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We perform the linear analysis of causality and stability for a minimal extended spin hydrodynamics up to
second order of the gradient expansion. The first order spin hydrodynamics, with a rank-3 spin tensor being
antisymmetric for only the last two indices, are proved to be acausal and unstable. We then consider the
minimal causal spin hydrodynamics up to second order of the gradient expansion. We derive the necessary
causality and stability conditions for this minimal causal spin hydrodynamics. Interestingly, the satisfaction
of the stability conditions relies on the equations of state for the spin density and chemical potentials.
Moreover, different with the conventional relativistic dissipative hydrodynamics, the stability of the theory
seems to be broken at the finite wave vector when the stability conditions are fulfilled at small and largewave
vector limits. It implies that the behavior in small and large wave vector limits may be insufficient to
determine the stability conditions for spin hydrodynamics in linear mode analysis.
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I. INTRODUCTION

Relativistic heavy ion collisions provide a novel platform
to study the spin physics. In noncentral relativistic heavy-ion
collisions, the quark-gluon plasma (QGP) with large angular
momentum perpendicular to the reaction plane is created.
Because of the total angular momentum conservation, the
averaged spin of final particles produced from QGP is
polarized along the direction of the initial orbital angular
momentum [1–3], as known as the global polarization. The
measurements of the global polarization for Λ; Λ̄, and other
hyperons [4–10] can be understood well by various phe-
nomenological models [11–26]. The experimental data
also indicates that the QGP generated in noncentral relativ-
istic heavy-ion collisions is the most vortical fluid ever
observed [4]. STAR [6,27] and ALICE [28] collaborations
also measured the local polarization of Λ and Λ̄ along the
beam and out-of-plane directions. Interestingly, the sign of
local polarization in theoretical calculations is opposite to
that of experimental data [15,16,23,29–31]. To resolve
the disagreement, a great deal of effort has been taken in
feed-down effects [32,33], hadronic interactions [34,35],

relativistic spin hydrodynamics [30,36–74], statistical
models [29,75,76], quantum kinetic theory [77–114], effec-
tive theories [115–117], and other phenomenological
models [16,20,21,23,31–33,118–122]. Although there is
much important progress [26,117,121–129], the local polari-
zation has not been fully understood. Another important
phenomenon related to spin, called the spin alignment of
vector mesons proposed by Refs. [1–3], has drawn a lot of
attention. The spin alignment is characterized by the
deviation of ρ00 from 1=3, where ρ00 is the 00 component
of the spin density matrix of vector mesons [130]. A
nonvanishing ρ00 − 1=3 indicates a net spin alignment of
vector mesons. The experimental results [131–136] show
that the magnitude of the spin alignment of the vector meson
is much larger than that caused by vorticity and other
conventional effects [2,137–141]. Such unexpectedly large
spin alignment may arise from a fluctuating strong force
field of ϕ [142–146].
The above novel phenomena related to spin

triggered the rapid developments of spin hydrodynamics
[30,36–73]. The spin hydrodynamics is a natural exten-
sion of the conventional hydrodynamics coupled with the
dynamic evolution of spin through the total angular
momentum conservation. The spin hydrodynamics incor-
porating the quantum property may serve as a powerful
tool to understand the novel phenomena about spin in
noncentral relativistic heavy-ion collisions. Over the past
few years, various approaches have been proposed to
construct spin hydrodynamics, such as entropy current
analysis [45,48,50,57–59,67,73], quantum kinetic theory
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[38–40,49,51,55,56,63,65,66,69,86,94,101,111,147], ho-
lographic duality [52,53], and the effective Lagrangian
method [36,37].
In spite of the substantial efforts, the arbitrariness due to

pseudogauge transformations in spin hydrodynamics is not
fully understood. Through the pseudogauge transformations
[148,149], one can obtain new forms of energy momentum
tensor and spin tensor without affecting the conservation
law. Although such transformations have no impact on the
total conserved charges, they indeed change the values of
locally defined quantities, e.g., energy momentum tensor
and spin tensor [41,147–149]. Thus, different pseudogauge
transformations give rise to different frameworks of the spin
hydrodynamics, e.g., canonical [45,59,150], Belinfante
[48], Hilgevoord-Wouthuysen [65,151], de Groot-van
Leeuwen-van Weert [43,152] forms. Which framework is
suitable for understanding the experimental data leads to
intense discussions [41,48,66,147,153–155].
So far, the spin hydrodynamics in the first order of the

gradient expansion, with a rank-3 spin tensor that exhibits
antisymmetry solely in its last two indices, has been
established [45,48]. Before simulating the spin hydro-
dynamics, it is necessary to investigate the theory’s
causality and stability, as is done in conventional hydro-
dynamics. In fact, the first order conventional relativistic
hydrodynamics at the Landau frame in the gradient
expansion are always acausal and unstable, e.g., see the
discussions in Refs. [156–159]. Therefore, the question
whether the first order spin hydrodynamics can be casual
or stable arises. Several studies conclude that the spin
hydrodynamics up to the first order in the gradient
expansion may be acausal and unstable in the linear modes
analysis [70,71]. In the early study [45], the authors have
modified the constitutive relations for the antisymmetric
part of energy momentum tensor through the equations of
motion for the fluid and the stability conditions of this first
order theory in the rest frame of fluid seem to be satisfied
in the linear modes analysis. Later on, Ref. [71] shows that
this first order theory may be acausal, while Ref. [70] finds
the stability conditions [which corresponds to Eq. (46) in
this work] may not be satisfied.
In this work, we systematically investigate the linear

causality and stability for the spin hydrodynamics proposed
in Refs. [45,48]. Our findings indicate that the spin hydro-
dynamics up to the first order in the gradient expansion is
acausal and unstable even when using the replacement
mentioned by Ref. [45]. The acausal and unstable modes
can usually be removed when extending the theory up to the
second order in the gradient expansion. Therefore, we
follow the method outlined in the conventional hydro-
dynamics [158–162] to consider the minimal causal spin
hydrodynamics. It is sufficient to see whether the causality
and stability can be recovered up to the second order in the
gradient expansion [158–162]. We then analyze the cau-
sality and stability for this minimal extended theory.

