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We extend our relativistic theory of gravitational structure of composite hadrons to obtain the pion
gravitational form factors at large momentum transfers. The approach was used in the case of intermediate
region of the variable in our preceding works [Phys. Rev. D 103, 014029 (2021)] and [Phys. Rev. D 106,
054013 (2022)]. The calculation is carried out in the framework of a relativistic composite-particle model
complemented by the special relativistic form of impulse approximation. It is found that in the limit of
massless and pointlike quarks, the obtained asymptotic expansion coincides with the predictions of
perturbative QCD for gravitational pion form factors. The principal contribution to the asymptotics,
coinciding with the predictions of QCD, is given by the relativistic effect of spin rotation. In particular, the
asymptotics of theD form factor is completely determined by this kinematic effect. Several restrictions on
the allowed form of gravitational form factors of quarks are derived.
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I. INTRODUCTION

The theory of the gravitational structure of hadrons is
the focus of investigation during the last decades. Its
current status is reviewed in [1] and for earlier reviews see,
e.g., [2–6]. The basic mathematical object in this theory is
the operator of the energy-momentum tensor (EMT) of the
particle (see, e.g., [7]), and, respectively, its Lorentz-
covariant decomposition in terms of the gravitational form
factors (GFFs). GFFs encode key information including
the mass and spin of a particle, the less well-known but
equally fundamental D-term (D stands for the German
word Druck meaning pressure), as well as the information
about distributions of energy, angular momentum, and
various mechanical properties such as, e.g., internal forces
inside the system.
Since the gravitational interaction is very weak, the direct

measurement of GFFs cannot be carried out in experiments
today, nor in the foreseeable future. However, as it turns out,
information about the EMT can be extracted indirectly (see

useful discussion in [8]). At present, one obtains the
information about the GFF mainly from the hard-exclusive
processes described in terms of unpolarized generalized
parton distribution (GPDs) or in terms of generalized
distribution amplitudes (GDAs) [1,4,8–10]. Several indirect
measurements are underway and some are planned (see,
e.g., [11–15]). In these experiments, kinematic ranges are
extended and the scale of momentum transfers is signifi-
cantly enlarged (Q2 ¼ −t ¼ q2; q−momentum transfer). In
this connection, it is interesting to study GFFs at large
momentum transfer, up to the asymptotic region Q2 → ∞.
Another interesting point is the possible comparison

of our purely relativistic model results with the results
of [16–18] where strict predictions of perturbative quan-
tum chromodynamics (QCD) are given for the asymptotic
behavior of pion GFFs.
AtQ2 → ∞, QCD gives a trustable description of hadron

physics. Results obtained from the first principles within the
framework of this generally accepted fundamental theory of
strong interactions should be considered as some additional
constraint on the GFFs calculated in other approaches.
In particular, this is the case for various formulations of
the quark model [19–25]. It seems that an analog of
the correspondence principle should be required, i.e.,
in the theories of the gravitational structure operating with
quark and gluon degreess of freedom, there must be a
limiting transition, giving for the GFFs the behavior
coinciding with the predictions of the perturbative QCD.
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Since the asymptotics of the GFFs of composite hadrons
depend on the asymptotic behavior of the GFFs of the
constituent quarks, then the correspondence condition
imposes restrictions on quark form factors, the determi-
nation of which is also a relevant task (see, e.g., [26]).
To complete the motivation, it is important to mention

two more points of different generality of significance.
First, the calculation of the mean-square mechanical radius
requires information about the behavior of the form factor
D in the entire region of momentum transfer, including
asymptotic [4]. Second, our calculation can shed light on
the position of the boundary of a perturbative regime
for GFFs.
The presented paper is devoted to the calculation of the

asymptotic behavior of the pion GFF. In our calculations we
use a particular variant of the instant-form (IF) Dirac [27]
relativistic quantum mechanics (RQM) (see also [28–32]),
extended for composite systems (see, e.g., [33–36]).
The approach was successfully used to describe the
pion electromagnetic form factor. Recently we have
shown [24,25] that the pion GFFs can be derived in the
same formalism using the same approximations and the
same model parameters, adding only one new parameter
fixed by fitting the slope at zero of the normalized to pion
D-term form factor D of pion. The present paper, in fact,
generalizes this approach to a larger region of momentum
transfer. We will frequently refer to the results of these
two articles.
The basic features of our approach are the following

(see, e.g., Ref. [35]).
(1) The main differences between our version and the

conventional IF RQM are, first, the construction of
the matrix elements of local operators, which are
based on the analog of the Wigner-Eckart theorem
for the Poincaré group [36,37], and, second, the
interpretation of the corresponding reduced matrix
elements, that is form factors, as generalized
functions.

(2) We include the interaction in the composite system
by adding the interaction operator to the operator of
the mass of the free constituent system by analogy
with the conventional IF of RQM.

(3) Note that it is possible to include the interaction in
our approach by the solutions of the Muskhelishvili-
Omnès-type equations [38]. These solutions re-
present wave functions of constituent quarks.

(4) It is important to notice that the approach we use
differs from the IF per se; it is rather fruitfully
complemented by a modified impulse approxima-
tion, MIA, constructed by making use of a
dispersion-relation approach in terms of the reduced
matrix elements. So, the Lorentz-covariance con-
dition and the current conservation law are satisfied
automatically. The difference between MIA and
conventional IA is detailed in our paper [33].

