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Using proton-proton collisions at center-of-mass energies 7, 8, and 13 TeV, with a total integrated
luminosity of 9 fb−1, the LHCb collaboration has performed amplitude analyses of the Bþ → DþD−Kþ,
Bþ → D−Dþ

s π
þ, and B0 → D̄0Dþ

s π
− decays, observing that new Tcs and Tcs̄ resonances are required in

order to explain the experimental data. These signals could be the first observation of tetraquark candidates
that do not contain a heavy quark-antiquark pair; in fact, they consist of four different flavors of quarks, one
of which is a doubly charged open-charm state. We present herein an analysis of the Tcs and Tcs̄ states,
which is an extension of our recently published study of similar Tþ

cc exotic candidates. Our theoretical
framework is a constituent-quark-model-based coupled-channels calculation of qq0s̄ c̄ and cqs̄q̄0 tetraquark
sectors for Tcs and Tcs̄ structures, respectively. We explore the nature, and pole position, of the singularities
that appear in the scattering matrix with spin-parity quantum numbers: JP ¼ 0�, 1∓, and 2�. The
constituent quark model has been widely used in the heavy quark sector, and thus all model parameters are
already constrained from previous works. This makes our predictions robust and parameter-free. We find
many singularities in the solution of various scattering-matrix problems which are either virtual states or
resonances, but not bound states. Some of them fit reasonably well with the experimental observations of
the spin-parity, mass, and width of Tcs and Tcs̄ candidates, and thus tentative assignments are made.

DOI: 10.1103/PhysRevD.108.094035

I. INTRODUCTION

A very successful classification scheme for hadrons in
terms of their valence quarks and antiquarks was proposed
independently by Murray Gell-Mann [1] and George
Zweig [2] in 1964. This classification, called the quark
model, basically divides hadrons into two large families:
mesons and baryons. These are quark-antiquark and three-
quark bound-states, respectively.1 However, QCD allows
for the existence of more complex structures, generically
called exotic hadrons or simply exotics [1]. These include

tetra-, penta-, and even hexaquark systems, hadronic states
with active gluonic degrees of freedom (hybrids), and even
bound states consisting only of gluons (glueballs). This
other class of hadrons, in addition to mesons and baryons,
that can be observed tells us a lot about the nature of QCD.
Exotic hadrons have been systematically searched for

since the 1960s in numerous experiments around the globe,
without success until a remarkable discovery in 2003 when
the Belle Collaboration found evidence of a narrow new
particle at 3872 MeV [4], decaying to J=ψ → πþπ− and
J=ψ → πþπ−π0 that behaves very unlike a pure cc̄ state.
This Xð3872Þ [“X” simply indicating “unknown”], is a
“charmoniumlike” state (meaning that all of its known
decays contain a cc̄ pair), and is almost certainly a hadron
of valence quark content cc̄qq̄. After this observation many
new hadrons that do not exhibit the expected properties
of ordinary mesons and baryons were discovered. These
hadrons belong mostly to the heavy quark sector and are
collectively known as XYZ states. An enormous effort
devoted to unravel the nature of these exotic hadrons has
been deployed using a wide variety of theoretical
approaches. In fact, one can already find many compre-
hensive reviews on the subject in the literature [5–16].
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1For further details, the interested reader is referred to the
Particle Data Group and its topical minireview on the subject [3].
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At the end of 2020 the LHCb collaboration carried out an
amplitude analysis of Bþ → DþD−Kþ decays using pro-
ton-proton collision data taken at

ffiffiffi
s

p ¼ 7, 8, and 13 TeV,
with an integrated luminosity of 9 fb−1 [17,18]. In order to
obtain good agreement with the experimental data, it turned
out to be necessary to include new spin-0 and spin-1 Tcs
resonances in the D−Kþ channel. These signals may
constitute the first observation of exotic hadrons not
containing a heavy quark-antiquark pair and, moreover,
they could be the first experimental detection of four-quark
candidates with four different flavors of quarks uds̄ c̄.
The Breit-Wigner parameters of these resonances are

Tcs0ð2900Þ0∶ M ¼ ð2866� 7� 2Þ MeV=c2;

Γ ¼ ð57� 12� 4Þ MeV; ð1Þ
Tcs1ð2900Þ0∶ M ¼ ð2904� 5� 1Þ MeV=c2;

Γ ¼ ð110� 11� 4Þ MeV; ð2Þ
where the first uncertainties are statistical and the
second systematic.
In December 2022, the LHCb collaboration reported

in Refs. [19,20] a combined amplitude analysis for the
decays B0 → D̄0Dþ

s π
− and Bþ → D−Dþ

s π
þ, based on

proton-proton collision data at centre-of-mass energies of
7, 8, and 13 TeV, with an integrated luminosity of 9 fb−1.
The enhancement in the Dþ

s π
þ invariant mass of the may

indicate the first observation of a Tcs̄ doubly charged open-
charm tetraquark state with minimal quark content cs̄ud̄;
whereas the one observed in the Dþ

s π
− channel is inter-

preted as the Tcs̄ neutral partner of an isospin triplet. Both
Tcs̄ candidates are found to have isospin 1 and spin-parity
JP ¼ 0þ. The Breit-Wigner mass and width of the new
resonant states are:

Ta
cs̄0ð2900Þ0∶ M ¼ ð2892� 14� 15Þ MeV=c2;

Γ ¼ ð119� 26� 13Þ MeV; ð3Þ

Ta
cs̄0ð2900Þþþ∶ M ¼ ð2921� 17� 20Þ MeV=c2;

Γ ¼ ð137� 32� 17Þ MeV; ð4Þ

Interestingly, the cqs̄q̄0 sector was one of the first to
show evidence of exotic structures, with the discovery of
the D�

s0ð2317Þ and the Ds1ð2460Þ in 2003 that did not fit
the quark model expectations. These states are instead
isoscalars and were tackled by our group considering them
an effect of the coupling of conventional cs̄ states with
nearby DK and D�K channels [21]. Since the recent Ta

cs̄
states are isospin-1, there is no chance of coupling with
naive meson structures, and a pure coupled-channels
calculation has to be assumed.
Assuming the neutral Dþ

s π
− resonance and the doubly

chargedDþ
s π

þ resonance belong to the same isospin triplet,
the common mass and width are determined to be [20]

M ¼ ð2908� 11� 20Þ MeV=c2;

