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The gravitational form factors of a hadron are defined through the matrix elements of the energy-
momentum tensor current, which can be decomposed into the quark and gluonic parts, between the
hadronic states. These form factors provide important information for answering fundamental questions
about the distribution of the energy, the spin, the pressure, and the shear forces inside the hadrons.
Theoretical and experimental studies of these form factors provide exciting insights on the inner structure
and geometric shapes of hadrons. Inspired by this, the gravitational form factors of A resonance are
calculated by employing the QCD sum rule approach. The acquired gravitational form factors are used to
calculate the composite gravitational form factors like the energy and angular momentum multipole form
factors, D-terms related to the mechanical properties like the internal pressure and shear forces, as well as
the mass radius of the system. The predictions are compared with the existing results in the literature.
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I. INTRODUCTION

The key subject of nonperturbative QCD is to figure out
the inner structure of hadrons and their properties con-
cerning the degrees of freedom of quarks and gluons.
Different hadronic charges characterized as matrix ele-
ments of the vector, axial, and tensor currents between
hadronic states contain precise information about the
internal structure distributions of different physical quan-
tities and geometric shapes of the hadrons. Besides the
electromagnetic, axial, and tensor form factors of hadrons,
the gravitational form factors (GFFs) or energy-momentum
tensor form factors are also fundamental constituents to
investigate the inner organizations of hadrons. These form
factors give us a tool to systematically study the properties
of the hadrons and to calculate several related observables
such as spin, multipole form factors, mass and mechanical
radii, shear force, and energy-pressure distributions inside
the hadrons. Understanding the mechanical structure of
hadrons is important because it gives us fundamental
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information about the internal structure and geometric
shapes of hadrons as stated.

In recent years, GFFs have attracted increasing interests
in describing the features of hadrons with different spins
because of their relation to the generalized parton distri-
butions (GPDs). The GPDs can be extracted from available
data of hard exclusive processes like deeply virtual
Compton scattering, deeply virtual meson production,
wide-angle Compton scattering, single diffractive hard
exclusive processes, and different vector-meson electro-
production processes. The GFFs can be directly calculated
from the theory, as well. Comparison of GFFs calculated
from pure theory with the ones extracted from the GPDs are
indirect comparison of the experimental data with theo-
retical predictions on many physical observables. Such
comparison for the GFFs of nucleon is made in Ref. [1]:
The consistency of the results obtained from both sides
show that the mankind is in the right way regarding the
theoretical and experimental extractions of the nucleon
properties.

The GFFs for the spin-1/2 particles have been para-
metrized in Refs. [2-5]. Utilizing these parametrizations,
the GFFs of spin 1/2 baryons have been studied in different
phenomenological models [1,6-41]. For a spin-1 particle,
the corresponding GFFs were studied in Refs. [29,42—-49].
The GFFs for the spin-3/2 states have also been inves-
tigated in Refs. [29,50,50-57]. The computations of GFFs
have also been extended to the N* - N and N — A
transitions in Refs. [58—62]. To this end, methods like
the lattice QCD, the light-cone QCD sum rule, the chiral
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effective theory, the chiral quark model, the SU(2) Skyrme
model, the AdS/CFT correspondence, and the bag model
have been used.

In the present study, the GFFs of the A baryon are
calculated utilizing the three-point QCD sum rule tech-
nique, as one of the powerful and successful nonperturba-
tive methods in hadron physics. With the help of this
method, we extract the behavior of the A baryon’s GFFs
with respect to Q? and, in connection with this, the
mechanical properties of this resonance: The energy and
angular momentum multipole form factors, D terms related
to the internal pressure and shear forces as well as the mass
radius. On the contrary to the electromagnetic form factors
of the A baryon, which have been widely studied both
theoretically and experimentally [50,63,64], it is quite
difficult to extract the GFFs of the A baryon experimentally
or obtain them from the corresponding GPDs due to the
short-lived nature of the A baryon. The GFFs of the A
baryon and the corresponding mechanical properties have
theoretically been studied using the relativistic covariant
quark-diquark approach [50], chiral EFT [51], lattice QCD
(for the gluonic part) [29], and the SU(2) Skyrme model
based on the large N, limit [55]. More systematic studies
are needed to examine the features of A baryon GFFs.
Recently, GPDs of spin-3/2 hadrons and the sum rules that
connect the GPDs with the GFFs have explicitly been
displayed in Refs. [57,65].

The remainder of this paper is structured as follows: In
Sec. II, GFFs of A baryon calculated via the three-point
QCD sum rules approach are introduced. The gravitational
multipole form factors of the A baryon are given in Sec. III.
Numerical analysis of the GFFs and the mechanical
properties of the A baryon are presented in Sec. IV.
|

In the last section, we conclude our work with a discussion
of the obtained results.

