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This paper, which is part of a series, is devoted to several technical issues. In the first part of the paper, we
discuss the usual wave functions in the center of mass frame for baryons, by clarifying the representations of
the three-quark permutation group S3. We extend the analysis for up to five “spinors” with ρ, λ-symmetry,
and derive explicitly the totally symmetric wave functions modulo color. They are explicitly used to describe
the excited nucleons N� states, in the P- and D-shell. We also show how to use symbolic operations in
Mathematica, in spin-tensor notations to make explicit these states. For the S- and P-shells, the totally
antisymmetric wave functions are given, and the pertinent matrix elements for the spin-dependent operators
calculated, including the mixing between states with different total spin S. In the second part of the paper we
turn to the light front wave functions, with an emphasis on the longitudinal wave functions, with a novel
basis set. We also discuss their symmetries under permutations, and select the proper combinations for the
transverse and longitudinal excitations for N� on the light front.
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I. INTRODUCTION

The nonrelativistic quark model, which originated in the
1960s, was first based on spin-flavor SUð6Þ symmetry.
Using its multiplets it was possible to define the baryon
wave functions for the lowest S-shell, and calculate their
quantum numbers and important properties, e.g. magnetic
moments. With the advent of QCD and quarkonia in the
1970s, perturbative and confining forces between quarks
were added, including spin-dependent interactions, leading
to a qualitatively successful spectroscopy. One important
simplification was the use of quadratic (oscillatory) con-
finement, see, e.g., [1,2].
The extension of this theory to excited baryons, espe-

cially to the P-shell with negative parity [3], revealed a
number of issues. To simplify some of the symmetry issues
for three-light-quark states qqq, they focused on the mixed
qqs states (Σ, Λ) ones, and then discussed the light quark
limit ms → mu;d.
They have shown that the perturbative predictions from

the one-gluon exchange worked qualitatively well only for

spin-spin and tensor forces, while the spin-orbit calculated
in the same approximation was absent. A key shortcoming
at the time, was the missing D-shell states predicted but not
observed (“missing resonances problem”). Further refine-
ments, including in particular the inclusion of relativized
quarks, were made by Capstick and Isgur [4]. With time, the
issue of “missing resonances” faded away, as the states in
the second and the third shells were nearly all observed.
More recent quarks models for mesons and baryons were

defined using light front variables, with light front wave
functions (LFWFs). The advantage of the light front, is the
potential to relate the LFWFs to partonic observables, DAs,
PDFs, GPDs etc. This formulation, treats democratically
heavy and light quarks, with no need for a nonrelativitic
approximation. The LFWFs for hadrons made of light and
heavy quarks are developed in the same setting, which is
very convenient for the discussion of the multiquark
hadrons discovered in the last decade.
The first step for the description of the LFWFs, has been

made by Ji et al. [5], who have classified the components of
the spin-up proton in terms of spin/orbital helicities. In this
formulation the wave functions of the 3-quark sector are
multicomponent, e.g., the (ground shell) nucleon is ascribed
to possess six unrelated functions. For excited baryon states
the issues related with required quark permutation sym-
metry were not resolved. Also, the LFWFs for baryonic
excitations with nontrivial orbital-spin-isospin wave func-
tions, has not been addressed to our knowledge.
The aims of this technical paper are twofold. First, we

wish to clarify how to build symmetric representations of
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quark permutation symmetry S3, as it follows from quark
Fermi statistics. There is no need to take the indirect root
via strange baryons again and again, we rederive the
explicit wave functions for the ground S-shell, negative
parity P-shell and D-shell nucleons. We propose to use
standard spin-tensor forms with many components, con-
veniently manipulated symbolically in Mathematica. We
then turn to the derivation of the LFWFs, clarifying their
orbital-spin-isospin structure.
Our other aim is to use the available phenomenological

information on nucleon excitations, and translate it into
matrix elements of the central and spin-dependent inter-
quark forces. Since the 1970’s, spectroscopists still use the
one-gluon exchange forces plus linear potential due to the
electric flux tubes. But even for heavy quarkonia, we
found in [6], that its central potential can be derived from
instanton-based model of the vacuum fields, with the
benefit of also predicting spin-dependent nonperturbative
forces, at least comparable in magnitude to the perturbative
ones. In [7] we calculated the instanton-induced quark-
quark forces in various baryons, and compared them to the
empirical and lattice data.
In our next publication we will continue along this line,

focusing on interquark forces in baryons. While we start
with generic three-Wilson-lines, the outcome are binary
interactions only. We will also generalize our approach to
spin-dependent forces. All of that can also be further
generalized to the recently discovered multiquark hadrons.

II. LIGHT QUARK BARYONS IN THE c.m. FRAME

The physics of baryon resonances is a very broad field. It
is also rather old. It started in the 1950s with discoveries of
the first N� and Δ resonances. The QCD-based quark
models are also about 50 years old. The systematic analysis
of the data are in the Particle Data Tables, for recent review
see, e.g., [8]. Basically, it appears that the “missing
resonance” problem is solved, and the states belonging to
the ground, second and third shells are all observed, with
quantum numbers for nearly all of them determined.
So, the reader may think that all of the main questions in

this field are answered, and doubt that anything useful
(rather than new experimental data) can be added to it. In
fact, the situation is far from that. The structure and
especially the physical origin of the quark-quark forces
are not yet understood, especially of the spin-dependent
part. Lattice studies of the static spin-dependent potentials
are sketchy, and in so far reduced to either q̄q channel or
diquarks. These issues are now discussed again, in view of
the recent renaissance in the hadronic spectroscopy, due to
the discovery of many new multiquark hadrons.
The question whether spin-dependent splittings of bary-

ons are due to perturbative one-gluon exchange, or instan-
ton-induced ’t Hooft Lagrangian has been discussed in [9].
Another proposed mechanism, via pion exchanges between
quarks [10], appears as a higher order effect of the ’t Hooft

Lagrangian, as the pions themselves are mostly bound by it.
(We will not include those, trying to avoid a double
counting.) In this vain, it is worth mentioning also, the
solitonic construction based on the large number of colors
limit [11], which has been also extended to the exotics via
the holographic principle [12,13].
In this work wewould like to start with another reanalysis

of the situation, with a phenomenological analysis of the
data, mostly of positive parity (ground shell) and negative
parity (second shell) light baryons and discuss whether the
existing data can accommodate certain matrix elements of
all spin-depending operators, namely spin-spin, spin-orbit,
tensor as well as instanton-induced ’t Hooft operator.
In order to see the importance of various spin-dependent

forces in action, it is not sufficient to look at the lowest shell
baryons, N and Δ, as there is basically just one mass
difference between them. To reach a quantitative under-
standing of the magnitude of the spin-dependent forces, we
need to look at more states. An important step in this
direction was made by Isgur and Karl (IK) [1] who focused
on the P-shell negative parity baryons. The Jacobi coor-
dinates ρ⃗, λ⃗ are antisymmetric and symmetric under
permutation of the 1–2 quarks, which leads naturally to
the use of blocks with the same ρ, λ structure also for the
orbital, spin and isospin parts of the wave functions [14].
This observation was used extensively in the work of IK and
their followers. IK focused on hyperons with a strange
quark, for which the wave function with 12-symmetry was
sufficient. The light quark baryons were then constructed as
certain limits from the combination of hyperons, with the
strange quark mass reduced to the light ones.
Unlike Isgur-Karl, we decided not to deal with extra

parameters related with strangeness, and focus entirely on
light quark states. As it is well known, negative parity u, d
baryons belonging to the second L ¼ 1 (or P-shell) have
seven states, five N� and two Δ�. Five masses of the N� and
two matrix elements of mixing (J ¼ 3=2 and J ¼ 1=2 pairs
with different spins S) are seven inputs. We will use the
inverse logic adopted by most spectroscopists: instead of
formulating a model and then comparing its prediction with
various data, we decided to start with estimates of the
phenomenological values of the matrix elements of several
contributing operators. With the structure of the wave
functions at hand, and spin-orbit-isospin structure of the
operators known, one can write masses as linear combina-
tions of matrix elements. There is enough information to fix
those uniquely.

A. Excited nucleons, negative parity

We recall that the spin states of three quarks have 23

states: four of those belong to the S ¼ 3=2 case, and the
remaining two pairs of states have spin S ¼ 1=2 but
different symmetries under permutations. Adding orbital
momentum L ¼ 1 to the former set leads to J ¼
5=2; 3=2; 1=2 N� states. In the latter case two S ¼ 1=2
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structures need to be combined with two isospin I ¼ 1=2
structures, to get a single combination with the correct
permutation symmetry: this leads to another pair of
J ¼ 3=2; 1=2 of N�. Two pairs of N� from those two
families, with the same J, are intermixed by the tensor
forces.
We start our phenomenological discussion with Table I,

where the current experimental masses for the P-shell states
are recorded. We also compare these empirical masses with
the original predictions by Isgur and Karl [1].
There are also mixing angles of the S ¼ 3=2 and 1=2

states determined from the decays: those are listed in
the RPP reviews as being θS1=2 ¼ −32°, θS3=2 ¼ 6°. The
relation of the energies of the mixed states to the unmixed
ones is

M� ¼ 1

2

�
M1 þM2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H2

mix þ ðM1 −M2Þ2
q �

ð1Þ

and the mixing angle to the nondiagonal mixing matrix
element is

tan θ ¼ 2Hmix

M1 −M2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H2

mix þ ðM1 −M2Þ2
p : ð2Þ

We may use the values of the observed masses M�, and
the observed mixing angles to derive the “unmixed masses”
M1;2 with fixed total spin S, which we give in the last
column in the Table I. Similarly, the numerical values of
two mixing matrix elements are

HmixðJ ¼ 1=2Þ ¼ 51.7 MeV

HmixðJ ¼ 3=2Þ ¼ −18.7 MeV: ð3Þ

Below we will use five masses to get five matrix elements,
and compare the value of the tensor matrix element to these
two mixing matrix elements.

B. Permutation symmetry S3 and three
quark wave function

Our first task is to clarify the use of S3 for the
construction of baryon orbital-spin-isospin wave functions,
which can be made uniquely. After which, we will use
phenomenology to evaluate the matrix elements of all
pertinent operators.
For completeness, we start with well known basic facts.

Fermi statistics require antisymmetry over all permutations
of quarks. With antisymmetric color wave function ∼ϵijk,
the remainder of the wave function needs to be totally
symmetric

colorA × ðspace × flavor × spinÞS: ð4Þ

For orbital momenta Li ¼ 0 (S-shell) states, the traditional
classification follows the representations of the spin-flavor
SUð6Þ group of the nonrelativistic quark model

6 ⊗ ð6 ⊗ 6Þ ¼ 6 ⊗ ð21S ⊕ 15AÞ
¼ ð56S ⊕ 70MÞ ⊕ ð20A ⊕ 70MÞ: ð5Þ

The nucleon belongs to the mixed symmetry 8M octet,
which is part of the symmetric 56-plet. As we do not
include strange hyperons, flavor SUð3Þ is reduced to the
isospin SUð2Þ group. This helps to make spin and isospin
notations more similar.
The three quarks coordinate vectors are compressed into

two Jacobi coordinates

ρ⃗ ¼ 1ffiffiffi
2

p r⃗12 λ ¼ 1ffiffiffi
6

p ðr⃗13 þ r⃗23Þ ð6Þ

with r⃗ij ¼ r⃗i − r⃗j and 3D vectors assumed. As noted by

Isgur and Karl [3], simple symmetry properties of φρ;λ
LM

under the permutation group, suggest a convenient set of
basis functions, both in spin and isospin, out of which the
baryon wave functions can be constructed. Most of the
details are given in Appendix A, with only the main ideas
presented here.
To compose the states with proper symmetry under the

permutation group S3, we recall that this group is composed
of 6 elements

Pi¼1;…;6 ¼ I; ð12Þ; ð13Þ; ð23Þ; ð123Þ; ð132Þ: ð7Þ

It will be enough to enforce the symmetry under (12)
and (23) permutations. Let us add that there are three Young
tableau’s for this group, symmetric, antisymmetric and
mixed (two boxes in the top line and one below).
The Jacobi coordinates (6) transform under permutations

as follows

TABLE I. The second shell baryons made of light quarks. The
original Isgur-Karl predictions [1] are compared to the exper-
imental masses from RPP. The last column shows the masses after
“unmixing” (see text).

