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We present a detailed investigation on the intrinsic charm content in a light meson within the ’t Hooft
model, namely, two-dimensional QCD in the large-Nc limit. The intrinsic charm parton distribution
function (PDF) of a light meson, which first arises at order N−1

c , is explicitly expressed in terms of the
’t Hooft wave functions of the light meson and an infinite tower of excited charmed mesons. We also
derive the functional forms of the two-dimensional counterparts of the meson cloud model and Brodsky-
Hoyer-Peterson-Sakai model. We then make a quantitative comparison between our results and model
predictions. We also study how the profile of the intrinsic charm PDF varies with charm-quark mass. The
average momentum fraction carried by the charm quark inside a light meson is found to decrease asm−6

c in
the heavy charm quark mass limit.
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I. INTRODUCTION

The probability distributions of the momenta carried by
light quarks and gluons inside a nucleon, namely, the parton
distribution functions (PDFs), are the key nonperturbative
ingredients to unravel the internal structure of the nucleon. In
the past half century, the nucleon PDF has been determined
with very high precision from numerous high-energy colli-
sion experiments [1]. Although the nucleon is viewed as a
baryon composed of three light quarks in the context of
the naive quark model, it is generally believed that it must
contain higher Fock components that entail heavy quark and
antiquark pairs, e.g., juudcc̄i, due to ubiquitous quantum
fluctuation. It has long been envisaged that the nucleon may
have a non-negligible charm content, usually dubbed intrin-
sic charm [2–4]. Due to its nonperturbative nature, the
intrinsic charm should be distinguished from the extrinsic
charm, which actually emerges from gluon splitting accord-
ing to Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution.
It has often been warned that the exact interpretation of
intrinsic charm may suffer from some ambiguity. For the

notion of the intrinsic charm to make sense, the lifetime of an
intrinsic cc̄ pair inside a nucleon must be much longer than
the typical interaction time in the deep-inelastic scattering
processes [5].
Recently, the NNPDF Collaboration released an analysis

of the latest LHCb experimental data [6] on Z-boson
production associated with a charm jet. They claimed that
the LHCb data can be decently accommodated (at a
significance level of 3σ [7]) only after including the intrinsic
charm PDF in the analysis. This result may indicate that the
existence of a charm component in the proton is non-
negligible. We note that some time ago the CTEQ-TEA
global analysis [1] placed an upper bound on the average
charm momentum fraction in a proton, which is less than
2% or 1.6% at the renormalization scale μ ¼ 1.3 GeV.
The recent NNPDF analysis indicated that the average
momentum fraction carried by the nonperturbative charm is
0.62%� 0.28% at μ ¼ 1.65 GeV [7]. Nevertheless, the
NNPDF analysis has not been universally accepted, and
there is some ongoing debate on the existence of intrinsic
charm content reported by the NNPDF Collaboration [8,9].
It is very challenging to investigate the intrinsic charm

PDF in a light hadron directly from the first principles of
QCD [10]. The charm-anticharm asymmetry1 in the nucleon
is constrained by a combined analysis from QCDmodel and
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1In this work, we only focus on the intrinsic charm PDF of
quarkonia, which is a flavor-neutral system with definite C parity.
Thus the charm-anticharm asymmetry cannot emerge from this
system. To study a nonvanishing charm-anticharm asymmetry,
one must pursue the flavored meson which is beyond the scope of
this work.
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lattice-calculated form factors [11]. The large momentum
effective theory [12–14] may have the potential to directly
calculate the x dependence of the intrinsic charm PDF on
the lattice in the future. However, currently one has to resort
to phenomenological models to parametrize the intrinsic
charm PDF in a nucleon. Two popular models are the meson
cloud model (MCM) [15–17] and Brodsky-Hoyer-Peterson-
Sakai (BHPS) model [2,3].
Needless to say, it is highly desirable to understand the

intrinsic charm PDF from a first-principles perspective.
Although seemingly formidable, it is actually possible to
achieve this goal in some toy models of QCD. In this work,
we attempt to investigate the intrinsic charm content of a
light meson in 1þ 1-dimensional QCD in the large-Nc
limit, which was originally introduced by ’t Hooft in
1974 [18]. Despite being a simple solvable model, the ’t
Hooft model resembles realistic QCD in several aspects,
e.g., color confinement, Regge trajectory, and chiral
condensate. A notable simplification in QCD2 is the lack
of a dynamic gluon. Once imposing light-cone gauge, the
gluonic degree of freedom descends simply to an inter-
quark potential. The ’t Hooft model thus may serve as an
ideal theoretical laboratory to study the intrinsic charm
PDF of a light hadron. The aim of this work is to rigorously
deduce the functional form of the intrinsic charm PDF
inside a light meson in this toy model, which starts at order
1=Nc. To make a comparison, we also present the intrinsic
charm PDF predicted by the light-front two-dimensional
counterparts of the BHPS model and MCM. It should be
pointed out beforehand that QCD2 still differs from the
realistic QCD4 in some aspects, e.g., the transverse degree
of freedom is absent in QCD2 and there is no dynamical
gluon in some noncovariant gauges such as the light-cone
gauge. Thus, one may expect that the intrinsic charm
distributions are different in QCD2 and QCD4. For
instance, the scaling of Mellin moments with respect to
charm-quark mass is m−2

c [19] in realistic QCD4, while we
found that the scaling is approximately m−6

c in QCD2 (see
Sec. V for details). This work may provide some novel
insight for the understanding of the origin of the intrinsic
charm component inside a light hadron from the field-
theoretical perspective. In this solvable toy model, we also
explicitly point out the similarity and difference between
our field-theoretical approach and some influential phe-
nomenological models such as the MCM. We hope that the
lessons learned from this toy model may be useful to better
understand the intrinsic charm content of the PDF in
realistic QCD.
The rest of this paper is organized as follows. In Sec. II

we briefly review the Hamiltonian formalism of the ’t Hooft
model in the Nc → ∞ limit. In Sec. III we extend the
formalism to the next-to-leading order in 1=Nc, and con-
struct the functional form of the intrinsic charm PDF with
the aid of first-order quantum-mechanical perturbation
theory. In Sec. IV we give the explicit expressions of the

intrinsic charm PDF within the two-dimensional versions of
the BHPS model and MCM. We also discuss the relation
between our results and the MCM result. We devote Sec. V
to comprehensive numerical studies of the intrinsic charm
PDF in a light meson which are calculated using various
approaches. We also study how the first and second Mellin
moments of the intrinsic charm PDF vary with increasing
charm mass. Finally, we summarize in Sec. VI.

II. A BRIEF REVIEW OF THE HAMILTONIAN
APPROACH IN THE ’T HOOFT MODEL

In this section, we briefly review how to derive the
’t Hooft equation using the light-front Hamiltonian method.
For more details, we refer interested readers to Ref. [20].
The QCD Lagrangian in two spacetime dimensions reads

L ¼ −
1

4
Fa;μνFa

μν þ
X
f

ψ̄fði=D −mfÞψf; ð1Þ

where Dμ ¼ ∂μ − igsAa
μTa signifies the color-covariant

derivative and Ta denotes the generators of the SUðNcÞ
group in the fundamental representation. The gluon
field-strength tensor is defined as Fa

μν ≡ ∂μAa
ν − ∂νAa

μ þ
gsfabcAb

μAc
ν. f denotes the flavor of quarks. In this work,

we concentrate on the two-flavor case, where f can be either
the up or charm quark. We use the chiral-Weyl representa-
tion for the Dirac γ matrices,

γ0 ¼ σ1; γz ¼ −iσ2; γ5 ≡ γ0γz ¼ σ3; ð2Þ

and the Dirac spinor field in this representation is

ψ ¼ 2−
1
4

�
ψR

ψL

�
; ð3Þ

where R, L denote the right-handed and left-handed com-
ponents, respectively.
The chiral limit and Nc → ∞ limit do not generally

commute. In this work, we specify the ’t Hooft model in the
so-called “weak-coupling” limit:

Nc →∞; λ≡ g2sNc

4π
fixed; mq ≫ gs ∼

1ffiffiffiffiffiffi
Nc

p ; ð4Þ

where λ of mass dimension two denotes the ’t Hooft
coupling constant. We assume the up quark to be light, so
mu ≤

ffiffiffiffiffi
2λ

p
, while the charm quark is regarded as heavy, and

hence mc ≫
ffiffiffiffiffi
2λ

p
.