II. QCD SUM RULES FOR THE GRAVITATIONAL
FORM FACTORS OF THE A BARYON

We use the QCD sum rules to calculate the gravitational
form factors of the A baryon. For this purpose, we consider
the following three-point correlation function,

Haﬂvﬂ(p’Q) = iz/d4xe_i”'x/d4yeiﬁ’->'
x (0|73 (¥)T,(0)J3(0)]10), (1)

where 7 denotes the time ordering operator, p (p’) is the
four-momentum of the initial (final) A baryon, ¢ = p — p’
is the momentum transfer, J4 (v) is the interpolating current
for the A state at point y, and 7', is the energy-momentum
tensor (EMT) current. The interpolating current for A* is
given by

1
Jo(x) = —= ¢ [Z(M“T x)Cyadb (x >uc x

(x) 7 (x)Crad” (x) Juc(x)
(W () Cran (x) ) (x)] 2)
where C is the charge conjugation operator; and a, b, and ¢
are color indices. The EMT current has two parts: One from
the quarks and another one from the gluons, as given below,

Tu(2) = Tia(2) + Tiw(2). (3)

with

Th(2) = £ [#(2)B,ru(2) + H@)Dr,lz) + A()D,7,d(2) + A(2)D,7,d(2)

Th(2) = {67 (2)G (@) = Gy (GLE). (5

We can rewrite the second term of the quark EMT current in
Eq. (4) as follows [66],

g [ (D = m, Y u(2) + () (iD = my ) d(2)|

= g () (iD = m, u(2) + (2) (iD = mg) d(2)]. )
[
By(e) = 5 [B,(2) = D, ()] )
with
D,(2) = 9,() = i AAg(z).
D,(z) = 9,(2) + i5244(2). (8)

= guu(l + 7m) (muﬁu + mdad) ’ (6)

where y,, denotes the anomalous dimension of the mass
operator. We assume the chiral limit where m, = m,; = 0.
This eliminates the term in Eq. (6). The covariant derivative

D, in Eq. (4) is given by

where, A% are the Gell-Mann matrices and Af(z) are the
external gluon fields. Using the Fock-Schwinger gauge,
#Af(z) = 0, the gluon fields can be expressed in terms of
the gluon field strength tensor by
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1
Aﬁ(z)zA daaz:G{, (az)

1 1
= EZ'ng” (0) + anZ,:DﬂGgﬂ (0) S (9)
To calculate the derivative terms of the quark part of the
EMT current, we evaluate the EMT current at point z in
Eq. (1) and finally take the limit z — 0. In this limit, Eq. (9)
shows that the gluon field vanishes and therefore
the covariant derivatives in Eq. (8) become partial deriv-
atives.

In the QCD sum rule approach, we define the correlation
function in two different representations: One based on the
hadronic degrees of freedom and is called the physical
(phenomenological) side and the other based on QCD
degrees of freedom and is called the QCD (theoretical) side.
The double Borel transformations with respect to the

|

momentum squared of the initial and final states are applied
to both sides to remove/suppress the contributions coming
from the subtraction terms/higher states and continuum. A
continuum subtraction procedure supplied by quark-hadron
duality assumption is also applied to further suppress the
contributions of the higher states and enhance the ground
state contribution. The form factors are obtained by
matching the coefficients of the same Lorentz structures
of both representations.

A. Physical side of the correlation function

We start by evaluating the correlation function in Eq. (1)
using hadronic parameters. For this purpose, we insert two
complete sets of the intermediate states A(p’,s’) and
A(p,s) into Eq. (1) and perform the four-integrals over
x and y, which ends up in

auvp

A / S/ /,S/ ) .S .S TA
9 (. g) :ZZ@IJ(IIMP, )><A(§71192_;|Z§(’(:2)IA(19 ))(A(p. s)|7510)

_pz) 4+ (1())

where m = m, and the dots indicate the higher states and continuum contributions. The matrix element of the EMT current
between A states can be expressed in terms of ten form factors [54,55]

PP, . o AP
(AT O (ps) = =1 {5 (4 Fr0(00) -5 502
(A Ay_g Z/Az) I pr A{Z/Aﬁl o B AMA‘[}/
+ # 9V F0(0%) - ) Fy1(Q%) ) +mgu | 9*7 F30(0%) - 2 F3,(0%)
l(P 0,_, +Py6 )Aﬂ /al Aa/Aﬁl 1 / 7 / 7 4
g ATt PO (0) T B Fan(0) ) o (A 8,80 8,0

ol A AT =20, AN — N o]~ N of ) Fso(0) +m gt o) +g3’g£’)F6,O<Q2>}uﬁf<p,s>,

where wuy(p.s) is the Rarita-Schwinger spinor with
momentum p and spin s, P = (p+p')/2, A=p' —p,
Q% = —A?, and F;; are GFFs. We consider the full system
that includes both the quark and gluon contributions to the
EMT, given by Egs. (4) and (5), implying the conservation
of the total current. Therefore, the nonconserved form
factors F;;(i =3,6) vanish, while the conserved ones
F;;(i =1,2,4,5) remain alive. By using the residue of the
A baryon (4,), one can define the following matrix
element:

(OZIA(P'.s") = Asua(p'.s"). (12)

