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We study the inhomogeneous phase of a two-flavor quark matter under rotation at finite temperature and
density using the Nambu-Jona-Lasinio model. To do this, we consider the chiral broken phase, in particular,
described by the so-called dual chiral density wave which is formed as a standing wave of simultaneous
scalar and pseudoscalar condensates. The solution of the corresponding Dirac equation as well as the
energy spectrum found in the mean-field approximation. We then use the thermodynamic potential
calculated for this model, to study the μ and Ω dependence of constituent mass and the wave vector at
T ¼ 0. We find there exist two islands in the μ − Ω plane that the dual-chiral density wave survives. The
first region lies at intermediate densities and small Ω. We observe, by increasing the angular velocity of
matter, dual-chiral density wave forms in regions with smaller chemical potential. On the other hand, in
contrast to the former, the second region is located at the large Ω and small densities. Finally, we study this
phase of quark matter at finite temperature and present T − μ, T − Ω, and μ − Ω phase portraits of a hot-
rotating quark matter at finite density.
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I. INTRODUCTION

Mapping the phase structure of QCD at finite temper-
ature and nonzero chemical potential in a rotating system is
one of the recent challenges in the condensed matter of
strong interaction. The main interest arises from the
relevant experiments on the global spin polarization of
produced particles [1]. According to these measurements,
in noncentral heavy-ion collision (HIC) at the Relativistic
Heavy Ion Collider (RHIC) the colliding nuclei deposit a
large angular momentum on the order of L ≈ 103ℏ in the
produced quark-gluon plasma (QGP). As a consequence of
nonvanishing angular momentum in the plasma of quarks
and gluons, the shear flow of longitudinal momentum
arises which in turn, leads to the generation of strong
vortical structure ω ≈ 1022s−1. Such a large vorticity may
have some nontrivial effects on the properties of quark
matter. Possible effects of rotation include the chiral
vortical effect [2–4], chiral vortical wave [5], the spin
polarization of particles [6,7], pion condensate [8,9], the
confinement-deconfinement transition [10–12], and its
influence on the scalar chiral condensate of quark and
antiquark and consequently the reduction in the transition
temperature of chiral symmetry restoration [13–18]. It is,
therefore, the purpose of this paper to scrutinize the effect
of rotation on the chiral condensate, in particular at

moderate densities, and study the phases of quark matter
in this region of phase space.
There are pieces of evidence in theoretical studies of the

thermodynamic properties of systems under rigid rotation,
which imply the suppression of scalar condensate [13,17].
This phenomenon is related to the alignment of spin of
particles in the direction of angular velocity which is known
as the Barnett effect [19]. Therefore, the rotation tends to
decrease the transition temperature of the chiral symmetry-
broken (χSB) phase to the chiral symmetry restored (χSR)
phase. Moreover, as shown in [15], in the T − μ plane of the
phase diagram, with increasing the angular velocity of
the system the location of the critical point (CP) is shifted to
the region of phase space with fixed chemical potential but
smaller temperature. Hence, in addition to the reduction in
the phase boundary due to the decrease in the transition
temperature, the change in the location of CP manifests
itself, in particular, in the broadening of the second-order
phase boundary. Apart from the nature of the phase
structure of quark matter under rotation, another feature
of this system is the breakdown of translational invariance
in a plane orthogonal to the angular velocity whose
signature manifests as a radial inhomogeneity in the
constituent mass [16,17,20].
Apart from the radial inhomogeneity caused by rotation,

in a parallel development, the possibility of the crystalline
phase of quark matter, which is described by an inhomo-
geneous-order parameter, at intermediate chemical poten-
tial is the subject of intensive studies (for a review*tabatabaee@ipm.ir
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see [21,22] and the references therein). Conventionally, the
chiral condensate, which is the pair of left (right)-handed
quarks and the right (left)-handed antiquarks, is assumed to
be uniform and homogeneous in space. At finite density μ,
however, the pairing of the quark and antiquark cost energy
is of 2μ. Thus, by increasing the chemical potential the
energy cost is no longer compensated by the condensation
energy which at some critical chemical potential the homo-
geneous chiral condensate is not the favored ground state of
quark matter. Departure from this line of work led us to the
spatially modulated condensate in the phase diagram of
QCD. At finite chemical potential, in particular, another
variant of condensate between the quark with momentum
jp⃗j ∼ μ and quark hole with the same momentum p⃗ near
the Fermi surface with finite total momentum P ∼ 2μ
arises [23]. This particular form of condensate, which
appears only at finite density, varies in space as expð2ip⃗ ·
x⃗Þ and is dubbed as chiral density wave. The dual chiral
density wave (DCDW), one particular type of density wave,
appears as a simultaneous spatially varying scalar and
pseudoscalar condensate. This form of modulation, particu-
larly described by MðxÞ ¼ −Gðhψ̄ψi þ iγ5hψ̄iγ5ψiÞ≡
−GΔðxÞeiγ5ϑðxÞ, transforms the scalar (pseudoscalar) con-
densate to the pseudoscalar (scalar) one and stays in a
hypersphere of constant radius Δ in chiral space [24–28].
Stability analysis of the DCDWagainst the thermal fluctua-
tions shows that this phase of quark matter, in particular,
with a one-dimensional (1d) modulation exhibits Landau-
Peierls instability. This arises as a consequence of soft-
transverse fluctuation modes in the spectrum, which in turn
wipes out the long-range order [29]. However, the existence
of Landau-Peierls instability does not rule out the 1d
inhomogeneous phase. It is argued, in analogy with the
smectic liquid crystals, that this form of modulation may
exist and, therefore, realized in a quite different form with a
quasilong-range order [29,30]. Moreover, it is shown that in
the presence of a uniform magnetic field, the modulation
along the magnetic field is favored and the magnetic dual-
chiral density wave (MDCDW) phase is stabilized [31,32].
According to the stability analysis of the DCDW in a
uniform magnetic field, it turns out that this phase demon-
strates the absence of the Landau-Peierls instability arising
from the lack of soft-transverse fluctuation modes [33].
Using various QCD inspired models, i.e., Gross-Neveu

(GN) [34–36], the Nambu-Jona-Lasinio (NJL) model
[23,25,37–39], the quark-meson (QM) model [24,40] as
well as the Schwinger-Dyson approach [41] and considering
different forms of inhomogeneity, it is argued at moderate
densities and low temperature, an island of spatially modu-
lated constituent mass is a favorable ground state of QCD.
Thus, this region in the phase portrait of quark matter
exhibits an inhomogeneous phase of chiral condensate.
It is thus the purpose of this paper to fill the gap and find

a connection between these two approaches to study the
possibility of an inhomogeneous phase of quark matter in a

rotating system. Therefore, in this paper, we proceed
further to study the effect of rotation on the inhomogeneous
phase of quark matter, in particular DCDW, and investigate
the interplay between the chemical potential and angular
velocity at zero and finite temperature. To do this, we utilize
a two-flavor NJL model defined in a rotating system.
Assuming the system under consideration develops an
inhomogeneous chiral condensate according to the
DCDW, we numerically determine the phase portrait of
the inhomogeneous phase of quark matter.
The organization of the paper is as follows: We devote

Sec. II A to introduce a two-flavor Nambu-Jona-Lasinio
(NJL) model in a rotating system. Moreover, in this section,
after providing the general concepts on our framework and
fixing our notation in analogy to [17], the thermodynamic
potential of our model is determined with formation of dual
chiral density wave in the mean field approximation. In
Sec. II B, the solution of Dirac equation in presence of
DCDW is discussed. In Sec. III A, after fixing the free
parameters of the model, coupling constant G and the
momentum cutoff Λ introduced in proper time regulariza-
tion, we numerically find the global minimum of thermo-
dynamic potential presented in Sec. II A for a cold quark
matter. We then present the numerical results for chemical
potential dependence of constituent mass together with the
wave vector for different values of angular velocity.
Moreover, we discuss the possibility to form DCDW in
smaller values of chemical potentials in a fast rotating
matter. As a by-product, the phase diagram of DCDW in the
μ −Ω plane is presented in this section. Then, Sec. III B is
devoted to the study of the phase diagram of DCDW at
finite T, μ as well as Ω. In Sec. IV we summarize our main
results and discuss some concluding remarks.