It is convenient to adopt the light-cone coordinates
x� ¼ x∓ ¼ ðx0 � xzÞ= ffiffiffi

2
p

. Substituting (3) into (1), and
imposing the light-cone gauge Aþ;a ¼ 0, one obtains [18]
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L ¼ 1

2
ð∂−A−;aÞ2 þ gsψ

†
f;RA

−;aTaψf;R þ ψ†
f;Ri∂þψf;R

þ ψ†
f;Li∂−ψf;L −

mfffiffiffi
2

p �
ψ†
f;Lψf;R þ ψ†

f;Rψf;L

�
; ð5Þ

where the flavor index f is summed over u and c.
In the light-cone gauge, A−;a and ψL are no longer the

dynamical variables. From the equations of motion, they
can be expressed in terms of the canonical variable ψR
(the “good” component):

∂
2
−A−;a − gsψ

†
RT

aψR ¼ 0; ð6aÞ

i∂−ψL −
mffiffiffi
2

p ψR ¼ 0: ð6bÞ

Substituting the solutions of these two equations into the
light-front (LF) Hamiltonian, we obtain

HLF ¼ P− ¼
Z
xþ¼const

dx−
�
m2

2i
ψ†
Rðx−Þ

×
Z

dy−Gð1Þðx− − y−ÞψRðy−Þ

−
g2s
2

X
a

ψ†
Rðx−ÞTaψRðx−Þ

×
Z

dy−Gð2Þðx− − y−Þψ†
Rðy−ÞTaψRðy−Þ

�
; ð7Þ

where Gð1Þ and Gð2Þ are the Green functions affiliated with
the differential operators ∂− and ∂

2
−:

Gð1Þðx− − y−Þ ¼ i
Z

dkþ

2π
Θðjkþj − ρÞ e

−ikþðx−−y−Þ

kþ
; ð8aÞ

Gð2Þðx− − y−Þ ¼ −
Z

dkþ

2π
Θðjkþj − ρÞ e

−ikþðx−−y−Þ

ðkþÞ2 : ð8bÞ

Here ρ is an artificial IR cutoff introduced to regularize the
divergence caused by exchanging an instantaneous gluon.
The quark fields are quantized using the light-front

formalism (Dirac’s front form)

fψ i
Rðxþ; x−Þ;ψ j†

R ðyþ; y−Þgjxþ¼yþ ¼ δijδðx− − y−Þ; ð9aÞ

fψ i
Rðxþ; x−Þ;ψ j

Rðyþ; y−Þgjxþ¼yþ

¼ fψ i†
R ðxþ; x−Þ;ψ j†

R ðyþ; y−Þgjxþ¼yþ ¼ 0; ð9bÞ

where i, j denote the color indices. The quark field can be
further expanded using the annihilation and creation
operators

ψ i
R ¼

Z
∞

0

dkþ

2π
½biðkþÞe−ikþx− þ di†ðkþÞeikþx− �: ð10Þ

One important feature of the ’t Hooft model is the color
confinement. The isolated quarks and antiquarks cannot
manifest themselves in a physical spectrum. It is the color-
neutral quark-antiquark pair that can be created or annihi-
lated in a physical process. The technique of bosonization
[21–28] turns out to be useful to diagonalize the light-front
Hamiltonian. One can define a set of color-singlet com-
pound operators M, B, and D from the quark/antiquark
creation and annihilation operators:

Mf̄1f2ðkþ;pþÞ¼ 1ffiffiffiffiffiffi
Nc

p
X
c

dc;f1ðkþÞbc;f2ðpþÞ; ð11aÞ

Bf1;f2ðkþ;pþÞ¼
X
c

bc;f1†ðkþÞbc;f2ðpþÞ

→
Z

∞

0

dqþ

2π

X
fi

M†f̄if1ðqþ;kþÞMf̄if2ðqþ;pþÞ;

ð11bÞ

Df̄1;f̄2ðkþ;pþÞ¼
X
c

dc;f1†ðkþÞdc;f2ðpþÞ

→
Z

∞

0

dqþ

2π

X
fi

M†f̄1fiðkþ;qþÞMf̄2fiðpþ;qþÞ;

ð11cÞ

where c denotes the color index. The last equations reflect
the color confinement assumption.
The commutation relation betweenM andM† is given by

½Mf̄1f2ðkþ1 ;pþ
1 Þ;M†f̄3f4ðkþ2 ;pþ

2 Þ�

¼ ð2πÞ2δf1f3δf2f4δðkþ1 −kþ2 Þδðpþ
1 −pþ

2 ÞþO
�

1

Nc

�
; ð12Þ

and all other commutators among M, B, D are at order
Oð1=NcÞ. Since baryons become infinitely heavy and
decouple in the Nc → ∞ limit, mesons are the only
physical color-singlet states in this model. One can diag-
onalize the light-front Hamiltonian by trading the com-
pound operators M and M† for the mesonic annihilation
and creation operatorsmn andm

†
n (where n signifies the nth

excited meson). These two sets of operators are related by
the following relations:

Mf̄1f2ðð1 − xÞPþ; xPþÞ ¼
ffiffiffiffiffiffi
2π

Pþ

r X∞
n¼0

φf2f̄1
n ðxÞmf2f̄1

n ðPþÞ;

ð13aÞ
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mf1f̄2
n ðPþÞ ¼

ffiffiffiffiffiffi
Pþ

2π

r Z
1

0

dxφf1f̄2
n ðxÞMf̄2f1ðð1 − xÞPþ; xPþÞ;

ð13bÞ

where the coefficient function φf1f̄2
n ðxÞ is interpreted as the

light-cone (’t Hooft) wave function of the nth excited
meson with the flavor content f1f̄2.
The meson annihilation and creation operators are

assumed to obey the standard commutation relation:

½mfif̄j
n ðPþ

1 Þ; m†fkf̄l
r ðPþ

2 Þ� ¼ 2πδfifkδfjflδnrδðPþ
1 − Pþ

2 Þ

þO
�

1

Nc

�
: ð14Þ

In order to have the desired commutation relation in (14),
the ’t Hooft wave functions must satisfy the following
orthogonality and completeness conditions:Z

1

0

dxφf1f̄2
n ðxÞφf1f̄2

m ðxÞ ¼ δnm; ð15Þ
X
n

φf1f̄2
n ðxÞφf1f̄2

n ðyÞ ¼ δðx − yÞ: ð16Þ

At the leading order in 1=Nc, the light-front Hamiltonian
is simply a free Hamiltonian composed of all possible
meson states:

HLF ¼ P− ¼ Hvac þ
X
n;f1f2

Z
dPþ

2π
P−
n;f1f2

m†f1f̄2
n ðPþÞ

×mf1f̄2
n ðPþÞ þO

�
1ffiffiffiffiffiffi
Nc

p
�
: ð17Þ

The exact form of the vacuum energy Hvac can be found
in [20] and Hvac is a constant which does not have any
physical effect in this work. In order to reach such a
diagonalized Hamiltonian, the meson light-cone wave
function must obey the celebrated ’t Hooft equation [18]:

�
m2

1

x
þ m2

2

1 − x

�
φf1f̄2
n ðxÞ − 2λ�

Z
1

0

dy
φf1f̄2
n ðyÞ − φf1f̄2

n ðxÞ
ðx − yÞ2

¼ μ2n;f1;f2φ
f1f̄2
n ðxÞ; ð18Þ

where m1, m2 are the current-quark masses affiliated with
flavor f1 and f2, respectively, and μ2n;f1f2 is the squared
meson mass. The symbol �R denotes the principal value
prescription for an integral, defined as

�
Z

dy
fðyÞ

ðx− yÞ2 ¼ lim
ϵ→0þ

Z
dyΘðjx− yj− ϵÞ fðyÞ

ðx− yÞ2 −
2fðxÞ
ϵ

:

ð19Þ

Note that the IR regulator ρ finally disappears from the LF
Hamiltonian (17) as well as the ’t Hooft equation, as it
should.

III. INTRINSIC CHARM PDF OF A LIGHT MESON

Let us consider a light neutral meson composed of the u
and ū quarks. For notational brevity, we simply call it π.
The intrinsic charm PDF of a pion follows the standard
Collins-Soper definition [29]:

fc=πðxÞ ¼
Z

dz−

4π
e−ixP

þz−
	
πðPþÞjc̄ðz−ÞγþP

�
exp

�
−igs

Z
z−

0

dη−Aþðη−Þ
��

cð0ÞjπðPþÞ



connected
; ð20Þ

where Pþ is the þ momentum of the pion and x is the frame-independent light-front momentum fraction kþ=Pþ ¼
ðk0 þ kzÞ=ðP0 þ PzÞ carried by the charm quark with respect to the meson. c and c̄ denote the charm quark fields, and
P½� � �� denotes the gauge link which ensures the gauge invariance of the PDF. Since we have worked with the light-cone
gauge Aa;þ ¼ 0, the gauge link can thus be simply dropped.
Employing the bosonization technique as mentioned in the preceding section, the color-singlet nonlocal charm quark

bilinear in (20) can be expressed in terms of the mesonic creation and annihilation operators:

c̄ðz−Þγþcð0Þ ¼ c†Rðz−ÞcRð0Þ

¼
Z

dkþ1 dk
þ
2

2π
Ncδðkþ1 − kþ2 Þe−ik

þ
1
z−

þ
X
n

Z
dkþ1 dk

þ
2

ð4πÞ3=2
ffiffiffiffiffiffi
Nc

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ1 þ kþ2

p eik
þ
1
z−m†cc̄

n ðkþ1 þ kþ2 Þφcc̄
n

�
kþ1

kþ1 þ kþ2

�
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þ
X
n

Z
dkþ1 dk

þ
2

ð4πÞ3=2
ffiffiffiffiffiffi
Nc

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ1 þ kþ2

p e−ik
þ
1
z−mcc̄

n ðkþ1 þ kþ2 Þφcc̄
n

�
kþ2

kþ1 þ kþ2

�

þ
X
f;n1n2

Z
dkþ1 dk

þ
2 dq

þ

ð2πÞ2 eik
þ
1
z−m†cf̄

n1 ðkþ1 þ qþÞmcf̄
n2 ðkþ2 þ qþÞ

φcf̄
n1

�
kþ
1

kþ
1
þqþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ1 þ qþ

p φcf̄
n2

�
kþ
2

kþ
2
þqþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ2 þ qþ

p

−
X
f;n1n2

Z
dkþ1 dk

þ
2 dq

þ

ð2πÞ2 e−ik
þ
1
z−m†fc̄

n1 ðkþ2 þ qþÞmfc̄
n2 ðkþ1 þ qþÞ

φfc̄
n1

�
qþ

kþ
2
þqþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ2 þ qþ

p φfc̄
n2

�
qþ

kþ
1
þqþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ1 þ qþ

p : ð21Þ

The OðNcÞ term contributes to the disconnected part, and
thus can be dropped. The Oð ffiffiffiffiffiffi

Nc
p Þ terms only contain a

single meson creation or annihilation operator, which also
yields a null contribution when sandwiched between two π
states. Only the last two terms ofOðN0

cÞ yield nonvanishing
contributions, which represent the charmed meson sector
and anticharmed meson sector, respectively.
Next we turn to the higher Fock component inside a

physical π state. In the Nc → ∞ limit, the π only contains
the valence constituents uū. In order to nail down its
intrinsic charm content, one has to expand the QCD2 light-
front Hamiltonian to next-to-leading order in 1=Nc. Let us
split the full Hamiltonian intoHLF ¼ HLF;0 þ V, where the
free mesonic Hamiltonian HLF;0 is given in (17), and the V
term encapsulates all possible Oð1= ffiffiffiffiffiffi

Nc
p Þ three-meson

interactions. Invoking the first-order quantum-mechanical
perturbation theory, the physical pion state can be
expressed as

jπ0i ≈ jπi þ 1

P− −HLF;0 þ iϵ
Vjπi: ð22Þ

jπ0i denotes the eigenstate of the full Hamiltonian, and jπi
signifies the eigenstate ofHLF;0, which can be generated by

jπnðPþÞi ¼
ffiffiffiffiffiffiffiffiffi
2Pþp

m†uū
n ðPþÞj0i; ð23Þ

where n denotes the principle quantum number.
It is well known that the Oð1= ffiffiffiffiffiffi

Nc
p Þ piece of the

interaction potential V is governed by a three-meson
coupling [30]. For our concern, the most relevant parts
in V are those coupling π with all possible charmed mesons
and anticharmed mesons:

Vcharm ¼ V þ V̄ þ H:c:; ð24Þ

where

V ¼ −λ
ð2πÞ32 ffiffiffiffiffiffi

Nc
p

X
n1n2n3

Z
∞

0

dqþdkþ1 dk
þ
2 dk

þ
3 dk

þ
4 δðkþ1 − kþ2 þ kþ3 þ kþ4 Þm†cū

n1 ðkþ1 þ qþÞmuū
n2 ðkþ2 þ qþÞm†uc̄

n3 ðkþ3 þ kþ4 Þ

×
1

ðkþ3 − kþ2 Þ2
φcū
n1

�
kþ
1

kþ
1
þqþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ1 þ qþ

p φuū
n2

�
kþ
2

kþ
2
þqþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ2 þ qþ

p φuc̄
n3

�
kþ
3

kþ
3
þkþ

4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ3 þ kþ4

p ; ð25aÞ

V̄ ¼ λ

ð2πÞ32 ffiffiffiffiffiffi
Nc

p
X
n1n2n3

Z
∞

0

dqþdkþ1 dk
þ
2 dk

þ
3 dk

þ
4 δðkþ1 − kþ2 þ kþ3 þ kþ4 Þm†uc̄

n1 ðkþ1 þ qþÞmuū
n2 ðkþ2 þ qþÞm†cū

n3 ðkþ3 þ kþ4 Þ

×
1

ðkþ3 − kþ2 Þ2
φuc̄
n1

�
qþ

kþ
1
þqþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ1 þ qþ

p φuū
n2

�
qþ

kþ
2
þqþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ2 þ qþ

p φcū
n3

�
kþ
4

kþ
3
þk4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ3 þ kþ4

p : ð25bÞ

Note that Vcharm is indeed of order 1=
ffiffiffiffiffiffi
Nc

p
. Obviously, the interaction potential Vcharm can induce transitions from π into a