(11)

[

We introduce the spin summation of the Rarita-Schwinger
spinor for the A baryon as below,

il Yalo 2p/ P//
> ualp's 5 iy (p'ss) = =(#' +m) [gaa'- 3 T 3
s m
P:;J/a’—P;r}’a
— . |- 13
* 3m } (13)

Using Egs. (11)—(13) in Eq. (10), we derive the following
expression for the A — A transition three-point correlation
function:
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—1; Yala 2PuPly  Pu¥o — DPly¥
HHad , — A / L _lald alt o al o adla
a;wﬁ(p q) (mz _ p/z)(mz _ pg) (ﬂ + m) Yad 3 3m2 + 3m
PP, [ . A7 A (DA, = 9D [ AYN
T (0 Pra(0) -5 Pt )+ SR e (g0 - S (00))
Aa/A/))/

i (P,0,,+ P,0,,)A"
32

(g“’ﬁ’F4,o<Q2> =

m

m

1 / / / /
: F4,1<Q2>> —— (A g A,

B a / o ad AP o f o
+ o A AT+ gl AN =20, AN — Ny ) — Ny )F5,0<Q2)}

Yerp 21?/)"1?/1

X (#+m) {9/}’/} -

3 3m? 3m

In principle, the physical side of the correlation function
can be obtained using the above equation. However, at this
point we are faced with two problems that prevent the
calculations being reliable: All Lorentz structures are not
independent and the correlation function can also receive
contributions from spin-1/2 particles, which should be
eliminated. Indeed, the matrix element of the current J,,
between vacuum and spin-1/2 baryons is nonzero and is
determined as

(0174(0)|B(p,s = 1/2)) = (Apq + Byg)u(p,s = 1/2).
(15)
|

4 PpvVp — P/ﬁ’/}’] T

(14)

|
As is seen the unwanted spin-1/2 contributions are propor-
tional to y, and p,. By multiplying both sides with y* and
employing the condition y*J, =0 one can specify the
constant A in terms of B. To eliminate the spin-1/2
contributions and acquire only independent structures in
the correlation function, we use the ordering for Dirac
matrices as y, 7' py,y,7p and remove terms with y, at the
beginning, y; at the end, and those proportional to p;, and
pp- After all manipulations mentioned above are done, we
get the final form of the physical side of the correlation
function as follows:

n12
5 (0%) = Aze w7 [H?ad(Qz)papﬂpr’ﬂﬂ + I824(0%) pop,u Py P + TE(Q?) pop)upl ) + TIE(O?) pupy Gup

+ E(0%) p, plgap + TG40 D Gapl + T (O%) Pypl GV + - } :

where the double Borel transformation on the variables p?
and p> with Borel parameter M? is applied. The initial and
final states of the process involve A baryons, which have
the same Borel mass parameter M; = M; = 2M?. The

functions T1H4d(Q?) are functions of the GFFs and other
hadronic parameters. We kept only the Lorentz structures
that we use to calculate the conserved GFFs and moved the
others inside the dots.

B. QCD side of the correlation function

Having the expression of the correlation function from
the physical side, let us turn our attention to the evaluation
of the correlation function from the QCD side. To this end,
we need to insert the explicit forms of the EMT current and
interpolating current of the A baryon into the correlation
function. Substituting A’s interpolating current and the
EMT current of Eqs. (4) and (5) into the three-point
correlation function of Eq. (1), we get

(16)

l'2

1QcD

NN .
() = oo [ atveve

[ v (i,

The quark and gluon contributions of the EMT current
yield I'? and I'Y, respectively. Using Wick’s theorem, I'Y
and I'Y are obtained in terms of the quark propagators. The
expressions for 'Y and I'Y are too long to show here, so we
refer to Egs. (A1) and (A2) in Appendix A.

Substituting the light quark propagators in Egs. (A1) and
(A2) and employing covariant derivatives of Eq. (7) and
then considering z — 0, we get

+Th,)- (17)

QCD
Ha;n/ﬂ

(PaCI) :/d4xe_ip'x/d4yeip/'yraﬂv/)'<x’y)v (18)

with
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P 3D 4D, 5D
Fayu/i(xv y) = {Ff(lﬂlﬂ + F‘(lﬂl//z + Fﬁwy/}w + Fﬁl;w/; + H <> I/}

(4D.g)
auvp

+TI (19)
where the correlation function has a perturbative part I'*)
and nonperturbative parts T'CP), T¢P) and TGP in
three, four, and five dimensions, respectively, which are
shown in Appendix A. The four-dimensional nonperturba-
tive parts for quark and gluon, I'*?9) and T“P-9) involve
the products of two gluon field strength tensors Gj}/,, which
lead to gluon condensation as explained in Appendix B.