Γ ¼ ð136� 23� 13Þ MeV; ð5Þ

The above announcements made by the LHCb collabo-
ration triggered a lot of theoretical work using a wide
variety of approaches. Regarding the Tcs candidates, one
can mention interpretations of these states using QCD
sum rules [22–26], nonrelativistic and (extended) relativ-
ized quark models with different types of quark–(anti)quark
interactions [27–37], and effective field theories [38–40].
They can be also interpreted as triangle singularities [41,42].
In addition, their decay and production properties have been
studied in the literature [43–45]. With respect to Tcs̄ signals,
the literature is more limited; to mention only a few, the
reader is referred to Refs. [46–53].
An important question about the nature of the exotic

hadrons is whether they are expected to be compact objects
like ordinary hadrons or whether they behave like hadron-
hadron molecular states. Certainly, the difference between
the two possibilities should lie in the dynamics of the
quarks, however, on general grounds, when the state is near
a hadron-hadron threshold, and therefore its binding energy
B is small or, more precisely, when R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2MB
p

is large,
the multiquark system should look more like a hadron-
hadron molecule. Although its multiquark nature should
not be forgotten.
In this manuscript we analyse the nature of the recently

discovered Tcs̄ and Tcs states in a multichannel calculation
using the resonating group method and the constituent
quark model (CQM) of Refs. [54,55]. Quarks and anti-
quarks are suppose to form two meson clusters which
interacts through an effective cluster-cluster interaction
which emerges from the underlying quark dynamics.
The model has been widely used in the heavy quark sector,
by studying their spectra [56–60], their electromagnetic,
weak and strong decays and reactions [61–65], their
possible compact multiquark components [66–70] and also
their potential coupling to meson-meson channels [71–75].
The advantage of using an approach with a relatively long
history is that all model parameters are already constrained
by previous works. Consequently, from this perspective, we
present a parameter-free calculation of the Tcs̄ and Tcs
states, which is also an extension of our recently published
analysis of similar Tþ

cc exotic candidates [76].
The manuscript is structured as follows. After this

introduction, the theoretical framework is briefly presented
in Sec. II. Section III is mainly devoted to the analysis and
discussion of our theoretical results. Finally, we summarize
and draw some conclusions in Sec. IV.

II. THEORETICAL FORMALISM

A. Naive quark model

Dynamical chiral symmetry breaking of the QCD
Lagrangian together with the perturbative one-gluon
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exchange (OGE) and the nonperturbative confining inter-
actions are the main pieces of potential models. Using this
idea, Vijande et al. [54] developed a model of the quark-
(anti)quark interaction which is able to describe meson
phenomenology from the light to the heavy quark sectors.
We briefly explain the model below. Further details can be
found in Refs. [54,55,58].
One consequence of the dynamical chiral symmetry

breaking is that the nearly massless current light quarks
acquire a dynamical, momentum-dependent mass MðpÞ
with Mð0Þ ≈ 300 MeV for the u and d quarks, namely,
the constituent mass. To preserve chiral invariance of the
QCD Lagrangian new interaction terms, given by
Goldstone boson exchanges, should appear between con-
stituent quarks.
A simple Lagrangian invariant under chiral transforma-

tions can be derived as [77]

L ¼ ψ̄ðiγμ∂μ −MUγ5Þψ ; ð6Þ

where Uγ5 ¼ expðiπaλaγ5=fπÞ, πa denotes the pseudosca-
lar fields ðπ⃗; K; η8Þ and M is the constituent quark mass.
The momentum-dependent mass acts as a natural cutoff of
the theory. The chiral quark-(anti)quark interaction can be
written as

Vqqðr⃗ijÞ ¼ VC
qqðr⃗ijÞ þ VT

qqðr⃗ijÞ þ VSO
qq ðr⃗ijÞ; ð7Þ

where C, T, and SO stand for central, tensor, and spin-orbit
potentials. The central part presents four different contri-
butions,

VC
qqðr⃗ijÞ ¼ VC

π ðr⃗ijÞ þ VC
σ ðr⃗ijÞ þ VC

Kðr⃗ijÞ þ VC
η ðr⃗ijÞ; ð8Þ

given by

VC
π ðr⃗ijÞ ¼

g2ch
4π

m2
π

12mimj

Λ2
π

Λ2
π −m2

π
mπ

�
YðmπrijÞ −

Λ3
π

m3
π
YðΛπrijÞ

�
ðσ⃗i · σ⃗jÞ

X3
a¼1

ðλai · λaj Þ;

VC
σ ðr⃗ijÞ ¼ −

g2ch
4π

Λ2
σ

Λ2
σ −m2

σ
mσ

�
YðmσrijÞ −

Λσ

mσ
YðΛσrijÞ

�
;

VC
Kðr⃗ijÞ ¼

g2ch
4π

m2
K

12mimj

Λ2
K

Λ2
K −m2

K
mK

�
YðmKrijÞ −

Λ3
K

m3
K
YðΛKrijÞ

�
ðσ⃗i · σ⃗jÞ

X7
a¼4

ðλai · λaj Þ;

VC
η ðr⃗ijÞ ¼

g2ch
4π

m2
η

12mimj

Λ2
η

Λ2
η −m2

η
mη

�
YðmηrijÞ −

Λ3
η

m3
η
YðΛηrijÞ

�
ðσ⃗i · σ⃗jÞ½cos θpðλ8i · λ8jÞ − sin θp�; ð9Þ

where YðxÞ is the standard Yukawa function defined by
YðxÞ ¼ e−x=x. We consider the physical ηmeson instead of
the octet one and so we introduce the angle θp. The λa are
the SU(3) flavor Gell-Mann matrices, mi is the quark mass
and mπ , mK , and mη are the masses of the SU(3) Goldstone
bosons, taken from experimental values. The value of mσ

used herein is given by the partially conserved axial current
(PCAC) relation m2

σ ≃m2
π þ 4m2

u;d [78]. Note, however,
that better determinations of the mass of the σ-meson have
been reported since then, see the relatively recent review
[79]; one should simply consider the value used herein as a
model parameter. Finally, the chiral coupling constant, gch,
is determined from the πNN coupling constant through

g2ch
4π

¼ 9

25

g2πNN

4π

m2
u;d

m2
N
; ð10Þ

which assumes that flavor SU(3) is an exact symmetry only
broken by the different mass of the strange quark.
There are three different contributions to the tensor

potential

VT
qqðr⃗ijÞ ¼ VT

π ðr⃗ijÞ þ VT
Kðr⃗ijÞ þ VT

η ðr⃗ijÞ; ð11Þ

given by

VT
π ðr⃗ijÞ ¼

g2ch
4π

m2
π

12mimj

Λ2
π

Λ2
π −m2

π
mπ

�
HðmπrijÞ −

Λ3
π

m3
π
HðΛπrijÞ

�
Sij

X3
a¼1

ðλai · λaj Þ;