States JP Isgur-Karl Experiment Unmixed

N�
1=2− 1490 1535 1567.3, S ¼ 1=2

N�
1=2− 1655 1650 1617.7, S ¼ 3=2

N�
3=2− 1535 1520 1521.97, S ¼ 1=2

N�
3=2− 1745 1700 1698.0, S ¼ 3=2

N�
5=2− 1670 1675 S ¼ 3=2
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½P2 ¼ ð12Þ�
�
ρ

λ

�
¼
�−1 0

0 1

��
ρ

λ

�

½P4 ¼ ð23Þ�
�
ρ

λ

�
¼
0
@ 1

2

ffiffi
3

p
2ffiffi

3
p
2

− 1
2

1
A� ρ

λ

�
: ð8Þ

Thus ρ, λ doublet transformation under (12) is simply
antisymmetric and symmetric, but it is of mixed symmetry
under the (23) permutations. Therefore, the construction of
the states out of the ρ or λ-type blocks (as done e.g. by Isgur

and Karl [1]) allows for the easy removal of the contribu-
tions that are not (12) symmetric. However, it is not
enough: one needs to enforce full S3 symmetry. The
corresponding matrices of (23) permutation for two and
three quark is required (see the Appendix A), ultimately
fixing the wave functions uniquely.
Let us start with the (well known) proton state. In the

literature one can find it in several forms, using either
products of blocks with different symmetries, or a sets of
“monoms” (basic states):

����J ¼ 1

2
; Jz ¼

1

2
; Iz ¼

1

2
Sz ¼ Iz ¼

1

2

�
pþ
M

¼ 1ffiffiffiffiffi
18

p ½ð↑↓↑ − ↓↑↑Þðudu − duuÞ þ ð↑↑↓ − ↑↓↑Þðuud − uduÞ þ ð↑↑↓ − ↓↑↑Þðuud − duuÞ�

¼ 1ffiffiffiffiffi
18

p ½2ðu↑d↓u↑Þ þ 2ðd↓u↑u↑Þ þ 2ðu↑u↑d↓Þ − ðd↑u↓u↑Þ − ðu↓d↑u↑Þ

− ðu↑d↑u↓Þ − ðd↑u↑u↓Þ − ðu↓u↑d↑Þ − ðu↑u↓d↑Þ�: ð9Þ

Its spin and isospin components have mixed symmetry,
but taken together, they are symmetric under all permuta-
tions. (Among its classic applications are the neutron-to-
proton ratio of magnetic moments −2=3, etc.) But in order
to derive the wave functions for the baryon excitations, we
need a more systematic approach.
There are 23 ¼ 8 spin (or isospin) states of three quarks.

Four of those correspond to total spin S ¼ 3=2, and four
other to S ¼ 1=2. It is convenient to split them according to
their symmetry under (12). Examples of such doublets are
the spin − 1

2
states

Sρ1
2
1
2

¼ 1ffiffiffi
2

p ð↑↓ − ↓↑Þ↑

Sλ1
2
1
2

¼ −
1ffiffiffi
6

p ð↑↓↑þ ↓↑↑ − 2↑↑↓Þ: ð10Þ

Similar isospin-1
2
states are defined as

Fρ
1
2
1
2

¼ 1ffiffiffi
2

p ðud − duÞu

Fλ
1
2
1
2

¼ −
1ffiffiffi
6

p ðuduþ duu − 2uudÞ: ð11Þ

The S ¼ 3
2
(or I ¼ 3

2
) are fully symmetric

SS3
2
m
¼
�
↑↑↑;

1ffiffiffi
3

p ð↑↑↓þ permÞ;

1ffiffiffi
3

p ð↑↓↓þ permÞ;↓↓↓
�
: ð12Þ

To streamline the states with S3 symmetry R ¼ S, A, M
(symmetric, antisymmetric, mixed), we introduce the
spectroscopic notation

jLSJmiXP
R

with the hadronic label XP
R for X ¼ p;Δ;… with parity

P ¼ �, and L; S; J; Jz ¼ m for orbital, spin, and total
angular momentum with projection Jz ¼ m, respectively.
The simplest baryonΔ have S ¼ I ¼ 3

2
and both spin and

isospin wave functions are symmetric SS constructions (12)

����0 32 32m
�

Δþ
S

¼ CAφ00SS3
2
m
FS

3
2

ð13Þ

The proton ground state WF should have spin-isospin
S ¼ I ¼ 1

2
, so it should be constructed out of (II B). There

are four combinations. Two of them SρFλ, SλFρ are
asymmetric under (12) and should be rejected. Two others
are symmetric: any combinations of those is symmetric
under (12). To fix the wave function uniquely, we need to
calculate their transformation under (23) permutations. As
shown in the Appendix, the only combination symmetric
under both (12) and (23) is

����0 12 12m
�

pþ
M

∼ φ00

1ffiffiffi
2

p ðSρ1
2
m
Fρ

1
2

þ Sλ1
2
m
Fλ

1
2

Þ ð14Þ

where the radial wave function ðρ2 þ λ2Þ depends on 6d
“hyperdistance” ∼ðρ2 þ λ2Þ
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Let us now proceed to the more general case of excited
baryons, with the orbital part of the wave function included.
In general, there could be angular functions depending on
the angles of both vectors ρ⃗, λ⃗, but for the P-shell we are
interested in, it is either Lρ ¼ 1, Lλ ¼ 0 or Lλ ¼ 1, Lρ ¼ 0.

So, for the spatial WFs φρ;λ
LM with orbital content of mixed

symmetry under S3, we define

φρ
1m ¼ ðρ−;

ffiffiffi
2

p
ρz;−ρþÞφ00 ≡ zρmφ00

φλ
1m ¼ ðλ−;

ffiffiffi
2

p
λz;−λþÞφ00 ≡ zλmφ00 ð15Þ

with ρ� ¼ ðρ1 � iρ2Þ and λ� ¼ ðλ1 � iλ2Þ. Up to module
of the two vectors, they are the standard angular functions
Ym
1 with m ¼ −1; 0;þ1.
They combine with the possible spins to give 5 nucleons

negative parity proton excited states,

JP ¼ LP ⊕ SP ¼ 1− ⊗
�
1

2

þ
;
3

2

þ�

→ 2 ×

�
1

2

−
;
3

2

−
�
;
5

2

−
ð16Þ

i.e., two 1
2
−, two 3

2
−, and one 5

2
−. Yet to construct the wave

functions, we need to include also the isospin in a proper
way. Modulo color, the baryon wave function has three
components, orbital, spin, and isospin. (Not to be confused
with the number of quarks: those will be there for any quark
number.) As shown in Appendix A, three objects are
combined together into a unique combination (A10).

1. 3-quarks with S = 3
2 with J = 5

2 ;
3
2 ;

1
2

The totally antisymmetrized wave function for 3 quarks
with the maximally stretched spin are����1 32 52 52

�
p−
M

¼ CASS3
2
3
2

1ffiffiffi
2

p ðFρ
1
2

φρ
11 þ Fλ

1
2

φλ
11Þ ð17Þ

����1323232
�

p−
M

¼ CA

 ffiffiffi
3

5

r
SS3

2
3
2

1ffiffiffi
2

p ðFρ
1
2

φρ
10 þFλ

1
2

φλ
10Þ−

ffiffiffi
2

5

r
SS3

2
1
2

1ffiffiffi
2

p ðFρ
1
2

φρ
11 þFλ

1
2

φλ
11Þ
!

����1321212
�

p−
M

¼ CA

�
−

1ffiffiffi
2

p SS3
2
3
2

1ffiffiffi
2

p ðFρ
1
2

φρ
1−1 þFλ

1
2

φλ
1−1Þ þ

1ffiffiffi
3

p SS3
2
1
2

1ffiffiffi
2

p ðFρ
1
2

φρ
10 þFλ

1
2

φλ
10Þ−

1ffiffiffi
6

p SS3
2
−1
2

1ffiffiffi
2

p ðFρ
1
2

φρ
11 þFλ

1
2

φλ
11Þ
�

ð18Þ

with SS3
2
3
2

¼ ↑↑↑ the totally symmetric 3-quark spin 3
2
state.

In general, the addition of spin S states with orbital functions to a particular J, requires a sum of kinematically possible
states, m ¼ Jz ¼ mS þmL, using the standard Clebsch-Gordon coefficients����1 32 Jm

�
p−
M

¼
X
mS

CJm
1mL

3
2
mS

�
CASS3

2
ms

1ffiffiffi
2

p ðFρ
1
2

φρ
1mL

þ Fλ
1
2

φλ
1mL

Þ
�
: ð19Þ

Note that we use convention for the Clebsch-Gordon coefficients in terms of Wigner 3-j symbol

CJm
LmLSms

¼ ð−1ÞS−L−m ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p  
L S J

mL ms −m

!
: ð20Þ

2. 3-quarks in spin 1
2 with J = 3

2 ;
1
2

The maximally stretched J-states for fixed L, S are����1 12 32 32
�

p−
M

¼ CA
1ffiffiffi
2

p
�
Fρ

1
2

1ffiffiffi
2

p ðφρ
11S

λ
1
2
1
2

þ φλ
11S

ρ
1
2
1
2

Þ þ Fλ
1
2

1ffiffiffi
2

p ðφρ
11S

ρ
1
2
1
2

− φλ
11S

λ
1
2
1
2

Þ
�

����1 12 12 12
�

p−
M

¼ CA

 ffiffiffi
2

3

r
1ffiffiffi
2

p
�
Fρ

1
2

1ffiffiffi
2

p ðφρ
11S

λ
1
2
−1
2

þ φλ
11S

ρ
1
2
−1
2

Þ þ Fλ
1
2

1ffiffiffi
2

p ðφρ
11S

ρ
1
2
−1
2

− φλ
11S

λ
1
2
−1
2

Þ
!

−
ffiffiffi
1

3

r
1ffiffiffi
2

p
�
Fρ

1
2

1ffiffiffi
2

p ðφρ
10S

λ
1
2
−1
2

þ φλ
10S

ρ
1
2
−1
2

Þ þ Fλ
1
2

1ffiffiffi
2

p ðφρ
10S

ρ
1
2
−1
2

− φλ
10S

λ
1
2
−1
2

Þ
��

ð21Þ
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����1 12 32 32
�

Δ−
M

¼ CAFS
3
2

1ffiffiffi
2

p ðSρ1
2
1
2

φρ
11 þ Sλ1

2
1
2

φλ
11Þ: ð22Þ

The lower J-states given L, S follow by Clebsch-Gordoning,����1 12 Jm
�

p−
M

¼
X
mS

CJm
1mL

1
2
ms

�
CA

1ffiffiffi
2

p
�
Fρ

1
2

1ffiffiffi
2

p ðφρ
1mL

Sλ1
2
ms

þ φλ
1mL

Sρ1
2
ms
Þ þ Fλ

1
2

1ffiffiffi
2

p ðφρ
1mL

Sρ1
2
mS

− φλ
1mL

Sλ1
2
ms
Þ
��

ð23Þ

and for the odd parity J ¼ 1
2
; 3
2
shells in the isobar,����1 12 Jm

�
Δ−

M

¼
X
mS

CJm
1mL

1
2
ms

�
CAFS

3
2

1ffiffiffi
2

p ðSρ1
2
ms
φρ
1mL

þ Sλ1
2
ms
φλ
1mL

Þ
�
: ð24Þ

The method for deriving the orbital-spin-isospin wave
functions out of the ρ, λ blocks of mixed permutation
symmetry, is basically known. Their use using Jacobi-like
combination was carried by Isgur and Karl. However, the
explicit wave functions in the current literature, are not in a
standard form useful for applications to multiquark states.
Since while working on this paper we have developed
them, we will explain the simple rules on how it was done
in Mathematica, and present a full set of explicit wave
functions in Appendix B.

III. JP = 2+ EXCITED STATES

Representation theory of angular momentum tell us that
one can construct positive parity excited nucleon states
with JP assignments

Lπ ⊗ S ¼ 2þ ⊗
1

2
;
3

2
¼
�
3

2

þ
;
5

2

þ�
;

�
1

2

þ
;
3

2

þ
;
5

2

þ
;
7

2

þ�

However, the explicit construction of the wave functions
symmetric under quark permutations needs further atten-
tion. These wave functions were discussed, e.g., in [15].
However the full treatment is better achieved using the
representations of the S3 permutation group, to be discussed
below in Appendix A.
Since orbital part of the wave function for JP ¼ 2þ are

symmetric tensors constructed out of coordinate vectors ρi,
λi, one has three options for this

ρiρj; λiλj; ðρiλj þ λiρjÞ

The first two are symmetric under [12], the last is anti-
symmetric. Under [23] permutation their transformation is
involved under (A3). To get totally symmetric wave
functions, they need to be supplemented by spin and isospin
wave functions with appropriate symmetries.
For the total spin S ¼ 3

2
, the corresponding spin wave

functions are symmetric (e.g., ↑↑↑), and we need to apply
the S3 representation with three objects (two coordinates

and isospin) XA1XA2XA3 with binary indices A ¼ ρ, λ. We
have shown that it is a single combination (A10).
For the total spin S ¼ 1

2
, there are two options Sρ, Sλ. The

most straightforward way to construct the wave functions is
via building symmetric representation of four spinorlike
objects

XA1XA2XA3XA4

with binary indices A ¼ ρ, λ. Their total number is 24 ¼ 16,
half of them symmetric and half antisymmetric under [12]
permutations. The 16 × 16 matrix (not shown) of [23]
permutations have 8 symmetric and 8 antisymmetric eigen-
vectors. In the Appendix, we show that there are two
symmetric under all permutations, which can be rewritten as

λiλjSλIλ þ ρiλjSλIρ þ λiρjSρIλ þ ρiρjSρIρ ð25Þ

λiλjSρIρ − ρiλjSλIρ − λiρjSρIλ þ ρiρjSλIλ: ð26Þ

Their linear combinations generate tensor excited states
with spin S ¼ 1

2
. For those with fixed J, Jz one needs, as

usual, to calculate the Clebsch-Gordan coefficients.
In the Appendix we have pushed the method one step

further, to 5 ρ, λ blocks. Out of 32 states, we found 3
symmetric eigenstates.