In the context of the present paper, the following point is
worth noting. An important advantage of the approach we
use is matching with the QCD predictions in the ultraviolet
limit, when quark masses are switched off, as expected at
high energies [39–41]. The model reproduces correctly not
only the functional form of the QCD asymptotics, but also
the numerical coefficient. The analogous result holds also
for the kaon [42].
Integral representations for electromagnetic and gravi-

tational form factors of composite systems in our approach
are given by double integrals of a special form, which are
analogs of dispersion integrals over the composite-system
mass [38] (see also [43]). We have proved relevant
theorems and formulas for asymptotic expansion of such
integrals at Q2 → ∞ in [44].
In the present work we calculate the GFFs asymptotics

using a modified impulse approximation (MIA) that we
formulated and successfully exploited earlier. MIA is
relativistic by construction a priori. As we realize our
study in IF RQM, it is natural to name our approximation as
instant form relativistic impulse approximation as it was
done by the authors of [1].
Now (using actually [24,25,44]) we calculate the asymp-

totics of the pion form factors A and D at Q2 → ∞. Since
the pion GFFs depend on the choice of the model two-
quark wave function only weakly [25], we use the wave
functions of the harmonic oscillator (the Gaussian one) for
simplicity. The pion GFFs obtained in such way decrease
exponentially inQwith power–law corrections in 1=Q. It is
shown that if in the asymptotic expansion we go to massless
point constituents, i.e., in the limit of zero mass and zero
mean-square mass radius of quarks, then our asymptotics
for the form factor A coincides with that predicted by the
perturbative QCD [16–18]. This result is obtained with the
same quark form factors with logarithmic decay as we used
previously for pion GFFs at finite Q2 in the works [24,25],
and on the pion electroweak structure [33,34,39–41,45].
However, if we want to prioritize the principle of

correspondence, and to obtain, for low quark mass, a
power-law asymptotics of pion form factor D, then it is
necessary to modify the gravitational form factor D of
quarks, namely to go from logarithmic decreasing with
increasing momentum transfer to a power-law one. This
modification leads to nonzero rms of the mechanical radius
of the quark, in contrast to the logarithmic dependence that
gives a zero value for this quantity. Thus, in the domain
where perturbative QCD is applicable, its predictions can be
obtained as a limiting case of our formulation of the
relativistic composite-particle model. Note that the corre-
spondence principle is satisfied here actually due to the
importance and universality of the kinematical relativistic
effect of spin rotation [46].
The structure of the paper is as follows. Section II is

devoted to a brief description of the instant-form relativ-
istic impulse approximation and calculation within its
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framework of the pion gravitational form factors. In Sec. III
the procedure of asymptotic expansion of the pion gravi-
tational form factors is described and the corresponding
asymptotic formulas are given. In Sec. IV we discuss
physical consequences of the obtained asymptotic expan-
sion, in particular, the role of the relativistic spin effect,
limitations on the used gravitational form factors of con-
stituent quarks and the possibility of obtaining in our
approach the asymptotics of the pion GFF which coincides
with QCD prediction. Section V contains the main con-
clusions of the work. The Appendices contain the formulas
for the Clebsch-Gordan coefficients of Poincaré group and
for the so-called free two-particle gravitational form factors
used in the modified impulse approximation.

II. INSTANT-FORM RELATIVISTIC IMPULSE
APPROXIMATION AND THE CALCULATION OF

THE PION GFFs

In the present section, for convenience of the reader,
we remind the main stages of our approach used for
the calculation of GFFs in immediately preceding
papers [24,25]. The approach is based on the instant form
relativistic quantum mechanics with a fixed number of
particles (IF RQM) (see [27–31]).
The difference between RQM and its nonrelativistic

analog comes down to the difference between the algebra
of the Poincaré group and the algebra of the Galilean group
at their realizations on the set of dynamic observables of a
composite system. A special feature of the Poincaré algebra
in comparison with the algebra of the Galilean group is the
fact that at additive inclusion of the constituent-interaction
operator into the zero component of the total momentum
(into the operator of the total energy), to preserve the
corresponding algebraic structure it is necessary to make
operators of some other observables interaction-dependent,
too. Different ways of incorporating interaction into algebra
lead to various forms of relativistic (Dirac) dynamics.
Notice, that to preserve the algebra of the Galilean group
at additive inclusion of the interaction to the zero component
of the total 4-momenta does not require modification of
other group generators, and this leads to the only non-
relativistic dynamics—the dynamics of the Schrödinger
equation. Relativistic dynamics can be classified into so-
called kinematic subgroups, i.e., subgroups of observables
independent of the interaction. The IF RQM has as kin-
ematic subgroup the group of motions of three-dimensional
Euclidean space, i.e., rotations and translations. One might
say that RQM occupies an intermediate position between the
local quantum field theory and nonrelativistic quantum
mechanics. Thus, the constituents of the composite system
are assumed to lie on the mass shell, and the wave function
of interacting particles is defined as an eigenfunction of the
complete set, which in IF RQM consists of the following
operators:

M̂2
I ðor M̂IÞ; Ĵ2; Ĵ3;

ˆP⃗; ð1Þ

where M̂I is the mass operator for the system with
interaction, Ĵ2 is the operator of the square of the total
angular momentum, Ĵ3 is the operator of the projection of

the total angular momentum on the z axis, and ˆP⃗ is the
operator of the total momentum.
In the IF RQM, the operators Ĵ2; Ĵ3;

ˆP⃗ coincide with
corresponding operators for the composite system without
interaction, and only the term M̂2

I ðM̂IÞ is interaction
dependent.
To solve the problem on eigenfunctions of the set (1) it is

necessary to choose a suitable basis in the Hilbert state
space of the composite system (see details in [24]). In the
case of a system of two constituent quarks one can use,
first, the basis of individual spins and momenta:

jp⃗1; m1; p⃗2; m2i ¼ jp⃗1; m1i ⊗ jp⃗2; m2i; ð2Þ

where p⃗1; p⃗2 are the 3-momenta of particles,m1,m2 are the
projections of spins to the z axis.
Second, it is possible to use the basis in which the motion

of the center of mass of two particles is separated:

jP⃗; ffiffiffi
s

p
; J; l; S; mJi; ð3Þ

where Pμ ¼ ðp1 þ p2Þμ, P2
μ ¼ s,

ffiffiffi
s

p
is the invariant

mass of the system of two particles, l is the orbital
momentum in the center-of-mass of the system (c.m.s.),
S⃗2 ¼ ðS⃗1 þ S⃗2Þ2 ¼ SðSþ 1Þ; S is the total spin in c.m.s., J
is the total angular momentum, mJ is the projection of the
total angular momentum.
The bases (2) and (3) are linked by the Clebsch-