DD̄ pair, with D and D̄ generically referring to all possible excited charmed and anticharmed mesons.
To proceed, let us insert a complete set of hadronic states in the left of Vcharm into Eq. (22). Clearly, only those

intermediate states composed of free DD̄ pairs can survive in the sum. Equation (22) can then be recast as

jπ0nðPþÞi ≈ jπnðPþÞi þ
X
ninj

Z
∞

0

dkþi dk
þ
j

ð2πÞ22kþi 2kþj
T̃n;ni;njðkþi ; kþj ÞjDniðkþi ÞD̄njðkþj Þi; ð26Þ

where the completed charmed hadronic states arising from the first-order perturbation are defined by
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jDniðkþi Þ; D̄njðkþj Þi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
kþi k

þ
j

q
m†cū

ni ðkþi Þm†uc̄
nj ðkþj Þj0i:

ð27Þ

For the sake of generality, here we consider the intrinsic
charm content of the nth excited pion state (denoted by πn),
rather than only the ground-state π. The T̃ function in (26)
is defined as

T̃n;ni;njðkþi ; kþj Þ≡ hDniðkþi ÞD̄njðkþj Þjπ0nðPþÞi
≈ hDniðkþi ÞD̄njðkþj ÞjVcharmjπnðPþÞi

×

 
μ2Dni

2kþi
þ
μ2D̄nj

2kþj
−

μ2πn
2Pþ

!−1

: ð28Þ

This function has a clear physical interpretation, which
characterizes the probability amplitude of finding a jDD̄i
state with s certain quantum number in a physical πn.

2

The matrix element in (28) can be further expressed as

hDn1ðx1PþÞD̄n2ðx2PþÞjVcharmjπnðPþÞi

¼ 2π

Pþ δðx1 þ x2 − 1ÞΓn;n1;n2ðx1; x2Þ; ð29Þ

where xi ¼ kþi =P
þ (i ¼ 1, 2) is the þ momentum fraction

ofD, D̄with respect to πn, and this matrix element vanishes
unless the light-cone momentum conservation is satisfied.
The transition vertex function Γ was first given by Callan,
Coote, and Gross long ago [30], and its explicit form reads

Γn;n1;n2ðx1; x2Þ ¼ 4λ

ffiffiffiffiffiffi
π

Nc

r �Z
1

x1

dy1

Z
x1

0

dy2
1

ðy2 − y1Þ2

×φuū
n ð1− y1Þφcū

n1

�
1−

y2
x1

�
φuc̄
n2

�
1− y1
x2

�

−
Z

1

x2

dy1

Z
x2

0

dy2
1

ðy2 − y1Þ2

×φuū
n ðy1Þφuc̄

n2

�
y2
x2

�
φcū
n1

�
y1 − x2
x1

��
: ð30Þ

In Fig. 1 we present some schematic diagrams depicting the
triple-meson vertex Γ.
It should be emphasized that the charm and anticharm

quarks are generated nonperturbatively and hadronized
into the D and D̄ mesons. This nonperturbative process
is represented by the exchange of an infinite number of
gluons between the c (c̄) quark and ū (u) quark, as shown
in Fig. 2. It is the charm quark inside the D meson that is
later “probed” and gives rise to the charm-quark PDF.
Therefore, the charm quark in our calculation is genuinely
intrinsic.
It is reassuring to see that the vertex function Γ is indeed

of order N−1=2
c . At first sight, one may worry that the Γmay

become divergent when the integration variables approach
the boundary, i.e., y1; y2 → x1 or x2. A careful look reveals
that, near the boundary, both terms in the integrand are
simultaneously approaching φuū

n ðx2Þφcū
n1 ð0Þφuc̄

n2 ð1Þ, and
therefore the potential IR divergences cancel, so the vertex
function Γ is IR finite.
Substituting Eqs. (21) and (26) into the PDF definition

in (20) and repeatedly using the commutation relation
in (14), we can express the intrinsic charm PDF of the πn as

fc=πnðxÞ¼
X

n1n2n3n4

Z
dx1dx2dx3dx4

16ð2πÞ4x1x2x3x4
T̃n;n1;n2ðx1Pþ;x2PþÞ

×Hn1;n2
n3;n4ðx1;x2;x3;x4;xÞT̃�

n;n3;n4ðx3Pþ;x4PþÞ;
ð31Þ

FIG. 1. Schematic diagrams illustrating a pion transitioning into a DD̄ pair.

2Note that we have dropped the iϵ term in the energy
denominator in (28), because the energy denominator always
has a positive sign due to Pþ ≥ kþi , k

þ
j ≥ 0 and μD; μD̄ ≫ μπ , if

we do not consider the excessively highly excited pion.
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with

Hn1;n2
n3;n4ðx1; x2; x3; x4; xÞ≡

Z
dz−

4π
e−ixP

þz−hDn3ðx3PþÞD̄n4ðx4PþÞjc†Rðz−ÞcRð0ÞjDn1ðx1PþÞD̄n2ðx2PþÞi

¼ 4π

�
δn2n4x2δðx4 − x2ÞθðxÞθðx3 − xÞφcū

n3

�
x
x3

�
φcū
n1

�
xþ x1 − x3

x1

�

−δn1n3x1δðx3 − x1Þθð−xÞθðx2 þ xÞφuc̄
n2

�
xþ x2
x2

�
φuc̄
n4

�
xþ x2
x4

��
; ð32Þ

in which the θðxÞ and θð−xÞ terms represent the charm and anticharm sectors, respectively.
The result in Eq. (33) can be obtained through a diagrammatic approach by introducing the three-meson vertex and the

meson-qq̄ vertex. We present the calculation using the diagrammatic approach in the Appendix. This diagrammatic
approach also indicates that the charm quark in our calculation is intrinsic.
Substituting the definition of T̃ in (28) into (31), we finally arrive at a compact form of the intrinsic charm PDF of the πn:

fc=πnðxÞ ¼
X

n1;n2;n3;n4

Z
dx1

Γn;n1;n2ðx1; 1 − x1ÞΓ�
n;n3;n4ðx1; 1 − x1Þ

16πx1ð1 − x1Þ

 
μ2Dn1

2x1
þ

μ2D̄n2

2ð1 − x1Þ
−
μ2πn
2

!−1

×

 
μ2Dn3

2x1
þ

μ2D̄n4

2ð1 − x1Þ
−
μ2πn
2

!−1�
θðxÞθðx1 − xÞ

x1
δn2n4φ

cū
n3

�
x
x1

�
φcū
n1

�
x
x1

�

−
θð−xÞθðx − x1 þ 1Þ

1 − x1
δn1n3φ

uc̄
n2

�
1þ x

1 − x1

�
φuc̄
n4

�
1þ x

1 − x1

��
: ð33Þ

Equation (33) is the main result of this work, which
represents the field-theoretical expression for the intrinsic
charm PDF of a light meson in the ’t Hooft model. A
schematic Feynman diagram to visualize this formula is
shown in the left diagram of Fig. 2. The most important
message is that there is an infinite tower of charmed mesons
and anticharmed mesons that manifest as the higher Fock
components of a light meson and contribute to the intrinsic
charm PDF. Note that the principle quantum numbers n1,
n2, n3, and n4 in the sum over (anti)charmed mesons are all
independent. It is worth mentioning that, if we only keep
the diagonal terms in the sum, i.e., we take n1 ¼ n3 and
n2 ¼ n4 simultaneously, Eq. (33) reduces to the prediction

of the intrinsic charm PDF from the MCM. We will discuss
the derivation of the intrinsic charm PDF in the MCM in
detail in the next section.