IV. SPLITTINGS OF NEGATIVE PARITY
NUCLEONS

The details of the operators and calculation methods are
presented below and in the Appendices, but we start by
summarizing the results.
All the matrix elements contain 6-dimensional integrals

over ρ⃗, λ⃗ coordinates which are split into two sets, 4D
angular and two remaining radial

Z �
dΩρ

4π

dΩλ

4π

�
ðρ2dρλ2dλÞ… ð27Þ
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times pertinent matrix elements. The wave functions
consist of a common 6D spherically symmetric function
ϕ00ðRÞ; R2 ≡ ρ2 þ λ2, times various orbital parts. For the
P-wave baryons under consideration, the orbital parts are
linear in ρ⃗, λ⃗. The matrix elements receive multicontribu-
tions from the different parts of the symmetrized wave
functions, as detailed in the Appendix. Four angular
integrals will be performed in matrix elements to follow,
while integrals over the moduli ρ, λ remains undone, as no
assumptions about ϕ00ðRÞ is made. We introduce a short-
hand notations for such integrals

hV̂ðρ; λÞi≡
Z Z

dρdλ · ρ2λ2jϕ00j2Vðρ; λÞ: ð28Þ

For example, in such notations the normalization integral
(V̂ ¼ 1̂) “averages” the orbital wave function squared,
namely

hðρ2 þ λ2Þi ¼
Z Z

dρdλ · ρ2λ2jϕ00j2ðρ2 þ λ2Þ: ð29Þ

This combination will appear in denominators of all terms.
The masses of the N�

J excited nucleons have some
overall constant (not written below) plus contributions of
four spin operators, e.g., spin-spin, spin-orbit, tensor and ’t
Hooft terms. The resulting mixing matrices in the P-
subshells are

M0
5
2

¼ 3

4

hðρ2 þ λ2ÞVSð
ffiffiffi
2

p
ρÞi

hðρ2 þ λ2Þi þ 3
hρ2VLSð

ffiffiffi
2

p
ρÞi

hðρ2 þ λ2Þi −
1

5

hρ4VTð
ffiffiffi
2

p
ρÞi

hðρ2 þ λ2Þi ð30Þ

M0
3
2

¼
 
3=4 0

0 −3=4

!
hðρ2 þ λ2ÞVSð

ffiffiffi
2

p
ρÞi

hðρ2 þ λ2Þi þ
 

−2 −
ffiffiffiffiffiffiffiffi
5=2

p
−

ffiffiffiffiffiffiffiffi
5=2

p
1

!
hρ2VSLð

ffiffiffi
2

p
ρÞi

hðρ2 þ λ2Þi

þ
0
@ 4

5
1ffiffiffiffi
10

p

1ffiffiffiffi
10

p 0

1
A hρ4VTð

ffiffiffi
2

p
ρÞi

hðρ2 þ λ2Þi þ
 
0 0

0 ð1þ 3aÞ

!
GtHhλ2i

8
ffiffiffi
2

p
πhðρ2 þ λ2Þi ð31Þ

M0
1
2

¼
 
3=4 0

0 −3=4

!
hðρ2 þ λ2ÞVSð

ffiffiffi
2

p
ρÞi

hðρ2 þ λ2Þi −

 
5 1

1 −2

!
hρ2VSLð

ffiffiffi
2

p
ρÞi

hðρ2 þ λ2Þi

þ
 
−1 −1
−1 0

!
hρ4VTð

ffiffiffi
2

p
ρÞi

hðρ2 þ λ2Þi þ
 
0 0

0 1þ 3a

!
GtHhλ2i

8
ffiffiffi
2

p
πhðρ2 þ λ2Þi : ð32Þ

The rows and columns of the 2 × 2 matrices, correspond to states with S ¼ 3
2
; 1
2
, respectively,

MJ ¼
0
@ hS ¼ 3

2
jVSþTþSLþVTH

jS ¼ 3
2
i hS ¼ 3

2
jVSþTþSLþVTH

jS ¼ 1
2
i

hS ¼ 1
2
jVSþTþSLþVTH

jS ¼ 3
2
i hS ¼ 1

2
jVSþTþSLþVTH

jS ¼ 1
2
i

1
A

J

: ð33Þ

Some of these matrices have nondiagonal (or mixing) matrix elements, which means that the total spin S is not a good
quantum number of the observed states.
We now explain how the matrix elements are calculated. All operators used should be symmetric under quark

permutations, as are all the orbital-spin-isospin wave functions. In most cases we calculated the pair 12-interactions, and
then multiplied the result by 3 (accounting for three pairs, 12, 13, 23). In Jacobi coordinates, the 12-distance is d12 ¼

ffiffiffi
2

p
ρ,

so most potentials are fixed at that distance.
The operators are defined as follows

H12
SS ¼ VSðd12ÞðS⃗1S⃗2Þ

H12
LS ¼ VLSðd12Þ

ðS1 þ S2Þi
2

ρj
�

∂

i∂ρk

�
ϵijk

H12
T ¼ VTðd12Þ½ðS⃗1d⃗12ÞðS⃗2d12Þ − ðS⃗1S⃗2Þd212� ð34Þ

HADRONIC STRUCTURE …. IX. ORBITAL-SPIN-ISOSPIN … PHYS. REV. D 108, 094033 (2023)

094033-7



Since, the corresponding terms are proportional to
hρ2VLSð

ffiffiffi
2

p
ρÞi. the numerical factors in front each con-

tribution, stem from the convolution over all indices of
operators, wave functions and 4D angular integrals.
The exception is the instanton-induced interaction taken

in the local approximation,

H12
tHooft ¼ GtHδ

3ðd⃗12Þð1 − τ⃗1τ⃗2Þð1 − aσ⃗1σ⃗2Þ ð35Þ

where τ⃗i, σ⃗i are Pauli matrices for isospin and spin,
respectively. The ’t Hooft interaction, is quasi-local in
nature, and for the 12-quark pair is proportional to
∼GtHδ

3ðd⃗12Þ. As a result, the integral over ρ⃗ drops out,
and only the integral over λ remains, so we define for it a
lambda-only averaging

Iλ ≡
Z

dλλ4jϕ00ðλÞj2: ð36Þ

A. Extracting matrix elements from N� data

The knowledge of the coefficients of the relevant
operators for the five (unmixed) masses of negative parity
N�, allows to fix the pertinent matrix elements. This
immediately reveals one striking feature, already noted
by Isgur and Karl [2]: the role of spin-orbit is an order of
magnitude (or more) suppressed relative to the spin-spin
and tensor force. The same observation follows for the ’t
Hooft operator which we tried to include: it is not
improving the fit and its expectation value is within the
error bars. (For P-shell baryons, not so for the ground state
nucleon).
In view of this we resorted to what we call “an optimized

IK model,” which ignores LS and ’t Hooft terms and keep
only the spin-spin and the tensor forces. In this case, the
fitted matrix elements can be considered reliable.

hH0i ¼ 1607: MeV

hρ2VSSi
hρ2 þ λ2i ¼ 83.2 MeV;

hρ4V tensori
hρ2 þ λ2i ¼ 43.7 MeV ð37Þ

where H0 is the spin-independent part of the Hamiltonian,
common to all five resonances.
Our only assumptions so far are using spin-dependent

forces to the first order, and ignoring near-threshold effects.
(Isgur and Karl made additional assumptions, such as a
Gaussian S-wave function, used to evaluate them.) The
quality of the overall description of masses can be seen in
Fig. 1. One can see that the agreement of this model with
the data is very good. In all cases, it is significantly better
than the half-widths of these resonances (which provides a
scale for the ignored threshold effects).

As “external tests” of the accuracy of such a model, we
use the empirical mixing matrix elements (3). The observed
ratio for the magnitude of the mixing matrix elements in the
tensor case is

HmixðJ ¼ 1=2Þ
HmixðJ ¼ 3=2Þ ≈ −2.76: ð38Þ

If only the tensor operator is left, the ratio of its coefficients
−
ffiffiffiffiffi
10

p ¼ −3.16 is sufficiently close to it. The value from
the fitted tensor matrix element to the splittings in Fig. 1,
we have the value (37) or 43.7 MeV. This is to be compared
to 51.6 MeV from the mixing matrix element in the J ¼ 1

2
-

shell pair as discussed above. Hence, some other effects,
not yet accounted for here, contribute at the level of
∼8 MeV. A similar conclusion can also be inferred from
the deviations between the observed and fitted masses seen
in Fig. 1. These deviations should be due to higher order
corrections not yet accounted for. They are reasonably
small compared to the splitting themselves ∼100 MeV as
well as to Γ=2–50 MeV used as the maximal possible shifts
due to threshold locations.

0 1 2 3 4 5 6
1450

1500

1550

1600

1650

1700

1750

FIG. 1. The black dots are masses of negative parity P-shell
baryons, from the “optimized IK model” with fitted radial matrix
elements (37), in the order jJ ¼ 5

2
i; jJ ¼ 3

2
; S ¼ 3

2
i; jJ ¼ 1

2
;

S ¼ 3
2
i; jJ ¼ 3

2
; S ¼ 1

2
i; jJ ¼ 1

2
; S ¼ 1

2
i. The small blue circles

show the experimental pole positions. They are surrounded by
large dashed blue circles, with radius of the order of typical half
width 1

2
Γ.
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V. SPIN-DEPENDENT INTERACTIONS
IN BARYONS

Having summarized so to say the “applied aspects” of
the calculations, let us return to the theory. Before discus-
sing the spin-dependent effects, few words about the spin-
independent potentials. Those are expressed in terms of
Wilson-line correlators, or complicated nonlocal correla-
tions of (Euclidean) vacuum gauge fields. They can be
computed numerically on the lattice, or evaluated in some
models of gauge fields in the vacuum. An instanton-based
model we used for quarkonia in [6], and claimed that it can
explain most of the confining potential, at least till the
relevant distances < 1 fm. For baryons, there are correla-
tors of three Wilson lines, see their calculation in the
instanton model [7] and detailed comparison with lattice
results. In a recent paper [16] we extended such calcu-
lations for the three Wilson lines (for baryons) and four
ones (for tetraquarks). In the latters, the hyperditance
potential was shown to describe the distances between
the three ccc̄ c̄ states recently discovered, and interpreted as
1S, 2S, 3S states. Application to uuu ¼ Deltaþþ S-shell
states were also successful. No attempt so far were made
along these lines to describe baryons or multiquark states
made of different flavor quarks. In such cases we need to go
beyond the hyperdistance approximation.
The generic spin-dependent five potentials were defined

in [17], in terms of Wilson-lines dressed by pertinent gauge
field strengths. Specific relations between them and the
central potential, follow for one-gluon exchange. For
example, the spin-spin potential is famously a Laplacian
of the central potential, a delta function for the Coulomb
force. Similar but distinct relations follow for the instanton-
induced potentials, mostly constrained by self-duality of
the instanton fields. However, if a significant fraction of the
vacuum fields are due to the overlapping instantons and
antiinstantons, there could be significant corrections. The
spin-dependent interactions in the baryons and tetraquarks
due to instantons can be evaluated, and we hope to report
on them in our subsequent publications.
In this section we only include some general comments

related to the definition of the operators. The specifics of
the calculation for fixed states, are summarized in the
Appendix.

A. Spin-spin and tensor interactions

We use the same strategy in the evaluation of all the spin
interactions. More specifically, the 12-interactions are
folded over the pertinent wave functions, and the overall
results are multiplied by 3 by symmetry. The results for
spin-spin forces agree with the much simpler “quantum-
mechanical” method.
For the “unmixed” states with fixed total spin of three

quarks, S ¼ 3
2
or S ¼ 1

2
, we have S⃗ ¼ S⃗1 þ S⃗2 þ S⃗3, so that

hS⃗1S⃗2 þ S⃗1S⃗3 þ S⃗3S⃗2i ¼
1

2
ðSðSþ 1Þ − 9=4Þ ð39Þ

hence� 3
4
for the cases of interest. The left-hand side (lhs) is

symmetric under quark permutations, and is the only form
for the spin-spin forces. Of course, each term is convoluted
with potentials, that depend on the relative distance, e.g.,

ðS⃗1 · S⃗2ÞVSSðd12Þ; d⃗12 ¼
ffiffiffi
2

p
ρ⃗

the average of which multiplied by 3.
The tensor operator we used is given in (34) in a standard

way, and also evaluated it using the 12-pair. Note that in the
tensor, we are using the actual distance vector d⃗12 rather
than its unit vector version. Hence the extra 2ρ2 in the
matrix element (to be accounted for in the potential VT).