Gordan decomposition of a direct product (2) of two
irreducible representations of the Poincaré group into
irreducible representations (3) [24,31]. The formulas for
the corresponding Clebsch-Gordan coefficients are given
in Appendix A.
In the basis (3) only the operator M̂I in the complete

set (1) is nondiagonal. So, the two-quark wave function in
pion in the basis (3) has the following form:

hP⃗; ffiffiffi
s

p jp⃗πi ¼ NCδðP⃗ − p⃗πÞφðsÞ; ð4Þ

where p⃗π is the 3-momentum of the pion. Explicit form of
the normalization constant NC is given in the paper [24]
and is not used here. In the notations of basis vectors (3),
the quantum numbers of the pion are omitted.
The wave function of the intrinsic motion is the

eigenfunction of the operator M̂2
I ðM̂IÞ and in the case of

two particles of equal masses is (see, e.g., [33])
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φðsðkÞÞ ¼ ffiffiffi
s4

p
k uðkÞ; s ¼ 4ðk2 þM2Þ;Z
u2ðkÞk2dk ¼ 1; ð5Þ

where uðkÞ is a model quark-antiquark wave function of the
pion and M is the mass of the constituents.
Let us now construct the pion EMT in the IF RQM using

the general method of the relativistically invariant para-
metrization of matrix elements of local operators [47]
(see also [6]). For convenience and to preserve the
generality of the results of [24], here we are dealing with
the same notations. The relation between our GFF and
generally accepted form factors A and D [4,48] is given
below in Sec. III. For the pion EMT matrix element we
obtained in [24]:

hp⃗πjTðπÞ
μν ð0Þjp⃗0

πi ¼
1

2
GðπÞ

10 ðQ2ÞK0
μK0

ν

− GðπÞ
60 ðQ2Þ½Q2gμν þ KμKν�; ð6Þ

where GðπÞ
10 ; G

ðπÞ
60 are the gravitational form factors of the

pion, gμν is the metric tensor and

Kμ ¼ ðpπ − p0
πÞμ; K0

μ ¼ ðpπ þ p0
πÞμ;

Q2 ¼ −t ¼ −K2
μ

We present the decomposition of the left-hand side (lhs) of
(6) over the basis (3) as a superposition of the same tensors
as in the right-hand side (rhs) of (6), and so we obtain the
pion GFFs in the following form of the functionals defined
on two-quark wave functions (4) and (5):

GðπÞ
i0 ðQ2Þ ¼

Z
d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞG̃i0ðs;Q2; s0Þφðs0Þ;

i ¼ 1; 6: ð7Þ

Here G̃i0ðs;Q2; s0Þ; i ¼ 1, 6 are the Lorentz-invariant
regular distributions.
To calculate the invariant distributions on the rhs of (7),

we use a version of impulse approximation. The generally
accepted impulse approximation (IA) is formulated in the
language of operators which means that EMT of the
composite system is assumed to be equal to the sum of
single-particle EMT of the components:

T ≈
X
k

TðkÞ: ð8Þ

To construct the pion GFFs we use a modified impulse
approximation (MIA) that we first formulated earlier (see,
e.g., Refs. [33,34] and the review [31]) In contrast to the
baseline impulse approximation, MIA is formulated in
terms of the reduced matrix elements, that is form factors,

and not in terms of the operators itself. So, in MIA there
appears important objects—the free gravitational form
factors describing the gravitational characteristics of sys-
tems without interaction.
Consider the system of two free constituent quarks [24].

Note that in the work [49] it was shown that the form factor
D is zero in the case of pointlike free fermions. In contrast,
our constituent quarks have all properties of realistic
particles with internal structure that is described by a set
of form factors including form factor D.
Using the general method of parametrization of local-

operators matrix elements [47] we write the matrix element
of the EMT for system of noninteracting fermions with
total quantum numbers of pion J ¼ l ¼ S ¼ 0 in the
following form [24]:

hP; ffiffiffi
s

p jTð0Þ
μν ð0ÞjP0;

ffiffiffiffi
s0

p
i ¼ 1

2
Gð0Þ

10 ðs;Q2; s0ÞA0
μA0

ν

−Gð0Þ
60 ðs;Q2; s0Þ½Q2gμν þ AμAν�;

ð9Þ

where Gð0Þ
i0 ðs;Q2; s0Þ; i ¼ 1, 6 are free two-particle GFFs,

In the lhs zero discrete quantum numbers in state vectors
are ignored.

Aμ ¼ ðP − P0Þμ; A2 ¼ t ¼ −Q2;

A0
μ ¼

1

Q2
½ðs − s0 þQ2ÞPμ þ ðs0 − sþQ2ÞP0

μ�:

The corresponding expression, based on the Clebsch-
Gordan decomposition, that connects the bases (2) and (3),
for the EMT of a system of noninteracting fermions with
total quantum numbers of pion J ¼ l ¼ S ¼ 0 in terms of
the one-particle EMTs has the following form [24]:

hP; ffiffiffi
s

p jTð0Þ
μν ð0ÞjP0;

ffiffiffiffi
s0

p
i

¼
XZ

dp⃗1

2p10

dp⃗2

2p20

dp⃗0
1

2p0
10

dp⃗0
2

2p0
20

hP; ffiffiffi
s

p jp⃗1; m1; p⃗2; m2i

× ½hp⃗1; m1jp⃗0
1; m

0
1ihp⃗2; m2jTðuÞ

μν ð0Þjp⃗0
2; m

0
2i

þ hp⃗2; m2jp⃗0
2; m

0
2ihp⃗1; m1jTðd̄Þ

μν ð0Þjp⃗0
1; m

0
1i�

× hp⃗0
1; m

0
1; p⃗

0
2; m

0
2jP0;

ffiffiffiffi
s0

p
i; ð10Þ

where hP; ffiffiffi
s

p jp⃗1; m1; p⃗2; m2i is the Clebsch-Gordan coef-
ficient (see Appendix A), the sums are over the varia-
bles m1; m2; m0

1; m
0
2.

The method gives for the one-particle matrix elements in
the rhs of (10) the form:
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hp⃗; mjTðqÞ
μν ð0Þjp⃗0; m0i ¼

X
m0

hmjD1=2
w ðp; p0Þjm0i

× hm00jð1=2ÞgðqÞ10 ðQ2ÞK0
μK0

ν

þ igðqÞ40 ðQ2Þ½K0
μRν þ RμK0

ν�
− gðqÞ60 ðQ2Þ½Q2gμν þ KμKν�jm0i;

ð11Þ

q ¼ u; d̄, Dj
wðp; p0Þ is the transformation operator from the

small group, the matrix of three-dimensional rotation,

gðu;d̄Þi0 ; i ¼ 1, 4, 6 are the constituent-quark GFFs, the
relation of which with conventional notations is given
below in Sec. III.