II. TWO FLAVOR DUAL-CHIRAL DENSITY
WAVE IN A ROTATING QUARK MATTER

A. The model

It is believed at moderate densities, there is a possibility
of an inhomogeneous chiral condensate. In the present
paper, we focus on the effect of rotation on the inhomo-
geneous phase of quark matter using the two-flavor NJL
model. For this purpose, we study the quark matter in the
corotating frame which is assumed to be rotating uniformly
with constant angular velocity Ω about the z-direction.
Performing the coordinate transformation of φ ¼ φM −Ωt
to the Minkowski line element, the corresponding corotat-
ing line element is given by

ds2 ¼ gμνdxμdxν ¼ ð1 − r2Ω2Þdt2 − dx2

þ 2Ωydtdx − dy2 − 2Ωxdtdy − dz2; ð2:1Þ

with xμ ¼ ðt; x; y; zÞ ¼ ðt; r cosφ; r sinφ; zÞ, where r and
φ are the cylindrical variables. Using the above metric
together with the concepts and notations developed in the
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curved space, the Lagrangian density of a two-flavor NJL
model at finite density is given by

L¼ ψ̄ ½iγμDμþμγ0�ψþG
2

h
ðψ̄ψÞ2þðψ̄iγ5τψÞ2

i
; ð2:2Þ

where μ is the chemical potential and τ ¼ ðτ1; τ2; τ3Þ are the
Pauli matrices in isospin space. Moreover, the covariant
derivative is defined as Dμ ¼ ∂μ þ Γμ. The affine connec-
tion Γμ appearing in the covariant derivative is given in
terms of the spin connection ωμab and vierbeins eμa as

Γμ ≡−
i
4
ωμabσ

ab; ωμab ≡ gαβeαa
�
∂μeβb þ Γβ

μνeνb
�
:

ð2:3Þ
Here, spin matrices defined as σab ≡ i

2
½γa; γb� and the

Christoffel connection given by Γβ
μν ≡ 1

2
gβσð∂μgσν þ

∂νgμσ − ∂σgμνÞ. Let us note that, the Greek indices μ ¼ t,
x, y, z and the Latin indices a ¼ 0, 1, 2, 3 appearing in this
notation refer to the general and the Cartesian coordinate in
the tangent space, respectively. As it turns out, the compo-
nents of vierbein satisfy the identity ηab ¼ gμνeμaeνbwith the
Minkowski metric ηab ¼ diagð1;−1;−1;−1Þ. Moreover,
they connect the general coordinate to the Cartesian one
in the tangent space by xμ ¼ eμaxa. Adopting the vierbeins
in Cartesian gauge

et0 ¼ ex1 ¼ ey2 ¼ ez3 ¼ 1;

ex0 ¼ Ωy; ey0 ¼ −Ωx; ð2:4Þ
together with the nonvanishing components of Γμ

αβ,

Γy
tx ¼ Γy

xt ¼ −Γx
ty ¼ −Γx

yt ¼ Ω;

Γx
tt ¼ −Ω2x; Γy

tt ¼ −Ω2y; ð2:5Þ
the nonzero component of affine connection Γμ is given by
Γt ¼ − i

2
Ωσ12. At this stage, in order to bring the γ-matrices

written in general coordinate in a more appropriate form,
using γμ ¼ eμaγa with the nonvanishing elements of eμa
given in (2.4), the γ-matrices in general coordinate are
given by

γt ¼ γ0; γx ¼Ωyγ0þ γ1;

γy ¼−Ωxγ0þ γ2; γz ¼ γ3: ð2:6Þ
Combining all results for nonvanishing elements of Γμ as
well as γμ from (2.6) and plug them into (2.2) the Lagrangian

density of NJL model in a rotating frame at finite density is,
thus, given by

L ¼ ψ̄ðΠþ μγ0Þψ þ G
2

h
ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2

i
; ð2:7Þ

where the modified differential operator Π is defined as

Π≡ iγ0ð∂t − iΩĴzÞ þ iγ1∂x þ iγ2∂y þ iγ3∂z; ð2:8Þ

with Ĵz ≡ L̂z þ Σz=2, the total azimuthal angular momen-
tum, L̂z ≡ −iðx∂y − y∂xÞ, the orbital angular momentum,
and the spin along the z-direction Σz ¼ iγ1γ2.
Concerning the thermodynamic potential of correspond-

ing Lagrangian (2.8), following the standard procedure to
bosonize the model by introducing mesonic auxiliary fields
ðσ; πÞ (see the Appendix for more details), the semi-
bosonized Lagrangian density takes the form

LSB ¼ −
σ2 þ π2

2G
þ ψ̄ðΠ − σ − iγ5τ · π þ μγ0Þψ ; ð2:9Þ

where the spatial modulation of scalar σ and pseudoscalar π
fields, according to dual chiral density wave, in the mean
field approximation are defined by

σ≡−Ghψ̄ψi ¼mcosðqzÞ; π1 ¼ π2 ¼ 0;

π0≡−Ghψ̄iγ5τ3ψi ¼m sinðqzÞ: ð2:10Þ
Here, the constituent mass m ¼ −GΔ, the chiral density
amplitude Δ, and the wave vector q whose magnitude
controls the degree of spatial inhomogeneity of condensate.
It should be noted that the condensate pair of particles in the
DCDW form a standing wave with nonvanishing momen-
tum. Moreover, both σ and π0 fields lie on the circle of
constant radius m. For the special case of a vanishing wave
vector, the DCDW reduces to the conventional homo-
geneous scalar chiral condensate. Both parameters are
generated dynamically, thus, they have to be determined
by minimizing the corresponding thermodynamic potential.
At this stage, in order to obtain the thermodynamic

potential, after performing the integral over fermionic
degrees of freedom as well as following the steps in

Appendix, the thermodynamic potential Ωeff ¼Ωð0Þ
eff þΩð1Þ

eff
of the two-flavor NJL model at finite temperature and
density in the corotating frame is given by

Ωeff ¼
1

V

Z
d3x

�
m2

2G
þ NfNc

8π5=2

X
s¼�

Z
∞

Λ−2

dτ

τ5=2

Z
∞

0

dkz exp

�
−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þm2

q
þ sq

2

�
2

τ

�
−
NfNcT

4π2
X
s¼�

X∞
l¼−∞

Z
∞

0

dkz

×
Z

∞

0

dk⊥k⊥ðJ2lðk⊥rÞ þ J2lþ1ðk⊥rÞÞ
n
ln
�
1þ e−βðεsþΩðlþ1=2ÞþμÞ

�
þ ln

�
1þ e−βðεs−Ωðlþ1=2Þ−μÞ

�o�
; ð2:11Þ
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where V and JlðxÞ denote the three-dimensional volume
and the Bessel function of the first kind, respectively.
Moreover, the dispersion relation defined as

ε2s ¼ k2⊥ þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þm2

q
þ s

q
2

�
2

: ð2:12Þ

Here, the subscript s ¼ �1 refers to the spin direction. As it
turns out, the thermodynamic potential Ωeff in (2.11) is
invariant under the transformation Ω → −Ω; thus, the
direction of rotation e.g., clockwise or counterclockwise
gives the same results. Let us note that the angular velocity
in (2.11) appears as a Lagrange multiplier of total angular
momentum whose effect imitates the role of the chemical
potential. In what follows, we scrutinize the similarities,
differences, and the interplay of chemical potential and
angular velocity on the formation of an inhomogeneous
phase of quark matter.
At this stage, let us emphasize that for a rotating fermionic

system, in particular, there is a freedom to define the vacuum
state and correspondingly the particle and antiparticle
modes. As it turns out, in the case of fermionic fields, this
freedom is related to the positive norm of modes [42].
Therefore, choosing an appropriatevacuumstate is crucial to
studying the thermodynamics of a system. In particular, two
common choices are either the Minkowski vacuum, with
ε� > 0, defined in [3] or the corotating vacuum state, with
ε� − Ωðlþ 1=2Þ > 0, introduced in [43]. Thus, to fix the
vacuum state, we choose the former definition to perform
our numerical analysis. Moreover, noting in particular that,
in a rotating system, the constituent mass is inhomogeneous
and depends on the radial distance from the axis of rotation,
we obtain Ωeff in (2.11) by employing the so-called local
density approximation ∂rm ≪ m2 [17,44]. In Sec. III, we
useΩeff in (2.11) to determine the dependence of constituent
mass m and the wave vector q on chemical potential and
angular velocity at zero and finite temperature. Then, we
present the phase diagram of the rotating two-flavor quark
matter in the NJL model at finite T, μ, and Ω.