The paper is organized as follows. We first review the first
order spin hydrodynamics introduced in Refs. [45,48] in
Sec. II and show it is acausal and unstable in Sec. III. In
Sec. IV, we consider the minimal causal spin hydrody-
namics following the method outlined in the conventional
hydrodynamics. In Sec. V, we analyze the causality and
stability for the minimal causal spin hydrodynamics in the
rest frame and comment on the results in moving frames.
We summarize this work in Sec. VI.
Throughout this work, we work with the metric gμν ¼

diagfþ;−;−;−g and Δμν ¼ gμν − uμuν. For a rank-2
tensor Aμν, we introduce the short-hand notations
AðμνÞ ≡ ðAμν þ AνμÞ=2, A½μν� ≡ ðAμν − AνμÞ=2, and Ahμνi≡
1
2
½ΔμαΔνβ þ ΔμβΔνα�Aαβ − 1

3
ΔμνðΔαβAαβÞ.

II. FIRST ORDER SPIN HYDRODYNAMICS

In this section, let us briefly review the first order
relativistic spin hydrodynamics. In spin hydrodynamics,
we have the conservation equations for energy, momen-
tum, total angular momentum, and particle number, i.e.,
[45,48,50,58,59,67,163]

∂μΘμν ¼ 0; ∂λJλμν ¼ 0; ∂μjμ ¼ 0; ð1Þ

where Θμν is the energy momentum tensor, Jλμν is the total
angular momentum current, and jμ is the current for
particle number. Different from conventional relativistic
hydrodynamics, the total angular momentum conservation
equation in Eq. (1) plays a crucial role to describe the
evolution of spin. The total angular momentum current can
be written as [45,48]

Jλμν ¼ xμΘλν − xνΘλμ þ Σλμν; ð2Þ

where the first two terms correspond to the conventional
orbital angular momentum, and Σλμν is the rank-3 spin
tensor. Using Eq. (2), the conservation equation ∂λJλμν ¼ 0
can be rewritten as the spin evolution equation,

∂λΣλμν ¼ −2Θ½μν�: ð3Þ

Equation (3) implies that the antisymmetric part of energy
momentum tensor Θ½μν� is the source for spin, and the spin
can be viewed as a conserved quantity if and only if
Θ½μν� ¼ 0.
After introducing the spin degrees of freedom, the

thermodynamic relations in spin hydrodynamics are modi-
fied as [45,48,50,58,59,67,163]

eþ p ¼ Tsþ μnþ ωμνSμν; ð4Þ

de ¼ Tdsþ μdnþ ωμνdSμν; ð5Þ
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where e; p; T; s; n; μ;ωμν, and Sμν denote energy density,
pressure, temperature, entropy density, particle number
density, chemical potential, spin chemical potential, and
spin density. The spin density is defined as

Sμν ≡ uλΣλμν ð6Þ

with the fluid velocity uμ. Analogous to the relationship
between μ and n, here we introduce the antisymmetric spin
chemical potential ωμν as the conjugate of Sμν.
Before decomposing the Θμν and Σλμν, we emphasize

that there exist different choices for them. For example, by
applying the Nöther theorem to two equivalent Lagrangian
density for Dirac field,

L1 ¼ ψ̄ðiγ · ∂ −mÞψ ; ð7Þ

L2 ¼
1

2
ψ̄iγ · ∂

↔

μψ −mψ̄ψ ; ð8Þ

where ∂

↔

μ ≡ ∂

⟶

μ − ∂⃖μ, two distinct sets of energy momen-
tum tensors and spin tensors emerge,

Θμν
1 ¼ ψ̄iγμ∂νψ ; Σλμν

1 ¼ 1

4
ψ̄iγλ½γμ; γν�ψ ; ð9Þ

Θμν
2 ¼ i

2
ψ̄γμ∂ν

↔
ψ ; Σλμν

2 ¼ 1

8
ψ̄ifγλ; ½γμ; γν�gψ : ð10Þ

Here, Σλμν
1 is antisymmetric only with respect to μ and ν

indices, while Σλμν
2 is totally antisymmetric. In principle, one

can derive the spin hydrodynamics from the microscopic
theories, as demonstrated in Refs. [43,65,66,69,164] for
kinetic theories and Refs. [41,165,166] for statistical meth-
ods. An alternative method to derive the spin hydrodynamics
is to map the tensor structure of hydrodynamic variables
to operators mentioned above, e.g. see Refs. [45,48,59]. In
this work, we follow Refs. [45,48] and adopt the energy
momentum tensor and spin tensor sharing the similar tensor
structure with Θμν

1 and Σλμν
1 , respectively. For other choices,

one can refer to Refs. [59,147,155] and references therein.
Following Refs. [45,48], the energy momentum tensor

and particle current can be decomposed as

Θμν¼ euμuν− ðpþΠÞΔμνþ2hðμuνÞ þπμνþ2q½μuν� þϕμν;

ð11Þ

jμ ¼ nuμ þ νμ; ð12Þ

where hμ, νμ, Π, and πμν stand for heat current, particle
diffusion, bulk viscous pressure, and shear stress tensor,
respectively, and the antisymmetric parts 2q½μuν� and ϕμν

are related to the spin effects. As for the rank-3 spin tensor
Σλμν, we have [45,48]

Σλμν ¼ uλSμν þ Σλμν
ð1Þ ; ð13Þ

where the spin density Sμν defined in Eq. (6) has six
independent degrees of freedom.
In this work, we follow the power counting scheme in

Refs. [48,62,64],

Sμν ∼Oð1Þ; ωμν ∼Oð∂Þ; Σλμν
ð1Þ ∼Oð∂Þ: ð14Þ

The spin density Sμν is chosen as the leading order in the
gradient expansion. It corresponds to the case in which
most of the particles in the system are polarized, i.e. the
order of Sμν is considered as the same as the one for the
number density n. In Refs. [45,59], the authors have
chosen a different power counting scheme, Sμν ∼Oð∂Þ,
ωμν ∼Oð∂Þ, Σλμν

ð1Þ ∼Oð∂2Þ.
Following [45,48], it is straightforward to get the entropy

production rate,

∂μS
μ
can ¼

�
hμ−

eþp
n

νμ
��

∂μ
1

T
þ 1

T
ðu · ∂Þuμ

�

þ 1

T
πμν∂μuν−

1

T
Πð∂ ·uÞþ 1

T
ϕμνð∂μuνþ 2ωμνÞ

þqμ

T

�
T∂μ

1

T
− ðu · ∂Þuμþ 4ωμνuν

�
þOð∂3Þ; ð15Þ

where Sμ
can is the entropy density current. The second law

of thermodynamics ∂μS
μ
can ≥ 0 can give us the first order

constitutive relations [45,48],

hμ −
eþ p
n

νμ ¼ κΔμν

�
1

T
∂νT − ðu · ∂Þuν

�
; ð16Þ

πμν ¼ 2η∂hμuνi; ð17Þ

Π ¼ −ζ∂μuμ; ð18Þ

qμ¼ λΔμν

�
1

T
∂νTþðu ·∂Þuν−4ωναuα

�
; ð19Þ

ϕμν ¼ 2γsΔμρΔνσð∂½ρuσ� þ 2ωρσÞ; ð20Þ

where the heat conductivity coefficient κ, shear viscosity
coefficient η, and bulk viscosity ζ also exist in conventional
hydrodynamics, while λ and γs are new coefficients
corresponding to the interchange of spin and orbital angular
momentum. The entropy principle also requires that the
transport coefficients,