Kμ ¼ ðp − p0Þμ; K0
μ ¼ ðpþ p0Þμ;

Rμ ¼ ϵμ ν λ ρpν p0 λ Γρðp0Þ: ð12Þ

Here Γρðp0Þ is the well known 4-vector of spin (see, e.g.,
[24,31,34,47]), ϵμ ν λ ρ is the absolutely antisymmetric pseu-
dotensor of rank 4, ϵ0 1 2 3 ¼ −1.
Using the coefficients of the Clebsch-Gordan decom-

position from Appendix A, we obtain free two-particle
form factors in (9) in terms of gravitational form factors of
constituents (11). The corresponding formulas are given in
Appendix B.
Now let us exploit MIA in dealing with the obtained

system of equations for the free two-particle form factors.
MIA consists in replacing the invariant distribution in rhs
of (7) by free two-particle form factors from Eq. (9). The
physical meaning of MIA is equivalent to that of the
universally accepted IA (8), because the free two-particle
form factors are given in terms of one-particle currents.
Thus, we get the expressions for the pion GFFs in MIA,

which for convenience we present in the form given in [25]:

GðπÞ
10 ðQ2Þ ¼ 1

2
½gðuÞ10 ðQ2Þ þ gðd̄Þ10 ðQ2Þ�GðπÞ

110ðQ2Þ

þ ½gðuÞ40 ðQ2Þ þ gðd̄Þ40 ðQ2Þ�GðπÞ
140ðQ2Þ; ð13Þ

GðπÞ
60 ðQ2Þ ¼ 1

2
½gðuÞ10 ðQ2Þ þ gðd̄Þ10 ðQ2Þ�GðπÞ

610ðQ2Þ

þ ½gðuÞ40 ðQ2Þ þ gðd̄Þ40 ðQ2Þ�GðπÞ
640ðQ2Þ

þ ½gðuÞ60 ðQ2Þ þ gðd̄Þ60 ðQ2Þ�GðπÞ
660ðQ2Þ; ð14Þ

where gðqÞi0 ðQ2Þ; q ¼ u; d̄; i ¼ 1, 4, 6 are the GFFs of the
constituent quarks, also defined previously in (11).
The form factors in the rhs of the Eqs. (13) and (14) are

given now in terms of the integrals [24]:

GðπÞ
ij0ðQ2Þ ¼

Z
d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞGð0Þ

ij0ðs;Q2; s0Þφðs0Þ; ð15Þ

where i ¼ 1, 6; at i ¼ 1 j ¼ 1, 4; at i ¼ 6 j ¼ 1, 4, 6;

Gð0Þ
1i0ðs;Q2; s0Þ, Gð0Þ

6k0ðs;Q2; s0Þ are components of the free
GFFs that describe the system of two free particles with
total quantum numbers of pion, given in Appendix B, φðsÞ
is the pion wave function in the sense of RQM (5), s0; s are
the invariant masses of the free two-particle system in the
initial and final states, respectively.
Recall that the form factors Gð0Þ

k0 ðs;Q2; s0Þ from (15)
describe gravitational features of a system of two particles
without interaction. Free two-particle form factors are
regular generalized functions (distributions) given by the
corresponding functionals, defined on the space of test
functions depending on the variables (s, s0). The functionals,
in turn, are functions of the variable Q2 ¼ −t, a square of
momentum transfer. This variable is to be considered as a
parameter.
In the frameworks of MIA, the pion GFFs are functionals

(13)–(15), generated by the free two-particle GFFs of (9) on
test functions which are the products of the two-quark wave
functions, see (13)–(15).

III. ASYMPTOTIC EXPANSION OF PION
GRAVITATIONAL FORM FACTORS

In this section we calculate pion GFFs at large momen-
tum transfer using MIA in the IF RQM, that is in the instant
form relativistic impulse approximation. The conventional
pion GFFs are connected with the matrix elements given
above by the equations:

AðπÞðQ2Þ ¼GðπÞ
10 ðQ2Þ; DðπÞðQ2Þ ¼−2GðπÞ

60 ðQ2Þ; ð16Þ

where AðπÞ and DðπÞ are commonly used pion GFFs

(see, e.g., [4,48]), and GðπÞ
10 , G

ðπÞ
60 are given by the equalities

(13), (14), t ¼ ðpπ − p0
πÞ2 ¼ −Q2, and p0

π; pπ are the pion
4-momenta in the initial and the final states, respectively.
To obtain the asymptotic expansion of the pion form

factors given by (15) at Q2 → ∞, we use, for the quark-
antiquark model wave function (5), the wave function of
the ground state of a harmonic oscillator, widely used in
composite quark models:

uðkÞ ¼ 2ð1=ð ffiffiffi
π

p
b3ÞÞ1=2 exp ð−k2=ð2b2ÞÞ: ð17Þ

We use the parameter b in (17) fixed previously in the
works [45,50] on the electroweak. properties of the pion. It
is important to note, that the actual choice of the model
wave function is not crucial in our approach.
As can be seen from the formulas for the pion form

factors (15), the asymptotics of the pion GFFs depends on
the behavior of quark GFFs at Q2 → ∞. Our GFFs of

quarks, gðqÞi0 ðQ2Þ; q ¼ u; d̄; i ¼ 1, 4, 6 of (11), are related
to generally accepted GFFs of a particle of spin 1=2
(see, e.g., [4]) as follows [24]:
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gðqÞ10 ðQ2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=4M2

p ��
1þ Q2

4M2

�
A
ðqÞ
ðQ2Þ

− 2
Q2

4M2
JðqÞðQ2Þ

�
; ð18Þ

gðqÞ40 ðQ2Þ ¼ −
1

M2

JðqÞðQ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=4M2

p ; ð19Þ

gðqÞ60 ðQ2Þ ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

4M2

r
DðqÞðQ2Þ; ð20Þ

where AðqÞ; JðqÞ; DðqÞ are the conventional GFFs of par-
ticles with spin 1=2 [4,48]. We assume that the GFFs of u-

and d̄-quarks are equal: gðuÞi0 ðQ2Þ ¼ gðd̄Þi0 ðQ2Þ; i ¼ 1, 4, 6.
However, for more generality, now we relax the condition
of one and the same dependence of both D and A form
factors of quark on momentum transfer (as it was assumed
in [25]):