B. Solution of Dirac equation

In this section, we find the solution of the Dirac equation
in a rotating frame with an inhomogeneous chiral con-
densate. To include the effect of DCDW, let us start with the
semibosonized Lagrangian density of the fermionic field in
the mean-field approximation

LSB ¼ ψ̄ðΠ − σ − iγ5τ · πÞψ ; ð2:13Þ

where Π defined in (2.8). To elaborate the effect of rotation
on the formation of inhomogeneous phase as well as the
neutral pion π0 condensate as a by-product, we assume the
σ and π0 fields take the following form:

hψ̄ψi ¼Δcosϑ; hψ̄iγ5τ3ψi ¼Δsinϑ; ð2:14Þ

where the angle ϑ depends on the spatial coordinate.
Plugging, at this stage, the scalar and pseudoscalar con-
densate in (2.14) into the Lagrangian density (2.13), as well
as performing the chiral transformation1 ψ → ψw ≡
e−iτ3γ

5ϑ=2ψ , the Hamiltonian of system reads

Ĥw ¼−iγ0ðγ1∂xþ γ2∂yþ γ3∂zÞþmγ0þΩĴz

þ i
2
γ5γ0τ3ðDϑÞ− i

2
γ5τ3ΩðL̂zϑÞ; ð2:15Þ

where Π ¼ Dþ γ0ΩĴz. At this stage, let us emphasize that
in a rotating frame, the inhomogeneous chiral condensate in
the transverse plane relative to Ω arises naturally [13,17].
Moreover, assuming ϑ ¼ b · x it was shown in [45] the spin
of each flavor is polarized along the direction of wave
vector with a different sign. Bearing in mind that in a
rotating system, the spin is aligned along the Ω axis, we
thus consider the wave vector as b ¼ ð0; 0; qÞ.
In the rest of this section, we find the solution of one

flavor Dirac equation whose explicit form is given by�
Π −m −

q
2
γ5γ3

�
ψ ðsÞ
w ¼ 0; ð2:16Þ

with the superscript s ¼ �. Noting that the matrix structure
of the last term in the Dirac equation is similar to the spin-
angular velocity coupling in operator Π defined in (2.8),
therefore, this coupling has a renormalization effect on the
wave vector. Investigating the effect of this coupling on the
phase diagram of this model is the main purpose of
this paper.
The solution of the Dirac equation in (2.16) is deter-

mined by constructing the simultaneous eigenfunction of
commuting operators, azimuthal angular momentum

½Ĥw; Ĵz� ¼ 0 whose eigenvalues are given by Ĵzψ
ðsÞ
w ¼

ðlþ 1=2Þψ ðsÞ
w , the transverse momentum ½Ĥw; K̂

2
T � ¼ 0

with K̂2⊥ψ
ðsÞ
w ¼ k2⊥ψ

ðsÞ
w as well as third component of

momentum operator K̂zψ
ðsÞ
w ¼ kzψ

ðsÞ
w . Here, after plugging

the wave vector b ¼ ð0; 0; qÞ into the (2.15), the corotating
Hamiltonian reduces to

Ĥw ¼ −iγ0ðγ1∂x þ γ2∂y þ γ3∂zÞ þ ΩĴz

−
q
2
Σz þmγ0: ð2:17Þ

At this stage, using the Weyl representation of the
γ-matrices as well as employing the chiral decomposition
of the wave function

1In the absence of electromagnetic field this is justified. In the
presence of an electromagnetic field, the transformation is to be
done using the path integral.
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ψ ðsÞ
w ¼ N e−iEtþikzz

 
ψ ðsÞ
L

ψ ðsÞ
R

!
; ð2:18Þ

the differential equation for the left- and right-handed
spinors read�

DR þ q
2
σz

�
ψ ðsÞ
R −mψ ðsÞ

L ¼ 0;�
DL þ q

2
σz

�
ψ ðsÞ
L −mψ ðsÞ

R ¼ 0; ð2:19Þ

where

DL=R ¼ Eþ Ω
�
L̂z þ

1

2
σz

�
∓ iðσx∂x þ σy∂y þ iσzkzÞ: ð2:20Þ

Let us note that, N in (2.18) is the normalization factor.

Moreover, the field ψ ðsÞ
w is the eigenvector of Ĵz, therefore

its angular dependence is given according to

ψ ðsÞ
a ¼

�
eilϕψa;þ

eiðlþ1Þϕψa;−

�
; a ¼ L;R: ð2:21Þ

Plugging (2.21) into (2.19) we arrive at

��
EþΩjþ q

2

�
2

− k2z −m2 þ ∂
2
r þ

1

r
∂r −

l2

r2

�
ψL;þ − iq

�
∂r þ

lþ 1

r

�
ψL;− ¼ 0;

��
EþΩj −

q
2

�
2

− k2z −m2 þ ∂
2
r þ

1

r
∂r −

ðlþ 1Þ2
r2

�
ψL;− þ iq

�
∂r −

l
r

�
ψL;þ ¼ 0: ð2:22Þ

At this stage, combining the above equations to arrive at
an equation for ψL;� we obtain Es þ Ωj ¼ εs with εs given
by (2.12). As it turns out, one of the nontrivial conse-
quences of the spatial dependence of chiral condensate,
whose modulation is described according to DCDW, is the
change in the energy dispersion and consequently the
Fermi surface. In particular, the dual chiral density wave
induces an effective interaction of axial current ψ̄γ5γiψ ,
whose role as the spin density resolves the spin degeneracy
of spin degrees of freedom, with the gradient of modulation
∇iϑ. In the left panel of Fig. 1, the dispersion relation εþ
(red line) and ε− (blue line) demonstrated for k⊥ ¼ 0 (solid

line), k⊥ ¼ 3m (dashed line) and q ¼ 8m. As it is shown,
comparing two branches of energy εþ and ε−, we observe
the latter has a lower-energy level due to the nonvanishing
wave vector. To scrutinize this point, in the right panel of
this figure, we plot the wave-vector dependence of ε�. As
demonstrated, εþ increases by increasing the wave vector
whereas the second branch of dispersion relation ε− has an
opposite tendency and decreases with increasing the q.
Therefore, particles fill this branch of energy as it lowers
the energy of the system.
Regarding the fermionic wave function, in order to solve

the differential equations in (2.22), we note that for a

FIG. 1. In the left panel, the kz dependence of two branches of dispersion relation εþ (red lines) and ε− (blue lines) plotted for q ¼ 8m.
Here, the solid (dashed) lines denote the k⊥ ¼ 0 (k⊥ ¼ 3m). In the right panel, the wave vector q dependence of two branches of the
dispersion relation is plotted. Here, the color code for ε� is the same as the left panel. Furthermore, the solid, dot-dashed as well as the
dashed lines correspond to (kz ¼ k⊥ ¼ 0), (kz ¼ 2m, k⊥ ¼ 0) and (kz ¼ k⊥ ¼ 2m), respectively.
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particular case of q ¼ 0 the regular solutions at r → 0 are
given by