κ; η; ζ; λ; γs > 0; ð21Þ

are positive. As the system approaches global equilibrium,
the entropy production rate in Eq. (15) tends to zero. It
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yields the well-known killing condition [41,165], which
causes the right-hand sides of Eqs. (16)–(20) to vanish.
Especially, we have qμ;ϕμν ¼ 0 such that the energy
momentum tensor Θμν is symmetric in the global equilib-
rium state. Note that, pointed out by Refs. [67,167], some
cross terms between the different dissipative currents may
also exist due to the Onsager relation, but here we neglect
them for simplicity.
Before ending this section, we would like to comment

on the heat flow hμ. Interestingly, when we set νμ ¼ 0 and
n ¼ 0, we find that one cannot fix the expression for heat
current hμ in the first order of gradient expansion. By
using Δνα∂μΘμν ¼ 0 and Eqs. (4) and (5), we find that
ð∂μ 1

T þ 1
T DuμÞ ∼Oð∂2Þ when νμ ¼ 0 and n ¼ 0. In that

case, the term hμð∂μ 1
T þ 1

T DuμÞ ∼Oð∂3Þ will be neglected
in the entropy production rate (15), i.e., we cannot
determine the expression of hμ by the entropy principle
there. A similar behavior was also observed in conven-
tional hydrodynamics [168,169].

III. UNSTABLE AND ACAUSAL MODES
IN THE FIRST ORDER SPIN HYDRODYNAMICS

In this section, we analyze the causality and stability for
the first order spin hydrodynamics. It is well known that the
conventional relativistic hydrodynamics in the Landau
frame up to the first order in gradient expansion are always
acausal, e.g., see Refs. [156,157] as the early pioneer works.
In linear modes analysis, one can consider the perturba-

tions δX to the hydrodynamical quantities X in the equi-
librium. By assuming the δX ∼ δX̃eiωt−ikx with δX̃ being
constant in space-time, one can solve the dispersion relation
ω ¼ ωðkÞ from the conservation equations. In the conven-
tional hydrodynamics, the causality condition is usually
given by [159,168,170–172]

lim
k→∞

����Reωk
���� ≤ 1; ð22Þ

where the condition (22) can also be written as
limk→∞ jRe ∂ω

∂k j ≤ 1 in some literature [159,171,172].
However, the above condition is insufficient to guarantee
the causality. We need an extra condition that [173]

lim
k→∞

����ωk
���� is bounded: ð23Þ

As pointed out by the early pioneer work [173], the
unbounded limk→∞ j ωk j gives the infinite propagating
speed of the perturbation, even if the ω is pure imaginary.
One simple example is the nonrelativistic diffusion equa-
tion, ∂tn −Dn∂

2
xn ¼ 0 with Dn being the diffusion con-

stant. It is easy to check that its dispersion relation gives
ω ¼ iDnk2, which satisfies condition (22) but does not
obey condition (23). Therefore, the perturbation in the

nonrelativistic diffusion equations has the unlimited propa-
gating speed, i.e. with any compact initial value for nðt0; xÞ,
the nðt0 þ Δt; xÞ at x → ∞ can still get the influence [174].
We emphasize that the conditions (22) and (23) are
necessary but not sufficient to guarantee that the theory
is casual [175–177]. One example is the transverse pertur-
bations of an Eckart fluid with shear viscous tensor, whose
dispersion relation satisfies the conditions (22) and (23), but
the velocity can exceed the speed of light [see Eqs. (47) and
(48) in Ref. [157] for the perturbation equations and the
propagating velocity].
The stability means that the imaginary part of ω ¼ ωðkÞ

must be positive for k ≠ 0, i.e.

ImωðkÞ > 0: ð24Þ

Note that the case of Imω ¼ 0 corresponds to the neutral
equilibrium, which means the equilibrium state is not
unique. In this work, we will not consider such special
cases, and we only consider condition (24) to study the
stability of spin hydrodynamics as in Ref. [70].
It is necessary to study the causality and stability for the

relativistic spin hydrodynamics in the first order. To see
whether the first order spin hydrodynamics can be casual or
not, we consider the linear modes analysis to the system, i.e.
we take the small perturbations on top of static equilibrium.
Following Refs. [156,157], the static equilibrium back-
ground is assumed to be an irrotational global equilibrium
state. We label the quantities with subscript (0) as those at
the global equilibrium state, while we use “δX” to denote
the small perturbations of the quantity X, e.g., eð0Þ and δe
stand for the energy density at the global equilibrium and
the small perturbations of energy density, respectively.
From now on, unless specified otherwise, we adopt the

Landau frame, and neglect the conserved charge current jμ.
We now consider the small perturbations on top of static

equilibrium. Not all of the perturbations are independent of
each other, and we can choose

δe; δui; δSμν; ð25Þ

as independent variables.
The variation of pressure δp and spin chemical potential

δωμν can be expressed as functions of δe and δSμν through

δp ¼ c2sδe; δω0i ¼ χbδS0i þ χ0ie δe;

δωij ¼ χsδSij þ χije δe; ð26Þ

where the speed of sound cs, and χb, χs,χ
μν
e are in general

the functions of thermodynamic variables. For simplicity,
we take cs, χb, χs,χ

μν
e as constants in the linear modes

analysis. Note that χμνe comes from the anisotropy of the
system. Under the assumption of an irrotational global
equilibrium, from Eq. (19) the spin chemical potential
vanishes ωμν

ð0Þ ¼ 0. For simplicity, we further choose
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Sμνð0Þ ¼ 0. The variation of the temperature δT can be

obtained by the thermodynamics relations, with the help
of Eqs. (4) and (5),

δT ¼ Tð0Þ
eð0Þ þ pð0Þ

�
δp − Tð0ÞS

μν
ð0Þδ

�
ωμν

T

��
¼ Tð0Þc2sδe

eð0Þ þ pð0Þ
:

ð27Þ

Next, we consider the variation of the conservation
equations ∂μδΘμν ¼ 0 and ∂λδJλμν ¼ 0, where the pertur-
bations δΘμν and δJλμν can be derived from the constitutive
relations in Eqs. (2), (11), and (16)–(20). It is straightfor-
ward to obtain the linearized equations for the independent
perturbations δe; δϑi; δSμν,

0 ¼
�
∂0 þ

1

2
λ0c2s∂i∂i þ 4λχ0ie ∂i

�
δe

þ
�
∂i þ

1

2
λ0∂i∂0

�
δϑi þDb∂iδS0i; ð28Þ

0 ¼
�
4γsχ

ij
e ∂i − c2s∂j −

1

2
c2sλ0∂0∂j − 4λχ0je ∂0

�
δe

þ ðγk − γ⊥ − γ0Þ∂j∂iδϑi

þ
�
∂0 −

1

2
λ0∂0∂0 þ ðγ⊥ þ γ0Þ∂i∂i

�
δϑj

−Db∂0δS0j þDs∂iδSij; ð29Þ

0¼ ðλ0c2s∂iþ 8λχ0ie Þδeþ λ0∂0δϑiþð2Db − ∂0ÞδS0i; ð30Þ

0¼8γsχ
ij
e δeþ2γ0∂iδϑj−2γ0∂jδϑiþð2Dsþ∂0ÞδSij: ð31Þ

Here we introduce the following shorthand notations:

Ds ≡ 4γsχs; Db ≡ 4λχb;

δϑi ≡ ðeð0Þ þpð0ÞÞδui; λ0 ≡ 2λ

eð0Þ þpð0Þ
;

γ0 ≡ γs
eð0Þ þpð0Þ

; γ⊥ ≡ η

eð0Þ þpð0Þ
; γk ≡

4
3
ηþ ζ

eð0Þ þpð0Þ
:

ð32Þ

In linear modes analysis, the perturbations are assumed
along the x direction only,

δe¼ δẽeiωt−ikx; δϑi ¼ δϑ̃ieiωt−ikx; δSμν ¼ δS̃μνeiωt−ikx;

ð33Þ

where δẽ, δϑ̃i, and δS̃μν are independent of space and time.
Inserting the perturbations in Eq. (33) into Eqs. (28)–(31)

yields

M1δX̃1 ¼ 0; ð34Þ

where

δX̃1 ≡ ðδẽ;δϑ̃x;δS̃0x;δϑ̃y;δS̃0y;δS̃xy;δϑ̃z;δS̃0z;δS̃xz;δS̃yzÞT;
ð35Þ

and

M1 ≡

0
BBBB@

M1 0 0 0

A1 M2 0 0

A2 0 M2 0

A3 0 0 M3

1
CCCCA; ð36Þ

with

M1 ≡

0
BB@

iωþ 1
2
λ0c2sk2 − 4ikλχ0xe 1

2
λ0kω − ik −ikDb

1
2
λ0c2skω − ikc2s − 4iωλχ0xe γkk2 þ iωþ 1

2
λ0ω2 −iωDb

ikλ0c2s þ 8λχ0xe iωλ0 2Db − iω

1
CCA; ð37Þ

M2≡

0
BB@
k2ðγ⊥þ γ0Þþ iωþ 1

2
λ0ω2 −iωDb −ikDs

iωλ0 2Db − iω 0

2ikγ0 0 2Dsþ iω

1
CCA;

ð38Þ

M3 ≡ 2Ds þ iω: ð39Þ

The off-diagonal blocks A1, A2, A3 in the matrix M1,
whose expressions are shown in Appendix A, and are

irrelevant to the following discussions. The nontrivial
solutions in Eq. (34) requires

0 ¼ detM1 ¼ detM1 · ðdetM2Þ2 · detM3: ð40Þ

From Eqs. (37)–(39), we find that Eq. (40) is a polynomial
equation for two variables ω and k. Solving this equation
gives the dispersion relations ω ¼ ωðkÞ.
The detM3 ¼ 0 gives a nonhydrodynamic mode,

ω ¼ 2iDs; ð41Þ
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which corresponds to the spin relaxation [45,59]. The
stability condition (24) requires that Ds > 0.
The dispersion relations solved from detM1 ¼ 0 and

detM2 ¼ 0 are lengthy and complicated, so here we only
discuss the relations in small k and large k limits to analyze
stability and causality. In the k → 0 limit, the dispersion
relations are

ω ¼ �cskþ
i
2
ðγk ∓ 4csλχ0xe D−1

b Þk2 þOðk3Þ; ð42Þ

ω ¼ ð−i�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dbλ

0 − 1
p

Þλ0−1 þOðkÞ; ð43Þ

ω ¼ iγ⊥k2 þOðk3Þ; ð44Þ

ω ¼ 2iDs þOðk2Þ; ð45Þ

where the dispersion relations (42) and (43) and (43)–(45)
are solved from detM1 ¼ 0 and detM2 ¼ 0, respectively.
The modes in Eqs. (42) and (44) correspond to the sound
and shear modes in the conventional hydrodynamics
[156,158,159,171], respectively. The stability condition
(24) for the dispersion relation in Eqs. (42)–(45) gives

Ds > 0; λ0 < 0; Db < −4csλγ−1k jχ0xe j ≤ 0: ð46Þ

However, conditions (46) contradict the entropy principle in
Eq. (21), i.e. λ0 ¼ 2λ=ðeð0Þ þ pð0ÞÞ > 0 defined in Eq. (32)
with λ > 0 and eð0Þ þ pð0Þ > 0.
In the k → ∞ limit, the dispersion relations become

ω ¼ −4iDbγ
−1
k λ0−1k−2 þOðk−3Þ; ð47Þ

ω ¼ −ic2=3s γ1=3k k4=3 þOðkÞ; ð48Þ

ω ¼ ð−1Þ1=6c2=3s γ1=3k k4=3 þOðkÞ; ð49Þ

ω ¼ ð−1Þ5=6c2=3s γ1=3k k4=3 þOðkÞ; ð50Þ

ω ¼ −2iDb þOðk−1Þ; ð51Þ

ω ¼ 2iDsγ⊥ðγ0 þ γ⊥Þ−1 þOðk−1Þ; ð52Þ

ω ¼ �ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ0−1ðγ0 þ γ⊥Þ

q
þOðk0Þ; ð53Þ

where the first four modes come from detM1 ¼ 0, and
others can be derived by detM2 ¼ 0. Obviously, Eq. (53)
contains an unstable mode.
On the other hand, we also find that in Eqs. (48)–(50)

jω=kj is unbounded, which violates the causality condition
(23). We also notice that Ref. [71] has also analyzed the
causality for the first order spin hydrodynamics in the small
k limit.