AðqÞðQ2Þ ¼ fAqðQ2Þ; JðqÞðQ2Þ ¼ 1

2
fJqðQ2Þ;

DðqÞðQ2Þ ¼ DqfDq ðQ2Þ; ð21Þ

where Dq is the quark D-term. The functions in rhs must
ensure the standard static limits (see, e.g., [4]):

AðqÞð0Þ ¼ 1; JðqÞð0Þ ¼ 1

2
; DðqÞð0Þ ¼ Dq: ð22Þ

The choice of functions in the right-hand sides of (21) will
be discussed in more detail below.
Let us make one more remark about the actual use of

MIA for calculation of the form factor D of the pion (15)
and (16). In our work [25], it was found that in MIA the
D-form factor has a singularity at Q2 ¼ 0. So, to make the
form factor regular at zero, we were forced to abandonMIA
in its pure form and use some of its minimal generalization.
In the present work we are dealing with larger momentum
transfer and therefore we do not need to go beyond MIA.
The pion GFFs (13)–(15), are expressed in our approach

in terms of double integrals of some special kind. In
particular, the boundary of the integration region (see the
cutoff function ϑðs;Q2; s0Þ in Appendix B) depends on the
parameter of expansion,Q2. The theorems defining the form
of asymptotic expansions of such integrals, and the corre-
sponding formulas were derived in our paper [44]. For the
integrals in (13)–(15) with wave function (17) we have
(see [44], Eqs. (55)–(58) at l ¼ l0 ¼ 0):

GðπÞ
ij0ðQ2Þ ∼ Aij exp

�
−

1

2b2

�
M
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 4M2

p
−M2

��

× ½gðuÞj0 ðQ2Þ þ gðd̄Þj0 ðQ2Þ�
X∞
k¼0

X∞
m¼0

hkmij0; ð23Þ

hkmij0 ¼
Xpm

p¼0

b2mþ2k−2p

Q2kþ3m−5p−1=2
22mþ5k=2−7pþ5=2

M3p−m−1=2 C4p
2m

ð4pÞ!
p!m!

×
∂
2m−4p

∂t2m−4p

2
4Gð0ÞðkÞ

ij0 ðt; Q2;ϕðtÞÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4M2Þðs0 − 4M2Þ

p
ffiffiffiffiffiffi
ss04

p
3
5
�����
t¼0

; ð24Þ

Gð0ÞðkÞ
ij0 ðt; Q2; t0Þ ¼ ∂

k

∂t0 k
Gð0Þ

ij0ðt; Q2; t0Þ; ð25Þ

where pm ¼ m=2þ ½ð−1Þm − 1�=4, the constant A11 ¼
A61 ¼ 1=2, all other constants Aij ¼ 1, C4p

2m is binomial
coefficient. The variables t, t0 are linked to the integration
variables in (15) by the relations:

s ¼ Q2ffiffiffi
2

p ðt0 þ tÞ þ 2M2 þM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 4M2

p
;

s0 ¼ Q2ffiffiffi
2

p ðt0 − tÞ þ 2M2 þM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 4M2

p
: ð26Þ

The function t0 ¼ ϕðtÞ defines in variables t, t0 a part of the
boundary of the integration region in (15) containing the
point ðt; t0Þ ¼ ð0; 0Þ:

t0 ¼ ϕðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

Q2

s 0
B@−

ffiffiffi
2

p
M

Q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

Q2
þ t2

s 1
CA: ð27Þ

The neighborhood of this point gives the main contribution
to the asymptotic expansion of the integrals. The total
boundary of the region of integration in (15) in variables
ðs; s0Þ is given by the cutoff function ϑðs;Q2; s0Þ given in
Appendix B.
We derive the asymptotic expansion of pion GFFs (16) by

means of general formulas (23)–(27), taking into account
the expressions (13)–(16) and (18)–(21). Thus, in each term
containing the functions fiqðQ2Þ; i ¼ A, J, D (21), we leave
only two main terms of the 1=Q expansion, but the order of
the retained terms must not exceed 1=Q2. So, the form
factor A of the pion at Q2 → ∞ is
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AðπÞðQ2Þ ¼ GðπÞ
10 ðQ2Þ ∼ exp

�
−
MQ
4b2

�
exp

�
M2

2b2

��
−2

ffiffiffi
2

p
fAqðQ2Þ

�
−4

M
Q

þ 20
M2

Q2
þ 24

b2

Q2
þ 2

M4

b2Q2

�

− 2
ffiffiffi
2

p
ðfAqðQ2Þ − fJqðQ2ÞÞ Q2

4M2

�
−4

M
Q

þ 20
M2

Q2
þ 24

b2

Q2
þ 2

M4

b2Q2

�
þ 96

ffiffiffi
2

p
fJqðQ2Þ b

2

Q2

�
: ð28Þ

The analogous expansion of the form factor D is of the form:

DðπÞðQ2Þ ¼ −2GðπÞ
60 ðQ2Þ ∼ exp

�
−
MQ
4b2

�
exp

�
M2

2b2

��
4

ffiffiffi
2

p
Dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

4M2

r
fDq ðQ2Þ

�
1 −

M
Q

−
M3

2b2Q

�
− 32

ffiffiffi
2

p
fJqðQ2Þ b

2

Q2

�
:

ð29Þ

In the form-factor D expansion the term proportional to
fAqðQ2Þ [see Eqs. (14), (18), and (21)] is of order∼1=Q4 and
therefore is not included in (29).
The consequences of the Eqs. (28) and (29) will be

discussed in the next section.