VT
Kðr⃗ijÞ ¼

g2ch
4π

m2
K

12mimj

Λ2
K

Λ2
K −m2

K
mK

�
HðmKrijÞ −

Λ3
K

m3
K
HðΛKrijÞ

�
Sij

X7
a¼4

ðλai · λaj Þ;

VT
η ðr⃗ijÞ ¼

g2ch
4π

m2
η

12mimj

Λ2
η

Λ2
η −m2

η
mη

�
HðmηrijÞ −

Λ3
η

m3
η
HðΛηrijÞ

�
Sij½cos θpðλ8i · λ8jÞ − sin θp�: ð12Þ
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Sij ¼ 3ðσ⃗i · r̂ijÞðσ⃗j · r̂ijÞ − σ⃗i · σ⃗j is the quark tensor oper-
ator and HðxÞ ¼ ð1þ 3=xþ 3=x2ÞYðxÞ.
Finally, the spin-orbit potential only presents a contri-

bution coming from the scalar part of the interaction

VSO
qq ðr⃗ijÞ ¼ VSO

σ ðr⃗ijÞ

¼ −
g2ch
4π

m3
σ

2mimj

Λ2
σ

Λ2
σ −m2

σ

×

�
GðmσrijÞ −

Λ3
σ

m3
σ
GðΛσrijÞ

�
ðL⃗ · S⃗Þ: ð13Þ

In the last equation GðxÞ is the function ð1þ 1=xÞYðxÞ=x.

Beyond the chiral symmetry breaking scale one expects
the dynamics to be governed by QCD perturbative effects.
In this way one-gluon fluctuations around the instanton
vacuum are taken into account through the qqg coupling

Lqqg ¼ i
ffiffiffiffiffiffiffiffiffiffi
4παs

p
ψγμG

μ
cλcψ ; ð14Þ

with λc being the SUð3Þ color matrices and Gμ
c the

gluon field.
The different terms of the potential derived from the

Lagrangian contain central, tensor, and spin-orbit contri-
butions and are given by

VC
OGEðr⃗ijÞ ¼

1

4
αsðλ⃗ci · λ⃗cjÞ

�
1

rij
−

1

6mimj
ðσ⃗i · σ⃗jÞ

e−rij=r0ðμÞ

rijr20ðμÞ
�
;

VT
OGEðr⃗ijÞ ¼ −

1

16

αs
mimj

ðλ⃗ci · λ⃗cjÞ
�
1

r3ij
−
e−rij=rgðμÞ

rij

�
1

r2ij
þ 1

3r2gðμÞ
þ 1

rijrgðμÞ
��

Sij;

VSO
OGEðr⃗ijÞ ¼ −

1

16

αs
m2

i m
2
j
ðλ⃗ci · λ⃗cjÞ

�
1

r3ij
−
e−rij=rgðμÞ

r3ij

�
1þ rij

rgðμÞ
��

× ½ððmi þmjÞ2 þ 2mimjÞðS⃗þ · L⃗Þ þ ðm2
j −m2

i ÞðS⃗− · L⃗Þ�; ð15Þ

where S⃗�¼ 1
2
ðσ⃗i� σ⃗jÞ. Besides, r0ðμÞ ¼ r̂0

μnn
μij

and rgðμÞ ¼
r̂g

μnn
μij

are regulators which depend on μij, the reduced mass

of the qq̄ pair. The contact term of the central potential has
been regularized as

δðr⃗ijÞ ∼
1

4πr20

e−rij=r0

rij
ð16Þ

The wide energy range needed to provide a consistent
description of light, strange, and heavy mesons requires an
effective scale-dependent strong coupling constant. We use
the frozen coupling constant of Ref. [54]

αsðμÞ ¼
α0

ln
�
μ2þμ2

0

Λ2
0

� ; ð17Þ

in which μ is the reduced mass of the qq̄ pair and α0, μ0 and
Λ0 are parameters of the model determined by a global fit to
the meson spectra.
Confinement is one of the crucial aspects of QCD. Color

charges are confined inside hadrons. It is well known that
multigluon exchanges produce an attractive linearly rising
potential proportional to the distance between quarks. This
idea has been confirmed, but not rigorously proved, by
quenched lattice gauge Wilson loop calculations for heavy
valence quark systems. However, sea quarks are also
important ingredients of the strong interaction dynamics.
When included in the lattice calculations they contribute to
the screening of the rising potential at low momenta and
eventually to the breaking of the quark-antiquark binding
string. This fact, which has been observed in nf ¼ 2 lattice
QCD [80], has been taken into account in our model by
including the terms

VC
CONðr⃗ijÞ ¼ ½−acð1− e−μcrijÞ þΔ�ðλ⃗ci · λ⃗cjÞ;

VSO
CONðr⃗ijÞ ¼ −ðλ⃗ci · λ⃗cjÞ

acμce−μcrij

4m2
i m

2
jrij

½ððm2
i þm2

jÞð1− 2asÞ þ 4mimjð1− asÞÞðS⃗þ · L⃗Þ þ ðm2
j −m2

i Þð1− 2asÞðS⃗− · L⃗Þ�; ð18Þ

where as controls the mixture between the scalar and vector Lorentz structures of the confinement. At short distances this
potential presents a linear behavior with an effective confinement strength σ ¼ −acμcðλ⃗ci · λ⃗cjÞ and becomes constant at large
distances with a threshold defined by
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V thr ¼ f−ac þ Δgðλ⃗ci · λ⃗cjÞ: ð19Þ

No qq̄ bound states can be found for energies higher than
this threshold. The system suffers a transition from a color
string configuration between two static color sources into a
pair of static mesons due to the breaking of the color string
and the most favored decay into hadrons.
Among the different methods to solve the Schrödinger

equation in order to find the quark-antiquark bound states,
we use the Gaussian expansion method [81] because it
provides sufficient accuracy and simplifies the subsequent
evaluation of the required matrix elements. This procedure
yields the radial wave function solution of the Schrödinger
equation as an expansion in terms of basis functions

RαðrÞ ¼
Xnmax

n¼1

cαnϕG
nlðrÞ; ð20Þ

where α refers to the channel quantum numbers. The
coefficients, cαn, and the eigenvalue, E, are determined
from the Rayleigh-Ritz variational principle

Xnmax

n¼1

�
ðTα

n0n − ENα
n0nÞcαn þ

X
α0
Vαα0
n0nc

α0
n ¼ 0

�
; ð21Þ

where Tα
n0n, N

α
n0n and Vαα0

n0n are the matrix elements of the
kinetic energy, the normalization and the potential, respec-
tively. Tα

n0n and Nα
n0n are diagonal whereas the mixing

between different channels is given by Vαα0
n0n.