We find that the first order spin hydrodynamics is acausal
and unstable similar to the conventional relativistic hydro-
dynamics in the Landau frame.
Before ending this section, we comment on

condition (46). We notice that the dispersion relations in
Refs. [45,70,71] are different from ours in Eqs. (41)–(53).
Let us explain what happens here. The energy momentum
conservation equation Δμα∂νΘμν ¼ 0 gives the acceleration
equations for the fluid velocity,

ðu · ∂Þuμ ¼ 1

T
Δμν

∂νT þOð∂2Þ: ð54Þ

In Refs. [45,70,71], the authors have replaced ðu · ∂Þuμ in qμ
in Eq. (19) by Eq. (54) and gotten another expression for qμ:

qμ ¼ λ

�
2Δμν

∂νp
eþ p

− 4ωμνuν

�
þOð∂2Þ: ð55Þ

Although qμ in Eq. (55) (also in Refs. [45,70,71]) is
equivalent to our qμ in Eq. (19) up to the first order in
gradient expansion, we emphasize that these two qμ corre-
spond to different hydrodynamic frames and will lead to
different hydrodynamic equations (also see Refs. [168,178]
for the general discussion for these kinds of replace-
ment in relativistic hydrodynamics). Different from our
Eqs. (47)–(53), the dispersion relations computed with the
qμ in Eq. (55) are stable and satisfy causality condition (22)
in the rest frame under certain conditions. However, they do
not obey the causality condition (23) and the whole theory
becomes acausal, e.g., one mode in Refs. [45,70,71] is

ω ¼ iðγ0 þ γ⊥Þk2 as k → ∞; ð56Þ

and breaks the causality condition (23).
We now conclude that the first order spin hydrodynamics

at the static equilibrium state are unstable and acausal in the
rest frame. We do not need to discuss the stability and
causality of the first order spin hydrodynamics in moving
frames again.

IV. MINIMAL CAUSAL SPIN HYDRODYNAMICS

In the previous section, we have shown that the first order
spin hydrodynamics in Landau frame are acausal and
unstable. The acausal and unstable theory is not physical,
we therefore need to consider the second order spin hydro-
dynamics in gradient expansion. In this section we follow
the idea of minimal causal extension in conventional hydro-
dynamics and implement it to the spin hydrodynamics.
Up to now, there are two ways to establish causal

hydrodynamics. The first way is to add the second order
corrections to the dissipative terms, such as the Müller-
Israel-Stewart (MIS) theory [160,161] or other related
second order hydrodynamics. The MIS theory is a famous
causal conventional hydrodynamic theory up to Oð∂2Þ in
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gradient expansion. Here, we consider a relativistic dis-
sipative hydrodynamics with the bulk viscous pressure Π
only as an example to explain why the MIS theory can
be casual. The entropy current in MIS theory is assumed to
be [161,179,180]

Sμ ¼ suμ −
μ

T
νμ þ 1

T
hμ −

1

2T
β0uμΠ2 þ � � � ; ð57Þ

where the coefficient β0 > 0 and the ellipsis stands for
other possible Oð∂2Þ terms. Then the second law of
thermodynamics ∂μSμ ≥ 0 leads to

τΠ
d
dτ

Πþ Π ¼ −ζ∂μuμ þ � � � ; ð58Þ

where d=dτ≡ uμ∂μ, and τΠ ¼ ζβ0 > 0 is defined as
the relaxation time for the bulk viscous pressure. If
τΠ → 0, the hydrodynamic equations reduce to parabolic
equations and become acausal. With a finite τΠ, the
hydrodynamic equations are hyperbolic and can be causal
under certain conditions [158,159,171,181,182]. In linear
modes analysis, the dispersion relations from Eq. (58)
satisfy causal conditions (22) and (23) when the relaxation
time τΠ is sufficiently large. The second order constitutive
equations for shear viscous tensor πμν, heat flow hμ and heat
current νμ can be obtained in a similar way. These equations
represent evolution equations that incorporate the respective
relaxation time [161,179,180]. Apart from the MIS theory,
many other second order causal conventional hydrodynamic
theories, e.g., Baier-Romatschke-Son-Starinets-Stephanov
(BRSSS) theory [183] and the Denicol-Niemi-Molnar-
Rischke (DNMR) theory [184], have been established.
All of them contain the terms proportional to the relaxation
times and can be causal and stable under certain conditions
[183,185,186]. Following this discussion, we can say that
the key to recover the causality of the theory is to introduce
the terms proportional to relaxation time.
Different with the above second order theories,

the Bemfica-Disconzi-Noronha-Kovtun (BDNK) [168–
170,187–189] is a first order hydrodynamic theory in
general (fluid) frames. It roughly says that one can choose
some preferred frames to satisfy the causality and stability
conditions. Unfortunately, the commonly used Landau or
Eckart frame are not the preferred fluid frames in the
BDNK theory. Therefore, we will not discuss the spin
hydrodynamics in the BDNK theory in this work. We also
notice that recent studies in Ref. [190] discuss the casual
spin hydrodynamics in the first order similar to BDNK
theory.
In this work, we follow the basic idea in MIS, BRSSS,

and DNMR theories to construct a simplified causal spin
hydrodynamics. Instead of considering the complete sec-
ond order spin hydrodynamics, we only analyze the called
“minimal” extended second order spin hydrodynamics.
Here, the word minimal means that we concentrate on the

essential terms in the second order of gradient expansion to
get a causal theory and neglect the other terms which do
not contribute to the dispersion relations in the linear
modes analysis. As mentioned below Eq. (58), the key to
get the causal theory is to add the terms proportional to the
relaxation times similar to τΠdΠ=dτ, in the left-hand side
of Eq. (58). Following this idea, the constitutive equa-
tions (16)–(20) in the minimal extended causal spin
hydrodynamics can be rewritten as

τqΔμν d
dτ

qν þ qμ ¼ λðT−1Δμα
∂αT þDuμ − 4ωμνuνÞ;

ð59Þ

τϕΔμαΔνβ d
dτ

ϕαβ þϕμν ¼ 2γsΔμαΔνβð∂½αuβ� þ 2ωαβÞ; ð60Þ

τπΔα<μΔν>β d
dτ

παβ þ πμν ¼ 2η∂<μuν>; ð61Þ

τΠ
d
dτ

Πþ Π ¼ −ζ∂μuμ; ð62Þ

where τq; τϕ; τπ and τΠ are positive relaxation times for
qμ;ϕμν; πμν;Π, respectively. Equations (61) and (62) are
the same as those in the conventional hydrodynamics1