We transform the calculations to momentum space, by
employing [67]

1 d°k; .
&)~ / G =120

['[D/2 - nj -1 D/2-n;
S (5) »

where R =x, y, or y—x and we set x, = id/dp, and
Y, = —i0/dp,. The integrals over x and y in D dimensions
produce two Dirac Delta functions and simplify two of the
D-dimensional integrals over k;. The final integral takes
simple forms after Feynman parametrizations. To perform
them, we apply the general formula presented in [67],
which takes the following form in the simplest case:

b 1 _inP2(=1)"T'[n— D/2]
[ o @)

Following these calculations, the QCD side of the corre-
lation function is derived as the double dispersion integrals
shown below,

’ A2
P 02y — S"d “Od, pi(s.s', 0%) Y
e = [ [ Gy @)

where s, is the continuum. The imaginary parts of the
CD .

NP (0?) define the spectral densities p;(s, s', 0?), such

that p;(s.s’, 0?) = Im[II¥°(Q?)]/z. To determine the

imaginary parts of different structures, we use

D)2 = ] (%) e (‘1)"_. (=L)"2In[-L]. (23)

The expressions for the spectral densities p;(s, s, Q) are
very lengthy and, for the sake of simplicity, we do not
present them explicitly.

In parallel to the physical side, we consider the same
ordering for Dirac matrices and the procedure for the
elimination of the spin-1/2 pollution. We apply the double
Borel transformation to the QCD side and obtain,

S Y ,
N3y (0%) = / ' ds / ds' e/ g 2 [H?CD(QZ, 5.8 ) paPupuPy¥ + 1502 5.8 ) pap,u PP
0 0
C C C
+TP(Q2. 5, 5) PP PPyt + TIEP (0. 5. 8") PPy Gupl + TSP (Q2. 5. 5') PPl Gup ¥

+TEP(Q%,5.8) PP gapl + T3P (Q2. 5, 8) Pyl Gayu VP + - } ; (24)

in terms of the selected structures. Matching the same
structures from the QCD and physical sides, the GFFs for
the A baryon are derived. We again do not show the
obtained sum rules in this step.

III. GRAVITATIONAL MULTIPOLE FORM
FACTORS

Having determined the seven conserved GFFs for the
A — A gravitonlike transition we can now define some
composite observables in terms of GFFs. Such observables
provide with us useful information about the inner struc-
ture, distributions of different charges, and geometric shape
of the hadron under consideration. Future experiments may

[
provide opportunity for such observales to be measured.
Hence, we provide sum inputs to be compared with
possible related future experimental data. To this end,
we use the following definitions for the kinematical
variables P¥, A*, and momentum transfer squared Q2 in
the Breit frame,

-

Pr=(E0), A*=(0,A), Q*=-A>=4(E>—m?). (25)

In this frame, we can express the gravitational multipole
form factors (GMFFs) of the A baryon in terms of the
conserved GFFs as follows [55]:
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o*[ 5 3
(%) = F10(0%) - P —§F1,0(Q2) - F,(0%) - EFz,o(Qz) +4F50(0%) + 3F40(0%)
1 1 1
[5 (@) + FLa(@) 43 F20(Q%) 4 5 Far(Q) = 4F50(Q%) = Fa( @) = Fus (@)
1 2) 1 2 2
-5 5 1(07) —Ele(Q)+F4,1(Q) ; (26)
1
£,(0%) = 6 [F10(Q%) + F11(Q%) —4Fs5,(0%)]
0 1 2 2y, 1 2y 1 2 2 2 2
t o §F1,0(Q )+ Fi.(0%) +§F2,0(Q ) +§F2,1(Q ) = 4Fs50(Q%) = F40(Q7) — F4.(Q7)
Q2 2 1 1
+ ElSnz“ _EFl,l(QZ) - §F2,1(Q2) + F41(0%)|, (27)
2y 1 2 0’ 2 2 2 (0%) 2
TJi1(Q%) =z F40(0°) - 5 | Fa0(Q7) + Fu41(Q%) + 5F50(Q7)| + T F41(07), (28)
3 15m 60m
[
1 2 The generalized D-terms are dimensionless quantities that
J5(0%) = ~5 [F 40(0) + F 4,1(Q2)} + o 5 Fy1(0%), characterize the elastic properties of hadrons. The mean
m square radius of the energy density, also known as the mass
(29)  radius, is another important mechanical property of the A
6 baryon. It is given by the following formula [55,66]:
Dy(Q?) = Fp0(Q%) — 5 F50(Q%)
. dey(k)
02 (rt) =6 K . (34)
o’ [on(Q2> + F,1(0%) —4F5,0(Q2)} k=0
L) (0%)? Fy,(02), (30) In the following section, we will perform numerical
24m* ! analysis of the obtained GFFs and other observables made
4 of these GFFs and discuss their values at zero momentum
D,(0?) = —Fs o(Qz) (31) transfer.