ψL;þ ¼ AþJlðk⊥rÞ; ψL;− ¼ A−Jlþ1ðk⊥rÞ; ð2:23Þ

where A� are the normalization factors which will be
determined subsequently. Plugging, (2.23) into (2.22) the
corresponding solution of left-handed wave function reads

ψL ¼ B

0
B@ i
�
εs −

q
2
− s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2z

p �
eilϕJlðk⊥rÞ

k⊥eiðlþ1ÞϕJlþ1ðk⊥rÞ

1
CA;

with B ¼ ðεs − q
2
− s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2z

p
Þ−1=2. As concerns the

right-handed solution of the Dirac equation, we use the
second equation of (2.19). After some lengthy but straight-
forward manipulation, this equation is written as

ψ ðsÞ
R ¼ −

m

kz þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þm2

p σzψ
ðsÞ
L : ð2:24Þ

Finally, Noting that in the curved space-time, the wave
function satisfies the orthogonality condition [43]

hψ ;ϕi≡
Z

d3x
ffiffiffiffiffiffi
−g

p
ψ̄γtϕ

¼ 2πδll0δðkz − k0zÞ
δðk⊥ − k⊥Þ

k⊥
; ð2:25Þ

where for the metric (2.1), the normalization factor of the
wave function (2.18) is given by

N ¼ 1

2

�
kz þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2z

p
εss

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2z

p �1=2

: ð2:26Þ

III. NUMERICAL RESULTS

In Sec. II A, we determined thermodynamic potential
Ωeff of the NJL model developing DCDW in the mean-field
approximation at finite T, μ, andΩ. We aim, in this section,
to present the numerical results on the μ, T, and Ω
dependence of dynamically generated quantities, the con-
stituent mass, and the wave vector. To do this, we divide
this section into two parts. First, we focus on the zero-
temperature limit. Therefore, after presenting the numerical
results on the μ dependence of m and q at various Ω, we
shed light, in particular, on new aspects that were not
discussed before. We report the possibility of having
DCDW even at small μ. Then, to capture all this informa-
tion, we further provide the phase structure of DCDW in the

μ −Ω phase plane. Then, in the second part of this section,
we study our model at finite temperature and present the
T − μ, T − Ω as well as μ −Ω phase portraits of two-flavor
rotating quark matter.
At this stage, let us start with the thermodynamic

potential (2.11). The constituent mass m and the wave
vector q are dynamically generated. To determine these
dynamical quantities, the corresponding Ωeff is to be
minimized. Thus, the corresponding gap equations are
given by

∂Ωeffðμ;Ω;m; qÞ
∂mðrÞ ¼ 0; ð3:1Þ

and

∂Ωeffðμ;Ω;m; qÞ
∂q

¼ 0: ð3:2Þ

In order to solve these gap equations, the parameters of
the model, the cutoff Λ and the NJL coupling constant G,
are to be fixed. We find the global minimum of Ωeff for a
two-flavor Nf ¼ 2 quark matter with the number of color
Nc ¼ 3 and

Λ¼ 0.86 GeV; GΛ2 ¼ 11: ð3:3Þ

Apart from the parameters of the model, according
to Tolman-Ehrenfest law, in curved space-time, the tem-
perature TðxÞ of a system in thermal equilibrium is a
local quantity. However, the product TðxÞ ffiffiffiffiffiffi

g00
p ¼ T0 is

constant and independent of spatial coordinates [46,47].
In other words, for a rotating system, specifically, the
temperature of quark matter at each point TðxÞ, is
related to the temperature at the axis of rotation T0

according to TðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2Ω2

p
¼ T0. Thus, to simplify

further, we perform the numerical solution at a particular
distance from the axis of rotation r ¼ 0.1 GeV−1

where TðrÞ ≈ T0.

A. Zero temperature

Bearing in mind that, the main purpose of this section is
to study inhomogeneous chiral condensate of rotating
quark matter at T ¼ 0, we take the T → 0 limit by applying
the identity

lim
β→∞

1

β
log ð1þ e−βxÞ ¼ −xθð−xÞ; ð3:4Þ

with θðxÞ is the Heaviside θ-function. Following the above

recipe, the one-loop Ωeff ¼ Ωð0Þ
eff þ Ωð1Þ

eff at T ¼ 0 reads
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Ωeff ¼
1

V

Z
d3x

�
m2

2G
þ NfNc

8π5=2

X
s¼�

Z
∞

Λ−2

dτ

τ5=2

Z
∞

0

dkz exp

�
−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þm2

q
þ sq

2

�
2

τ

�
−
NfNcT

4π2
X
s¼�

X∞
l¼−∞

Z
∞

0

dkz

×
Z

∞

0

dk⊥k⊥ðJ2lðk⊥rÞ þ J2lþ1ðk⊥rÞÞf−ðμþΩðlþ 1=2Þ þ εsÞθð−μ −Ωðlþ 1=2Þ − εsÞ

þ ðμþ Ωðlþ 1=2Þ − εsÞθðμþΩðlþ 1=2Þ − εsÞg
�
≡ 1

V

Z
d3x

m2

2G
þΩð1Þ

DS þ Ωð1Þ
FS : ð3:5Þ

Here, the one-loop correction part of thermodynamic

potential Ωð1Þ
eff ¼ Ωð1Þ

DS þ Ωð1Þ
FS contains two contributions

from Dirac-sea (DS), or the vacuum part, and Fermi-sea
(FS), respectively. It turns out that the rotation, in particular,
changes the Fermi-sea contribution while keeping the
vacuum part intact.
In Fig. 2, the dynamical mass (left panel) and wave

vector (right panel) are plotted as the functions of μ for
different values of angular velocity. As it turns out, at
Ω ¼ 0, in particular, there are three distinct phases; the
homogeneous χSB phase, the inhomogeneous χSB phase,
and the χRS phase. For the parameters used in this paper,
the homogeneous phase exists for the range 0 ≤ μ ≤ μ1
where μ1 ≈ 0.391 GeV. At μ > μ1, a first-order phase
transition occurs from homogeneous phase2 to the
DCDW phase where nonvanishing q arising in this state
of quark matter. As it is shown in this figure, dynamical
mass (wave vector) decreases (increases) with increasing μ.
Moreover, in this range of chemical potential, the strength
of the wave vector is q ≈Oðð1 − 2ÞμÞ. Increasing the μ

further, at the critical value μ2 ≈ 0.401 GeV, the DCDW
goes to the χRS phase by a second-order transition.
As demonstrated in this figure, for nonvanishing Ω, the

interplay between the momentum modulation q in the
DCDW phase and angular velocity becomes relevant.
For nonvanishing angular velocity, we observe three
phases of quark matter. Comparing the behavior of m
as well as q for different values of angular velocity, it
turns out μ1 decreases to smaller values with increasing
Ω, leading to suppression of homogeneous phase.
Moreover, by increasing the angular velocity the area of
the inhomogeneous phase enclosed in range μ1 < μ < μ2
starts to shrink. Thus, at some critical value Ωcrit, we
expect the DCDW phase to disappear. As it turns out,
at angular velocity larger than Ωcrit and intermediate
densities the transition from χSB phase to χRS is of
second order.
At this stage, using the solution of gap equations,

we examine the effect of rotation on the Dirac and
Fermi sea to assess the corresponding change in the
threshold of forming the inhomogeneous chiral condensate.
To do this, we expand the thermodynamic potential in (3.5)

around the homogeneous phase e.g.,
�
Ωeff−Ωeff jq¼0

Λ4

�
¼

ðβFS þ βDSÞðqΛÞ2 þ � � �, with

FIG. 2. The μ dependence of the constituent mass m ¼ −GΔ (left panel) and the wave vector q (right panel) for different values of
angular velocity (Ω ¼ 0, 100, 200, 400 MeV).