B. Spin-orbit operator

Two-body systems (mesons) have one orbital momentum
L and one total spin S, so the natural spin-orbit force is
proportional to ðS⃗ L⃗Þ. For three quarks there are L⃗ρ and L⃗λ

orbital and three different quark spin structures. In general, it
is still not all, since there can be products of one coordinate
vector times momentum of another one. The requirement of
permutation symmetry helps. Suppose the spin-dependent
potentials are binary (two-body). With this in mind, the spin-
orbit contribution is a sum of binaries

VSLð1; 2; 3Þ ¼
X3

i<j¼1;2;3

VSLðdijÞ½ðrij × piÞ

· σi − ðrij × pjÞ · σiÞ�
≡ VSLð1; 2Þ þ VSLð1; 3Þ þ VSLð2; 3Þ: ð40Þ

Recall that the spin-orbit relation to the central potential
is suppressed VSL ∼ 1

m2
Q
. This is the case of all relativistic

corrections.
For the instanton-induced spin-orbit potential we have

VSL ¼ 1

m2
Q

1

rij

dVCðrijÞ
drij

in terms of the instanton-induced central potential. To
recast it in terms of the Jacobi coordinates, we recall that

r12 ¼
ffiffiffi
2

p
ρ r13;23 ¼

1ffiffiffi
2

p ðρ2 þ 3λ2 �
ffiffiffi
3

p
ρ · λÞ12 ð41Þ

and the corresponding momenta
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0
B@

p1

p2

p3

1
CA ¼

0
BB@

1ffiffi
2

p 1ffiffi
6

p 0

− 1ffiffi
2

p 1ffiffi
6

p 0

0 − 2ffiffi
6

p 0

1
CCA ¼

0
B@

pρ

pλ

0

1
CA: ð42Þ

In particular, for the 12-spin-orbit contribution we have

HSLð1; 2Þ ¼ VSLðd12Þ
��

σ1 þ σ2
2

�
· ðρ × pρÞ

þ 1ffiffiffi
3

p ðσ1 − σ2Þ · ðρ × pλÞ
�

ð43Þ

Here the first contribution is the standard spin-orbit con-
tribution, proportional to Lρ, rotation of a 12-pair. The
second term is also symmetric under 12-permutation, but
has a vector product of the coordinate ρ and momentum pλ,
so it is neither two-body nor even an angular momentum.
Fortunately, we found that all the second term contributions
vanish after angular integration, basically because ρ⃗ and λ⃗
have independent directions. Therefore we do not need to
include this complicated part of the operator.

C. ’t Hooft induced interactions

The instanton-induced forces follow from the fermionic
zero modes discovered by ’t Hooft. Those are antisym-
metric in flavors, and form generically 6-fermion operators
of the ūud̄ds̄s flavor structure. If we ignore strangeness
(technically, by substituting s̄s part by its vacuum average
value), the interaction reduces to a 4-fermion ud-
interaction. It can be shown to be of the form

VTHð1; 2; 3Þ ¼
X

i<j¼1;2;3

VTHðrijÞð1 − τi · τjÞð1 − aσi · σjÞ

ð44Þ

in the ultralocal approximation, with

VTHðrijÞ → −
1

4
jκ2jA2N ¼ −

1

4
jκ2j

2Nc − 1

2NcðN2
c − 1Þ

and

a ¼ 4B2N ¼ 1

ð2Nc − 1Þ : ð45Þ

The coefficient a comes from terms with color matrices,
and assuming that we discuss baryons and carry the average
over all instanton color orientations, we get a ¼ 1

5
for

Nc ¼ 3 and a → 0 for Nc → ∞.
The first factor in (44) with isospin matrices τ⃗, is a

projector on the flavor singlet states (zero in Δ). So it
contributes to the N − Δ splitting in the S-shell. There is
also no problem to evaluate this operator over the five N�
states in the P-shell. In the quasi-local approximation
V tHooft ∼ δ3ðd12Þ, of the ∼ρ2; λ2 contributions arising from
the orbital wave functions, only the λ2 remains.

VI. BARYON WAVE FUNCTIONS
ON THE LIGHT FRONT

There are many differences between the center of mass
(c.m.) and the LF wave functions induced simply by
kinematics. For example, the former uses nonrelativistic
(or semirelativistic [4]) descriptions, not well justified for
light quarks. The latter (in the form developed in our
previous papers [6,7,18–21]) does not need this
assumption, it takes the same form, from light u, d, s to
heavy c, b quarks. Furthermore, it naturally provides an
oscillatorlike behavior for transverse momenta, which
translate into a linear dependence of the baryon mass
squared, on the number of excitation quanta.
However, on the LF manifest rotational symmetry is lost,

as transverse and longitudinal motions are treated differ-
ently. The states are no longer classified by their total
angular momentum J, orbital L or total spin S. Only the
helicity projection of those, Jz, Lz and Sz, can be used. As
we will see in this case, the importance of permutation
symmetry (as it was illustrated in previous sections and
Appendix A) is even broader.
A simple Fock state representation of the spin-up proton

wave functions on the LF was originally given in [22]

jp↑iLz¼0 ¼
Z

d½1; 2; 3�ðψ1ð1; 2; 3Þ þ iϵαβk1α⊥k2β⊥ψ2ð1; 2; 3ÞÞ
ϵABCffiffiffi

6
p bA†u↑ð1Þ

	
bB†u↓ð2ÞbC†d↑ð3Þ − bB†d↓ð2ÞbC†u↑ð3Þ



j0i

jp↑iLz¼þ1 ¼
Z

d½1; 2; 3�ðkþ1⊥ψ3ð1; 2; 3Þ þ kþ2⊥ψ4ð1; 2; 3ÞÞ
ϵABCffiffiffi

6
p

	
bA†u↑ð1ÞbB†u↓ð2ÞbC†d↓ð3Þ − bA

†

d↑ð1ÞbB†u↓ð2ÞbC†u↓ð3Þ


j0i

jp↑iLz¼−1 ¼
Z

d½1; 2; 3�k−2⊥ψ5ð1; 2; 3Þ
ϵABCffiffiffi

6
p bA†u↑ð1Þ

	
bB†u↑ð2ÞbC†d↑ð3Þ − bB†d↑ð2ÞbC†u↑ð3Þ



j0i

jp↑iLz¼þ2 ¼
Z

d½1; 2; 3�kþ1⊥kþ3⊥ψ6ð1; 2; 3Þ
ϵABCffiffiffi

6
p bA†u↓ð1Þ

	
bB†d↓ð2ÞbC†u↓ð3Þ − bB†u↓ð2ÞbC†d↓ð3Þ



j0i ð46Þ

where generically bC†fs ð1Þ ¼ bC†fs ðxi; ki⊥Þ, k�⊥ ¼ kx � ky, and
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d½1;2;3� ¼ ð2πÞ3δ3
 X3

i¼1

ki⊥

!
δ

 
1−
X3
i¼1

xi

!Y3
i¼1

dxidki⊥ffiffiffiffiffiffiffi
2xi

p ð2πÞ3

ð47Þ

The fermionic creation operators anticommute, and
once multiplied by the color indices ϵABC, they generate
12 terms.
The first term ψ1 in the upper raw (times the second raw)

above reproduces the correct permutation-symmetric
S-wave function of the proton, in the form we already used
in the upper raw of (9). The expressions for the proton with
Lz ¼ �1 are linear in (transverse) momentum, and obvi-
ously ψ1 refer to a spin-up proton with negative parity. The 3
ψ3;4;5 LF wave functions refer to part of the nucleon P-shell,
we discussed above. They do not cover all the 5 P-nucleon
states we derived, as they have different wave functions,
with different permutation content. Also, their longitudinal
momentum content under permutation symmetry is not
specified. Finally, the second term in the first raw and the
last one are quadratic in momenta. So, the 2 ψ2;6 wave
functions correspond to D-shell excitation or their admix-
tures, with positive parity. Their permutation structure is
incomplete. This issue has been addressed in the c.m. above
in Sec. III, and will be extended below to the LF.
To clarify the argument, let us first recall again the

situation in the c.m. frame, returning to our main example of
the P-shell nucleons. Physical states in the c.m. formulation
have spherical symmetry, and therefore fixed total angular
momentum J. They are specific combinations of all possible
values of the orbital and spin helicities Lz, Sz. For example,

jN�Jz ¼ 1=2; P ¼ −1i
¼ þf1jLz ¼ 1; Sz ¼ −1=2i
þ f0jLz ¼ 0; Sz ¼ 1=2i
þ f−1jLz ¼ −1; Sz ¼ 3=2i

are superpositions of states with all three Lz values, with
some coefficients fLz

. For states with fixed J those are
defined by standard Clebsch-Gordon rules, which for this
particular example prescribe the coefficients f1, f0, f−1
to be

ffiffiffi
6

p �
Y11ðθ;ϕÞ
2
ffiffiffiffiffi
15

p ;
Y10ðθ;ϕÞffiffiffiffiffi

10
p ;

Y1−1ðθ;ϕÞ
2
ffiffiffi
5

p
�
;

2

�
Y11ðθ;ϕÞffiffiffiffiffi

10
p ;

Y10ðθ;ϕÞ
2
ffiffiffiffiffi
15

p ;−
2Y1−1ðθ;ϕÞffiffiffiffiffi

15
p

�
;

ffiffiffi
2

p �
Y11ðθ;ϕÞ

2
;−

Y10ðθ;ϕÞffiffiffi
6

p ;
Y1−1ðθ;ϕÞ

2
ffiffiffi
3

p
�

ð48Þ

for J ¼ 5=2; 3=2; 1=2, respectively, and Jz ¼ 1=2. Note that
these three vectors are indeed mutually orthogonal and
normalized. Under the zeroth order Hamiltonian, they all

have the same energy, and only the spin-dependent forces
create the observed splittings.These states are defined in the
c.m. frame as eigenstates of the total angular momentum J⃗,
but this option is not available in the LF formulation.
Furthermore, as emphasized above, Clebsching is not

enough for baryons. Their wave functions are linear in
coordinates, which bring in their negative parity. There are
6 ρ⃗, λ⃗, and one expects 6 basic orbital wave functions. The
same number of basis states needs to be defined in the
LF formulation. The transverse polarization component
Lz ¼ 0, proportional to the longitudinal coordinates/
momenta ρz, λz in the c.m. frame, needs to be redefined.
As we will show below, they should be substituted by
solutions on the triangle, of ρ and λ-type respectively

Y10ðθρÞ → Dρ; Y10ðθλÞ → Dλ: ð49Þ

Also, the spin Sz ¼ � 1
2
structure in fact exists in three

forms, the fully symmetric one corresponding to S ¼ 3
2
, and

two more mixed with ρ-like and λ-like permutation proper-
ties. The same statement applies to isospin wave function.
Constructing the correct combinations is not a trivial task,
and it was the subject of the preceding sections.

A. Light front wave functions for negative
parity baryons

Now we switch to the main subject of this work, the
construction of the corresponding wave functions on the
light front (LF), with a focus on the P-shell baryons. Four
out of the six coordinates corresponding to the transverse
12-plane, remains unchanged. Since we proceed on LF in
momentum representation, the angular functions with Lz ¼
�1 are proportional to either kρ1 � ikρ2 or kλ1 � ikλ2. The
requirements of 12-permutation symmetry helps to elimi-
nate many impossible combinations, and to reduce the
number of functions necessary. In particular, the spin-
isospin-transverse functions should be superpositions of
permutation-symmetric blocks, such as

ðe�iϕρIρ þ e�iϕλIλÞSsym

for p-shell nucleons with spin 3
2
and

ðe�iϕρSρ þ e�iϕλSλÞIsym

for Δ baryons. Other combinations are formed as in the
c.m. frame.
The question remains what are the other two other basis

states, with longitudinal momenta. Using Bjorken-Feynman
longitudinal momenta fractions xi ∈ ½0; 1�, i ¼ 1, 2, 3
as variables and enforcing the kinematical constraint
x1 þ x2 þ x3 ¼ 1, we will again use Jacobi variables to
characterize them. We will refer to them by ρ, λ without any
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indices. (They should not be confused with the lengths of
the coordinate vectors ρ⃗, λ⃗ used in previous sections.)
As discussed in our paper [7], the physical domain in this

case is the equilateral triangle, between three points at
which one of the xi reaches unity and two others vanish,

ðρ;λÞ∈Triangle

��
0;−

ffiffiffi
2

3

r �
;

�
1ffiffiffi
2

p ;
1ffiffiffi
6

p
�
;

�
−

1ffiffiffi
2

p ;
1ffiffiffi
6

p
��

:

The role of the permutation group S3 is now clearly seen,.
In these notations, it is a set of reflections and rotations of
this triangle.
Quantization on this equilateral triangle has been done

in [7], which was achieved both analytically and numeri-
cally. We recall that the confining potential, after an
“einbine trick,” can be made quadratic in coordinates. In
the momentum representation we use the sum of the
squared coordinates, to turn it Laplacian in momenta ρ,
λ. The analytic solutions follow in the form of six waves,
interfering at the triangle boundaries enforcing Dirichlet
(zero) boundary condition, see (54) of [7]. The spectrum of
the Laplacian is given by two integers mL, nL (L refers to
the longitudinal directions).