D3(0%) = ¢ [~F20(Q%) = F2(Q%) +4F50(0%)
2

+%F2,1(Q2), (32)

where £(0°), £(Q%), J1(Q%), and J5(Q?) are energy-
monopole, energy-quadrupole, angular momentum-dipole,
and angular momentum-octupole form factors, respec-
tively. The form factors Dj,3(Q?) are related to the
internal pressures and shear forces [66]. These form factors
are used to define the generalized D-terms Dj,; of A
baryon in the following way [53]:

Dy = Dy(0),

2 oo
D, = D,(0) + —2/ dQ*D5(0?).
m~ Jo

5 oo
D; = _WA dQ*D5(0?). (33)

IV. NUMERICAL RESULTS

In this section, we numerically analyze the form factors
derived from the sum rules in the previous sections. The
values of some input parameters are given as m,, = m,; = 0,
my = 1.23 GeV, A, = 0.038 GeV? [68], (gq)(1 GeV) =
(—=0.24 +£0.01)* GeV? [69], m3 = (0.8 +0.1) GeV? [69],
(%G?) = (0.012 4 0.004) GeV* [70], and a; = (0.118 £
0.005) [71]. In addition to these input parameters, there are
two more auxiliary parameters called the Borel parameter
M? and the continuum threshold s, that we use for the sum
rules. According to the philosophy of the QCD sum rules,
these auxiliary parameters should not affect the physical
quantities. However, in practice, it is not possible to provide
such a situation. Therefore, we look for working regions
where the GFFs have weak dependence on these helping
parameters. The residual dependencies appear as the
uncertainties in the final results. The continuum threshold
sq 1s associated with the energy of the first exited state. To
restrict the Borel parameter, we require the pole dominance
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and convergence of the operator product expansion: The
perturbative contribution exceeds the total nonperturbative
one and the higher the dimension of the nonperturbative
operator the lower its contribution. Our calculations reveal
the following working regions for the s, and M?:

2.9 GeV? < 5y < 3.3 GeV2,
2.0 GeV? < M? <3.0 GeV2. (35)

In Fig. 1, we present the Borel mass parameter depend-
ence of the GFFs at 0% = 1.0 GeV? and three values of
the continuum threshold s, = 2.9, 3.1, and 3.3 GeV?. This
figure shows that the GFFs are stable with respect to the
change of Borel mass parameter in the working region.
In Fig. 2, we present the GFFs as a function of Q2 for
the fixed Borel mass M?> = 2.5 GeV? and three values of
the continuum threshold sy = 2.9,3.1, and 3.3 GeV2. As
expected, we observe that the QO dependencies of the GFFs
are smoothly changed and decrease with increasing the Q2.
We use the following p-pole fit function to fit the GFFs
from the sum rules predictions:

F(0)

R

(36)

where the fit parameters 7 (0) and p are dimensionless
and m, has the inverse square energy dimension. The
p-pole fit function of A’s GFFs tends to zero at large
Q% =10 GeV?, as Fig. 2 illustrates. To enhance the
visibility, Fig. 3 shows the Q> dependence of A’s GFFs
for 0 GeV? < Q% <2 GeV?. The p-pole fit parameters of
the GFFs in Fig. 2 at mean values of the continuum
threshold are summarized in Table I. Changes in the
working regions of auxiliary parameters, uncertainty in
the input parameters, as well as the systematic errors in
QCD sum rules method cause errors in our presented
results. Some mechanical properties are revealed by the A’s

|

GFFs at zero momentum transfer, which are shown in the
second column of this table as F(0).

We present and compare some mechanical properties
extracted from our work and other studies in the rest of this
section. Table II shows some of the GMFFs of A baryon at
zero momentum transfer obtained from our calculations
and compares them with the results of Ref. [55]. The
normalization condition for A mass is 1, which is consistent
with £y(0) = F¢(0) = 1.01 £ 0.15 from our calculations.
We obtain 7 (0) = 1F,4(0) = 0.46 £ 0.06 for the dipole
angular momentum where F,,(0) = 1.38 +£0.19 corre-
sponds to spin of A baryon which is 3/2. This result is
well consistent with the prediction of the Skyrme model
within the presented errors. We obtain a p-pole behavior for
the octupole angular momentum form factor [75(Q?) from
our calculations and Eq. (29). At zero momentum transfer,
we have j3 (O) = —% [F4’0(0) + F4,1(0)] =-0.17 £0.03
and at large momentum transfer Q2 =10, J5(Q?)
approach to zero. In contrast, Ref. [55] assumes that
J3(0Q?) is zero for all values of Q to suppress the
corresponding density in the large N, expansion. Our
obtained &,(0) = —0.18 £0.03 differs from the corre-
sponding value in Ref. [55].

Except for F ;(0) and F4;(0), our results for A’s GFFs
at zero momentum transfer, F(0) in Table I, are compa-
rable with the corresponding results in Ref. [55]. We
obtain F;;(0) =-0.42+0.05 and Fy,;(0) =—-0.35=+
0.03 from our calculations, which contrast with F; ;(0) =
—-3.64 and F,;(0) = —1.5 in Ref. [55]. By applying the
Skyrme model with the constraints £,(0) = F(0) =1
and J(0) =3$F40(0) =3 and the assumption 75(0) =
—£[F40(0) + Fy41(0)] = 0, Ref. [55] obtains Fy;(0) =
—F40(0) = —1.5. The sum rules method allows us to
define A’s GFFs without imposing any additional con-
ditions on GFFs and GMFFs, which is an advantage of this
method. The ratio F(0)/F,(0) is obtained using our
sum rules and compared with some other models’ pre-
dictions [51,55], as shown by

2 tree-level chiral perturbation theory (ChPT),

Fi1(0
Fy,(0

~~

~ < 243

~—

Skyrme model, (37)

1.2 4+0.25 current work.