2Let us recall that in a rotating system the constituent mass,
still, has a mild radial dependence near the rotating axis in the
local density approximation.
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βDSΛ2 ≡ β̄DS ¼
∂
2Ωð1Þ

DS

∂q2

¼ NfNcΛ2

8π2

	�
m
Λ

�
2
Z

∞

ðmΛÞ2
dt
t
e−t


; ð3:6Þ

and

βFSΛ2 ≡ β̄FS ¼
∂
2Ωð1Þ

FS

∂q2

¼ −
NfNc

4π2
X∞
l¼−∞

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþΩðlþ1

2
ÞÞ2−m2

p

0

dk⊥k⊥ðJ2lðk⊥rÞ

þ J2lþ1ðk⊥rÞÞ ×
	
2
ðμþ Ωðlþ 1

2
ÞÞ2 − k2⊥

ðμþ Ωðlþ 1
2
ÞÞ2

−
k2⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ Ωðlþ 1

2
ÞÞ2 −m2 − k2⊥

q
ðm2 þ k2⊥Þjμþ Ωðlþ 1

2
j



: ð3:7Þ

In Fig. 3 we plot the chemical potential dependence of
β̄DS (left panel), β̄FS (middle panel) and β̄tot ≡ β̄DS þ β̄FS
(right panel). We observe the contribution of Dirac sea
proportional to βDS tends to increase the free energy,
therefore it is against the formation of DCDW while the
contribution of Fermi sea βFS supports the formation of
DCDW by lowering the free energy. Once the quark matter
starts to rotate, the angular velocity contribution appears in
βFS whose effect prevails the Dirac sea at smaller values of
chemical potential and consequently leads to the formation
of DCDW. Let us note that, although β̄DS in (3.6) has no
explicit dependence on the angular velocity, as shown in
Fig. 3, obtains the corresponding dependence through the
Ω dependence of constituent mass.
As concerns the inhomogeneous phase in Fig. 2, it has

been shown the existence of critical angular velocity Ωcrit
above which the inhomogeneous phase is no longer
favored. This observation indicates that DCDW appears

in a finite area of the μ −Ω plane. Thus, in order to
scrutinize the interplay between angular velocity and
DCDW further, we plotted in Fig. 4 the Ω dependence
of m and q for various μ. As it turns out, at μ ¼ 0 an
analogous effect to the conventional DCDW phase arises
solely by rotation. Comparing this plot with the one in
Fig. 2, it is obvious, that the inhomogeneous phase in this
case arises at a larger value of angular velocity with
approximate relation Ω ≈Oð2μÞ. This implies the wave
vector strength is in the range q ≈Oðð0.5–1ÞΩÞ. Once the
formation of an inhomogeneous phase at the rotating
frame is established, increasing μ leads to suppression of
m as well as a smaller domain of DCDW wave. Thus, in
analogy to the previous case, we anticipate at a critical
chemical potential μcrit, the inhomogeneous phase no
longer exists.
Combining the results obtained in Figs. 2 and 4, we

arrive at the phase diagram of DCDW for a cold-rotating
quark matter. Thus, In Fig. 5, the μ −Ω phase structure of
the model is demonstrated. As we discussed earlier, three
phases appear in this model, the homogeneous chiral
broken phase, the inhomogeneous phase, and the normal
(χRS) phase. As demonstrated in the left panel of this
figure, for small Ωμ < 1, the DCDWexists in a finite domain
of μ. In this plot, the transition from the homogeneous
phase to the inhomogeneous one, the solid blue line, is of
first order whereas the transition from DCDW to the normal
state, the blue dashed line, is of second order. Moving to the
higher angular velocities, along the horizontal axis, the
DCDW is no longer favored over homogeneous or chiral
restored phases. In this region of the μ −Ω plane, the
homogeneous phase goes to the restored phase by a second-
order transition. However, as demonstrated in the right
panel of Fig. 5, at the limit of ultrafast rotating quark matter
Ω
μ > 1, the DCDW appears again. Similar to the former
case, the transition from homogeneous to inhomogeneous
is first order while from DCDW to restored one is of
second order.

FIG. 3. The μ dependence of β̄DS (left panel), β̄FS (middle panel) and β̄tot (right panel) at different angular velocity Ω ¼ 0, 50,
100 MeV. Despite β̄DS has no explicit Ω dependence, an implicit dependence on angular velocity appears by the Ω dependence of
constituent mass.
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B. The phase portrait of inhomogeneous
chiral condensate of hot and rotating

two-flavor NJL model

The aim of this paper is to study the effect of rotation on
the inhomogeneous phase of quark matter. To this purpose,
In Sec. II A, we determined the thermodynamic potential of
a two-flavor NJL model in a rotating frame. The former
encodes the thermodynamic properties of the system under
consideration and lets us study the phases of quark matter
in a corotating frame. Then, In Sec. III A, using the solution
of gap equations for constituent mass and the wave vector,
which also are subjected to be the global minimum of Ωeff ,
we studied the μ- and Ω-dependence of constituent mass
and the wave vector at T ¼ 0. In this section, we aim to

generalize our previous results and explore the phase
diagram of our model at finite temperature.
At this stage, let us first consider Ωeff in (2.11), at finite

temperature and density in a rotating system. To explore the
interplay between the chemical potential and the rotation of
the system on the formation inhomogeneous phase, we first
look at the solution of gap equations for various fixed Ω. In
Fig. 6, the T − μ phase diagram of a hot-rotating two-flavor
NJL model is plotted for Ω ¼ 0, 50, 150 MeV. In these
plots, the solid blue line denotes the first-order transition,
and the dashed blue line the second-order transition.
Moreover, the red bullet in these figures denotes the
location of the critical point in the phase plane. To find
the former we perform a Ginzburg-Landau (GL) analysis

FIG. 5. The μ − Ω phase diagram of a cold rotating two-flavor NJL model for two cases of small ratio of angular velocity to chemical
potential Ωμ < 1 (left panel) and large Ω

μ > 1 (right panel). The solid blue line denotes a first-order transition from the homogeneous phase
to the inhomogeneous phase. This phase is shown by a yellow area in the phase plane. The dashed blue line indicates the second-order
transition from inhomogeneous to chiral restored phase.

FIG. 4. The Ω dependence of the constituent mass m ¼ −GΔ (left panel) and the wave vector q (right panel) for various values of
chemical potential (μ ¼ 0, 80, 240, 320, 380 MeV).
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and expand the thermodynamic potential Ωeff in (2.11) in
terms of the order parameter M ¼ meiqz and its gradient
as ΩeffðT;μ;Ω;MÞ¼ΩeffðT;μ;Ω;0Þþα2ðT;μ;ΩÞjMj2þ
α4;0ðT;μ;ΩÞjMj4þα4;2ðT;μ;ΩÞj∇Mj2þ�� � [48,49]. For
the particular case of DCDW, this approach is equivalent
to the expansion of Ωeff in terms of constituent mass m and
the wave vector q. According to the GL analysis the CP is
given as the simultaneous solution of α2 ¼ α4;0 ¼ 0.3