IV. THE BHPS MODEL AND MCM IN QCD2

The BHPS model is a very simple and intuitive model to
parametrize the intrinsic charm PDF of a light hadron. The
key assumption is that the four-quark Fock component
juūcc̄i in π can be treated as a free four-body state [2,3].
The intrinsic charm PDF can then be approximated from
the transition probability of jπi → juūcc̄i by the first-order
light-front perturbation theory:

FIG. 2. Schematic figures for our results of the intrinsic charm PDF of π (left) and for the MCM (right).
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dProb
dxudxūdxcdxc̄

∝ δð1− xu − xū − xc − xc̄Þ

×

�
m2

π −
m2

u

xu
−
m2

ū

xū
−
m2

c

xc
−
m2

c̄

xc̄

�
−2
; ð34Þ

where xi indicates the þ momentum fraction carried by
each parton.
In the heavy-quark limit mc ≫ mu;mπ , one can drop

small quantities in the energy denominator, and (34)
reduces to

dProb
dxudxūdxcdxc̄

∝ δð1−xu−xū−xc−xc̄Þ
�

xcxc̄
xcþxc̄

�
2

: ð35Þ

Integrating (35) over xu, xū, xc̄, one then arrives at the
intrinsic charm PDF predicted by the BHPS model:

fcðxÞ ¼ Ax2
�
1

2
ð1þ 4x − 5x2Þ þ xð2þ xÞ ln x

�
; ð36Þ

where A is an unknown normalization constant which
cannot be determined within the BHPS model itself. There
are three popular variants of the BHPS model. The BHPS1
and BHPS2 models determine the parameter A through
different global fit recipes, and the BHPS3 model takes
numerical integration directly following (34) [1]. Inspired
by the ansatz of the BHPS model, Pumplin parametrized
the intrinsic charm PDF of a proton using a five-quark
model including quarks’ transverse motion [31].
Another influential model is the MCM which assumes

that the proton has non-negligible five-quark Fock compo-
nent composed of a charmed baryon and a charmed meson
due to inevitable quantum fluctuation [15–17]. In the
context of the current work, the relevant quantum fluc-
tuation inside π is the higher Fock component composed of
the charmed and anticharmed mesons. According to the
spirit of the MCM, the intrinsic charm PDF of the πn is
expressed as the transition probability of πn → Dn1D̄n2
convoluted with the valence charm PDF inside the charmed
meson Dn1 :

fc=πnðxÞ ¼
X
n1;n2

Z
1

0

dyF n;n1;n2ðyÞ
Z

1

0

dηfc=Dn1
ðηÞδðx − ηyÞ

¼
X
n1;n2

Z
1

x

dy
y
F n;n1;n2ðyÞfc=Dn1

�
x
y

�
; ð37Þ

where F n;n1;n2ðyÞ denotes the transition probability of πn
with þ momentum Pþ transitioning into a charmed meson
Dn1 that carries the þ momentum yPþ, and fc=Dni

ðxÞ
denotes the valence charm PDF of the charmed meson Dni .
Let us first consider the transition probability factor F

accompanied with the process πn → Dn1ðx1Þ; D̄n2 :

F n;n1n2ðx1Þdx1 ¼
1

Ṽ

1

2Pþ
Pþdx1

ð2πÞð2x1PþÞ

×
Z

Pþdx2
ð2πÞð2x2PþÞ jhDn1ðx1PþÞ

× D̄n2ðx2PþÞjπ0nðPþÞij2: ð38Þ

Note that the inner product in (38) is exactly the T̃ function
defined in (28), which characterizes the probability ampli-
tude of finding a specific DD̄ state inside the πn. Since we
do not care about the anticharmed meson D̄n2 , a phase-
space integration should be assigned to the þ momentum
fraction x2 carried by the D̄n2 meson. However, as indicated
in (29), þ momentum conservation demands that the T̃
function contains a δ function δð1 − x1 − x2Þ. Therefore,
the integration over x2 becomes trivial. Interestingly, the
factor 1=Ṽ can help eliminate the ill-defined δð0Þ arising
from squaring the T̃ function, since the finite volume Ṽ can
be identified with 2πδVð0 × PþÞ in the box quantization.
Substituting (28) and (29) into (38), it is straightforward

to obtain

F n;n1n2ðx1Þ ¼
1

16π

1

x1ð1− x1Þ
jΓn;n1n2ðx1;1− x1Þj2�
μ2Dn1
2x1

þ
μ2
D̄n2

2ð1−x1Þ−
μ2πn
2

�
2
: ð39Þ

In passing, we emphasize that, in addition to the intrinsic
charm PDF, one can also deuce the intrinsic anticharm
PDF from (33), since it satisfies the relation fc̄=πðxÞ ¼
−fc=πð−xÞ due to the charge-conjugation symmetry inher-
ent in the PDF definition (20) for a neutral π meson. In
order to make an intimate comparison between the MCM
prediction and our results in (33), the anticharm sector
should also be explicitly added to the MCM, and hence we
generalize (37) as

fc=πnðxÞ ¼
X
n1;n2

Z
1

0

dy
�
F n;n1;n2ðyÞ

Z
1

0

dηfc=Dn1
ðηÞδðx − ηyÞ − F n;n1;n2ð1 − yÞ

Z
1

0

dηfc̄=D̄n2
ðηÞδð−x − ηyÞ

�

¼
X
n1;n2

Z
1

0

dyF n;n1;n2ðyÞ
 
θðxÞθðy − xÞ

fc=Dn1

�
x
y

�
y

− θð−xÞθðx − yþ 1Þ
fc̄=D̄n2

�
− x

1−y

�
1 − y

!
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¼
X
n1;n2

Z
1

0

dyFDðyÞ
�
θðxÞθðy − xÞ 1

y

�
φcū
n1

�
x
y

��
2

− θð−xÞθðx − yþ 1Þ 1

1 − y

�
φuc̄
n2

�
1þ x

1 − y

��
2
�
: ð40Þ

In (40) we have made use of the knowledge that the valence charm PDF inside a D meson is simply the square of the
corresponding ’t Hooft wave function:

fc=Dn
ðxÞ ¼ ½φcū

n ðxÞ�2; ð41aÞ

fc̄=D̄n
ðxÞ ¼ fu=D̄n

ð1 − xÞ ¼ ½φuc̄
n ð1 − xÞ�2: ð41bÞ

Plugging (39) into (40), we obtain the final prediction of the intrinsic charm PDF given by the MCM,

fc=πnðxÞ ¼
X
n1;n2

Z
dx1

jΓn;n1n2ðx1; 1 − x1Þj2
16πx1ð1 − x1Þ

 
μ2Dn1

2x1
þ

μ2D̄n2

2ð1 − x1Þ
−
μ2πn
2

!−2

×

0
B@θðxÞθðx1 − xÞ

h
φcū
n1

�
x
x1

�i
2

x1
− θð−xÞθðx − x1 þ 1Þ

h
φuc̄
n2

�
1þ x

1−x1

�i
2

1 − x1

1
CA: ð42Þ

A schematic Feynman diagram to illustrate the MCM is
shown in the right diagram of Fig. 2.
It is amazing that the MCM prediction of the intrinsic

charm PDF looks quite similar to our results in (33), except
that the latter does not enforce the diagonal condition n1 ¼
n3 and n2 ¼ n4, and the “interference” terms with n1 ≠ n3
or n2 ≠ n4 in (33) do make important contributions.
It is interesting to note that, because of the orthogonality

relation of the ’t Hooft wave functions as in (15), the
“interference” terms do not contribute to the first Mellin
moment of the intrinsic charm PDF. Of course, they will
affect the shape of the intrinsic charm PDF and the average
charm momentum fraction.