As is seen, the different approaches agree on the
sign this ratio and the obtained magnitudes are
roughly close to each other. Note that it is not possible
to extract the values for F ;(0) and Fy4(0) using ChPT,
because the needed coupling constants are not fixed (see
Ref. [51]).

Our results for D,(0) and D5(0) agree with those of

Ref. [55] while for Dy(0) differs from the corresponding

|

value in this reference considerably. The D-terms and the
mass radius of our calculations for the A baryon are shown
in Table III along with the predictions of other models. We
get (r2) = 0.67 +0.04 fm?> for the mass radius from
Eq. (34), which agrees, within the uncertainties of our
result, with the 0.64 fm? reported in Refs. [52,55].
While our result for Dj is consistent with that of
Ref. [53], it is quite different from the prediction of the
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FIG. 1. The dependence of the GFFs of A on M? at Q% = 1.0 GeV? for three values of the continuum threshold s,.
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TABLE I.  The numerical values of p-pole fit parameters F(0),
m,,, and p of the GFFs in Fig. 2 at mean values of the continuum
threshold.

GFF F(0) m, (GeV~?) P

Fy (0% 1.01 £0.15 0.63 +0.03 2.52 +0.04
Fi,(0%) —0.42 £0.05 0.17 £0.03 6.23 +1.08
Fy0(0%) —3.41+£045 0.42 +0.03 4.59+£048
Fy1(0%) 1.30 £ 0.15 0.38 £0.01 3.27+£0.40
Fy0(0%) 1.38 £0.19 0.51 £0.04 3.32 £ 0.04
Fi (0?)  —035+0.03 0.14 £ 0.01 5.41+0.16
Fs0(0%) —-0.13 £0.02 1.14 £0.07 2.17 £ 0.01

Ref. [55] result. When the D2 and D4 results are examined,

it is seen that our results are compatible with the results of
Refs. [53,55] within the errors. The vanishing of DzA in the
QCD sum rule approach is significant, as it confirms the
remarkable prediction of viewing baryons as the chiral
solitons [53].

By means of the A baryon’s D-terms, one can obtain the
D-term of the nucleon using the large N, picture of baryons
as chiral solitons as follows [53]:

DY = D4 + 2D, (38)

The above relation yields D)) = —3.57 £ 0.46 using the D-
terms of the A baryon in our calculations, which is in good
agreement with the D{)V values of Refs. [53,55]. From these
results, we see that the D-term DY of nucleon has a higher
absolute value than the generalized D-terms D} and D5 of
the A baryon, which are all negative as expected: It is
thought that if a system satisfies the local stability con-
ditions, the D-terms should be negative; if not the system
would collapse.

V. SUMMARY AND CONCLUSION

Due to the different interaction types, a hadron can have
different kinds of form factors representing the correspond-
ing interaction. Determination of different form factors of
hadrons allow us to obtain useful information about the
various related physical quantities that can help us discover
the nature and internal structures of hadrons as well as the
nonperturbative nature of QCD as the theory of strong
interaction. The gravitational form factors that emerge as a
result of the gravitonlike interaction of the hadrons with the
energy-momentum tensor current are of great importance
as they provide important information about the inner
structures, quark-gluon organizations of hadrons, distribu-
tions of the strong forces, energy, and pressure inside them
as well as their geometric shape and radius. These cause an
increasing interest to investigation of hadronic GFFs.

In this study, we investigated the A — A transition in the
presence of the energy-momentum tensor current. We
considered both the quark and gluonic parts of the EMT
current. Such interaction is parametrized in terms of ten
GFFs: seven conserved and three nononserved form fac-
tors. The nonconserved form factors vanish because of the
conservation of the total EMT current. We derived the sum
rules and numerically determined the seven conserved
GFFs of the A baryon in the range 0 < 0 < 10 GeV?
using the three-point QCD sum rules approach. The QCD
sum rule method is a relativistic method and considers
different features and quantum numbers of the hadrons like
their spin, being one of the leading existing nonperturbaa-
tive approaches. We found that the Q? behavior of A’s
GFFs are well explained via a p-pole fit function. We
presented the values of the GFFs at zero momentum
transfer as well.

Having determined the GFFs of the A baryon, we used
them to calculate the composite gravitational form factors of
the system like the energy and angular momentum multipole
form factors, D terms representing the mechanical properties

TABLE II. A comparison of mechanical properties obtained in the present study at zero momentum transfer with those from the
Skyrme model [55].