As it is shown, for a nonrotating system Ω ¼ 0 [see
Fig. 6(a)], three phases exist in the phase portrait. At
small μ and T, the homogeneous phase is favored. By
increasing the chemical potential μ > μ1, after a first-order
transition from χSB to an inhomogeneous phase, the wave
vector will have a nonvanishing value, leading to the
formation of DCDW. At higher μ > μ2, the DCDW goes
to the chiral restored phase by a second-order transition.
Once we increase the temperature, it turns out the thermal
effects suppress the homogeneous chiral condensate
which in turn, leads to entering the inhomogeneous phase
at a smaller chemical potential μ1. On the other hand,
similar to the former case, the amplitude of inhomo-
geneous chiral condensate decreases with temperature,
thus, the inhomogeneous phase goes to the chiral restored
phase at smaller μ2. This leads to the DCDW occurring
in a smaller chemical potential interval as temperature
increases.
As concerned the effect of rotation, in Figs. 6(b)–6(c),

we plotted the T − μ phase portrait of rotating quark matter

for Ω ¼ 50, 150 MeV, respectively. Comparing the non-
rotating phase diagram with the rotating system, we
observe the left and right sides of the inhomogeneous
phase boundaries, corresponding to the first- and second-
order transitions, moved to the region of the T − μ plane
with smaller chemical potential. This originates from the
suppression of chiral condensate by the rotation. On the
other hand, the relevant chemical potential interval
μ1 < μ < μ2, for the DCDW becomes smaller as the Ω
increases. Moreover, as demonstrated in this plot, the
length of the first-order phase boundary, in particular,
decreases with increasing angular velocity. Hence, it is
expected that at some critical Ω, the phase diagram of our
model exhibits no trace of DCDW, which in turn, the
homogeneous phase goes to the χRS phase by a second-
order transition. Concerning the effect of Ω on the location
of CP, in Table I we presented the critical point ðμcrit; TcritÞ
obtained by the GL analysis. It turns out, whereas,
increasing the angular velocity keeps the position of the
critical chemical potential μcrit constant, it decreases the
critical temperature Tcrit to smaller values.
As it turns out, at regime Ω

μ < 1, the angular velocity
changes the phase structure of DCDW drastically. At the
higher densities which are comparable with the angular
velocity, μ ≈Ω, there is no sign of DCDW where the
homogeneous phase goes to the normal phase in a second-
order transition. Thus, at this stage, to fill the missing gap of

(a) (b) (c)

FIG. 6. The T − μ phase diagram of a hot-rotating quark matter for various values of Ω. The blue solid line denotes the first-
order transition from the homogeneous phase to the inhomogeneous one. The latter goes to the normal phase in a second-order
transition shown by the blue dashed line. Here, the red bullet denotes the position of the critical point obtained by the Ginzburg-
Landau analysis.

TABLE I. The location of critical points ðμcrit; TcritÞ in the T − μ
phase portrait of Fig. 6 for various values of angular velocity.

Ω (MeV) μcrit (MeV) Tcrit (MeV)

0 355 83
50 355 82
150 355 71

3Let us note that, in the Ginzburg-Landau analysis of inho-
mogeneous phase of quark matter, due to the nonvanishing
gradient of order parameter, it is possible to define the Lifshitz
point (LP) by α2 ¼ α4;2 ¼ 0. It is argued in [48,49], that LP and
CP coincide in the conventional NJL model with scalar and
pseudoscalar channels. However, in this paper, for a system of
rotating quark matter, we only examined the location of CP and
skipped the relation between the LP and the CP in this system.
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the phases of a hot-rotating quark matter at finite density,
we focus on an ultrafast rotating system with Ω

μ > 1.4 As
discussed in Sec. III A, in this domain of parameters, the
system develops an inhomogeneous chiral condensate.
Thus, it is our goal to scrutinize the fate of this phase at
finite temperature. In Fig. 7, the phase diagram of DCDW
in the T −Ω plane is demonstrated. As it is shown, at
μ ¼ 0, the inhomogeneous chiral condensate starts in range
Ω1 < Ω < Ω2 with Ω1 ¼ 0.78 GeV and Ω2 ¼ 0.794 GeV,
respectively. By increasing the temperature, we observe a
similar trend as the T − μ phase diagram, the phase
boundaries move to regions of lower Ω and the difference
ΔΩ ¼ Ω2 −Ω1 becomes smaller. Moving to the higher
densities, we observe the phase boundaries move to low
regions of angular velocity. This is similar to Fig. 6 where
the increasing the Ω is accompanied by the transition to
DCDW at a smaller chemical potential. Moreover, as
demonstrated in Fig. 7, increasing the μ is accompanied
by the decrease in the first-order phase boundary which
leads to a smaller area of inhomogeneous phase. In order to
observe the role of chemical potential on the position of CP,
in Table II, we listed the location of critical angular velocity
Ωcrit and critical temperature Tcrit for various μ. These
critical points are denoted by a red bullet in Fig. 7. We
observe, by increasing the chemical potential Tcrit
decreases but Ωcrit is almost constant.
To complete our understanding of the phase structure of

a dual-chiral density wave in a rotating system, we arrive at
the final piece. To scrutinize the interplay of chemical
potential and the angular velocity at different temperatures,
we plot in Fig. 8, the μ −Ω phase portrait at T ¼ 2, 15,
30 MeV. In the top panel of this figure, we observe the
formation of DCDW at intermediate densities. This phase
of matter persists at a certain region of phase space with

Ω
μ < 1. In analogy to Fig. 6 and Fig. 7, after a first-order
transition from the homogeneous to the DCDW, the latter
goes to the chiral restored phase in a second-order
transition. In this plot, the red bullet indicates the position
of CP whose exact location is given in Table III. As already
demonstrated in Fig. 6, thermal effects lead the DCDW to a
lower region of chemical potential and decrease the
distance between two phase boundaries. In the μ −Ω
plane, we observe that by increasing the T, the area of
DCDW becomes smaller and moves to smaller μ.
Moreover, in the bottom panel of Fig. 8, the formation
of DCDW is demonstrated in an ultrafast rotating quark
matter at different temperatures. As it is shown, similar to
the case with Ω

μ < 1, the increase in temperature has a
decrease in the inhomogeneous phase. It is worth noting
that, according to Table III, in the μ − Ω phase plane there
are two critical points. For the region of phase plane with
Ω
μ < 1 (Ωμ > 1), by increasing the temperature the critical
angular velocity Ω1;crit (critical chemical potential μ2;crit)

(a) (b) (c)

FIG. 7. The T − Ω phase diagram of a hot rotating two-flavor NJL model for different μ. Here, the solid blue line is the first-order
transition from homogeneous to DCDW whereas the dashed blue line denotes the second-order transition. Moreover, the red bullet,
whose location in the phase portrait obtained by the Ginzburg-Landau analysis, denotes the critical point.

TABLE II. The location of critical points ðΩcrit; TcritÞ in the
T − Ω phase portrait of Fig. 7 for different μ.

μ (MeV) Ωcrit (MeV) Tcrit (MeV)

0 707 83
25 707 81
70 708 72

TABLE III. The location of critical points ðΩ1;crit; μ1;critÞ (top
panel of Fig. 8) as well as ðΩ2;crit; μ2;critÞ (bottom panel of Fig. 8)
in the μ − Ω phase portrait at different temperatures.

T (MeV) Ω1;crit (MeV) μ1;crit (MeV) Ω2;crit (MeV) μ2;crit (MeV)