IV. DISCUSSION OF RESULTS

From the expansions (28) and (29) it can be seen that the
pion GFFs in our relativistic approach and for the Gaussian
type model wave functions (17) show at Q2 → ∞ the
exponential decay in the parameter Q. It is interesting to
compare this result with that of the nonrelativistic case.
Note, that in the nonrelativistic limit the integrals (15) with
u from (17) can be calculated analytically. So, the corre-
sponding nonrelativistic asymptotics, for example, of the
form factor A is of the form:

AðπÞ
NRðQ2Þ ¼ GðπÞ

10NRðQ2Þ ∼ fAqðQ2Þ exp
�
−

Q2

16b2

�
: ð30Þ

So, in nonrelativistic limit of our approach we obtain the
Gaussian (30) decay in parameter Q at large momentum
transfer. Thus, the exponential decay in Eqs. (28) and (29)
is a strictly relativistic effect. It is a consequence of our
essentially relativistic nonperturbative approach.
Decay in (28) and (29) is rather fast and provides, in

particular, a finite value of the rms mechanical radius of
pion hr2imech, defined as follows (see, e.g., [4]):

hr2imech ¼ 6
Dð0ÞR∞

0 DðQ2ÞdQ2
; ð31Þ

The exponential decay of pion form factor D (29) ensures
the convergence of the integral at the upper limit in (31)
and, thus, its finite value. The obtained decreasing of GFFs
(28) and (29) differs fundamentally from the power-law
form in perturbative QCD [16–18] ∼1=Q2. In this latter
case the integral in the denominator of (31) diverges, and
the rms mechanical radius is zero. However, it can be
shown that in our approach there exists a limiting transition
to the results coinciding with the predictions of QCD, i.e.,

a kind of correspondence principle is satisfied. We for-
mulate it as follows. At large momentum transfer, where
perturbative QCD is applicable, its predictions can be
obtained as certain limiting case of our nonperturbative
asymptotics (28) and (29).
In this connection, let us first discuss the asymptotic

expansion of the form factor A of the pion (28). To
ensure a correct transition in the Eq. (28) to small masses
of constituents M → 0, we require the equality:
fAqðQ2Þ ¼ fJqðQ2Þ. Then at M → 0 the Eq. (28) takes
the form:

AðπÞðQ2Þ ¼ GðπÞ
10 ðQ2Þ

∼ −48
ffiffiffi
2

p
fAqðQ2Þ b

2

Q2
þ 96

ffiffiffi
2

p
fJqðQ2Þ b

2

Q2
: ð32Þ

In the expansion (32) there is no exponent, the presence of
which in (28) is due to the type of two-quark wave
function (17), i.e., to the elastic coupling between quarks.
Thus, the transition to zero mass in the asymptotic region
Q2 → ∞ effectively eliminates any manifestation of
quark-antiquark interactions. Note that the second term
in the sum (32) has a purely relativistic origin and is a
consequence of the relativistic effect of spin rotation [46].
At neglecting this effect this summand vanishes [see (15)
and Eq. (B2) in Appendix B].
Let us now discuss the constraints on the functions

fAqðQ2Þ and fJqðQ2Þ which can be derived using the
asymptotic expansion (32). In our previous work [25]
we calculated the pion GFFs at finite momentum transfer
assuming that these functions are equal to one another, that
is to the same function fqðQ2Þ:

fAqðQ2Þ ¼ fJqðQ2Þ

¼ fqðQ2Þ ¼ 1

1þ ln ð1þ hr2qiQ2=6Þ ; ð33Þ

where hr2qi is the rms mass radius of the constituent quark,
which we choose to be equal to its charge radius.
The function (33) has been used successfully in our

works on the electroweak properties of the pion to describe
electric and magnetic form factors of constituent quarks.
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This function was derived from asymptotics of the charge
form factor of the pion at Q2 → ∞ [45]. We note that at
large momentum transfer the function (33) decreases as the
inverse of the logarithm of Q2. Because of this slow
decreasing of quark form factors, such a choice corre-
sponds to quark which is close to the point quark.
The choice of the form (33) causes the appearence of

logarithmic multipliers in the expansion without changing
the actual powers of 1=Q2 in (32):

AðπÞðQ2Þ ¼ GðπÞ
10 ðQ2Þ ∼ 48

ffiffiffi
2

p b2

Q2
fqðQ2Þ: ð34Þ

In (34) we have for the form factor A of pion, with the
acceptable accuracy, up to logarithmic multiplier, the
same power-law decrease that is obtained in the perturbative
QCD [17]. To calculate GFFs at finite momentum transfer
[24,25] we fixed the parameter hr2qi, entering (33), basing on
the works [51–54]: hr2qi ≃ 0.3=M2. However, this relation is
valid only for finite masses of constituents in hadrons. In our
papers [24,25,33,34,45], we have fixed this parameter at the
value of the mass of constituentsM ¼ 0.22 GeV, which has
long ago become generally accepted in relativistic calcu-
lations (see, e.g., [55,56]). In the present work in our
asymptotic calculations we consider the mean-square mass
radius of the constituents as a free parameter.
If we go to point quarks, i.e., when hr2qi ¼ 0 in (33),

simultaneously with the limiting transition to the zero mass
of constituents, that is, in fact, from constituent quarks to
current quarks, we get the asymptotics, coinciding with the
predictions of the perturbative QCD [17]:

AðπÞðQ2Þ ¼ GðπÞ
10 ðQ2Þ ∼ 48

ffiffiffi
2

p b2

Q2
: ð35Þ

Note that this result coincides, up to a numerical multiplier,
with the result obtained in our approach for the asymptotics
of the charge form factor of the pion [45]. The correct
(positive) sign of (35) is due to the presence of the second
term of the sum in (32), i.e., to the relativistic effect of spin
rotation. It is interesting that the asymptotics of (35) in the
pointlike limit for quarks hr2qi → 0 takes place for any
choice of decreasing function in (33), provided that this
function has the form of the product hr2qiQ2.
Let us consider now the asymptotic expansion of the pion