Following Ref. [81], we employ Gaussian trial functions
with ranges in geometric progression. This enables the
optimization of ranges employing a small number of free
parameters. Moreover, the geometric progression is dense
at short distances, so that it allows the description of the
dynamics mediated by short range potentials. The fast
damping of the Gaussian tail is not a problem, since we can
choose the maximal range much longer than the had-
ronic size.
Table I shows the model parameters fitted over all meson

spectra [54], updated in Ref. [56]. Wewould like to point out
here that the interaction terms between light-light, light-
heavy, and heavy-heavy quarks are not the same in our
formalism, i.e., while Goldstone-boson exchanges are con-
sidered when the two quarks are light, they do not appear in
the other two configurations: light-heavy and heavy-heavy;
however, the one-gluon exchange and confinement potentials
are blinded in flavor and so they affect all the cases.

B. Resonating group method

The aforementioned CQM specifies the microscopic
interaction between the constituent quarks and antiquarks.
To describe the interaction at the meson level, we use the
resonating group method (RGM) [82,83], where mesons
are considered as quark-antiquark clusters and an effective

cluster-cluster interaction emerges from the underlying
quark(antiquark) dynamics (see, e.g., Refs. [84,85] for
details). The main idea behind the RGM is that the degrees
of freedom of the particles within a cluster are frozen,
resulting in a fixed wave function for the internal degrees
of freedom. Consequently, the interactions solely contrib-
ute to the dynamics of relative degrees of freedom
between clusters.
Traditionally, the RGM has been formulated in coor-

dinate space. However, the introduction of antisymmetry
leads to non-localities in the potentials between clusters,
thereby resulting in a final RGM equation that becomes
an integro-differential equation, making its solution more
complex. Nevertheless, an alternative formulation in
momentum space is also feasible, where the treatment of
local or non-local interactions becomes entirely equivalent,
yielding an integral equation. Moreover, it is worth noting
that in momentum space, the coupling between different
channels can be readily implemented, whereas it is con-
siderably more intricate in coordinate space.
We assume that the wave function of a system composed

of two mesons A and B can be written as2

hp⃗Ap⃗BP⃗P⃗c:m:jψi ¼ A½ϕAðp⃗AÞϕBðp⃗BÞχαðP⃗Þ�; ð22Þ

TABLE I. Quark model parameters.

Quark masses mn (MeV) 313
ms (MeV) 555
mc (MeV) 1763
mb (MeV) 5110

Goldstone Bosons mπ ðfm−1Þ 0.70
mσ ðfm−1Þ 3.42
mK ðfm−1Þ 2.51
mη ðfm−1Þ 2.77
Λπ ðfm−1Þ 4.20
Λσ ðfm−1Þ 4.20
ΛK ðfm−1Þ 4.21
Λη ðfm−1Þ 5.20
g2ch=4π 0.54
θp ð°Þ −15

OGE α0 2.118
Λ0 ðfm−1Þ 0.113
μ0 (MeV) 36.976
r̂0 (fm) 0.181
r̂g (fm) 0.259

Confinement ac (MeV) 507.4
μc ðfm−1Þ 0.576
Δ (MeV) 184.432
as 0.81

2Note that, for the simplicity of the discussion presented here,
we have omitted the spin-isospin wave function, the product
of the two color singlets and the wave function describing the
center-of-mass motion.
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where A is the full antisymmetric operator, ϕCðp⃗CÞ is the
wave function of a general meson C calculated in the naive
quark model, and p⃗C is the relative momentum between the
quark and antiquark of the meson C. The wave function
taking into account the relative motion of the two mesons is
χαðP⃗Þ, where α denotes the set of quantum numbers needed
to uniquely define a particular partial wave.
For the Tcs̄, with a minimum quark content of cqs̄q̄0,

there are no indistinguishable quarks among clusters, so
A ¼ 1. In the case of the Tcs, with a minimum quark
content of qq0c̄ s̄, we have two identical quarks, and the
antisymmetrizer can be written as A ¼ 1

2
ð1 − PqÞ, with Pq

the operator that exchanges the light quark between
mesons.
The dynamics of the system is governed by the

Hamiltonian

H ¼
XN
i¼1

p⃗2
i

2mi
þ
X
i<j

Vij − TCM ð23Þ

where we have removed the kinetic energy of the center-of-
mass TCM, mi is the (constituent) mass of quark i and Vij

is the interactions between quarks i and j. Using this
Hamiltonian, we can build the projected Schrödinger
equation as a variational equation,

ðH − ETÞjψi ¼ 0 ⇒ hδψ jðH − ETÞjψi ¼ 0: ð24Þ

Under the assumption that the internal wave function of the
mesons remains fixed, the variations are solely applied to
the relative wave function. Consequently, all possible
internal degrees of freedom are integrated out.
The projected Schrödinger equation for the relative wave

function can be written as follows:

�
P⃗02

2μ
− E

�
χαðP⃗0Þ þ

X
α0

Z
½RGMVαα0

D ðP⃗0; P⃗iÞ

þ RGMKαα0 ðP⃗0; P⃗iÞ�χα0 ðP⃗iÞdP⃗i ¼ 0; ð25Þ

where E ¼ ET − EM1
− EM2

is the relative energy between

clusters, with ET the total energy of the system, P⃗i

is a continuous parameter and RGMVαα0
D ðP⃗0; P⃗iÞ and

RGMKαα0 ðP⃗0; P⃗iÞ are the direct and exchange RGM kernels,
respectively.
The direct potential RGMVαα0