Model £(0) &(0) J1(0) J5(0) Dy(0) D,(0) D5(0)
This work 1.01 £0.15 —0.18 £ 0.03 0.46 +0.06 —0.17 £ 0.03 —-2.71 £0.34 —0.17 £0.03 0.26 +0.04
[55] 1 0.34 0.5 0 -3.53 —-0.20 0.24
TABLE IIl. A comparison of the D-terms and the mass radius obtained in the present study with those from the Skyrme
model [52,53,55].

Model Di D2 D4 DY (r)(fm?)
This work -2.71£0.34 0.000 £ 0.002 —0.43 £ 0.06 -3.57£046 0.67 £ 0.04
[52,53] -2.65 0 —0.38 -3.40 0.64
[55] -3.53 0 —0.50 -3.63 0.64
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like the internal pressure and shear forces, as well as the mass
radius of A resonance and compared them with other existing
theoretical predictions. Our results obtained using QCD sum
rules agree with the remarkable prediction of the soliton
picture of baryons, which resulted from vanishing of
D2 term.

Our results on &,(Q?), &(0?%), J,(Q?%), and J3(0?),
which are respectively energy-monopole, energy-quadrupole,
angular momentum-dipole, and angular momentum-octupole
form factors as well as Dy, 3(Q?) composite form factors
related to the internal pressures and shear forces and the
generalized D-terms D, , 5 satisfy the required conditions and
describe well-different features of the A baryon. Our results
may be compared with future probable lattice QCD and other
theoretical predictions. We hope that such investigations
will be possible in future experiments as well. If the direct
measurements of the quantities considered in the present
study are difficult because of the short lifetime of the A
baryon, we hope that we can extract GPDs of this system
using experimental data on different related physical

|

quantities like electromagnetic form factors and multipole
moments. As we previously mentioned, one can determine
the GFFs using the extracted GPDs from the experimental
data. Comparison of the obtained GFFs by this way with the
results of the present study will be of great importance as was
done for the nucleon in Ref. [1].
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APPENDIX A: QCD SIDE SOLUTIONS OF
THREE-POINT CORRELATION FUNCTION

In this appendix, we collect some parts of QCD
side solutions of the three-point correlation function. In
Eq. (17), after using Wick’s theorem and calculating all
possible contractions, 'Y and I'Y are obtained as below,

T = {485 (6 = 0T[5 (6 = 2)1aSE (v = 21D, ()4 (z = )]

— 485 (y = x)yS"5Y (v = X)7oS¢" (y — 2)7,D,,

— )1, Du(2) 53

<>

+ 4S§4m( - Z)yu

— 487" (y

(z)Sm (z — x)

(2= x)7pS" (v = X)7284 (y — x)

W(2)SI (2 = X)Te 1S5 (3 = X)raS5 (v = )]

+ 455 (y — x)Tr [mS’Z"’ (y = X)7aS5" (v = 2)7,Du(2) S5 (z - X)}

— 485 (y — x)yS"Y (z - x)

+255 (v -
285 (y = x)ypS"s (2 = x)
+287"(y = 2)1,Du(2) Sy (z =
285 (y — z)n&(z)swb (

+28¢ (v - X)y/;S’ /(y x
=285 (y = x)ypS'me (z — x

I (Z)nS’Z’” -

- x)?aSZCI (y - X)
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+S“ (y—x Tr[ ;S’h” (y = x)y,S4"(y — 2 yy S"” (z—x ]
— 85 (y = x)Tr [yﬁS’b“ Y = X)7e S (y — 2 y,, 2)Sm (7 — x ]
— S (y —x)Tr [yﬂS 195 (y — X)y SP" (y = 2)y 2)Sm (7 — x ]

2)8m (7 - x]
)

+ 855 (y - xTr[ 39 (y = X)yaSEm (y — 2 n

<>

S5 = 2Dy (S (2 = x)Te 1S5 (v = S o -

= S5 = DD, (2 = )T [VﬂS'Zb (v = 2)7aSe (v = x>] tHe V},

1—‘9

up = (G2 {45 (0 = ) Tr 7S5 (v = XS5 (v = )| = 4S5 (5 = XYY (v = X)7aSE (v = %)

+ 2857 (y = x)ypS" P (y — xX)yoShE (v = x) = 2857 (v = x)y8"4% (v — X)7a S5 (v — x)
+28¢ (v = x)ypS"5 (y = X)1 9 (v = x) = 289 (v = x)y5"9% (v — X)7a S8 (v — x)
S5 (v = )T 1S5 (3 = 0)7aSE (v = )| = S50 = ) Te 1887 (0 = )2 (v = )| }.

where §' = CSTC and S;j (x) is the light quark propagator, defined by

x m ) xmy(gq) . ¥ X ym
Sl/ i5:: -5 9 _ _ 5. iS5 q 5 q 2
4( ) l 17271_ 11471_2 2 ij 12 +1 ij 48 11192 0<qCI>+l ij 1152 <qQ>
~ gstf
132 2,2 (Y05 + 025X +

with m§ = (g9,G*6,,4)/(gq) and we assume m, = 0.
The perturbative and nonperturbative contributions of the correlation function in Eq. (19) are given by

w371

o = G iy — a7 20 DT 10 = Drefuo) | + 206 = D1 = Dl . 9)

20, (6 )10 = 7l = ) + AL T 1y = Dl = )] + 206 = DBl (e 0)raF = D) .