2 311 353 703 154
15 305 353 703 152
30 286 354 705 142

4Let us emphasize that to find the phases of matter in this limit,
we do not employ any approximation. We work with the
corresponding Ωeff given by (2.11).
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decreases while the critical chemical potential μ1;crit (criti-
cal angular velocity Ω2;crit) is almost constant.
Once the μ −Ω phase portrait of rotating quark matter is

established, it becomes evident at the intermediate densities
(top panel of Fig. 8), there exists, in particular, a finite
region of the inhomogeneous phase of chiral condensate.
Moreover, this region is enclosed by two phase boundaries
that meet at the critical point ðΩ1;crit; μ1;critÞ. As discussed
earlier, at moderate densities and above the corresponding
critical angular velocity Ω1;crit ≈ 1024 Hz,5 there is no
DCDW. This observation might be of interest to the physics
of compact stars as well as heavy-ion collisions. Therefore,
in what follows we address the relevance of this point on
these physical systems. According to theoretical studies on
the uniformly rotating neutron stars (NS), depending on the
equation of state as well as the temperature of the star, they
might reach an upper angular velocity of ΩNS ≈ 104 Hz
[51]. Comparing ΩNS with the critical angular velocity of
our model Ω1;crit, it is immediately evident the former is
much smaller than the latter, thus, the effect of rotation

might manifest itself by moving the phase boundaries to a
smaller region of chemical potential and shrinking the
distance between the two phase boundaries. On the other
hand, in the heavy-ion collision, the effect of rotationmay be
more significant. According to studies, in the collision of
heavy nuclei, the vorticity may reach even higher values of
ω ≈ 30 MeV at particular energies or impact parameters
[52]. Therefore, the change in the phase boundaries is more
significant. At this stage, it is worth noting that, apart from
the dependence ofΩ1;crit on themodel parameters, it also has
a spatial dependence. The corresponding dependence comes
through the inhomogeneity along the radial direction as well
as the local nature of thermodynamic quantities such as
temperature TðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− r2Ω2

p
¼T0 [46,47] and chemical

potential μðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2Ω2

p
¼ μ0 with μ0 is the chemical

potential on the axis of rotation [10,53]. Therefore, by
increasing the radial dependence, the system experiences
higher temperatures and larger chemical potential. This, in
turn, affects the phase structure in Fig. 8 and the location of
Ω1;crit. Therefore, it might be possible to reach Ω1;crit by
moving to a distance away from the axis of rotation.

IV. CONCLUDING REMARKS

In this paper, we studied the effect of rigid rotation on the
formation of inhomogeneous chiral condensate. To do this,

(a) (b) (c)

(d) (e) (f)

FIG. 8. The μ −Ω phase diagram of a hot rotating two-flavor NJL model for two cases of small ratio of angular velocity to chemical
potential Ωμ < 1 (top panel) and large Ω

μ > 1 (bottom panel). Between these two limits, the DCDW no longer exists and the homogeneous
phase goes to the normal phase by a second-order transition. Moreover, the critical point, whose coordinate is calculated by the
Ginzburg-Landau analysis, is denoted by the red bullet.

5To express the angular velocity in a unit with inverse
of length scale i.e., fm−1 we use 1022 Hz ∼ 0.02 fm−1 [17].
Moreover, to obtain this quantity in units of energy we use
1 fm−1∼200MeV [50].
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we considered the dual-chiral density wave whose inho-
mogeneous modulation includes the simultaneous scalar
and pseudoscalar condensate, according to (2.10). In the
first part of the paper, after introducing the two-flavor NJL
model in a rotating system and using the notations in
curved space-time, we calculated the thermodynamic
potential of a hot-rotating quark matter at finite density
in the mean-field approximation. Using the semibosonized
Lagrangian density of the NJL model, we then solved the
corresponding Dirac equation. We showed the Dirac wave
functions are different once the spatially varying scalar, as
well as pseudoscalar condensates, are taken into account.
The latter plays the role of spin density in the Lagrangian.
The difference between the spin components manifests
itself in the dispersion relation of particles. As a conse-
quence of this difference, the Fermi surface of two spin
components is deformed compared to the conventional one.
In the second part of this paper, we solved the corre-

sponding gap equations numerically for constituent mass
and the wave vector, at zero and finite temperature, to find
their μ and Ω dependence. The detailed analysis of
corresponding solutions gives us new insight into the
interplay between the chemical potential and the angular
velocity on the inhomogeneous phase of quark matter. We
studied, in particular, at zero temperature, the μ and Ω
dependence of m and q. It has been shown that at Ω ¼ 0
three phases appear. At low chemical potential, the homo-
geneous phase is favored and persists up to a certain
chemical potential μ < μ1. Then, the inhomogeneous phase
appears with a standing wave form at moderate densities
μ1 < μ < μ2. For μ > μ2 the chiral symmetry is restored
and DCDW is no longer favored. This is in accordance with
the results obtained earlier [23]. Once we increase the Ω,
the spin of particles becomes parallel to the rotation axis.
This alignment of spin leads to the suppression of chiral
condensate. Thus we expect the homogeneous phase to
terminate at smaller μ and consequently enter the inho-
mogeneous phase at lower chemical potential. An interest-
ing interplay of chemical potential and the angular velocity
manifests itself in the case, where after some critical Ω the
homogeneous phase goes to the chiral restored phase in a
second-order transition. In this region, DCDW is no longer
favored. The region of the μ −Ω plane with a dual chiral
density wave is demonstrated in the corresponding phase
diagram at zero temperature (see Fig. 5).
In the finite temperature case, we numerically deter-

mined the T − μ phase portrait for various Ω. It has been
shown that at Ω ¼ 0, the thermal effects shrink the
inhomogeneous phase, leading DCDW to exist in a limited
region of phase space. This result completely agrees with
the previous studies on DCDW and has already been
discussed in more detail in [25]. Apart from the formation
of DCDW at finite density, the effect of Ω on this phase is
striking. It turns out, the rotation shifts the DCDW to a
lower region of chemical potential. Moreover, this shift is

accompanied by an additional reduction in the first-order
phase boundary which separates the homogeneous phase
from the dual chiral density wave. This is the result of the
change in the location of the critical point in the phase
portrait. As the results of the Ginzburg-Landau analysis
showed, the critical temperature goes to smaller values
while the critical chemical potential is almost constant.
As concerned the effect of rotation, we then studied the

phase diagram of our model in the T −Ω plane. It was
demonstrated that at μ ¼ 0 and large angular velocity, the
dual chiral density wave appears as the favored phase in a
region of phase space. By increasing the chemical potential
we observed, an analogous effect as in the T − μ phase
diagram, the DCDW starts to move to lowerΩ, and the area
shrinks as well. Combining the results obtained from the
phase structure of quark matter in T − μ and T −Ω planes,
we arrive at the μ −Ω phase portrait of DCDW. We
showed, in this case, the region of phase space that supports
the formation of the dual chiral density wave whereas in the
remaining region of phase space, the homogeneous chiral
condensate is separated from the normal phase with a
second-order phase boundary.
At this stage, let us also note that, although the main

motivation of the current study comes from the experimental
results from the HIC program, the results obtained here, may
have some astrophysical implications for the compact
stars [54]. These compact objects may have a quark core,
are rotating around their axis, and subjected to the large
magnetic field of eB ≈ 1012 G [55,56]. The existence of
magnetic fields changes the dynamic of quark matter [50]
as well as the thermodynamics and properties of DCDW
[21,31]. Thus, it is interesting to extend this work to a case
with an external magnetic field at finite temperature and
density. We leave this subject for our future studies.

APPENDIX: THERMODYNAMIC
POTENTIAL OF ROTATIONAL CHIRAL

DUAL DENSITY WAVE

1. Fermion determinant

In this appendix, we present the calculation of the
thermodynamic potential of interacting quark matter in a
rotating frame using the two-flavor NJL model. To deter-
mine the one loop effective action of the theory, Γeff , we
integrate out the fermionic degrees of freedom using the
path integral

Z ≡ eiΓeff ¼
Z

Dψ̄Dψ exp

�
i
Z

d4x
ffiffiffiffiffiffi
−g

p
L
�
; ðA1Þ

with g≡ det gμν and the Lagrangian density of the model is
defined in (2.7). As it turns out, in order to perform the
integration over fermion fields, it is customary to bring the
path integral into a more appropriate form. Therefore, we
introduce the mesonic auxiliary fields ðσ; πÞ,
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1 ¼ 1

N

Z
Dπ⃗ exp

�
−

i
2G

Z
d4xðπ þGψ̄iγ5τψÞ2

�
;

1 ¼ 1

N

Z
Dσ exp

�
−

i
2G

Z
d4xðσ þ Gψ̄ψÞ2

�
; ðA2Þ

where N is a numerical factor. Plugging the identity (A2)
into (A1), the semibosonized effective action in the mean
field approximation reads

eiΓeff ½σ;π� ¼
Z

Dψ̄Dψ exp
�
−

i
2G

Z
d4xðσ2 þ π2Þ

þ i
Z

d4xψ̄ ½Π − σ − iγ5τ · π þ μγ0�ψ
�
: ðA3Þ

Being interested in the DCDW phase, we assume the
spatial dependence of scalar and pseudoscalar is given
according to the following configurations