[158,159,171]. Recently, the second order spin hydro-
dynamics similar to MIS theory has been introduced in
Ref. [73] by using the entropy principle. Our minimal
causal spin hydrodynamics can be regarded as a simplified
version of it. We also notice that in Ref. [60] the authors
have proposed the same expressions for qμ and ϕμν as
presented in Eqs. (59) and (60) for minimal causal spin
hydrodynamics.
Let us give some physical interpretation for

Eqs. (59)–(62). The nonzero relaxation times imply that
the system requires time to transition from a nonequilibrium
state to an equilibrium state. In other words, the dissipative
fluxes Π, πμν, qμ, and ϕμν do not undergo sudden transitions
from nonzero to zero [161,179]. As an example, we consider
the general solution for Π [162]

Π ¼ Π0e−ðτ−τ0Þ=τΠ −
Z

τ

τ0

dτ0Gðτ; τ0Þζ∂μuμ; ð63Þ

where Π0 is constant, and the Green’s function is defined as
follows: Gðτ; τ0Þ ¼ 0 for τ < τ0, Gðτ; τ0Þ ¼ 1=ð2τΠÞ for
τ ¼ τ0, and Gðτ; τ0Þ ¼ 1

τΠ
e−ðτ−τ0Þ=τΠ for τ > τ0. The general

solutions for πμν, qμ, and ϕμν in Eqs. (59)–(61) share a
structure similar to that of Eq. (63). Now, we assume that
ζ∂μuμ jumps from nonzero to zero at time τ0. Because of the

1Another kind of minimal causal theory is discussed in
Refs. [162,191], in which the extended dissipative terms cannot
be determined from the entropy principle ∂μSμ ≥ 0.
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nonzero relaxation time τΠ, the solution (63) indicates thatΠ
cannot instantaneously switch from a nonzero (nonequili-
brium) value to zero (equilibrium). However, if τΠ ¼ 0, the
solution (63) reduces toΠ ¼ −ζ∂μuμ, and thenΠ undergoes
sudden change from nonzero to zero and it thus causes
acausality. Therefore, to obtain a physical theory, we
introduce the nonzero relaxation times and treat Π, πμν,
qμ, and ϕμν as dynamical variables in Eqs. (59)–(62). In
principle, we can also consider the nonzero Σλμν

ð1Þ in Eq. (13),
which might involve corrections similar to the relaxation
terms for qμ and ϕμν. In this work, we concentrate on the
simplest extension of the second-order terms and leave the
more general discussion for future research.

V. CAUSALITY AND STABILITY ANALYSIS
FOR MINIMAL CAUSAL SPIN HYDRODYNAMICS

In this section we analyze the causality and stability of
the minimal causal spin hydrodynamics. We use similar
notations in Sec. III, i.e., for a physical quantity X, we use
Xð0Þ and δX to denote the X at the global equilibrium state
and the small perturbations of the quantity X, respectively.
We adopt the independent perturbations as

δe; δui; δSμν; δΠ; δπij; ð64Þ

where δπii ¼ 0 and δπij ¼ δπji.
We first start from the spin hydrodynamics in the rest

frame, i.e., uμð0Þ ¼ ð1; 0Þ. The conservation equations
∂μδΘμν ¼ 0 and ∂λδJλμν ¼ 0 with the constitutive equa-
tions (59)–(62) read

0¼ ðλ0c2s∂iþ 8λχ0ie Þδeþ λ0∂0δϑiþð2Db − τq∂0∂0 − ∂0ÞδS0i;
ð65Þ

0¼8γsχ
ij
e δeþ2γ0ð∂iδϑj−∂

jδϑiÞþðτϕ∂0∂0þ∂0þ2DsÞδSij;
ð66Þ

0 ¼ τπ∂0δπ
ij þ δπij − γ⊥

�
∂
iδϑj þ ∂

jδϑi −
2

3
gij∂kδϑk

�
;

ð67Þ

0 ¼ τΠ∂0δΠþ δΠþ
�
γk −

4

3
γ⊥

�
∂iδϑ

i; ð68Þ

0 ¼ ∂0δeþ ∂iδϑ
i þ 1

2
∂0∂iδS0i; ð69Þ

0 ¼ −c2s∂jδeþ ∂0δϑ
j − ∂

jδΠþ ∂iδπ
ij −

1

2
∂0∂0δS0j

−
1

2
∂0∂iδSij; ð70Þ

where χb; χ
μν
e ; χs; Ds; Db; δϑi; λ0; γ0; γ⊥; γk are defined in

Eqs. (26) and (32) and we have used the spin evolution
equation (3) to replace δqi and δϕij by δSμν,

δqi ¼ 1

2
∂0δS0i; δϕij ¼ −

1

2
∂0δSij: ð71Þ

A. Zero modes for the spin hydrodynamics
with zero viscous effects

Following the conventional hydrodynamics, we consider
a fluid with the dissipative terms qμ and ϕμν only for
simplicity, i.e., we remove Eqs. (67) and (68) and take
δΠ ¼ 0 and δπij ¼ 0 in Eqs. (65), (66), (69), and (70). The
detail of the calculation is shown in Appendix C 1. The
causality condition requires

0 ≤
c2sð3λ0 þ 2τqÞ

2τq − λ0
≤ 1; 0 ≤

2γ0τq
ð2τq − λ0Þτϕ

≤ 1: ð72Þ

The stability conditions give

τq > λ0=2; Ds > 0; Db < 0; χ0xe ¼ 0: ð73Þ

The above conditions are derived from the small k and large
k limits only. We can implement the Routh-Hurwitz criterion
[168–170,188,192,193] to prove that the condition (73) is
sufficient and necessary for stability. More discussion can be
found in Appendix C 2.
Interestingly, there exist zero modes, i.e., ω ¼ 0 for all

k, coming from Eq. (70) with vanishing δΠ; δπij.
Generally, the zero modes in the linear mode analysis
do not mean the perturbations are not decaying with time.
It indicates that the nonlinear modes should be included in
Eq. (70) if δΠ ¼ δπij ¼ 0. To continue our linear mode
analysis, we need to set nonvanishing δΠ; δπij.