V. NUMERICAL RESULTS

In this section, we present the numerical results of the
intrinsic charm PDF in a fictitious pion meson. In the large-
Nc limit, we set the mass scale following the ansatz in
Ref. [32] by choosing the value of the ’t Hooft couplingffiffiffiffiffi
2λ

p ¼ 340 MeV in correspondence to the value of the
string tension in realistic QCD. To save calculational labor,
we deliberately choose the up-quark massmu ¼ 0.749

ffiffiffiffiffi
2λ

p
,

which is equal to the strange-quark mass determined in [33].
We also study the intrinsic charm content inside a pion
with different values of the charm-quark mass. The charm
mass is varied from mc ¼ 4.19

ffiffiffiffiffi
2λ

p
to mc ¼ 3mb, with

mb ¼ 13.66
ffiffiffiffiffi
2λ

p
. For the details of setting masses of

different quark flavors, we refer interested readers to
Refs. [33,34].
The light-cone wave functions of the uū, uc̄, and cū

states are obtained by solving the ’t Hooft equation by

means of the Brower-Spence-Weis (BSW) method [35]. We
use 120 BSW bases for the cases mc < 13.66

ffiffiffiffiffi
2λ

p
, 192

BSW bases for 13.66
ffiffiffiffiffi
2λ

p
≤ mc ≤ 27.32

ffiffiffiffiffi
2λ

p
, and 264

BSW bases for mc > 27.32
ffiffiffiffiffi
2λ

p
.

We calculate the intrinsic charm PDF according to our
field-theoretical expression (33), as well as the predictions
given by the MCM and the BHPS model. To make a fair
comparison, we normalize the predictions of the BHPS
model such that its first Mellin moment is identical to that
from our results in (33) and MCM prediction in (42). In our
analysis we also include a naive MCM, which only includes
the ground state in the sum in (42).
The intrinsic charm PDF from our ’t Hooft model

calculation in (33) and the MCM (42) involve a sum over
all possible intermediate meson states. We impose a
truncation n1;2;3;4 ≤ N to facilitate the summation. Due to
the limitation of our computing resources, the maximum
value of N is set to Nmax ¼ 60. The convergence criteria is
set by searching for the lowest N ¼ N0 that satisfies

R
1
0 dx½fðNÞ

c ðxÞ − fðNmaxÞ
c ðxÞ�2R

1
0 dx

h
fðNÞ
c ðxÞþfðNmaxÞ

c ðxÞ
2

i
2

≤ 0.01; ð43Þ

where fðNÞ
c ðxÞ denotes the intrinsic charm PDF in Eq. (33)

with summation truncated at N. For instance, the intrinsic
charm PDF of the first excited pion converges at N0 ¼ 34

when mc ¼ 4.19
ffiffiffiffiffi
2λ

p
and N0 ¼ 48 when mc ¼ 13.66

ffiffiffiffiffi
2λ

p
.

The intrinsic PDF from the MCM shows a better converge
tendency, and thus we take N ¼ Nmax as the final results for
the MCM.
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The contribution from high excited states in Eq. (33)
only affects the microscopic texture of the intrinsic charm
PDF. We treat the choices of N as the source of systematic
uncertainties in our calculation. To be more specific, we
plot the envelopes of curves corresponding to the quark
PDF with N0 ≤ N ≤ Nmax and use the upper and lower
envelopes as upper and lower bounds, respectively. The
central value is given as the average of the upper and lower
bounds. To demonstrate how to determine the upper and
lower bounds, we magnify part of the curve corresponding
to our results in the first row of Fig. 3.
In Fig. 3 we present the intrinsic charm PDF from our

expression rigorously derived from the ’t Hooft model with
three different choices of charm masses. The results of the
BHPS model, MCM, and naive MCM are also juxtaposed

for comparison. We plot the results of both the ground-state
and the first excited pions. We find that the profiles of our
results significantly differ from the predictions given by the
MCM and the BHPS model. The results of the naive MCM
are 1–2 orders of magnitude smaller than the other results.
This comparison clearly shows that one cannot simply
ignore the contribution from the excited charmed meson
states when applying the MCM in phenomenological
studies. It may cast some doubt on the phenomenological
work of the intrinsic charm PDF in a nucleon [17]. Our
calculation shows that it is crucial to include the contri-
butions from the “interference” terms between mesons with
different principle quantum numbers. This may provide
some useful guidance on the optimized parametrization of
the intrinsic charm content from the MCM.

FIG. 3. Intrinsic charm PDF in the pion from our analysis (’t Hooft model), the MCM, a naive MCM, and the BHPS models. We show
the results with some representative values of charm-quark masses. The left and right columns show the results of a ground state and first
excited state π, respectively. The thin dark blue curves in the windows correspond to each N lying between N0 and 60.
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The intrinsic charm PDF of the first excited π is about 1
order of magnitude larger than that of the lowest-lying
pion. Actually, this can be reflected at the level of
the transition vertex function. In Fig. 4, we compare
the transition vertex function Γn;n1;n2ðx; 1 − xÞ between the
ground state and the first excited state. We observe that the
transition vertex function with n ¼ 1 is significantly larger
in magnitude than the n ¼ 0 case. This difference might
be due to the distinct charge-conjugation properties.
Recall the charge-conjugate transformation of the mesonic
annihilation operator

Cmuū
n ðPþÞC−1 ¼ ð−1Þnþ1muū

n ðPþÞ; ð44Þ

where φuū
n ðxÞ ¼ ð−1Þnφuū

n ð1 − xÞ has been applied. The
ground state and the first excited pion state have opposite
C parities. For a pion transitioning into jDn1ðkþ1 ÞD̄n2ðkþ2 Þi,
when n1 ¼ n2 and kþ1 ¼ kþ2 , the final state has an even C
parity, and thus this is only possible if the initial pion is
the first excited state. Correspondingly, Γ0;0;0 vanishes at
x1 ¼ x2 ¼ 1

2
. As the vertex function is continuous, the

charge-conjugate symmetry leads to the suppression of the
ground-state transition at all x1, as shown in Fig. 4.
We also find that when we increase the charm-quark

mass, the peak position of our result tends to shift to a larger

x value. The peak position of the MCM remains almost
unchanged. Meanwhile, the magnitude of the intrinsic
charm PDF from all model predictions decreases very fast
with increasing charm mass.
To quantitatively investigate how the intrinsic charm

PDF depends on the charm-quark mass, we also calculate
the first two Mellin moments of the intrinsic charm PDF:

hx0i ¼
Z

1

0

dx fcðxÞ; hx1i ¼
Z

1

0

dx xfcðxÞ: ð45Þ

The first two moments have straightforward interpretations:
the first moment corresponds to the average number of
charm quarks inside the pion, while the second moment
characterizes the average momentum fraction carried by the
charm. We vary the charm-quark mass from 4.19

ffiffiffiffiffi
2λ

p
to

40.98
ffiffiffiffiffi
2λ

p
. The numerical results of the first two Mellin

moments are shown in Table I.
We use a simple power-law ansatz hx0i; hx1i ∝ m−d

c and
fit the moments in the large-charm-mass region. We vary
the fitting range3 from 18.17

ffiffiffiffiffi
2λ

p
≤ mc ≤ 40.98

ffiffiffiffiffi
2λ

p
to

FIG. 4. Transition vertex function Γn;n1;n2ðx; 1 − xÞ. We plot two typical cases, i.e., n1 ¼ n2 ¼ 0 and n1 ¼ 1, n2 ¼ 0 for n ¼ 0 (left
column) and n ¼ 1 (right column).