D ðP⃗0; P⃗iÞ, from the factor 1 in
A, can be written as

RGMVαα0
D ðP⃗0; P⃗iÞ

¼
X

i∈A;j∈B

Z
dp⃗A0dp⃗B0dp⃗Adp⃗B

× ϕ�
A0 ðp⃗A0 Þϕ�

B0 ðp⃗B0 ÞVαα0
ij ðP⃗0; P⃗iÞϕAðp⃗AÞϕBðp⃗BÞ: ð26Þ

where Vαα0
ij is the CQM potential between the quark i and

the quark j of the mesons A and B, respectively.
The exchange kernel RGMK models the quark rearrange-

ment between mesons. For Tcs, the exchange kernel comes
from the termPq inA, and it is expressed in terms of overlap
integrals involving the internal wave functions when quarks
are exchanged between different mesons. Consequently,
they are more important at short distances. The kernel is a
nonlocal and energy-dependent termwhich can be separated
in a potential term plus a normalization term, given by

RGMKðP⃗0; P⃗iÞ ¼RGM HEðP⃗0; P⃗iÞ − ET
RGMNEðP⃗0; P⃗iÞ ð27Þ

where

RGMHEðP⃗0; P⃗iÞ

¼
Z

dp⃗A0dp⃗B0dp⃗Adp⃗BdP⃗ϕ�
A0 ðp⃗A0 Þ

× ϕ�
B0 ðp⃗B0 ÞHðP⃗0; P⃗ÞPq½ϕAðp⃗AÞϕBðp⃗BÞδð3ÞðP⃗ − P⃗iÞ�;

ð28aÞ

RGMNEðP⃗0; P⃗iÞ

¼
Z

dp⃗A0dp⃗B0dp⃗Adp⃗BdP⃗ϕ�
A0 ðp⃗A0 Þ

× ϕ�
B0 ðp⃗B0 ÞPq½ϕAðp⃗AÞϕBðp⃗BÞδð3ÞðP⃗ − P⃗iÞ�; ð28bÞ

For Tcs̄ the antisymmetrizer is A ¼ 1, so we only
have direct interaction between DK. Nevertheless, the
exchange diagrams represents a natural way to connect
meson-meson channels with the same quark content, such
asDK → Dsπ channels. In that case, the exchange kernel is
reduced to a quark rearrangement potential RGMVRðP⃗0; P⃗iÞ,
given by

RGMVRðP⃗0; P⃗iÞ

¼
X

i∈A;j∈B

Z
dp⃗A0dp⃗B0dp⃗Adp⃗BdP⃗ϕ�

A0 ðp⃗A0 Þ

×ϕ�
B0 ðp⃗B0 ÞVijðP⃗0; P⃗ÞPmn½ϕAðp⃗AÞϕBðp⃗BÞδð3ÞðP⃗− P⃗iÞ�;

ð29Þ

where Pmn is the operator that exchanges the quark m of A
with the quark n of B.
From Eq. (25), we derive a set of coupled Lippmann-

Schwinger equations of the form

Tα0
α ðE;p0; pÞ ¼ Vα0

α ðp0; pÞ þ
X
α00

Z
dp00p002Vα0

α00 ðp0; p00Þ

×
1

E − Eα00 ðp00ÞT
α00
α ðE;p00; pÞ; ð30Þ
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where Vα0
α ðp0; pÞ is the projected potential containing the

direct and rearrangement kernels, and Eα00 ðp00Þ is the energy
corresponding to a momentum p00, written in the non-
relativistic case as

EαðpÞ ¼
p2

2μα
þ ΔMα: ð31Þ

Here, μα is the reduced mass of the ðABÞ-system corre-
sponding to the channel α, and ΔMα is the difference
between the threshold of the ðABÞ-system and the one we
use as a reference.
We solve the coupled Lippmann-Schwinger equations

using the matrix-inversion method proposed in Ref. [86],
but generalized to include channels with different
thresholds. Once the T-matrix is computed, we determine
the on-shell part which is directly related to the scattering
matrix. In the case of nonrelativistic kinematics, it can be
written as

Sα
0

α ¼ 1 − 2πi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μαμα0kαkα0

p
Tα0
α ðEþ i0þ; kα0 ; kαÞ; ð32Þ

where kα is the on-shell momentum for channel α,
defined by,

k2α ¼ 2μαðE − ΔMαÞ ð33Þ

Our aim is to explore the existence of states above
and below thresholds within the same formalism. Thus, we
have to continue analytically all the potentials and kernels
for complex momenta in order to find the poles of the
T-matrix in any possible Riemann sheet.
For each channel, we can define two Riemann sheets. The

first Riemann sheet is defined as 0 ≤ argðkαÞ < π, whereas
the second Riemann sheet is defined as π ≤ argðkαÞ < 2π.
Poles of the T-matrix on the first Riemann sheet on the real
axis below threshold are interpreted as bound states. Poles
on the second Riemann sheet below threshold are identified
as virtual states, while those above threshold are interpreted
as resonances.

III. RESULTS

A detailed discussion of the peculiarities of our
coupled-channels calculation will be given in the follow-
ing subsections. However, two comments are in order
here. The first one refers to the theoretical uncertainties.
There are two types of theoretical uncertainties in our
results: one is intrinsic to the numerical algorithm and the
other is related to the way the model parameters are fixed.
The numerical error is negligible and, as mentioned
above, the model parameters are adjusted to reproduce
a certain number of hadron observables within a deter-
minate range of agreement with experiment. It is there-
fore difficult to assign an error to these parameters and

consequently to the quantities calculated using them.
In order to analyze the uncertainty of the calculations
presented in this manuscript, we will estimate the error of
the pole properties by varying the strength of our
potentials by �10%.
The second comment has to do with the fact that the

experimental resonance parameters are obtained by a Breit-
Wigner parametrization and one should be caution to
compare these values with the pole positions.