ϵmL;nL ¼ 8π2

32
ðm2

L þ n2L −mLnLÞ: ð50Þ

The single-degenerate solutions correspond to mL ¼ 2nL,
with the two lowest already shown and discussed in [7].
Now we focus on the solutions with mL > 2nL, which

are in fact double degenerate

Dλ
m;nðλ;ρÞ ¼

4

L3
3
4

�
cos

�
2πð2mL − nLÞρ

3L

�
sin

�
2πnLλ̃ffiffiffi

3
p

L

�

− cos

�
2πð2nL −mLÞρ

3L

�
sin

�
2πmLλ̃ffiffiffi

3
p

L

�

þ cos

�
2πðmL þ nLÞρ

3L

�
sin

�
2πðmL − nLÞλ̃ffiffiffi

3
p

L

��

Dρ
m;nðλ;ρÞ ¼ 4

L3
3
4

�
sin

�
2πð2mL − nLÞρ

3L

�
sin

�
2πnLλ̃ffiffiffi

3
p

L

�

− sin

�
2πð2nL −mLÞρ

3L

�
sin

�
2πmLλ̃ffiffiffi

3
p

L

�

− sin

�
2πðmL þ nLÞρ

3L

�
sin

�
2πðmL − nLÞλ̃ffiffiffi

3
p

L

��

with λ̃ ¼ λþ L=
ffiffiffi
3

p
. Their symmetry properties include

(1–2) (or ρ → −ρ symmetry)

Dρ;λ
m;nðλ;−ρÞ ¼ �Dρ;λ

m;nðλ; ρÞ:

(Yes, the triangle has obvious triple symmetry by 120°
rotations, but those produce linear combinations of these

two solutions.) Those were called Dc, Ds before, because
the former includes combinations only with cosðCiρÞ, and
the latter similar set of sinðCiρÞ. In the present paper, where
permutation symmetry is central, we would like to rename
them into Dλ, Dρ, respectively. Indeed, the former is even
under 12-permutation, and the latter is odd for ρ → −ρ, see
Fig. 2. These are the solutions of ρ and λ types, which on
the LF are substitutes for zero orbital momentum compo-
nents in the c.m., Lλ

z ¼ 0 and Lρ
z ¼ 0, essentially simple

linear coordinates λz, ρz.
Since these are new solutions, let us discuss how the spin

operators act on them. The spin-orbit interactions include
orbital momenta such as

Li
ρ ¼ ϵijkρjði∂=∂ρkÞ:

In the coordinate representation the momentum is a
derivative, and in the momentum representation (we are
using on the LF) the coordinates are derivatives over

FIG. 2. TheDρ,Dλ solutions of the Laplacian on the equilateral
triangle, for mL ¼ 3, nL ¼ 1.
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momenta. Acting by L on the longitudinal function of
longitudinal momentum ρ ∼ pρ

z , the vector product can
only get other—transverse—components pρ

x;y due to the
first factor. Since those appear linearly, it means the L
operation converts longitudinal functions into transverse
ones. As a result, on the LF the angular momentum
operator mixes two transverse functions with one longi-
tudinal, as it does in the c.m. description for the three
angular functions in the P-shell.
Another thing to notice is that the derivative in L

interchanges cos and sin. With the appearance of ρ- type
transverse coordinates, we see that this operator does not
change parity under 12-permutation. Yet, the differentiation
changes the function, so it is not just Dρ ↔ Dλ as there are
additional admixtures of higher functions, with other
mL, nL.
Similar thing happens with the tensor force. In the c.m.

formulation, the interaction generates nonzero nondiagonal
matrix elements for L ¼ 0 ↔ L ¼ 2, L ¼ 1 ↔ L ¼ 3

shells etc. The spin part in the tensor causes mixing of
the S ¼ 3

2
and S ¼ 1

2
states, as we discussed above. Yet,

since the coordinate tensor times the spin tensor is rota-
tionally a scalar, J remains unchanged. In the LF formu-
lation, there is no rotational symmetry or J, and the tensor
force mixes all Dρ, Dλ functions.
Let us now address the issue of parity. The standard P

mirror reflection, sign change of all coordinates, makes
odd-L states with negative parity, which cannot be mixed
with positive parity states. On the LF the notion of parity is
remedied by an additional rotation by 180°, so that
longitudinal momenta do not flip. In particular, our equi-
lateral triangle in the ρ, λ plane maps into itself. So,
formally, the Dρ, Dλ functions do not have parity as such.
Yet these LF functions have certain parities under

particle permutations. As one can see from Fig. 2, Dρ is
odd under flipping of ρ and Dλ under flipping of λ̃ ¼
λþ ffiffiffiffiffiffiffiffi

2=3
p

(since they contain the corresponding sin
functions). Those are sufficient to define odd and even
shells, which cannot be mixed by any forces/operators
preserving the permutation symmetry.
In sum, the six wave functions out of which the P-shell

baryons are made on the LF, consist of four transverse ones,
with expð�iϕρÞ; expð�iϕλÞ, complemented by two new
Dρ, Dλ functions on the triangular domain for longitudinal
momenta fraction. The P-shell baryons can be constructed
out of these mixed-symmetry blocks by the same expres-
sions as used above.
More explicitly, the S ¼ 3

2
with fixed Jz the spin WF is

symmetric, and the orbital and isospin ones are mixed
symmetries of ρ, λ types. We know that the full S3
symmetric combination out of the two mixed blocks, has
the structure Xρ

1X
ρ
2 þ Xλ

1X
λ
2. Therefore the permutations-

symmetric wave functions are

jN�↑
S¼3

2
;Jz
i ¼
Z

d½1;2;3�CA

X
m

SS3
2
ðJz−mÞ

×
		

A
3
2
Jz
m eimϕρ þB

3
2
Jz
m Dρ

3;1



Fρ

1
2

þ
	
ρ→ λ




ð51Þ

and similarly for the S ¼ 1
2
and fixed Jz we have

jN�↑
S¼1

2
;Jz
i¼
Z

d½1;2;3�CA

X
m

×
	
Fρ

1
2

		
A

1
2
Jz
m eimϕρþB

1
2
Jz
m Dρ

3;1



Sλ1

2
ðJz−mÞþ

	
λ↔ρ




þFλ

1
2

		
A

1
2
Jz
m eimϕρþB

1
2
Jz
m Dρ

3;1



Sρ1

2
ðJz−mÞ−

	
ρ→λ




:

ð52Þ

We note that the two L ¼ �1 lines in (46) should be
substituted by the 5 states (51) and (52) for the P-shell N�.
The same applies to the 2 Δ�. The coefficients Am, Bm are
not fixed kinematically in the absence of rotational sym-
metry. They are determined dynamically through the diag-
onalization of the LF Hamiltonian. Clearly, a fine tuning of
the parameters is likely needed to achieve the same mass
spectrum for different Jz. This is in sharp contrast with the
c.m. where rotational symmetry fixes these coefficients as
Clebsch-Gordon coefficients as in (48).
Finally, note that since the transverse part of the LF

Hamiltonian is an oscillator, we have M2
n ∼ n⊥. The

longitudinal eigenvalues (50) are quadratic in quantum
numbers, yet after minimization over the einbine parameter,
they enter via ðm2

L þ n2L −mLnLÞ12. They are not linear, but
relatively close to linear. More specifically, the first three
double-degenerate excitations, counted from from the
ground state (n ¼ 2m ¼ 2), have energies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

L þ n2L −mLnLÞ
q

−
ffiffiffi
3

p
¼ 0.913; 1.87; 2.85 ð53Þ

to be compared to 1, 2, 3 for an oscillator. So, with a
pertinent fit to the parameters, one should be able to get
agreement between the masses for different Jz compo-
nents in the same J-multiplet, with few percent accuracy.
Similar accuracy is expected for Regge phenomenology.
Furthermore, if one would only compare states with the
same Jz and different J [as we did for negative parity
baryons in (48)] such deviations are further reduced, as
they only appear in the longitudinal component, a part of
the wave function. So far, our discussion refers to the bare
Hamiltonian H0. The spin-dependent potentials cause
larger shifts, ∼10% for the P-shell baryons, and we expect
that this imperfection in the longitudinal part of the
spectrum on the LF, will not seriously affect the
spectroscopy.
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B. Wave functions on LF for positive parity excitations

In the c.m. frame the D-shell baryons have wave
functions quadratic in coordinates, as we already discussed
above. Each of the coordinates have 2 transverse and one
longitudinal components, of ρ or λ types. So, in general,
one may approach the problem asking for representations
with four structures X1 ⊗ X2 ⊗ X3 ⊗ X4, of ρ or λ types,
and seek their totally symmetric combinations. It can be
done along the same reasoning as for the X1 ⊗ X2 ⊗ X3

case we addressed in Appendix A. This case would
correspond to the case of the S ¼ 3

2
symmetric in spin.

VII. LEADING TWIST PROTON DAS

The simple classification of the lowest Fock states for a
spin-up proton state made of three constituent quarks,
consists of the 6 LF wave functions in (46). As we noted
earlier, this Fock state representation mixes the ground and
excited states of the nucleon with fixed spin 1

2
. Boosting the

nucleon in its ground S-state, should leave the nucleon in its
ground S-state. Also the simple Fock state representation
forgoes the issue of the center of mass and symmetrization,
which are important for the description of the nucleon S, P,
D states as we have discussed.
This notwithstanding, the Fock state representation is

useful for the characterization of generic spin-1
2
nucleon

distribution amplitudes (DAs), in the leading twist approxi-
mation. More specifically, three quarks with spin-1

2
can

combine in four different ways to form a proton with spin
up p↑, i.e.,

p↑ ¼ p↑
0 þ p↑

þ1 þ p↑
−1 þ p↑

þ2 ð54Þ

with the spin-orbital arrangements

p↑
0 ¼

�
↑↓↑ ¼ þ 1

2

�
þ ðLz ¼ 0Þ

p↑
þ1 ¼

�
↓↓↑ ¼ −

1

2

�
þ ðLz ¼ þ1Þ

p↑
−1 ¼

�
↑↑↑ ¼ þ 3

2

�
þ ðLz ¼ −1Þ

p↑
þ2 ¼

�
↓↓↓ ¼ −

3

2

�
þ ðLz ¼ þ2Þ: ð55Þ

On the LF, the leading twist operators for the proton uud
with positive parity, are typically of the form

ðu↑Cγþu↑Þd↓ ðu↑Ciσþiu↑Þd↓
with twist τ ¼ 7

2
− 3

2
¼ 2, and C ¼ iγ2γ0 the charge con-

jugation matrix. Note that the two independent Ioffe0s
currents

ðu↑Cγμu↑Þγ5γμd↓ ðu↑Ciσμνu↑Þγ5σμνd↓
are twist τ ¼ 9

2
− 3

2
¼ 3 on the LF, hence subleading. In

terms of the good component quark fields qCþS, the leading
twist nucleon DAs for a spin-up proton are tied to the Fock
states (46) and read [23]

Lz ¼ 0∶

ϵABCffiffiffi
6

p 1

pþ h0jðuAþ↑ðz1ÞCγþuBþ↓ðz2ÞÞdCþ↑ðz3Þjp↑i ¼ ψ1ðz1; z2; z3ÞN↑
þðpÞ

ϵABCffiffiffi
6

p 1

pþ h0jðuAþ↑ðz1ÞCiσþiuBþ↑ðz2ÞÞdCþ↓ðz3Þjp↑i ¼ ðψ2ðz1; z3; z2Þ þ ψ2ðz2; z3; z1ÞÞγiN↑
þðpÞ ð56Þ

Lz ¼ þ1∶

ϵABCffiffiffi
6

p 1

pþ h0jðuAþ↑ðz1ÞCγþuBþ↓ðz2ÞÞdCþ↓ðz3Þjp↑i ¼ ð−i=∇1⊥ψ3ðz1; z2; z3Þ − i=∇2⊥ψ4ðz1; z2; z3ÞÞN↑
þðpÞ

ϵABCffiffiffi
6

p 1

pþ h0jðuAþ↓ðz1ÞCiσþiuBþ↓ðz2ÞÞdCþ↑ðz3Þjp↑i ¼ ði∇i
þ1ðψ4ðz3; z1; z2Þ − ψ3ðz3; z1; z2Þ − ψ3ðz3; z2; z1ÞÞ

þ ði∇i
þ2ðψ4ðz3; z2; z1Þ − ψ3ðz3; z2; z1Þ − ψ3ðz3; z1; z2ÞÞÞÞγiN↑

þðpÞ ð57Þ

Lz ¼ −1∶

ϵABCffiffiffi
6

p 1

pþ h0jðuAþ↑ðz1ÞiCσþiuBþ↑ðz2ÞÞdCþ↑ðz3Þjp↑i ¼ ði∇i
−1ðψ5ðz1; z3; z2Þ − ψ5ðz1; z2; z3ÞÞ