3The calculation with a mass beyond mc ¼ 40.98
ffiffiffiffiffi
2λ

p
becomes numerically unstable, and thus we stop pursuing the
extremely heavy charm-quark cases.
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32.16
ffiffiffiffiffi
2λ

p
≤ mc ≤ 40.98

ffiffiffiffiffi
2λ

p
, and the fitting results

are listed in Table II. The fitting indicates that when
choosing a relatively heavier quark mass range, the
asymptotic behavior approaches m−6

c . To illustrate the
scaling behavior, we multiply the moments hx0i and hx1i

by m6
c, which are plotted in Fig. 5. We observe that in

the ground state, m6
chx0;1i tends to converge when mc

is large enough. For the first excited states, the
charm quark is not heavy enough to enter the mc → ∞
asymptotic region.

TABLE I. First and second Mellin moments of the intrinsic charm PDF and their ratios. The results of the ground-state (n ¼ 0) and the
first excited state (n ¼ 1) pion are provided. The charm-quark masses are given in units of

ffiffiffiffiffi
2λ

p
and GeV.

n ¼ 0

mc½
ffiffiffiffiffi
2λ

p ðGeVÞ� 4.19 (1.42) 5.51 (1.87) 6.53 (2.22) 7.55 (2.57) 8.57 (2.91) 9.58 (3.26)

hx0i 1.86 × 10−5 6.26 × 10−6 3.09 × 10−6 1.67 × 10−6 9.71 × 10−7 5.78 × 10−7

hx1i 2.81 × 10−6 1.03 × 10−6 5.38 × 10−7 3.04 × 10−7 1.83 × 10−7 1.15 × 10−7

hx1i=hx0i 0.151 0.164 0.174 0.183 0.189 0.200

mc½
ffiffiffiffiffi
2λ

p ðGeVÞ� 10.60 (3.61) 11.62 (3.95) 12.64 (4.30) 13.66 (4.64) 18.17 (6.18) 22.81 (7.76)

hx0i 3.63 × 10−7 2.36 × 10−7 1.58 × 10−7 1.10 × 10−7 2.45 × 10−8 7.12 × 10−9

hx1i 7.52 × 10−8 5.09 × 10−8 3.50 × 10−8 2.51 × 10−8 6.36 × 10−9 2.01 × 10−9

hx1i=hx0i 0.207 0.216 0.222 0.230 0.259 0.283

mc½
ffiffiffiffiffi
2λ

p ðGeVÞ� 27.32 (9.29) 32.16 (10.93) 37.00 (12.58) 40.98 (13.93)

hx0i 2.56 × 10−9 9.80 × 10−10 4.24 × 10−10 2.27 × 10−10

hx1i 7.74 × 10−10 3.15 × 10−10 1.42 × 10−10 7.86 × 10−11

hx1i=hx0i 0.303 0.320 0.335 0.346

n ¼ 1

mc½
ffiffiffiffiffi
2λ

p ðGeVÞ� 4.19 (1.42) 5.51 (1.87) 6.53 (2.22) 7.55 (2.57) 8.57 (2.91) 9.58 (3.26)

hx0i 2.37 × 10−4 7.80 × 10−5 3.89 × 10−5 2.14 × 10−5 1.26 × 10−5 7.79 × 10−6

hx1i 5.15 × 10−5 1.74 × 10−5 8.81 × 10−6 4.92 × 10−6 2.95 × 10−6 1.86 × 10−6

hx1i=hx0i 0.218 0.223 0.226 0.230 0.235 0.238

mc½
ffiffiffiffiffi
2λ

p ðGeVÞ� 10.60 (3.61) 11.62 (3.95) 12.64 (4.30) 13.66 (4.64) 18.17 (6.18) 22.81 (7.76)

hx0i 5.05 × 10−6 3.39 × 10−6 2.34 × 10−6 1.64 × 10−6 4.45 × 10−7 1.46 × 10−7

hx1i 1.22 × 10−6 8.35 × 10−7 5.87 × 10−7 4.20 × 10−7 1.21 × 10−7 4.24 × 10−8

hx1i=hx0i 0.242 0.247 0.251 0.256 0.273 0.291

mc½
ffiffiffiffiffi
2λ

p ðGeVÞ� 27.32 (9.29) 32.16 (10.93) 37.00 (12.58) 40.98 (13.93)

hx0i 5.76 × 10−8 2.41 × 10−8 1.11 × 10−8 6.23 × 10−9

hx1i 1.77 × 10−8 7.76 × 10−9 3.72 × 10−9 2.15 × 10−9

hx1i=hx0i 0.307 0.322 0.335 0.345

TABLE II. Fitting of the first two moments to cm−d
c . We vary the fitting range from 18.17 ≤ mc ≤ 40.98 to

32.16 ≤ mc ≤ 40.98. The quark masses are given in units of
ffiffiffiffiffi
2λ

p
.

Fit to cm−d
c 18.17 ≤ mc ≤ 40.98 22.81 ≤ mc ≤ 40.98 27.32 ≤ mc ≤ 40.98 32.16 ≤ mc ≤ 40.98

n ¼ 0; hx0i d ¼ 5.49 d ¼ 5.73 d ¼ 5.90 d ¼ 6.02
n ¼ 0; hx1i d ¼ 5.12 d ¼ 5.37 d ¼ 5.56 d ¼ 5.71
n ¼ 1; hx0i d ¼ 4.98 d ¼ 5.21 d ¼ 5.40 d ¼ 5.55
n ¼ 1; hx1i d ¼ 4.70 d ¼ 4.93 d ¼ 5.12 d ¼ 5.27
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An interesting finding is that, in the heavy-quark limit
mc → ∞, the BHPS model predicts that hx1i=hx0i ¼ 1=3
for intrinsic charm [3], while our results show that the ratio
reaches 1=3 at mc ≈ 37

ffiffiffiffiffi
2λ

p
and exceeds the BHPS

prediction as the charm-quark mass continues to increase.
We present the numerical results of hx1i=hx0i in Table I and
Fig. 6 for both the ground state and the first excited state of
the pion.