σ≡−Ghψ̄ψi ¼mcosðqzÞ; π1 ¼ π2 ¼ 0;

π0≡−Ghψ̄iγ5τ3ψi ¼msinðqzÞ: ðA4Þ

It is worth noting that nonvanishing condensates in (A4) are
identified with the scalar σ and the neutral pion π0

condensates.
At this stage, after plugging (A4) into (A3) and perform-

ing the chiral transformation ψ → e−iγ
5τ3qz=2ψ , the effective

action, Γeff ¼ Γð0Þ
eff þ Γð1Þ

eff is derived. It is given in terms of
the tree-level action

Γð0Þ
eff ¼ −

1

2G

Z
d4xm2; ðA5Þ

and the one-loop correction

Γð1Þ
eff ¼ −i ln det

�
Π −m −

q
2
γ5τ3γ

3 þ μγ0
�
: ðA6Þ

In order to find a closed form for Γð1Þ
eff , one may use the

similarity transformation of the matrix in (A6). The
similarity transformed matrix of the form U−1MU with
U being an invertible matrix, has the same determinant as
the original matrix M. A first attempt to simplify (A6) is
obtained by choosing the transformation of the form
U ¼ U−1 ¼ γ5,

iΓð1Þ
eff ¼

1

2
ln det

�
Π −m −

q
2
γ5τ3γ

3 þ μγ0
�

þ 1

2
ln det

�
−Π −mþ q

2
γ5τ3γ

3 − μγ0
�

¼ 1

2
Tr ln

�
Π̃2 þm2 −

q2

4
þ q

2
γ5τ3½γ3; Π̃�

�
; ðA7Þ

with Π̃ ¼ Πþ μγ0 and ½:; :� being the commutator. In (A7),
the trace operator (Tr), includes a trace over color, flavor,
spinors, as well as four-dimensional space-time coordinate.
It has been shown, in previous studies, that the constituent
mass, in particular, depends on the radial distance from the
axis of the cylinder. To arrive at the final result in (A7), we
worked in the local density approximation, ∂rm ≪ m2

[13,17,18,44].
To proceed further, we choose U ¼ τ1, and following the

same procedure leads to the (A7), we arrive, after some
calculation, at

iΓð1Þ
eff ¼

1

4
ln det

��
ði∂t þ ΩĴz þ μÞ2

− LþL− þ ∂
2
z −m2 þ q2

4

�
2

− q2ðði∂t þΩĴz þ μÞ2 − LþL−Þ
�

ðA8Þ

with L� ≡ i∂x � ∂y. Noting that all the operators on the
right hand side of (A8) commute, thus, we proceed to build
the common basis of eigenfunction. The corresponding
normalized wave function reads

ht; rjk0; ki ¼ e−ik
0tþikzzþilφJlðk⊥rÞ; ðA9Þ

with JlðxÞ being the Bessel function of the first kind, r ¼
ðr;φ; zÞ and k ¼ ðk⊥;l; kzÞ. This eigenfunction satisfies
the completeness

X∞
l¼−∞

Z
d4k
ð2πÞ4 ht; rjk

0; kihk0; kjt0; r0i

¼ δðt − t0Þδðz − z0Þδðφ − φ0Þ δðr − r0Þ
r

ðA10Þ

and the orthogonality condition

Z
d4xhk0; kjt; riht; rjk00; k0i

¼ 2πδl;l0δðk0 − k00Þδðkz − k0zÞ
δðk⊥ − k0⊥Þ

k⊥
ðA11Þ

with d4x ¼ dt rdr dφ dz being the volume element.
To compute the determinant (A8), in the momentum

space, after using ln detA ¼ Tr lnA, we perform the trace
over space-time by inserting an appropriate set of coor-
dinate bases. Moreover, using the expansion of unit
operator (A10), the one-loop effective action reads
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iΓð1Þ
eff ¼ tr

Z
d4xht; rj ln

�
Π −m −

q
2
γ5τ3γ

3 þ μγ0
�
jt; ri

¼ tr
X
l

Z
d4k
ð2πÞ4

Z
d4xht; rjk0; kihk0; kj ln

�
Π −m −

q
2
γ5τ3γ

3 þ μγ0
�
jt; ri

¼ NfNcT

2

X
s¼�

X
l

Z
d4k
ð2πÞ4

Z
d4xðJ2lðk⊥rÞ þ J2lþ1ðk⊥rÞÞ ln ½−ðk0 þΩðlþ 1=2Þ þ μÞ2 þ ϵ2s �; ðA12Þ

with tr acting on the flavor, color, and spin degrees of freedom. Here, the energy spectrum of up and down quarks in a
system, developing DCDW configuration (A4) is given by

ε� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þm2

q
� q

2

�
2

s
: ðA13Þ

Moreover, noting that the matrix Ωσ12=2 reduces to �Ω=2 with the help of spin projection operators, P� ≡ 1
2
ð1þ iγ1γ2Þ,

the one-loop effective action simplified further by inserting the unit operator Pþ þ P− ¼ 1 and using iγ1γ2P� ¼ �P� in
the second line of (A12).

2. Finite temperature

In what follows, we derive the thermodynamic potential, Ωeff , at finite temperature. Let us define the thermodynamic
potential through the relation Ωeff ¼ − logZ

βV jt→−iτ where β≡ T−1 is the inverse of temperature and V is three-dimensional
volume. At this stage, to determine the Ωeff , one makes the following replacement:

t→ −iτ; k0 → iωn;
Z

dk0

2π
→ iT

X∞
n¼−∞

; ðA14Þ

where the fermionic Matsubara frequency is defined by ωn ≡ ð2nþ 1ÞπT. Following the above recipe and performing the
sum over Matsubara frequencies, the thermodynamic potential is given by

Ωeff ¼
1

V

Z
d3x

�
m2

2G
−
NfNc

4π2
X
s¼�

X∞
l¼−∞

Z
∞

0

dkz

Z
∞

0

dk⊥k⊥ðJ2lðk⊥rÞ þ J2lþ1ðk⊥rÞÞ

×
n
εs þ T ln ð1þ e−βðεsþΩðlþ1=2ÞþμÞÞ þ T ln

�
1þ e−βðεs−Ωðlþ1=2Þ−μÞ

�o�
: ðA15Þ

The vacuum contribution of the above result has an ultraviolet divergence and hence needs to be regularized. Adopting the
proper time method, using the integral

1

An ¼
1

ðn − 1Þ!
Z

∞

0

dττn−1e−τA; ðA16Þ

we, eventually, arrive at

Ωeff ¼
1

V

Z
d3x

�
m2

2G
þ NfNc

8π5=2

X
s¼�

Z
∞

Λ−2

dτ

τ5=2

Z
∞

0

dkz exp

�
−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þm2

q
þ sq

2

�
2

τ

�
−
NfNcT

4π2
X
λ¼�

X∞
l¼−∞

Z
∞

0

dkz

×
Z

∞

0

dk⊥k⊥ðJ2lðk⊥rÞ þ J2lþ1ðk⊥rÞÞ
n
ln
�
1þ e−βðεsþΩðlþ1=2ÞþμÞ

�
þ ln

�
1þ e−βðεs−Ωðlþ1=2Þ−μÞ

�o�
; ðA17Þ

with Λ being the cutoff for the lower bound of proper time integration. Here, to obtain the final expression of Ωeff , we used
the identity [57]

X∞
l¼1

J2lðxÞ ¼
1

2
ð1 − J20ðxÞÞ; ðA18Þ

then performed the transverse momentum integral. It is worth mentioning that the final result of Ωeff is comparable with the
one derived in [25] in the absence of rotation.
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