A. Nature of Tcs states

We perform a coupled-channels calculation in charged
basis3 of the JP ¼ 0þ, 1− and 2þ qq0s̄ c̄ sectors in which
the D−Kþ discovery-channel can be measured. We include
the following meson-meson channels in the calculation4:
D̄0K0 (2362.45),D−Kþ (2363.34),D�−K�þ (2901.92), and
D̄�0K�0 (2902.40). Besides the direct interaction
between D̄ð�ÞKð�Þ pairs, we have to consider exchange
diagrams to deal with indistinguishable quarks from
different mesons in the molecule. Moreover, the decay
width of the strange vector meson is large enough to be
included in the calculation, i.e. it is taken into account
in Eq. (31) in such a way that the corresponding real
valued mass, M, is replaced by the complex expression
M − iΓ=2, with the mass M and total decay width Γ of
the particular meson taken from the Particle Listings
of the Review of Particle Physics collected by the
Particle Data Group [3]. The experimental values of
the widths reported in Ref. [3] for the neutral and
charged partners, respectively, are ΓK�0 ¼ 47.3 MeV
and ΓK�� ¼ 51.4 MeV.
With all the above, our calculation yields the information

shown in Table II. The first observation is that many poles
appear in the scattering matrix; they are either virtual
or resonance states but we do not find bound states.
A tentative assignment of the Tcs0ð2900Þ0 experimental
signal would be the second state with quantum numbers
JP ¼ 0þ. Its mass and width are 2902 MeV=c2 and
51 MeV, respectively; both compare well with the corre-
sponding experimental values shown in Eq. (1). It is worth
noting that a very similar state appears in the JP ¼ 2þ
channel; however, there is a resonance close (at
2.922 GeV=c2) to it which has a large decay width that
could interfere with the experimental signal. We find a
possible candidate of the Tcs1ð2900Þ0 signal in the JP ¼ 1−

channel with pole parameters 2888 MeV=c2 and 190 MeV,
and whose nature seems to be virtual. Notice that the 1−

D̄�K� molecule is in a relative P-wave, whereas it is in a

3The charged basis is selected in this case because there
is no experimental evidence of the isospin content of
the Tcs states.

4In parenthesis the mass of the threshold in MeV=c2.
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relative S-wave for the 0þ and 2þ sectors. The theoretical
width is 42% larger than the experimental value, see
Eq. (2). This could be due by multiple reasons such as
the complexity of the theoretical calculation which
increases the model uncertainties usually assigned to be
of the order of 25% or the fact that experimentalists
generally perform cross section fits and do not derive
the pole structure which produces the bumps in experi-
ments, deriving in error determinations of pole parame-
ters. It may also happen that the model, fitted to many
aspects of hadron phenomenology in the past, is simply
not able to better predict the mass and width of the
Tcs1ð2900Þ0. This last case shall be explore in the future
with the determination of the same observables measured
in experiments.
For completeness, we perform a coupled-channels cal-

culation of the JP ¼ 0−, 1þ and 2− qq0s̄ c̄ sectors; in this
case, however, the meson-meson channels to be included
are D�−Kþ (2503.94), D̄�0K0 (2504.46), D̄0K�0 (2760.39),
D−K�þ (2761.32), D�−K�þ (2901.92), and D̄�0K�0

(2902.40). This means that the final state D̄K, through which
theTcs0ð2900Þ0 andTcs1ð2900Þ0 resonanceswere found, is
not reached by the tetraquark channels we are now
considering. Our results are shown in Table III. Again,
many poles are found in the complex energy plane, they are
all virtual states or resonances close to D̄ð�ÞKð�Þ thresholds,
with decay widths of the order of tens to hundreds of MeV.
There is no evidence of bound states. The 1þ emerges as a
promising sector for new Tcs1 states. In this case, the
D̄ð�ÞKð�Þ are in relative S-waves, so the formation of
molecules is favored. Potential detection channels are
the lower D̄�K channels.

B. Nature of Tcs̄ states

Hence, we perform a coupled-channels calculation of
the isospin-1 JP ¼ 0þ, 1− and 2þ cqs̄q̄0 sectors, in which
the Dsπ discovery-channel can naturally be measured.
We include the following meson-meson channels in the

calculation5: Dþ
s π

− (2107.92), D0K0 (2362.45), D�þ
s ρ−

(2887.46) andD�0K�0 (2902.40). In this case, all the quarks
involved are distinguishable, but the exchange diagrams
are taken into account to deal with the connection between
the DK- and Dsπ-type channels. In addition, the decay
widths of the light and strange vector mesons are large
enough to be taken into account. The experimental value
reported in Ref. [3] for the ρ-meson is Γρ ¼ 149.5 MeV,
and the widths of the neutral and charged kaon partners are
ΓK�0 ¼ 47.3 MeV and ΓK�� ¼ 51.4 MeV, respectively.
Table IV shows our results. Again when we are so close

to meson-meson thresholds, it is evident that we predict a
resonance with quantum number JP ¼ 0þ whose mass,
2892 MeV=c2, and width, 156 MeV, are perfectly com-
patible with the experimental measurements, Eqs. (3)
and (4). On top of that, another resonance in the same
channel is found to be close to the first one; moreover, its
mass and width are also compatible with the experimental
measurements. It would be interesting to see if the LHCb
experiment signals to one 0þ Tcs̄ state or, actually, two
independent resonances. There is also a singularity in each
of the channels JP ¼ 1− and 2þ of the scattering problem.
In the first case we have a virtual state, while a resonance is
found in the JP ¼ 2þ channel, though it does not seem to
decay into the Dþ

s π
− final state. Both have masses close to

2.9 GeV=c2 but have total decay widths larger than those of
the resonances found in the 0þ case.
Finally, we perform a coupled-channels calculation of

the isospin-1 JP ¼ 0−, 1þ, and 2− cqs̄q̄0 sectors; in this
case, however, the meson-meson channels to be included
are D�þ

s π− (2251.77), D�0K0 (2504.46), Dþ
s ρ

− (2743.61),
D0K�0 (2760.39), D�þ

s ρ− (2887.46), and D�0K�0
(2902.40). That is to say, the final state Dsπ, through
which the Tcs̄0ð2900Þ0 and Tcs̄0ð2900Þþþ resonances have
been found, is not reached by the tetraquark channels we
are now considering, but could be detected in the D�

sπ

TABLE IV. Coupled-channels calculation of the isospin-1 JP ¼ 0þ, 1− and 2þ cqs̄q̄0 sectors (Tcs̄ states), in which theDsπ discovery-
channel can be naturally measured. We include the following meson-meson channels in the calculation (in parenthesis the threshold’s
mass in MeV=c2): Dþ

s π
− (2107.92), D0K0 (2362.45), D�þ

s ρ− (2887.46) and D�0K�0 (2902.40). Errors are estimated by varying
the strength of the potential by �10%. 1st column: Pole’s quantum numbers; 2nd column: Pole’s mass in MeV=c2; 3rd column: Pole’s
width in MeV; 4th column: Refers toDþ

s π
−,D0K0,D�þ

s ρ− andD�0K�0 Riemann sheets, respectively, with Fmeaning first and S second;
5th-8th columns: Channel probabilities in %; 9th-12th columns: Branching ratios in %.