þ i∇i
−2ðψ5ðz2; z3; z1Þ − ψ5ðz2; z1; z3ÞÞÞN↑

þðpÞ ð58Þ
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Lz ¼ þ2∶

ϵABCffiffiffi
6

p 1

pþ h0jðuAþ↓ðz1ÞCiσþiuBþ↓ðz2ÞÞdCþ↓ðz3Þjp↑i ¼ ði∇fi
þ1i∇jg

⊥2ðψ6ðz1; z3; z2Þ þ ψ6ðz2; z1; z3ÞÞ

− ψ6ðz1; z3; z2ÞÞ − ψ6ðz2; z3; z1ÞÞ þ i∇fi
þ1i∇jg

⊥1ðψ6ðz1; z3; z2Þ þ i∇fi
þ2i∇jg

⊥2ðψ6ðz2; z1; z3ÞÞN↑
þðpÞ: ð59Þ

Here N↑
þðpÞ is the good nucleon on-shell component

with p2 ¼ m2
N , and the shorthand notation for the traceless

symmetrization

∇fi∇jg ¼ ∇i∇j þ∇j∇i − δij∇k∇k: ð60Þ

VIII. SUMMARY AND OUTLOOK

This paper is in many respects a methodical paper,
devoted to novel technical tools of few-body quantum
mechanics. We now provide a brief summary, and put forth
few outlooks.
Summary: We started this paper by clarifying the use of

the permutation group S3, in particular its pertinent
representations, essential for defining the symmetry proper-
ties of the wave functions for three quarks. As it is well
known since the early 1960s, the baryon spin and flavor
(isospin) parts of the wave function for the S-shell, do not
factorize, as only their permutation symmetric and non-
factorizable combination is allowed.
For the P-shell states (negative parity baryons) we have

in addition the orbital L ¼ 1 part of the wave functions to
symmetrize. This is best achieved using the analogs of the
ρ-type or λ-type Jacobi coordinates. In this case we need to
construct triple tensor products of permutation matrices,
and find their totally symmetric states. How to do that,
without guessing and a loss of generality, is shown in
Appendix A. A nontrivial result (not new but explicitly
derived) is that there is a unique permutation symmetric
wave function. In the next D-shell, the coordinates appear
as products of two, so one has to find the totally symmetric
wave function of four objects, and so on. All of those are
found by the proposed method.
Our other methodical suggestion is to use the natural

spin-tensor notations for the wave functions, and apply
symbolic manipulation capabilities of programs like Maple or
Mathematica. The use of symbolic “monoms” is traditional,
yet it is better done in generic basis. Specifically, all possible
spin-isospin monoms of three quarks are 43 ¼ 64. While
for the nucleon only 9 monoms are needed, for the
P-shell and D-shell baryons, the wave functions are much
more involved. The universal spin-tensor notations allows
for any type of symbolic operation when coded, e.g., spin-
orbit with differentiation etc. In Mathematica, whether an
operator is acting on the wave function with 1 or 64
components, makes no practical difference.
As a demonstration of this technique, we repeated thewell

known Isgur-Karl calculations of the splitting of the five

negative parity N� resonances. Unlike them, we explicitly
construct the wave functions with proper permutation
symmetry, and not as certain limits of less complicated Σ,
Λ wave functions when ms → mu;md. Like them, we also
show that using only the spin-spin and tensor forces (but
without spin-orbit) we can get a very good description of the
mass spectrum for these states.
In this paper we stated that, apart from the orbital part,

the basic wave function of all N� should be spherically

symmetric in 6 dimensions, ϕð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ⃗2 þ λ⃗2

q
Þ, yet we have

not evaluated it. However, we note that in our recent
study [16], we have used the appropriate “hyperdistance
approximation” and the reduced radial Schrodinger equa-
tion, to obtain such wave functions, for (flavor-symmetric)
baryons and (all-charmed) tetraquarks. The reason we
focused on all-charm hadrons first, is that for heavy quarks
the spin-dependent interactions—coming from relativistic
corrections—are small and can be neglected in the zeroth
approximation.
Construction of LF wave functions for negative parity

baryons needs explicit definition of the longitudinal wave
functions (depending on momentum fractions x1, x2, x3)
with symmetries of Jacobi coordinates ρ, λ. We have shown
what these functions are in Sec. VI A.
Outlook: All of the present study is a preparation leading

to the proper definitions of the light front wave functions
(LFWFs) for multiquark hadrons, or their multiquark
components. What we mean can be explained by examples:
to a heavy Q̄Qmesons, we can add a light q̄q pair to form a
tetraquark, while to a baryon we can add a pair to turn it to
a pentaquark. With pertinent quantum numbers, these are
“exotic hadrons,” minimizing the Hamiltonian. Also, they
can be considered as “virtual clouds” (as is the 5-quark
component of the nucleon, seeding its antiquark sea, e.g.,
discussed in [19]) or separate “pentaquark states” orthogo-
nal to the nucleon with all its cloud (as the recently
discovered pentaquark resonances with hidden charm
uudþ cc̄ states). Their discovery was helped by their
narrow widths, as they happen to be just above the
thresholds of baryon-meson states to which they can decay.
The further discoveries of stable pentaquarks below such
thresholds (e.g., with hidden b̄b) are still ahead of us. Those
with ūu, d̄d, s̄s are perhaps not likely to be seen as separate
resonances. However, the theory still needs to answer:
where are they? what contribution to the known states (e.g.,
nucleon) they actually make?
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When there are several identical quarks, the issues of
appropriate symmetries of the wave functions need to be
resolved.Wehave discussed in details the S-shell andP-shell
baryonsN�. Our important point was that the LFWFs should
have the same structure under the S3 permutation group for
their spin-isospin wave functions, as they have in the c.m.
approach. The orbital part should not only contain the
transverse k�⊥ momenta, as was proposed, but also it should
include the longitudinal doubly degenerate excited states.
We showed that those areDρ;Λ

nL;mL consisting of six waves on
an equilateral triangle for longitudinal momenta fractions.
We have further shown, that while spherical symmetry is
strictly speaking absent on the LF, the numerical deviations
from the energies (and fixed-J wave functions in the c.m.
frame) for P-shell and D-shell states constitute only several
percents. Hopefully these differences are smaller than the
splitting generated by the spin-spin and tensor forces, In this
way, the squaredmass splittings will not be affected by these
“nonsphericity” corrections.
As parting comments, we note that one would not be able

to calculate the ū, d̄, s̄, c̄ contributions to the PDFs and
other density matrices, without solving the many-body
Hamiltonian, and obtain the full wave functions. And, e.g.,
for the five-quark components of the LFWFs with flavors
content uuduū, uuddd̄, one would need also to combine
the isospin representations with the color, spin, and orbital
wave functions, to get the correct Fermi statistics. We hope
to address those issues in subsequent publications.
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APPENDIX A: PERMUTATIONS
AND THE WAVE FUNCTIONS

1. Permutation group S3
The (12) and (23) permutations are realized as improper

O(3) rotations on the Jacobi 2-vector, with determinant
equal to −1. This is rather natural if we think of the initial
three 1, 2, 3 particles set on an equilateral triangle. The six
permutations (7) are then 3 in-plane rotations by π

3
of which

P4 is an example, and three out-of plane rotations by π
along each of the 3 bisectors of which P2 is an example.
With this in mind, the Jacobi 2-vector under the 3-

particle permutation, transforms analogously to a spin-1
2

under SU(2) rotations. In retrospect this is expected, since
the mixed representation Young tableau for 3 spin-1

2
carries

the same dimension 2M as the primitive spin-1
2
Young

tableau. This observation will be repeatedly used below to
construct the excited states of baryons with 3 quarks, with

totally symmetric space-spin-flavor wave functions
under S3.
In general, the representations of S3 fall into: 1=totally

symmetric states (S), totally antisymmetric states (A), and
states with mixed symmetry (M), under Pi. Three quark
spin states can be split into S ¼ 3

2
symmetric states, ↑↑↑

and so on, and then two mutually orthogonal S ¼ 1
2
states

which, following Jacobi coordinates, we call Sρ, Sλ states.
The following development consists of two steps. The first
one, going back at least to [3], is related to symmetry under
(12) reflection (8). With this in mind, any characterization
of a 3-particle state (space, spin, flavor) can be composed
by paralleling the Jacobi coordinates, with manifest sym-
metry under S3. The idea, is to construct mixed symmetry
wave functions Mρ;λ, out of ρ-like and λ-like blocks which
have pure S or A permutation properties,

½P2 ¼ ð12Þ�
�
Mρ

Mλ

�
¼
�−1 0

0 1

��
Mρ

Mλ

�

½P4 ¼ ð23Þ�
�
Mρ

Mλ

�
¼
0
@ 1

2

ffiffi
3

p
2ffiffi

3
p
2

− 1
2

1
A�Mρ

Mλ

�
ðA1Þ

The construction of the representations of S3 is carried as
for any other groups, e.g., through the familiar generali-
zation from the spinor representations of Oð3Þ to spin-1,
spin-3

2
etc. The tensor product of two generic representa-

tions Xa and Xb with different symmetries under S3, is a
sum of representations Xab, each with symmetries S, A,
Mρ;λ. While it is clear that the symmetries of the S, A
products are

Sa ⊗ Sb ¼ Sab

Aa ⊗ Ab ¼ Sab

Sa ⊗ Ab ¼ Aab ðA2Þ
the product of the mixed representations Mρ;λ viewed as a
primitive 2M doublets, is more subtle and requires more
detailed studies.
For two ρ, λ-type blocks there are 22 ¼ 4 combinations,

that can be constructed using say a basis ðXρ
1X

ρ
2; X

λ
1X

ρ
2;

Xρ
1X

λ
2; X

λ
1X

λ
2Þ. Half of the states are symmetric and half are

antisymmetric under 12-interchange. Yet what needs to be
done, is to enforce say 23-permutation on these combina-
tions. Using (8) two times, we obtain matrices correspond-
ing to this permutation for two objects. The corresponding
M(23) matrix in this basis takes the form2

666664
1=4

ffiffiffi
3

p
=4

ffiffiffi
3

p
=4 3=4ffiffiffi

3
p

=4 3=4 −1=4 −
ffiffiffi
3

p
=4ffiffiffi

3
p

=4 −1=4 3=4 −
ffiffiffi
3

p
=4

3=4 −
ffiffiffi
3

p
=4 −

ffiffiffi
3

p
=4 1=4

3
777775: ðA3Þ
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The commutator of M(12) with M(23) matrices, yields two
imaginary and two zero eigenvalues. The latter correspond
to the totally symmetric and antisymmetric combinations,
respectively. The symmetric in this notations is (1, 0, 0, 1)
or Xρ

1X
ρ
2 þ Xλ

1X
λ
2, the only combination of two objects

simultaneously symmetric under (12) and (23) (and in fact
all) permutations. This is the one which we are seeking for
the wave functions of the baryons in the ground S-shell, as
well as, e.g., the three spin-3

2
nucleons in the P-shell.

Although it may indeed be easy to simply guess this form,
the method we follow eliminates any guessing, and can be
used for any number of objects.
In analogy of what we do for the rotational (spin) group

Oð3Þ, we derived the tensor product of two representations
into irreducible representations of S3

2M ⊗ 2M ¼ 1A ⊕ 3S

with 1A a singlet antisymmetric, and 3S a triplet of
symmetric representations. The singlet 1A antisymmetric
representation is

Aab ¼
1ffiffiffi
2

p MT
a

�
0 1

−1 0

�
Mb ¼

1ffiffiffi
2

p ðMρ
aMλ

b −Mλ
aM

ρ
bÞ ðA4Þ

while one of the triplet 3S is, e.g.,

Mρ
ab ¼

1ffiffiffi
2

p MT
a

�
0 1

1 0

�
Mb ¼

1ffiffiffi
2

p ðMρ
aMλ

bþMλ
aM

ρ
bÞ: ðA5Þ

The remaining part of the triplet 3S with projection-�, are
regrouped in the manifestly orthogonal combinations

Sab ¼
1ffiffiffi
2

p MT
a

�
1 0

0 1

�
Mb ¼

1ffiffiffi
2

p ðMρ
aM

ρ
b þMλ

aMλ
bÞ ðA6Þ

Mλ
ab¼

1ffiffiffi
2

p MT
a

�
1 0

0 −1

�
Mb¼

1ffiffiffi
2

p ðMρ
aM

ρ
b−Mλ

aMλ
bÞ: ðA7Þ

Sab is invariant under all the six rotations, hence all the six
permutations. It is manifestly symmetric. The combinations
Mρ;λ

ab can be checked to transform as a doublet under all
permutations, e.g.,

½P4 ¼ ð23Þ�
 
Mρ

ab

Mλ
ab

!
¼
0
@ 1

2

ffiffi
3

p
2ffiffi

3
p
2

− 1
2

1
A Mρ

ab

Mλ
ab

!
: ðA8Þ

With this in mind, the spin-flavor combination

Sab ¼
1ffiffiffi
2

p ðSρaFρ
b þ SλaFλ

bÞ ðA9Þ

uniquely defines the symmetric part of the proton wave
function.
For three objects of ρ, λ types, there are 23 combinations

possible, written, e.g., in the basis of the following 8
monoms,

Xλ
1X

λ
2X

λ
3; Xρ

1X
λ
2X

λ
3; Xλ

1X
ρ
2X

λ
3; Xρ

1X
ρ
2X

λ
3;

Xλ
1X

λ
2X

ρ
3; Xρ

1X
λ
2X

ρ
3; Xλ

1X
ρ
2X

ρ
3; Xρ

1X
ρ
2X

ρ
3:

One should proceed as we did before, calculating their
transformation under (23)