B. Causality analysis in the rest frame

Next, we substitute the plane wave solutions Eq. (33) and

δΠ ¼ δΠ̃eiωt−ikx; δπij ¼ δπ̃ijeiωt−ikx; ð74Þ

with δΠ̃; δπ̃ij, being constants, into Eqs. (65)–(70), and
obtain the matrix equation

M2δX̃2 ¼ 0; ð75Þ

where δX̃2 and M2 are given by

δX̃2 ≡ ðδẽ; δϑ̃x; δS̃0x; δΠ̃; δπ̃xx; δϑ̃y; δS̃0y; δS̃xy; δπ̃xy;
δϑ̃z; δS̃0z; δS̃xz; δπ̃xz; δS̃yz; δπ̃yy; δπ̃yzÞT; ð76Þ

and
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M2 ¼

0
BBBB@

M4 0 0 0

A4 M5 0 0

A5 0 M5 0

A6 0 0 M6

1
CCCCA; ð77Þ

with

M4 ¼

0
BBBBBBBBBB@

iω −ik 1
2
ωk 0 0

−ikc2s iω 1
2
ω2 −ik −ik

ikλ0c2s þ 8λχ0xe iωλ0 2Db þ τqω
2 − iω 0 0

0 −ik
�
γk − 4

3
γ⊥

	
0 iωτΠ þ 1 0

0 − 4
3
ikγ⊥ 0 0 iωτΠ þ 1

1
CCCCCCCCCCA
; ð78Þ

M5 ¼

0
BBBBB@

2ikγ0 0 −τϕω2 þ iωþ 2Ds 0

iω 1
2
ω2 − 1

2
ωk −ik

iωλ0 2Db þ τqω
2 − iω 0 0

−ikγ⊥ 0 0 iωτΠ þ 1

1
CCCCCA; ð79Þ

M6 ¼

0
BBB@

−τϕω2 þ iωþ 2Ds 0 0

0 iωτΠ þ 1 0

0 0 iωτΠ þ 1

1
CCCA: ð80Þ

The submatrices A4;5;6 in Eq. (77) are shown in
Appendix A. If there exist nonzero plane wave solutions,
we have

0 ¼ detM2 ¼ detM4 · ðdetM5Þ2 · detM6: ð81Þ

We observe the zero modes in Eq. (70) disappear. It
indicates that the current analysis is consistent with the
assumption of linear response. The dispersion relations
ω ¼ ωðkÞ are the solutions to the polynomial equation (81).
The detM6 ¼ 0 gives

ω ¼ i
τπ

; ð82Þ

ω ¼ 1

2τϕ
ði� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Dsτϕ − 1
p Þ; ð83Þ

which are nonpropagating modes or nonhydrodynamic
modes.
In the k → 0 limit, the detM4 ¼ 0 and detM5 ¼ 0 give

ω ¼ i
τπ

þOðkÞ; ð84Þ

ω ¼ i
τΠ

þOðkÞ; ð85Þ

ω ¼ �cskþ
i
2
ðγk ∓ 4csλχ0xe D−1

b Þk2 þOðk3Þ; ð86Þ

ω¼
�
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4Dbð2τq−λ0Þ−1

q �
ð2τq−λ0Þ−1þOðkÞ; ð87Þ

ω ¼ iγ⊥k2 þOðk3Þ; ð88Þ

ω ¼ 1

2τϕ
ði� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Dsτϕ − 1
p Þ þOðkÞ; ð89Þ

where Eqs. (84) and (87) are doubly degenerate. In the large
k limit, we have

ω ¼ −4iDbγ
−1
k λ0−1k−2 þOðk−3Þ; ð90Þ

ω ¼ 3iγk
τπð3γk − 4γ⊥Þ þ 4γ⊥τΠ

þOðk−1Þ; ð91Þ

ω ¼ c1kþ i
c2
c3

þOðk−1Þ; ð92Þ
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ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τqðγ0τπ þ γ⊥τϕÞ
ð2τq − λ0Þτπτϕ

s
kþ ic4 þOðk−1Þ; ð93Þ

ω ¼ i� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − 8Dbτq

p
2τq

þOðk−1Þ; ð94Þ

ω ¼ iðγ0 þ γ⊥Þ � c5
2ðγ0τπ þ γ⊥τϕÞ

þOðk−1Þ; ð95Þ

where the expressions of these k-independent coefficients
c1;2;3;4;5 are shown in Appendix B. The detM4 ¼ 0 gives
Eqs. (84)–(87) and (90)–(92), while detM5 ¼ 0 gives
Eqs. (84), (87)–(89), and (93)–(95).
Now, let us analyze the causality conditions. From

Eqs. (90)–(95), we find that all modes in minimal causal
spin hydrodynamics correspond to finite propagation speed
since jω=kj is bounded as k → þ∞. Imposing Eq. (22) on
the propagating modes in Eqs. (92) and (93), the causality
requires

0≤
b1=21 �ðb1−b2Þ1=2
6ð2τq − λ0ÞτπτΠ

≤ 1 and 0≤
2τqðγ0τπ þ γ⊥τϕÞ
ð2τq − λ0Þτπτϕ

≤ 1;

ð96Þ

where b1;2 are defined in Appendix B. The causality
conditions imply that the relaxation times τq; τπ; τΠ; τϕ
cannot be arbitrarily small, which is consistent with the
discussion in Sec. IV. We also notice that Eq. (96) reduces to
Eq. (C17) when we take a smooth limit τπ; τΠ; γ⊥; γk → 0.

C. Nontrivial stability conditions in rest frame

The requirement of stability is nontrivial. Inserting
Eq. (24) into Eqs. (82)–(95) yields

τq > λ0=2; ð97Þ

Ds > 0; Db < −4csλγ−1k jχ0xe j ≤ 0; ð98Þ

b1 > b2 > 0;
c2
c3

> 0: ð99Þ

The stability condition λ0 < 0 in Eq. (46) for the first
order spin hydrodynamics becomes λ0 < 2τq in Eq. (97).
When the relaxation time τq is sufficiently large, the
inequality λ0 < 2τq is satisfied, and then the previous
unstable modes are removed. We also notice that the
conditions (97) and (98) agree with Eq. (C18) except that