JP Mpole Γpole RS PDþ
s π

− PD0K0 PD�þ
s ρ− PD�0K�0 BDþ

s π
− BD0K0 BD�þ

s ρ− BD�0K�0

0þ 2892þ4
−3 156þ60

−7 (S, S, S, F) 0þ4
−0 1þ9

−1 90þ10
−33 10þ20

−10 43þ4
−38 22þ2

−5 35þ35
−1 0� 0

2954þ8
−9 129þ13

−11 (S, S, S, S) 0.5þ0
−0.3 0.8þ0.3

−0.5 81þ13
−8 18þ8

−12 6.2þ1.0
−0.8 3� 0 54� 1 36� 2

1− 2889þ2
−1 248þ0

−1 (S, S, S, S) 0.65þ0.04
−0.07 1.6þ0.1

−0.2 55þ4
−3 42� 4 25þ6

−5 8þ2
−1 67þ6

−8 0� 0

2þ 2888þ2
−4 155þ3

−5 (S, S, S, F) 0� 0 0.08þ0.08
−0.06 92þ6

−8 8þ8
−6 0þ3

−0 7þ90
−3 93þ3

−93 0� 0

5In parenthesis the mass of the threshold in MeV=c2.
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or Dsρ channels. Our results are shown in Table V.
Many poles are found in the complex energy plane.
Except for one resonance state found in the JP ¼ 1þ

channel with mass 2777 MeV=c2 and width 115 MeV,
all the others are virtual states mostly located near a certain
Dð�ÞKð�Þ threshold, and with decay widths of the order of
tens to hundreds of MeV. Again, as in the Tcs case, the 1þ

sector allows the Dð�ÞKð�Þ states to be in a relative S-wave
and, thus, shows a rich spectroscopy to be worth exploring.

C. Scattering lengths and effective ranges

We have computed the scattering lengths and effective
ranges of all S-wave coupled meson-meson channels taking
into account the relation between the T-matrix and phase
shifts δn, for channel n, as

e2iδn ¼ 1 − i2πμnknTnn; ð34Þ

where kn is the on-shell momentum and μn the reduced
mass of the meson-meson channel n. The usual effective
range expansion is given by

kncotanðδnÞ ¼
1

an
þ 1

2
rnk2n; ð35Þ

in such a way that, from Eqs. (34) and (35), at kn → 0, the
scattering length has the expression

an ¼ −πμnTnnðEthÞ; ð36Þ

with Tnn evaluated at threshold (e.g., Eth ¼ mA þmB for
AB-channel, with A and B stable mesons).
If one considers unstable mesons, as it is the case for

either K� or ρ whose large widths prevent us to consider
them as stable particles, the effect of the width can be
studied by using a complex mass in the propagator of the
Lippmann-Schwinger equation, e.g., one rewrites mK� →
mK� − iΓK�=2. Therefore, the on-shell momentum is
replaced by [87–89]:

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μnðE −Mth þ iΓth=2Þ

p
; ð37Þ

where, for instance, the T-matrix is evaluated at Eth ¼
mD þmK� − iΓK�=2 in Eq. (36) for DK�-channel.
In order to estimate the effect of having unstable mesons,

we compare the value of the scattering lengths at complex
threshold, asc, with the ones evaluated at real threshold:
−πμnTnnðMrealÞ, which are clearly different from the
complex two-body threshold branch point. These values,
together with the effective ranges, can be found in
Tables VI and VII for Tcs and Tcs̄ sectors, respectively.TA
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IV. SUMMARY

The scientific community has witnessed two decades of
continuous exciting discoveries of exotic hadrons through
systematic searches in numerous experiments around the
world. These hadrons belong mostly to the heavy quark
sector and are collectively known as XYZ states. An
enormous theoretical effort has been devoted to unraveling
their nature, employing a wide variety of theoretical
approaches. However, due to the complexity of the problem,
many of our theoretical expectations in exotic heavy hadrons
are still based on phenomenological potential models.
Using data from proton-proton collisions at center-of-

mass energies of 7, 8, and 13 TeV, with an integrated
luminosity of 9 fb−1, the LHCb collaboration has very

recently performed amplitude analyses of the Bþ →
DþD−Kþ, Bþ → D−Dþ

s π
þ, and B0 → D̄0Dþ

s π
− decays.

For the Bþ → DþD−Kþ, it is necessary to include new
spin-0 and spin-1 Tcs resonances in the D−Kþ channel to
obtain good agreement with the experimental data. The
enhancements observed in Bþ → D−Dþ

s π
þ and B0 →

D̄0Dþ
s π

− decays are interpreted as two JP ¼ 0þ Tcs̄ states,
partners of the same isospin triplet.
We have analyzed the Tcs and Tcs̄ states using as a

theoretical framework a constituent-quark-model-based
coupled-channels calculation of qq0s̄ c̄ and cqs̄q̄0 tetra-
quark sectors. We have explored the nature and pole
position of the singularities in the scattering matrix with
spin-parity quantum numbers: JP ¼ 0�, 1∓, and 2�.
The constituent quark model has been widely used in

TABLE VI. Scattering lengths and effective ranges for the JP ¼ 0þ, 1þ, and 2þ qq0s̄ c̄ sectors (Tcs states).

JP Channel −πμTðMrealÞ [fm] asc [fm] reff [fm]