M3 objects
23 ¼

2
6666666666666664

−1=8
ffiffiffi
3

p
=8

ffiffiffi
3

p
=8 −3=8

ffiffiffi
3

p
=8 −3=8 ;−3=8; 3

ffiffiffi
3

p
=8ffiffiffi

3
p

=8; 1=8; −3=8; −
ffiffiffi
3

p
=8; −3=8; −

ffiffiffi
3

p
=8; 3

ffiffiffi
3

p Þ=8; 3=8ffiffiffi
3

p
=8; −3=8; 1=8; −

ffiffiffi
3

p
=8; −3=8; 3

ffiffiffi
3

p
=8; −

ffiffiffi
3

p
=8; 3=8

−3=8; −
ffiffiffi
3

p
=8; −

ffiffiffi
3

p
=8; −1=8; 3

ffiffiffi
3

p
=8; 3=8; 3=8;

ffiffiffi
3

p
=8ffiffiffi

3
p

=8; −3=8; −3=8; 3
ffiffiffi
3

p
=8; 1=8; −

ffiffiffi
3

p
=8; −

ffiffiffi
3

p
=8; 3=8

−3=8; −
ffiffiffi
3

p
=8; 3

ffiffiffi
3

p
=8; 3=8; −

ffiffiffi
3

p
=8; −1=8; 3=8;

ffiffiffi
3

p
=8

−3=8; 3
ffiffiffi
3

p
=8; −

ffiffiffi
3

p
=8; 3=8; −

ffiffiffi
3

p
=8; 3=8; −1=8;

ffiffiffi
3

p
=8

3
ffiffiffi
3

p
=8; 3=8; 3=8;

ffiffiffi
3

p
=8; 3=8;

ffiffiffi
3

p
=8;

ffiffiffi
3

p
=8; 1=8

3
7777777777777775

:

Although this matrix may appear involved, its determi-
nant is 1, with four eigenvalues (−1) and four (þ1). Note
that it is the same set of eigenvalues as for the (diagonal)
matrix of the (12) permutation. So, there is a 4-dimensional
subspace which is symmetric under (23). The other
4-dimensional subspace (half of our basis) corresponds
to the symmetric combinations under (12). The eigensys-
tem of the commutator of these matrices, yields two zero

eigenvalues, of which only one is the symmetric combi-
nation, ð−1; 0; 0; 1; 0; 1; 1; 0Þ in our basis, corresponding to
the sought after symmetric wave function under S3,

−XλXλXλ þ XρXρXλ þ XρXλXρ þ XλXρXρ ðA10Þ

Again, no guessing is needed, the unique totally symmetric
wave functions is shown by construction. We recall that
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while our derivation is generic, we used it for three blocks
here being the orbital, spin and isospin parts of the wave
function.
This method can be used for any number of blocks, and

we now proceed to four, as, e.g., those needed for the
D-shell resonances. The matrix for the 23-permutation in
this case is 16 × 16, with 8 antisymmetric and 8 symmetric
eigenvectors. In fact it can be generated in Mathematica
by using command KroneckerProduct[P23,P23,P23]
(in which case the basis set is automatically selected
by Kroneker product as well). The commutator of (12)
and (23) matrices has 6 zero eigenvalues, of which 3 are
symmetric. Their linear combinations can be used as wave
functions in the D-shell. They are

f1; 0; 0; 0; 0; 0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1g
f0; 0; 0; 1; 0; 0;−1; 0; 0;−1; 0; 0; 1; 0; 0; 0g
f0; 0; 0; 0; 0; 1;−1; 0; 0;−1; 1; 0; 0; 0; 0; 0g: ðA11Þ

Note that all of them are combination of four monoms
weighted by simple �1 coefficients.
Although we do not have immediate applications for it,

we repeated the procedure for 5 blocks, in the representation
of dimension 25 ¼ 32. The corresponding (12) and (23)
matrices were generated. Their commutator has 10 zero
eigenvalues, with half corresponding to symmetric and half
antisymmetric wave functions. The corresponding combi-
nations are more complicated and have more than 4 non-
zero terms.

APPENDIX B: DETAILS OF MATRIX
ELEMENT CALCULATIONS

We have calculated the matrix elements of all the
operators in two ways: by direct calculations using the
explicit wave functions quoted earlier, and using symbolic
manipulations of the wave functions represented as spin-
tensors via Mathematica. We will detail here some parts of
the explicit calculations for all the spin interactions, starting
from the unmixed states with J ¼ 5

2
, then proceed to the

mixing matrix in the J ¼ 3
2
shell, and only quote the final

results for the mixing matrix in the J ¼ 1
2
shell.

1. Spin-spin coupling in J = 3
2

Using the explicit states (19)–(21) and short-hand
notations, the spin-spin coupling contributions gives
3

2

����VS

���� 32
�

J¼3
2

¼ 3

2

�
ðφρVSð

ffiffiffi
2

p
ρÞφρ þ φλVSð

ffiffiffi
2

p
ρÞφλÞ

×

�
SS3

2

1

4
σ1 · σ2SS3

2

��
ðB1Þ

with the Clebsches and some indices omitted to avoid
clutter. The overall factor of 3 follows from the permutation
symmetry as we noted. The spin-spin contribution is
reduced by the identity

σ1 · σ2SS3
2
;1
2

¼ 1

6
ð4S2tot − 9ÞSS3

2
;1
2

¼ SS3
2
;1
2

ðB2Þ

in the permutation symmetric S-state, and gives


3

2

����VS

���� 32
�

J¼3
2

¼ 1

4

Z
dρ⃗dλ⃗ðρ⃗2 þ λ⃗2Þjφ00j2VSð

ffiffiffi
2

p
ρÞ: ðB3Þ

The same arguments yield


1

2

����VS

���� 12
�

J¼3
2

¼ −
1

4

Z
dρ⃗dλ⃗ðρ⃗2 þ λ⃗2Þjφ00j2VSð

ffiffiffi
2

p
ρÞ


3

2

����VS

���� 12
�

J¼3
2

¼ 0 ðB4Þ

where we used the spin identities

σ1 · σ2Sλ1
2
1
2

¼ þSλ1
2
1
2

σ1 · σ2S
ρ
1
2
1
2

¼ −3Sρ1
2
1
2

: ðB5Þ

a. Tensor coupling in J = 3
2

The tensor contribution mixes configurations with differ-
ent spin content, and is more involved. To evaluate it, we
reestablish the Clebsches and azimuthal labelings


3

2

����VT

���� 32
�

J¼3
2

¼ 3

2

  ffiffiffi
3

5

r
φρ
10S

S
3
2
3
2

−
ffiffiffi
2

5

r
φρ
11S

S
3
2
1
2

!

× VT

 ffiffiffi
3

5

r
φρ
10S

S
3
2
3
2

−
ffiffiffi
2

5

r
φρ
11S

S
3
2
1
2

!!
ðB6Þ

where only the manifestly nonzero contributions are
retained. Using the spin-space dependence of the tensor
interaction, we find that the spin valued parts in (B13) can
be reduced, using the matrix elements

SS3
2
3
2

Vρ
TS

S
3
2
3
2

¼ þ 2

3

ffiffiffi
π

5

r
Y0
2ðρ̂Þ

SS3
2
1
2

Vρ
TS

S
3
2
1
2

¼ −
2

3

ffiffiffi
π

5

r
Y0
2ðρ̂Þ

SS3
2
1
2

Vρ
TS

S
3
2
3
2

¼ −
2

3

ffiffiffiffiffiffi
2π

5

r
Yþ1
2 ðρ̂Þ

SS3
2
3
2

Vρ
TS

S
3
2
1
2

¼ þ 2

3

ffiffiffiffiffiffi
2π

5

r
Y−1
2 ðρ̂Þ ðB7Þ
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with

Vρ
T ¼ 1

2

�
σ1 · ρ̂σ2 · ρ̂ −

1

3
σ1 · σ2

�
ðB8Þ

to give in shorthand notations


3

2

����VT

���� 32
�

J¼3
2

¼
ffiffiffi
π

pffiffiffi
5

p
�
3

5
φ10Y0

2φ10 −
2

5
φ11Y0

2φ11

−
2
ffiffiffi
3

p

5
φ10Y−1

2 φ11 þ
2
ffiffiffi
3

p

5
φ11Y

þ1
2 φ10

�
:

ðB9Þ

If we recall that

φρ
1m ¼

ffiffiffiffiffiffi
8π

3

r
Ym
1 ðρ̂Þρφ00

φλ
1m ¼

ffiffiffiffiffiffi
8π

3

r
Ym
1 ðλ̂Þλφ00 ðB10Þ

the integration over the three spherical harmonics in (B9)
can be undone using the identity

Z
dρ̂Ym1

l1
ðρ̂ÞYm2

l2
ðρ̂ÞYm3

l3
ðρ̂Þ

¼
�ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

�1
2

�
l1 l2 l3
0 0 0

�

×

�
l1 l2 l3
m1 m2 m3

�
ðB11Þ

with the result


3

2

����VT

���� 32
�

J¼3
2

¼ 4

15

Z
dρ⃗dλ⃗ρ⃗2jφ00j2VTð

ffiffiffi
2

p
ρÞ: ðB12Þ

The remaining spin-spin and tensor matrix elements can be
done similarly, with the results


3

2

����VT

���� 12
�

J¼3
2

¼ −
1

3
ffiffiffiffiffi
10

p
Z

dρ⃗dλ⃗ρ⃗2jφ00j2VTð
ffiffiffi
2

p
ρÞ


1

2

����VT

���� 12
�

J¼3
2

¼ 0 ðB13Þ

for the remaining mixing matrix entries in the J ¼ 3
2
P-shell.

We used the fact that the off-diagonal and nonvanishing
tensor matrix elements are

SS3
2
3
2

Vρ
TS

λ
1
2
1
2

¼ þ 2

3

ffiffiffi
π

5

r
Y−1
2 ðρ̂Þ

SS3
2
1
2

Vρ
TS

λ
1
2
1
2

¼ −
2

3

ffiffiffiffiffiffi
2π

5

r
Y0
2ðρ̂Þ ðB14Þ

with the vanishing diagonal ones

Sρ;λ1
2
1
2

Vρ
TS

ρ;λ
1
2
1
2

¼ 0: ðB15Þ

b. Spin-orbit coupling in J = 3
2

When we calculate the LS interaction of one pair
of quarks, 1–2, all orbital terms ∼λ are eliminated by
derivative over ρ⃗ and only ρ-dependent ones remain.
The spin-orbit contributions simplify considerably, if we

note that φρ spins along the λ-direction, and φλ spins along
the ρ-direction. This means that the standard spin-orbit
contribution in (43) has only a nonvanishing matrix
element for the combination

φρðρ × pρÞφρ ¼ lρ ðB16Þ

as the two other entries vanish

φλðρ × pρÞφρ ¼ φλðρ × pρÞφλ ¼ 0: ðB17Þ

The mixed spin-orbit contribution in (43) vanishes iden-
tically, as all entries

φρ;λðρ × pλÞφρ;λ ¼ 0 ðB18Þ

are seen to angle average to zero. As a result, the 12-spin-
orbit contribution (43) simplifies to

VSLð1; 2Þ → VSLð
ffiffiffi
2

p
ρÞ 1

2
ðσ1 þ σ2Þ · lρ: ðB19Þ

The spin-orbit contribution mixes configurations with
different spin content as well. Its evaluation follows that
of the tensor coupling detailed above. More specifically,
we have


3

2

����VSL

���� 32
�

J¼3
2

¼ 3

2

  ffiffiffi
3

5

r
φρ
10S

S
3
2
3
2

−
ffiffiffi
2

5

r
φρ
11S

S
3
2
1
2

!

× VSL

 ffiffiffi
3

5

r
φρ
10S

S
3
2
3
2

−
ffiffiffi
2

5

r
φρ
11S

S
3
2
1
2

!!
:

ðB20Þ

We can simplify the orbital contributions in (B20) if we
recall that

lzρφ
ρ
1m ¼mφρ

1m l�ρ φ
ρ
1m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−mðm� 1Þ

p
φρ
1m�1 ðB21Þ
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with the result
3

2

����VSL

����32
�

J¼3
2

¼ 3

10

�
2jφρ

11j2SS3
2
1
2

1

2
ðσ1þσ2ÞzSS3

2
1
2

−
ffiffiffi
3

p
jφρ

10j2
�
SS3

2
3
2

1

2
ðσ1þσ2ÞþSS3

2
1
2

þc:c:

��
:

ðB22Þ
Using the permutation symmetry of the in-out spin

symmetric S-states, we can make use of the identities

SS3
2
1
2

1

2
ðσ1 þ σ2ÞzSS3

2
1
2

¼ 2

3
SS3

2
1
2

SztotS
S
3
2
1
2

¼ 1

3

SS3
2
3
2

1

2
ðσ1 þ σ2ÞþSS3

2
1
2

¼ 2

3
SS3

2
1
2

SþtotSS3
2
1
2

¼ 2ffiffiffi
3

p ðB23Þ

which allow for the simplification of (B22) into


3

2

����VSL

���� 32
�

J¼3
2

¼ 1

5

Z
dρ⃗dλ⃗ðjρ−j2 − 12ρ2zÞjφ00j2VSLð

ffiffiffi
2

p
ρÞ

¼ −
2

3

Z
dρ⃗dλ⃗ρ⃗2jφ00j2VSLð

ffiffiffi
2

p
ρÞ: ðB24Þ

The remaining spin-orbit contributions to the mixing matrix
for J ¼ 3

2
, can be found similarly with the results


3

2

����VSL

���� 12
�

J¼3
2

¼ −
ffiffiffiffiffi
10

p

6

Z
dρ⃗dλ⃗ρ⃗2jφ00j2VSLð

ffiffiffi
2

p
ρÞ


1

2

����VSL

���� 12
�

J¼3
2

¼ þ 1

3

Z
dρ⃗dλ⃗ρ⃗2jφ00j2VSLð

ffiffiffi
2

p
ρÞ: ðB25Þ

c. ’t Hooft coupling in J = 3
2

The ’t Hooft coupling contribution to the mixing matrix,
involves flavor matrix elements. The calculations simplifies
considerably if we note that the flavor states FS;ρ;λ are
eigenstates of the flavor singlet projector,