VI. SUMMARY

Evidence of the intrinsic charm PDF of a nucleon
has recently aroused tremendous interest in the hadron
physics community. In this work, following the Collins-
Soper operator definition, we carried out a field-theory

first-principles study on the intrinsic charm content inside
a light neutral meson in the ’t Hooft model, i.e., two-
dimensional QCD in the large-Nc limit. We explicitly
derived the functional form of the intrinsic charm PDF of a
light meson in terms of the ’t Hooft wave functions of the
light meson and an infinite tower of (anti)charmed mesons,
which first arises at order 1=Nc. For the sake of com-
pleteness, we also established the functional forms of the
intrinsic charm PDF predicted by the two-dimensional
versions of the BHPS and meson cloud models. We made a
detailed numerical comparison between our results and
those model predictions. In particular, we noticed the close
relation between our results and the MCM prediction, that
is, the “interference” terms omitted in the MCM actually
have a non-negligible effect on the shape of the intrinsic
charm PDF. We also found that the contributions from
excited charmed hadrons are numerically important, which
renders the naive MCM (which only considers the lowest-
lying charmed hadrons) less trustworthy. Finally, we
studied how the intrinsic charm PDF of a light meson
depends on the charm-quark mass. The numerical studies
revealed that the average charm-quark number and average
momentum fraction carried by the charm quark in a light
meson drop as m−6

c as the charm-quark mass increases. We
hope that our study may shed some light on the nature of
the intrinsic charm in the realistic QCD4.
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APPENDIX: REDERIVING THE INTRINSIC CHARM PDF IN A DIAGRAMMATIC APPROACH

In passing, we note that Eq. (33) can be derived alternatively at the meson level in a diagrammatic approach. The diagram
for the intrinsic charm PDF in the pion is shown in Fig. 7 and the intrinsic charm PDF is given by

fc=πnðxÞ ¼
X

n1;n2;n3

Z
d2k
ð2πÞ2

Z
d2p
ð2πÞ2

Z
d2p0

ð2πÞ2 ð2πÞ
2δð2ÞðP − k − p − p0Þ

×

�
−iΓn;n1n2

�
Pþ − kþ

Pþ ;
kþ

Pþ

��
DDn1 ðP − kÞΦcū

n1 ðp;P − kÞScðpÞ

× ð2πÞδðpþ − xPþÞð2πÞ2p0þδþ
�
p02 −m2

uþ2λ −
2p0þλ
ρ

�
ð2πÞδþðk2 − μ2D;n2

Þ

×

�
iΓ�

n;n3n2

�
Pþ − kþ

Pþ ;
kþ

Pþ

��
DDn3

�ðP − kÞΦcū�
n3 ðp; P − kÞSc�ðpÞ; ðA1Þ

in which the three-meson vertex Γ is defined in Eq. (29)
and its explicit form in terms of the ’t Hooft wave function
is given in Eq. (30). ρ is the artificial IR cutoff regulator
introduced in Eq. (8). The first δ function originates
from the Fourier factor in the definition of the intrinsic
charm PDF (20). The second and third δ functions arise
from the cut quark and meson propagators, respectively.
DDnðP − kÞ denotes the D-meson propagator (Dn in the
superscript denotes the nth excited state D meson)

DDnðP − kÞ ¼ i
ðP − kÞ2 − μ2Dn

þ iϵ
; ðA2Þ

SaðpÞ denotes the dressed quark propagator, whose
explicit form is given by [18]

SaðpÞ ¼ 2ipþ

p2 −m2
a þ 2λ − 2pþλ

ρ þ iϵ
; ðA3Þ

and Φab
n denotes the meson-qq̄ vertex, which satisfies the

Bethe-Salpeter equation [36]

Φabðp; qÞ ¼ −2iλ�
Z

dk2

ð2πÞ2
1

ðpþ − kþÞ2
× SaðkÞΦabðk; qÞSbðk − qÞ; ðA4Þ

which is represented diagrammatically in Fig. 8. Φab
n is

related to the meson’s ’t Hooft wave functions by

φab̄
n

�
pþ

qþ

�
¼
Z

dp−

2π
SaðpÞΦab

n ðp; qÞSbðp − qÞ

¼ −Φab
n ðp;qÞSaðpÞj

p−¼q−−
m2
b
−2λ

2ðqþ−pþÞ−
2ðqþ−pþÞλ

ρ

;

ðA5Þ

where p−¼q−− m2
b−2λ

2ðqþ−pþÞ−
2ðqþ−pþÞλ

ρ comes from integrating

p− by taking the residue of4 SbðP − kÞ.FIG. 7. Diagram at the meson level, in which the dashed line
denotes imposing a cut. The superscripts n1;2;3 denote the
principal quantum number of the meson. The momenta carried
by the particles are also presented.

FIG. 8. Diagrammatic representation of the Bethe-Salpeter
equation that the meson-qq̄ vertex Φab satisfies.

4Alternatively, one can also choose to taking the residue of
SðPÞ, it leads to identical result as Eq. (A5).
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It should be noticed that although Eqs. (A1), (A3), and (A5) explicitly depend on the regulator ρ, the ρ dependence will
eventually cancel in the final result of fc=πnðxÞ.
Piecing the above together, we get

fc=πnðxÞ ¼
X

n1;n2;n3

Z
dkþ

2π2kþ
Γn;n1n2

�
Pþ − kþ

Pþ ;
kþ

Pþ

�
1

ðP − kÞ2 − μ2Dn1

φcū
n1

�
xPþ

Pþ − kþ

�

× Γ�
n;n3n2

�
Pþ − kþ

Pþ ;
kþ

Pþ

�
1

ðP − kÞ2 − μ2Dn3

φcū
n3

�
xPþ

Pþ − kþ

�
; ðA6Þ

where P− ¼ μ2πn
2Pþ, k− ¼

μ2
D̄n2
2kþ .

Defining x1 ≡ ðPþ − kþÞ=Pþ, Eq. (A6) can be written as

fc=πnðxÞ ¼
X

n1;n2;n3

Z
dx1

4πð1 − x1Þ
Γn;n1;n2ðx1Þ

x1

�
μ2πn −

μ2
D̄n2

1−x1

�
− μ2Dn1

φcū
n1

�
x
x1

�
Γn;n3;n2ðx1Þ

x1

�
μ2πn −

μ2
D̄n2

1−x1

�
− μ2Dn1

φcū
n3

�
x
x1

�
; ðA7Þ

and it exactly reproduces the charm sector of Eq. (33) in our ’t Hooft model calculation result.

[1] T. J. Hou, S. Dulat, J. Gao, M. Guzzi, J. Huston, P.
Nadolsky, C. Schmidt, J. Winter, K. Xie, and C. P. Yuan,
J. High Energy Phys. 02 (2018) 059.

[2] S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys.
Lett. 93B, 451 (1980).

[3] S. J. Brodsky, C. Peterson, and N. Sakai, Phys. Rev. D 23,
2745 (1981).

[4] S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H.
Spiesberger, and R. Vogt, Adv. High Energy Phys. 2015,
231547 (2015).

[5] J. Blümlein, Phys. Lett. B 753, 619 (2016).
[6] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 128,

082001 (2022).
[7] R. D. Ball, A. Candido, J. Cruz-Martinez, S. Forte, T. Giani,

F. Hekhorn, K. Kudashkin, G. Magni, and J. Rojo (NNPDF
Collaboration), Nature (London) 608, 483 (2022).

[8] A. Courtoy, J. Huston, P. Nadolsky, K. Xie, M. Yan, and
C. P. Yuan, Phys. Rev. D 107, 034008 (2023).

[9] M. Guzzi, T. J. Hobbs, K. Xie, J. Huston, P. Nadolsky, and
C. P. Yuan, Phys. Lett. B 843, 137975 (2023).

[10] M. Constantinou, A. Courtoy, M. A. Ebert, M. Engelhardt,
T. Giani, T. Hobbs, T. J. Hou, A. Kusina, K. Kutak, J. Liang
et al., Prog. Part. Nucl. Phys. 121, 103908 (2021).

[11] R. S. Sufian, T. Liu, A. Alexandru, S. J. Brodsky, G. F. de
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