0þ D̄0K0 −1.1þ0.4
−1.4 þ i 0.02þ0.26

−0.02 −1.1þ0.4
−1.4 þ i 0.02þ0.26

−0.02 1.3þ0.7
−1.5 þ i 0.06þ0.16

−0.04

D−Kþ −1.1þ0.4
−1.3 þ i 0.07þ0.77

−0.05 −1.1þ0.4
−1.6 þ i 0.02þ0.34

−0.02 3.7þ1.5
−0.3 þ i 1.7þ1.8

−0.7

D�−K�þ 0.2þ0.1
−0.1 þ i 0.80þ0.02

−0.03 −2.8þ0.9
−1.2 þ i 1.4þ2.3

−0.7 0.87þ0.02
−0.13 − i 0.10þ0.08

−0.09

D̄�0K�0 0.63þ0.07
−0.27 þ i 1.1þ0.3

−0.2 −2.0þ0.4
−1.4 þ i 1.4þ1.1

−0.4 1.2þ3.1
−2.7 − i 4.8þ2.3

−0.9

1þ D�−Kþ −1.5þ0.5
−1.2 þ i 0.05þ0.12

−0.03 −1.4þ0.5
−1.1 þ i 0.00þ0.02

−0.00 1.1þ0.8
−1.5 þ i 0.05þ0.09

−0.03

D̄�0K0 −1.5þ0.5
−1.2 þ i 0.03þ0.22

−0.02 −1.4þ0.5
−1.2 þ i 0.03þ0.22

−0.02 2.32þ0.69
−0.03 þ i 1.0þ1.5

−0.6

D̄0K�0 −0.06þ0.11
−0.10 þ i 0.77þ0.03

−0.07 −1.4þ0.3
−0.4 þ i 0.06þ0.03

−0.02 1.8þ0.2
−0.2 − i 0.30þ0.07

−0.09

D−K�þ −0.09þ0.06
−0.05 þ i 0.63þ0.05

−0.05 −1.5þ0.4
−0.5 − i 0.10þ0.07

−0.20 3.7þ0.4
−0.2 þ i 0.01þ0.30

−0.14

D�−K�þ 0.51þ0.07
−0.12 þ i 0.8þ0.1

−0.1 −0.6þ1.8
−1.7 þ i 2.9þ1.0

−0.8 1.1þ0.6
−0.3 þ i 0.9þ0.3

−0.4

D̄�0K�0 0.4þ0.1
−0.2 þ i 0.85þ0.02

−0.07 −0.03þ0.08
−0.16 þ i 1.27þ0.09

−0.01 −0.4þ1.8
−1.1 − i 2.52þ1.06

−0.01

2þ D�−K�þ 0.01þ0.09
−0.09 þ i 0.68þ0.03

−0.06 −2.3þ0.7
−1.4 þ i 0.3þ0.7

−0.2 1.6þ0.5
−0.4 þ i 1.6þ0.2

−0.2

D̄�0K�0 0.12þ0.02
−0.03 þ i 0.42þ0.00

−0.00 −1.9þ1.4
−0.4 þ i 2.1þ1.5

−1.4 5.6þ0.5
−0.3 þ i 1.2þ0.4

−0.7

TABLE VII. Scattering lengths and effective ranges for the JP ¼ 0þ, 1þ and 2þ cqs̄q̄0 sectors (Tcs̄ states).

JP Channel −πμTðMrealÞ[fm] asc [fm] reff [fm]

0þ Dþ
s π

− −0.16þ0.02
−0.02 þ i 0 −0.16þ0.02

−0.02 þ i 0 4.5þ0.6
−0.5 þ i 0

D0K0 −0.6þ0.1
−0.1 þ i 0.10þ0.04

−0.03 −0.6þ0.1
−0.1 þ i 0 2.4þ0.3

−0.2 þ i 0.32þ0.00
−0.00

D�þ
s ρ− 0.25þ0.02

−0.04 þ i 0.37þ0.03
−0.03 0.6þ1.1

−1.8 þ i 2.7þ0.6
−0.4 0.96þ0.11

−0.08 þ i 0.45þ0.05
−0.05

D�0K�0 0.20þ0.00
−0.01 þ i 0.21þ0.02

−0.02 0.51þ0.01
−0.02 þ i 0.30þ0.07

−0.06 −0.02þ1.14
−1.14 þ i 4.2þ0.2

−0.3

1þ D�þ
s π− −0.16þ0.02

−0.02 þ i 0 −0.16þ0.02
−0.02 þ i 0 4.8þ0.7

−0.6 − i 0.02þ0.00
−0.00

D�0K0 −0.59þ0.09
−0.10 þ i 0.07þ0.03

−0.02 −0.6þ0.1
−0.1 þ i 0 2.6þ0.3

−0.2 þ i 0.23þ0.00
−0.00

Dþ
s ρ

−
0.16þ0.05

−0.06 þ i 0.42þ0.00
−0.01 −2.1þ0.4

−0.3 þ i 1.6þ2.4
−1.0 1.15þ0.15

−0.12 þ i 0.40þ0.01
−0.01

D0K�0 0.12þ0.01
−0.02 þ i 0.33þ0.01

−0.01 0.05þ0.05
−0.09 þ i 0.59þ0.03

−0.05 1.2þ0.2
−0.2 þ i 0.5þ0.1

−0.1

D�þ
s ρ− 0.07þ0.03

−0.03 þ i 0.33þ0.01
−0.01 −1.2þ0.2

−0.3 − i 0.3þ0.1
−0.2 1.8þ0.2

−0.1 þ i 0.08þ0.03
−0.03

D�0K�0 0.00þ0.04
−0.05 þ i 0.55þ0.02

−0.03 −0.62þ0.03
−0.02 þ i 0.55þ0.09

−0.09 0.80þ0.00
−0.03 − i 1.76þ0.06

−0.05

2þ D�þ
s ρ− 0.19þ0.04

−0.06 þ i 0.42þ0.01
−0.02 −1.67þ1.84

−0.05 þ i 2.8þ1.2
−1.5 1.03þ0.14

−0.11 þ i 0.42þ0.04
−0.04

D�0K�0 0.19þ0.01
−0.02 þ i 0.27þ0.01

−0.01 0.16þ0.02
−0.05 þ i 0.48þ0.05

−0.05 −2.4þ0.7
−0.8 − i 0.1þ1.0

−1.1
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heavy quark sectors and thus all model parameters are
thoroughly constrained.
We find 15 Tcs poles in the energy range from 2.3 to

3.2 GeV=c2 and a further 15 Tcs̄ poles in the energy
interval 2.1 to 3.0 GeV=c2. A tentative assignment of
the Tcs0ð2900Þ0 experimental signal has been made. Our
virtual state has quantum numbers JP ¼ 0þ, its mass and
width are 2901.9þ0.5

−0.8 MeV=c2 and 51þ0
−1 MeV, respectively.

We find a possible virtual-state candidate of the
Tcs1ð2900Þ0 signal in the JP ¼ 1− channel with pole
parameters 2887.7þ0.3

−0.4 MeV=c2 and 189.5þ0.4
−0.6 MeV (this

width is nevertheless 42% larger than the experimental
measurement). With respect to Tcs̄ candidates, we have
predicted a resonance with quantum numbers JP ¼ 0þ and

whose mass, 2892þ4
−3 MeV=c2, and width, 156þ60

−7 MeV,
are perfectly compatible with the experimental measure-
ments. Finally, we encourage experimentalists to search for
either more Tcs states in the D̄�K and D̄K� channels or Tcs̄
signals in the D�

sπ and Dsρ final states.
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