D-form factor and, in particular, discuss the constraints,
which can be derived, concerning the possible form of the
quark form factor D (21). If we take the function fDq ðQ2Þ
entering theD-form factor of the quark (21) in the form with
logarithm (33), used at finite Q2 [25], then from the
asymptotic expansion (29) at Q2 → ∞ and in the limit of
small M we obtain an increasing, i.e., unphysical behavior
of the form factor D of the pion. Thus, for this choice of
the quark form factor D there is no limit transition from
the constituent quarks to current quarks. So, to satisfy the

correspondence principle it is necessary to choose some
other form for this quark form factor.
There is one more argument in favor of changing the

form of function fDq ðQ2Þ in (21) and (29), a rather simple
one. Indeed, when we choose fDq ðQ2Þ in the form (33) the
rms mechanical radius of the constituent quark hr2qimech is
zero, as can be seen from the formula analogous to (31): the
integral in the denominator diverges at upper limit.
On the other hand, we consider a constituent quark as a

quasiparticle, that has all the properties of a real particle, in
particular, a nonzero mean-square mass radius hr2qi (33). To
obtain a nonzero value also of the rms mechanical radius of
the quark it is necessary to have for its form factor D a
function with power-law decreasing in 1=Q2 with the power
higher than one. To satisfy the condition of decreasing of the
pion form factor D at Q2 → ∞ in the (29) in the limit of
small quark masses simultaneously with the condition of
finiteness of the rms of the mechanical radius of the
constituent quark allows, in particular, for the following
choice of the function fDq ðQ2Þ:

fDq ðQ2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=4M2

p 1

1þ hr2qiQ2=6
: ð36Þ

Note that the power-law dependence of the electromagnetic
form factors of constituent quarks, similar to (36), was
considered in [54].
Taking into account the explicit form of the function

(36), the main terms of the expansion (29) in the limit of
almost zero masses of constituents, we obtain:

DðπÞðQ2Þ ¼ −2GðπÞ
60 ðQ2Þ

∼ 4
ffiffiffi
2

p Dq

1þ hr2qiQ2=6
− 32

ffiffiffi
2

p
fJqðQ2Þ b

2

Q2
: ð37Þ

It can be seen that when Q2 → ∞, the expression (37)
means that the form factorD of the pion behaves as ∼1=Q2,
coinciding with the predictions of QCD. The second
summand in (37), due to the choice of the function
fJqðQ2Þ in the form (33), contains a logarithmically decreas-
ing multiplier. The second term in the sum in (37), as well as
in (32) is due to the relativistic effect of spin rotation [see
formulas (15) and (B4) in Appendix B]. This term has a
decisive meaning in both cases.
Let us now move on in our discussion of (37) to point

quarks, i.e., to current quarks. There is a general result for
theD-term of the pointlike noninteracting fermion with spin
1=2 [4,49], namely, it was shown that the D-term of such a
fermion is zero. If appeal to the concept of asymptotic
freedom at Q2 → ∞, then the transition from constituent to
current quark means Dq ¼ 0 and hr2qi ¼ 0 in expressions
(21) and (37). Thus, when going to the point quarks, the
expansion (37) takes the form:
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DðπÞðQ2Þ ¼ −2GðπÞ
60 ðQ2Þ ∼ −32

ffiffiffi
2

p b2

Q2
: ð38Þ

The resulting formula for the asymtotics of the form factorD
of the pion coincides with predicted by QCD and differs by a
numerical multiplier from the asymptotics of the A-form
factor (35), as takes place in QCD as well [17]. So, a kind of
correspondence principle is valid for the pion form factorD,
too. Note that analogous correspondencewas obtained in our
works on electroweak properties of scalar mesons, where we
described the electromagnetic form factors of pion and
kaon at large momentum transfer [41,42]. In the limit of
zero-mass point quarks, our approach again appears to be
common to problems of electroweak and gravitational
structures of the pion. In the electroweak case the coinci-
dence with perturbative QCD predictions was obtained not
only in calculations with Gaussian functions of harmonic
oscillator (17), but also with other functions [39], in
particular with rational functions [57]. We expect the same
for the gravitational case.
The asymptotics (38), which coincides with the

QCD predictions, in the limit of the point quarks
(Dq ¼ 0; hr2qi ¼ 0), can be obtained for rather arbitrary
choice of second multiplier in the quark form factor
D (36), for example, any power of the multiplier can
be used instead.
As can be seen from (35) and (38), the multiplier before

the asymptotics depends on the parameter of our model b,
which determines the actual scale of the confinement.
In calculations of the pion GFFs at finite momentum
transfer [24,25] in the model (17), as well as in our
previous successful works on the electroweak properties of
the pion [33,34,45], we have used value b ¼ 0.35 GeV.
This value gives good results also in other forms of RQM,
for example, in calculation of electroweak decays of pions
in the point-form dynamics [56].
Note that the asymptotics of the form factorD of the pion

in the limit of point quarks remains to be completely
determined by the second summand in (37), i.e., com-
pletely is due to the relativistic effect of spin rotation. Thus,
in the asymptotic expansions (35) and (38), obtained in our
approach and coinciding with the predictions of the
perturbative QCD, it is the kinematical relativistic effect
of spin rotation that plays a determining role.
Let us discuss another consequence of choosing the

function fDq ðQ2Þ in the form (36). In this case we obtain
the rms mechanical radius of the quark (31) in the
following form:

hr2qimech ¼
ffiffiffiffiffiffiffiffiffiffiffi
6hr2qi

q
4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M2hr2qi=3

q
×

1

arccos
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2hr2qi=3
q 	 : ð39Þ

It can be seen from (39), that the mechanical radius of the
constituent quark is zero in the limit of zero mass radius.
This expression also can be used in the calculation of
gravitational properties of pions and other composite
hadrons at finite momentum transfer and finite masses
of constituents.

V. CONCLUSIONS

In this paper, the asymptotic expansions of A and D pion
GFFs are obtained at large momentum transfer, Q2 → ∞.
We used a version of the instant-form of Dirac relativistic
quantum mechanics with fixed number of particles (IF
RQM) complemented by an essentially relativistic variant
of impulse approximation, formulated previously in our
papers on the electroweak structure of composite particles.
The calculation was carried out in the model of interaction
of constituent quarks with quadratic confinement, namely
with two-quark wave functions of the ground state of the
harmonic oscillator, i.e., with Gaussians. The asymptotic
decreasing of the form factors obtained in the paper is
exponential in the parameterQ, multiplied by a polynomial
in 1=Q. In the nonrelativistic case the analog of our model
approach with Gaussian wave function gives the Gaussian
decreasing of the GFFs for increasingQ. So, the asymptotic
exponential decrease of the GFFs in this interaction model
is a consequence of our fundamentally essentially relativ-
istic study of the problem.
It is shown that for the obtained asymptotic relativistic