5 (g
%) = s o {200 = O [l 309)] = 2T = 1ol )] + 200 = Drprafsc3)

= 215(F = D)1aAf (X, ) + 240 (x. ¥)ypra(f — ¥) = 240, (x. 9)75(¥ — )70 + Al (x. y)Tr {ma(% - X)}
—Ap,(x,y)Tr [Vﬁ(% X)}'a} —2(f = H)1pBh (x. ¥)1a = 213BL (X, ¥)7.(¥ — X)

2 —NTr [7’/3(7 — N)7a45,(x, y)} +2(f = Hrp(f = HraAi(x.y)

(y—x)*
+ ZAfw(xv )’)Vﬁ()f—f)}’a()/_f) +Afw(~x7 y)Tr [}’/3()/—)()7(1()‘—)‘1)} + 2()7, X) ﬁB/w(x y)ya(y,_X))}’

i7 2
0 = i 2= 0+ = 0T (= B+ 0l = 0 e )

+2((F =907 + =D )1p (F = D)oss + 025 = 1)) ratf(x.9)
240,01 ((0F = 00 + 0 =) )1 F = B + 0106 = )
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+ Al e T [15 (= 07 + 020 =) ) 1a (= Hois + 01500 = ) )|
=2((f = 0 + (5 = ) 1Bl (5 )1 (F = Hrzs + 0150 = 1))
1

+ a0y =yt CO = DT |1l = 1A (0] 20/ = A1 = 07T (5.3)

245 (5, 1 = D1alf = ) + AT o )Te |1 = Dralf = 0] + 20 = D1BE (5. 9)ra(¥ = 4)
O AT (= + P = A )]

=2((f =90 + 0 = ) Tr s = Hral (. )]

200 = 17 (= 0 + 0 = ) ) raALE (x.3) = 2((F = H)0™ + 2 = ) )1 = DraALE (x.7)
240 () ((F =)0 + 0 = ) )rald = §) = 2408 e = D1 (= 97 + 02 (4 = )
+ 459 (e (Te vy (= 0 + 02 = 0 vl = D] = Te 1 = D1 (F = 0)o™ + P4 = 1)) |)

20/ = DrpBLS (x 1 ((F = 0P + P = )) +2((F = p)o + oW—x>)yﬂ355<x,y>ya<f—x>}, (A6)

+

Dy 6i° (G? L
Towd = 2] (<y >“’) {0/ =BT [rs = Draly = 0] + 200 = 1 = Dy = 0}, (A7)

i® mi(g
) = oy ol {200 ) Te[ il 5.9)) = 2Tl = a2 )] + 200 = Draraye.3)

= 2056 = H1atfu (5. 3) + 240, (e gt = ) = 2L (5. 3)1 0 = B+ AR (52T 7 = 9)|
— AL (5T 15 (F = 07| =206 = H07Bla6, )70 = 21Bl ()16 = #)

+ o (20 = T = D )]+ 20 = D = D)
245, ()75 = K7l = ) + AR (e )T 150 = 7l = )] + 206 = 01 Biu (6, )7aF = ) } (A8)

where,

4 4
A o) =2 1425 - (-2,
Ap () =7, K—Z—ﬁ} [y—‘j ]

2 640 4 o4 u w2 w 2Yy, o 2Yy, )5+ 0
AG (x.y V + ,,} Kfc_ )% %C j;ﬂ Kr_ %y)o_w (;_ ﬁ)]“w; Mx}
Aﬁf(’ 4“[(7,, 4)0/154-6,15(}, fo )] [:_/‘4)@#} V@I&"‘Qaﬂ]

et 55 (5o

X
4
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X

27,4y Yu A e 4y 2¥y.x,
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APPENDIX B: GLUON CONDENSATION

The light quark propagator in Eq. (A3) includes one
gluon strength field tensor —ig,G?[fo,5 + 0,5(]/327°x>. A
two-gluon condensation can be formed by multiplying
these terms together in the presence of vacuum. We
simplify such expressions with these notations [72],

1

Gl =Gy, =i G=GYGY,

1 1
tgbtglb/ = 5 <5ab’5a’b —§5ab5a/br> N (Bl)

where a,b =1,2,3and A = 1,2, ..., 8 are color indices of
the fundamental (quark) and the adjoint (gluon) represen-
tations, respectively and 14 are Gell-Mann matrices. We
consider <0\G;‘ﬁ(x)G2,' #(0)]0) as the gluon condensate and
use the first term of the Taylor expansion at x = 0,

/ G2 ’
(01G(0)G25 0)10) =T 5 0,55~ 0] (B2)

We apply Eqgs. (B1) and (B2) to Egs. (A2) and (A6).
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