ð1 − τ1 · τ2ÞFS ¼ 0FS

ð1 − τ1 · τ2ÞFρ ¼ 4Fρ

ð1 − τ1 · τ2ÞFλ ¼ 0Fλ: ðB26Þ

With this in mind, a rerun of the preceding arguments gives


3

2

����VTH

���� 32
�

J¼3
2

¼ 8

5
ð1 − aÞ

Z
dρ⃗dλ⃗ρ⃗2jφ00j2VTHð

ffiffiffi
2

p
ρÞ


1

2
jVTH

���� 12
�

J¼3
2

¼ 2

Z
dρ⃗dλ⃗ðð1 − aÞρ⃗2

þ ð1þ 3aÞλ⃗2Þjφ00j2VTHð
ffiffiffi
2

p
ρÞ: ðB27Þ

d. Spin splittings in the J = 5
2 shell

The spin J ¼ 5
2
shell is unmixed. The spin interactions in

this shell are the simplest to evaluate. Using their explicit
wave function, and some of the spin and flavor identities
we derived earlier, we obtain

3

2

����VS

���� 32
�

5
2

¼ 1

4

Z
dρ⃗dλ⃗ðρ⃗2 þ λ⃗2Þjφ00j2VSð

ffiffiffi
2

p
ρÞ


3

2

����VT

���� 32
�

5
2

¼ −
1

15

Z
dρ⃗dλ⃗ρ⃗2jφ00j2VTð

ffiffiffi
2

p
ρÞ


3

2

����VSL

���� 32
�

5
2

¼
Z

dρ⃗dλ⃗ρ⃗2jφ00j2VSLð
ffiffiffi
2

p
ρÞ


3

2

����VTH

���� 32
�

5
2

¼ 4ð1 − aÞ
Z

dρ⃗dλ⃗ρ⃗2jφ00j2VTHð
ffiffiffi
2

p
ρÞ

ðB28Þ

with the short-hand notation j 3
2
i5
2
≡ j1 3

2
5
2
5
2
ip− .

2. Mixing matrix

The hyperfine interactions in the degenerate P-sub-shells
of fixed J ¼ 1

2
; 3
2
are fixed by

MJ ¼
1

hp−jp−i

 
h3
2
jVSþTþSLþVTH

j3
2
i h3

2
jVSþTþSLþVTH

j1
2
i

h1
2
jVSþTþSLþVTH

j3
2
i h1

2
jVSþTþSLþVTH

j1
2
i

!
J

ðB29Þ

where we used the S-labeling as a short-hand for the
degenerate nucleon P-states, which are normalized by

hp−jp−i ¼ 1

3
NP ¼ 1

3

Z
dρ⃗dλ⃗ðρ⃗2 þ λ⃗2Þjφ00j2: ðB30Þ

The diagonalization of (B29) yields the two mixing angles
in the P-shell with J ¼ 1

2
; 3
2
. For J ¼ 3

2
, their explicit forms

we already given in results (30)

APPENDIX C: EXPLICIT WAVE FUNCTIONS
OF BARYONS IN SPIN-TENSOR NOTATIONS

IN MATHEMATICA

Mathematica is a platform for symbolic calculations
widely used in many branches of physics. In some (e.g.,
general relativity) its ability to handle multicomponent
tensors and perform, e.g., hundreds of differentiations, is
crucial for progress in the field, as recognized long ago.
(A side remark about Maple: of course one can do anything
in it as well. Yet its elaborate structures—sets, arrays,
vectors, matrices seem a bit cumbersome, at least for
beginners. A single notion of Table in Mathematica is the
only one needed.)
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In quantum mechanics, with applications like the ones
discussed in this paper,Mathematica’s ability to do analytic
(rather than numeric) computations are not yet sufficiently
utilized. A wave function may have hundreds or thousands
of components, which can be naturally added, combined by
tensor products, acting upon by spin-dependent or differ-
ential operators, squared and integrated. The rules of
operation with Tables of any number of dimensions are
simple or even elementary, yet some explanation may be
helpful to some readers. That is why in this paper we
focused on the 3-quark systems, as their wave functions
have 26 ¼ 64 “monoms.” It is already complicated enough,
so that issues of, e.g., symmetries of identical quarks are
nontrivial. This way of solving the few-quark problems,
should prove useful for the other (newly discovered)
tetraquarks, and pentaquarks states as well.
The usual representation of quantum states is done with

certain monoms times coordinate functions. The important
case of the nucleon is a well known example. Three light
quarks, with 2 spin times 2 isospin states, lives in a basis of

26 ¼ 64 possible monoms. Only nine are in (9) for this
example. A different number with other functional coef-
ficients appear for the excited (e.g., P-shell) states. The
natural standardized way to represent all wave functions is
provided by spin-tensors. The suggested order of the
indices in their definition is arbitrary, so we propose to
keep the spin and then isospin s1, s2, s3, i1, i2, i3
sequentially, each with binary values 1 or 2. Up and down
notations can be held either symbolically (in formulas) or
explicitly, for which we define the elementary states

up ¼ f1; 0g; down ¼ f0; 1g

and then use the substitution function while forming actual
spin-tensor. Let us take as an example the S ¼ 1

2
, Sz ¼ 1

2

expressions for the ρ, λ blocks we used above Sρ ¼ ð↑↓↑ −
↓↑↑Þ= ffiffiffi

2
p

and show theMathematica command converting
it to explicit spin-tensor form

Sρ ≔ ðu½½s1��d½½s2��u½½s3�� − d½½s1��u½½s2��u½½s3��Þ=
ffiffiffi
2

p
;

Sρnumeric ¼ Table½ðSρ=:fu− > up; d− > downg; fs1; 1; 2g; fs2; 1; 2g; fs3; 1; 2g�
¼ fff0; 0g; f−1=

ffiffiffi
2

p
; 0gg; ff1=

ffiffiffi
2

p
; 0g; f0; 0ggg ðC1Þ

Note that we are using the u, d notations in any symbolic expression. The explicit numerical form follows through the
substitution to the up, down monoms. While keeping unnecessary components represented by 6 zeros, it is still quite
compact and convenient to use. The isospin expressions with I ¼ 1

2
are the same, with only the indices redefined as i1, i2, i3.

The spin-isospin wave function of the proton (spin up) is then

p↑ ¼ Table½ðSρ½½s1; s2; s3��Sρ½½i1; i2; i3�� þ Sλ½½s1; s2; s3��Sλ½½i1; i2; i3��Þ=
ffiffiffi
2

p
;

fs1; 1; 2g; fs2; 1; 2g; fs3; 1; 2g; fi1; 1; 2g; fi2; 1; 2g; fi3; 1; 2g�
¼ ffffff0; 0g; f0; 0gg; ff0; 0g; f0; 0ggg; fff0;

ffiffiffi
2

p
=3g; f−1=ð3

ffiffiffi
2

p
Þ; 0gg; ff−1=ð3

ffiffiffi
2

p
Þ; 0g;

f0; 0gggg; ffff0;−1=ð3
ffiffiffi
2

p
Þg; f

ffiffiffi
2

p
=3; 0gg; ff−1=ð3

ffiffiffi
2

p
Þ; 0g; f0; 0ggg; fff0; 0g; f0; 0gg;

ff0; 0g; f0; 0ggggg; fffff0;−1=ð3
ffiffiffi
2

p
Þg; f−1=ð3

ffiffiffi
2

p
Þ; 0gg; ff

ffiffiffi
2

p
=3; 0g; f0; 0ggg; fff0; 0g; f0; 0gg; ff0; 0g;

f0; 0gggg; ffff0; 0g; f0; 0gg; ff0; 0g; f0; 0ggg; fff0; 0g; f0; 0gg; ff0; 0g; f0; 0ggggg: ðC2Þ

In this example only 9 elements (out of 64) are nonzero. The matrix elements are evaluated as usual, e.g., the normalization
is the sum over all indices

hpjpi ¼ Sum½p½½s1; s2; s3; i1; i2; i3��2; fs1; 1; 2g; fs2; 1; 2g; fs3; 1; 2g; fi1; 1; 2g; fi2; 1; 2g; fi3; 1; 2g�:

If complex, the outgoing wave function needs to be conjugated, as usual.
For nonzero orbital momentum (e.g. L ¼ 1 to be discussed), the explicit orbital functions are linear in coordinates, and

will be defined below. With 6 coordinates ρ⃗, λ⃗ in any matrix elements, we will perform explicitly the integration over the 4
angles in both solid angles, dΩρdΩλ. All the wave functions to be shown below have the same normalization factor

Nnorm ¼ 32π2

3
hλ2 þ ρ2i ðC3Þ
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by which the matrix elements of operators should be
divided. (The meaning of angular brackets here was defined
in (29), it contains a double integral over the ρ, λ moduli,
with the remaining radial wave functions.).
The matrix elements of any operators including spin,

isospin and coordinate variables (in matrix or differential
form) can easily be calculated from these wave functions,
with the summation over all indices. For P-shell nucleons,
we constructed nine of them, with jJ; Jz; Si selections

���� 52 ; 52 ; 32
����� 52 ; 32 ; 32

�
;

���� 52 ; 12 ; 32
�
;���� 32 ; 32 ; 32

�
;

���� 32 ; 12 ; 32
�
;���� 32 ; 32 ; 12

�
;

���� 32 ; 12 ; 12
�
; j���� 12 ; 12 ; 32

�
;

���� 12 ; 12 ; 12
�
:

After checking normalization and mutual orthogonality, the
matrix elements of all spin-dependent interactions have
been calculated. Since operators are rotationally scalars, all
states which differ in Jz (orientation) only, must yield the
same matrix elements.
We explicitly show in Figs. 3–7 five wave functions, all

with Jz ¼ 1=2, for which pertinent Clebsch-Gordon coef-
ficients and coordinates are included. (Let us remind the
reader that those are shown before mixing, when they still
have definite total spins, S ¼ 3

2
and S ¼ 1

2
.) We present

those spin-tensors in full, with 6 indices and 6 curly
brackets, and also keep all indices in operators to avoid
confusion.
(While it is not necessary, one can further use even more

compressed notations. By Flatten command, the wave
functions are reduced from spin-tensors to 64-d vectors
in the “monom space.” All operators can also be redefined
in it, as 64 × 64 matrices. The benefit of this, is that in this
form they can be multiplied as ordinary matrices. Let us
demonstrate how it works for the spin-spin interaction

s := Table[1/2*PauliMatrix[i], {i, 1, 3}]
Slist[i_, m_] := Insert[Table[IdentityMatrix[2], 5], s[[m]], i]
Si[i_, m_] := KroneckerProduct @@ Slist[i, m]
SS[i_, j_] := Sum[Si[i, m].Si[j, m], {m, 1, 3}]

Note that Slist is a list of 6 matrices, with Pauli spin/isospin matrices at the position i. Next line (Si) promotes it to an
operator in the monom space. In such notations complex operators can be written as the usual sum of their products, e.g., the
spin-spin interaction is ðS⃗1S⃗2Þ → SS½1; 2�.)
Before we present the wave functions for these states, we show their “coordinate density” jψ j2 summed over all indices,

jN�
J¼5

2
;Jz¼1=2;S¼3=2

j2 ∼ ð2=5Þðλ21 þ λ22 þ 3λ23 þ ρ21 þ ρ22 þ 3ρ23Þ
jN�

J¼3=2;Jz¼1=2;S¼3=2j2 ∼ ð2=15Þð7λ21 þ 7λ22 þ λ23 þ 7ρ21 þ 7ρ22 þ ρ23Þ
jN�

J¼1=2;Jz¼1=2;S¼3=2j2 ∼ ð2=3Þðλ21 þ λ22 þ λ23 þ ρ21 þ ρ22 þ ρ23Þ
jN�

J¼3=2;Jz¼1=2;S¼1=2j2 ∼ ð1=3Þðλ21 þ λ22 þ 4λ23 þ ρ21 þ ρ22 þ 4ρ23Þ
jN�

J¼1=2;Jz¼1=2;S¼1=2j2 ∼ ð2=3Þðλ21 þ λ22 þ λ23 þ ρ21 þ ρ22 þ ρ23Þ:

Note that all the J ¼ 1
2
states have 6d spherical shape, as they should, while the J ¼ 5

2
have deformations of opposite signs to

both the J ¼ 3
2
states.
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FIG. 5. Orbital-spin-isospin wave function for jN�; J ¼ 1=2;
Jz ¼ 1=2; S ¼ 3=2i:

FIG. 6. Orbital-spin-isospin wave function for jN�; J ¼ 3=2;
Jz ¼ 1=2; S ¼ 1=2i:

FIG. 3. Orbital-Orbital-spin-isospin wave function for jN�;
J ¼ 5

2
; Jz ¼ 1=2; S ¼ 3=2i:

FIG. 4. Orbital-spin-isospin wave function for jN�; J ¼ 3=2;
Jz ¼ 1=2; S ¼ 3=2i:
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