expansion there exists a limit transition from constituent to
current quarks, i.e., the transition to pointlike quarks of
almost zero mass. This limit obtained in our principally
nonperturbative approach, gives the asymptotics of gravi-
tational form factors, coinciding with the predictions of the
perturbative QCD (∼1=Q2) [16–18]. Thus, an analog of the
correspondence principle is satisfied in the following terms:
in the region where the perturbative QCD is applicable, its
predictions can be obtained as a limit case of the funda-
mentally nonperturbative relativistic model of composite
particles. Note that this correspondence principle is fulfilled
also in the case of electromagnetic structure of the pion
and kaon.
From the coincidence principle we obtained certain

constraints on the allowed form of quarks GFFs and
proposed simple formulas for them. Such kind of constraints
are currently in demand (see, for example, [26]) because of
the existing arbitrariness in calculations of hadron form
factors in composite models. To obtain the quark GFFs we
use not only constraints on the piom GFFs asymptotics, but
also the property of the finiteness of the rms mechanical
radius of quark.
An equation is also derived connecting the rms mechani-

cal and mass radii of constituent quarks, (39), which can be
used in the calculations of gravitational properties of
composite systems.
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In this work we find that the determining contribution to
the asymptotics of pion GFFs, in the limit of massless and
pointlike quarks, coinciding with the predictions of the
perturbative QCD, comes in our approach from the
relativistic kinematical effect of rotation of quark spins
(the Wigner spin rotation). In particular, the correct, i.e.,
coinciding with predictions of the QCD asymptotics of the
pion form factor D is completely determined by this
kinematic effect.
To summarize, in this paper we have increased the scope

of our research of our previous papers [24,25] to the range
of large momentum transfer and, by the way, obtained
several results that can be used elsewhere.

APPENDIX A: THE CLEBSCH-GORDAN
COEFFICIENT

The Clebsch-Gordan coefficient of the Poincaré
group (10):

hp⃗1; m1; p⃗2; m2jP⃗;
ffiffiffi
s

p
; J; l; S;mJi

¼
ffiffiffiffiffi
2s

p
½λðs;M2;M2Þ�−1=22P0δðP − p1 − p2Þ

×
X

hm1jD1=2
w ðp1; PÞjm̃1ihm2jD1=2

w ðp2; PÞjm̃2i
× h1=21=2m̃1m̃2jSmSiYlml

ðϑ;φÞ
× hSlmSmljJmJi; ðA1Þ

where p⃗ ¼ ðp⃗1 − p⃗2Þ=2, p ¼ jp⃗j, ϑ;φ are the spherical
angles of the vector p⃗ in c.m.s., Ylml

is the spherical
function, hSmSj1=2 1=2m̃1m̃2i and hJmJjSlmSmli are the
Clebsh-Gordan coefficients of the group SUð2Þ,
hm̃jD1=2

w ðP; pÞjmi is the matrix of the three-dimensional
spin rotation, that is necessary for the relativistic invariant
summation of the particle spins, the sum being over
m̃1; m̃2; ml; mS,

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ acþ bcÞ; ðA2Þ

M is the mass of constituent quarks.
We use in present paper the Clebsch-Gordan coefficient

with pion quantum numbers J ¼ l ¼ S ¼ 0.

APPENDIX B: FREE TWO-PARTICLE
GRAVITATIONAL FORM FACTORS

GFF of two noninteracting fermion with spin 1=2 (15):

Gð0Þ
110ðs;Q2; s0Þ ¼−

Rðs;Q2; s0ÞQ2

λðs;−Q2; s0Þ
× ½ð4M2þQ2Þλðs;−Q2; s0Þ
− 3Q2ðsþ s0 þQ2Þ2�cosðω1þω2Þ; ðB1Þ

Gð0Þ
140ðs;Q2; s0Þ ¼ −3M

Rðs;Q2; s0ÞQ4

λðs;−Q2; s0Þ
× ξðs;Q2; s0Þðsþ s0 þQ2Þ sinðω1 þω2Þ;

ðB2Þ

Gð0Þ
610ðs;Q2; s0Þ ¼ 1

2
Rðs;Q2; s0Þ½ðsþ s0 þQ2Þ2

− ð4M2 þQ2Þλðs;−Q2; s0Þ=Q2�
× cosðω1 þ ω2Þ; ðB3Þ

Gð0Þ
640ðs;Q2; s0Þ ¼ −

M
2
Rðs;Q2; s0Þ ξðs;Q2; s0Þðsþ s0 þQ2Þ

× sinðω1 þ ω2Þ; ðB4Þ

Gð0Þ
660ðs;Q2; s0Þ ¼ Rðs;Q2; s0Þλðs;−Q2; s0Þ cosðω1 þ ω2Þ;

ðB5Þ

where

Rðs;Q2; s0Þ ¼ ðsþ s0 þQ2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4M2Þðs0 − 4M2Þ

p
×

ϑðs;Q2; s0Þ
½λðs;−Q2; s0Þ�3=2 ;

ξðs;Q2; s0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðM2λðs;−Q2; s0Þ − ss0Q2Þ

q
;

ω1 and ω2 are the Wigner spin-rotation parameters:

ω1 ¼ arctan
ξðs;Q2; s0Þ

M½ð ffiffiffi
s

p þ
ffiffiffiffi
s0

p
Þ2 þQ2� þ

ffiffiffiffiffiffi
ss0

p
ð ffiffiffi

s
p þ

ffiffiffiffi
s0

p
Þ ;

ω2 ¼ arctan
αðs; s0Þξðs;Q2; s0Þ

Mðsþ s0 þQ2Þαðs; s0Þ þ ffiffiffiffiffiffi
ss0

p ð4M2 þQ2Þ ;

αðs; s0Þ ¼ 2M þ ffiffiffi
s

p þ ffiffiffiffi
s0

p
, ϑðs; Q2; s0Þ ¼ θðs0 − s1Þ−

θðs0 − s2Þ, θ is the Heaviside function.

s1;2 ¼ 2M2 þ 1

2M2
ð2M2 þQ2Þðs − 2M2Þ

∓ 1

2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ð4M2 þQ2Þsðs − 4M2Þ

q
;

λða; b; cÞ and M are determined in (A2).
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