is the case, for example, of the Z0
models studied in [11] and similar SM extensions.

Since the QCD corrections dominate near the GeV
scale, a reasonable estimate is just the rescaling:

δmπjNP ¼
g2NP
Λ2
NP

δmπjZ
4

ffiffiffi
2

p
GF

: ð39Þ

If new physics is instead light, as proposed in
[19–21], one should appropriately modify the EM
resonance calculation [5].
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APPENDIX

In the large-NC limit, the strong interaction reduces to
tree-level hadronic diagrams. Keeping only those terms that
are relevant for our calculation, the effective Lagrangian
describing the mesonic world contains the LO Goldstone
term L2 and the vector and axial-vector couplings (kinetic
terms are omitted) [17]:

LV;A ¼
X
Vi

FVi

2
ffiffiffi
2

p hVμν
i fþμνi þ

X
Ai

FAi

2
ffiffiffi
2

p hAμν
i f−μνi; ðA1Þ

where fμν� ¼ u†Fμν
L u� uFμν

R u† with U ¼ u2 the Goldstone
SUð3Þ matrix and Fμν

L;R the left (lμ) and right (rμ) field
strengths. The spin-1 resonances are described through the
antisymmetric tensors Vμν

i and Aμν
i [5,22].

The left and right QCD currents are easily computed,
taking derivativeswith respect to the externallμ and rμ fields:

J μ
L ¼ i

F2

2
DμUU† þ

X
Vi

FViffiffiffi
2

p ∂νðuVμν
i u†Þ

þ
X
Ai

FAiffiffiffi
2

p ∂νðuAμν
i u†Þ þ � � � ; ðA2Þ

while J μ
R is obtained from this expression exchanging

u ↔ u† and putting a negative sign in the axial contributions.
The bosonization of ½QLR

1 �ijkl is formally given by [23]

h½QLR
1 ðxÞ�ijkliG ¼ ∂Γ

∂lij
μ ðxÞ

∂Γ
∂rμ;klðxÞ − i

∂
2Γ

∂lij
μ ðxÞ∂rμ;klðxÞ

ðA3Þ
with Γ½l; r� the effective theory generating functional. The
first term is just the product of the two currents and receives
Oðp0Þ contributions from loop diagrams with vector and

FIG. 1. Renormalization scale dependence of the pion mass
shift induced by the Z boson.
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axial-vector internal propagators. The second term (the
derivative of J μ

L with respect to rμ) generates an additional
Oðp0Þ contribution through Goldstone loops. The com-
bined result can be written in the form

X
ijkl

Qij
LQ

kl
R ½QLR

1 �ijkl ¼
3

32π2
hQLUQRU†i

Z
∞

0

dQ2

×

�X
V

F2
Vi
M4

Vi

M2
Vi
þQ2

−
X
A

F2
Ai
M4

Ai

M2
Ai
þQ2

�
;

ðA4Þ

where the Weinberg conditions [16]

X
i

ðF2
Vi
−F2

Ai
Þ ¼F2;

X
i

ðM2
Vi
F2
Vi
−M2

Ai
F2
Ai
Þ ¼ 0 ðA5Þ

have been used in order to simplify the final expression.
Equation (A4) agrees with the result obtained in [10], using
the alternative Proca description of spin-1 fields. Performing
the integration in the low-energy region 0 ≤ Q2 ≤ μ2, one
obtains the result for ΔCZjQLR

1
in Eq. (34).
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