χ0xe ¼ 0. The strong constraint χ0xe ¼ 0 is released in
this case.
The satisfaction of the stability condition (98) relies on

the specific equation of state governing Sμν and ωμν. In
Ref. [70], it was found that the stability condition (98)
cannot be satisfied if δSμν ∼ T2δωμν [62,64]. In more
general cases, we can have

uμδωμν ¼ χ1uμδSμν; ð100Þ

ΔμαΔνβδωαβ ¼ ðχ1 þ χ2ÞΔμαΔνβδSαβ; ð101Þ

where χ1;2 are susceptibility corresponding to the S0i and Sij

in the rest frame. In this case, according to the definitions in
Eqs. (26) and (32), the stability condition (98) is satisfied if
χ2 > −χ1 > 0. Details can be found in Appendix D. Note
that the parameters χ1 and χ2 strongly depend on the
equation of state for Sμν and ωμν. To determine the equation
of state, we need the microscopic theories, and wewill leave
it for the future studies.
Another remarkable observation for the stability con-

ditions is that there exist unstable modes at finite k.
Equations (97)–(99) are the stability conditions in small
k and large k limits only. We still need to study the Imω in
the finite k region. One analytic method, named the Routh-
Hurwitz criterion [168–170,188,192,193], is usually
implemented to study the sign of Imω in the finite k
region. Unfortunately, detM2 cannot be reduced to the
form that Routh-Hurwitz criterion applies, thus, we ana-
lyze the behavior of Imω numerically instead of the Routh-
Hurwitz criterion. For a finite k, we find that Imω can be
negative, even if all the conditions (97)–(99) are satisfied.
In Fig. 1, we present an example to show that Imω can be
negative for finite k. We choose the parameters as

FIG. 1. We plot the imaginary parts of ωτΠ as a function of kτΠ
in three modes derived from detM4 ¼ 0. The parameters are
chosen as in Eq. (102), which satisfy the causality and stability
conditions equations (22)–(24). The solid, dashed and dotted
lines stand for three unstable modes.
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cs ¼
1ffiffiffi
3

p ; λχ0xe ¼ 1

8
; τπ ¼ 4τΠ;

τϕ ¼ 2τΠ; τq ¼ 10τΠ;

λ0 ¼ 1

2
τΠ; γk ¼

7

10
τΠ; γ⊥ ¼ 1

2
τΠ;

γ0 ¼ τΠ; Ds ¼
1

2τΠ
; Db ¼ −

1

2τΠ
: ð102Þ

It is straightforward to verify that the parameters in
Eq. (102) satisfy the stability and causality constraints
(22)–(24). We pick up three modes derived from
detM4 ¼ 0. We observe that the Imω at both small and
large k limits are positive, while it becomes negative when
kτΠ ∼ 0.5 and kτΠ ∼ 10.0, i.e., the modes are unstable in
the finite k region.
We comment on the unstable modes at finite

k. The unstable modes in the minimal causal spin
hydrodynamics are significantly different from those in
the conventional hydrodynamics. As discussed in Refs.
[158,159,168,170,171,188], the stability conditions
obtained in k → 0 and k → þ∞ limits are sufficient to
ensure the stability at any real k. However, it looks failed
in minimal causal spin hydrodynamics. It implies that the
conditions (97)–(99) are necessary but may not be
sufficient. At last, it is still unclear whether the unstable
modes at finite k indicate the fluid becomes unstable
or not.

D. Causality and stability analysis for extended
qμ and ϕμν

In principle, we can introduce the coupling terms for Π,
πμν, qμ, and ϕμν on the right-hand side of Eqs. (59)
and (60). These terms will alter the linearized hydro-
dynamic equations and then the causality and stability
conditions can be changed. In the current work, as the
first step, we focus on the simplest coupling between
qμ and ϕμν,

τqΔμν d
dτ

qν þ qμ ¼ λðT−1Δμν
∂νT þ uν∂νuμ − 4uνωμνÞ

þ g1Δμν
∂
ρϕνρ; ð103Þ

τϕΔμαΔνβ d
dτ

ϕαβ þ ϕμν ¼ 2γsΔμαΔνβð∂½αuβ� þ 2ωαβÞ
þ g2ΔμαΔνβ

∂½αqβ�; ð104Þ

where g1;2 are new transport coefficients describing the
coupling between qμ and ϕμν. For more general coupling
terms, one can refer to Ref. [73].
Following the same method, Eqs. (65) and (66) become

0 ¼ ðλ0c2s∂i þ 8λχ0ie Þδeþ λ0∂0δϑi

þ ð2Db − τq∂0∂0 − ∂0ÞδS0i − g1∂j∂0δSij; ð105Þ

0 ¼ 8γsχ
ij
e δeþ 2γ0ð∂iδϑj − ∂

jδϑiÞ
þ ðτϕ∂0∂0 þ ∂0 þ 2DsÞδSij

þ 1

2
g2∂i∂0δS0j −

1

2
g2∂j∂0δS0i: ð106Þ

We first consider the cases without viscous effects. The
causality condition (72) becomes

0 ≤
c2sð3λ0 þ 2τqÞ

2τq − λ0
≤ 1; 0 ≤

m
4ð2τq − λ0Þτϕ

≤ 1; ð107Þ

where m is defined in Eq. (B12). While the stability
condition (73) is changed to

τq > λ0=2; Ds > 0; Db < 0;

χ0xe ¼ 0; m > 8γ0
�

2

2τq − λ0
þ 1

τϕ

�
−1
: ð108Þ

Details can be found in Appendix C 3. We implement the
Routh-Hurwitz criterion [168–170,188,192,193] again to
prove that these conditions (108) are sufficient and neces-
sary for stability. Details for the proof can be found in
Appendix C 4. Similar to Sec. VA, we still find the zero
modes coming from Eq. (70).
Therefore, we need to consider the nonvanishing viscous

effects. Now, the submatrix M5 shown in Eq. (79) is
replaced with

M5 ¼

0
BBBBB@

2ikγ0 − 1
4
g2ωk −τϕω2 þ iωþ 2Ds 0

iω 1
2
ω2 − 1

2
ωk −ik

iωλ0 2Db þ τqω
2 − iω g1ωk 0

−ikγ⊥ 0 0 iωτΠ þ 1

1
CCCCCA; ð109Þ
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while other submatrices are unaffected by g1 and g2.
Equations (93)–(95) become

ω¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fþ f0

8ð2τq − λ0Þτπτϕ

s
kþ i

fþ f0

4ð2τq − λ0Þτπτϕ
c6 þOðk−1Þ;

ð110Þ

ω¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f − f0

8ð2τq − λ0Þτπτϕ

s
kþ i

f − f0

4ð2τq − λ0Þτπτϕ
c7 þOðk−1Þ;

ð111Þ

ω ¼ �4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−DbDs

g1g2

s
k−1 þ 4i

½Dsγ⊥ −Dbðγ⊥ þ γ0Þ�
g1g2γ⊥

k−2

þOðk−3Þ; ð112Þ

where the definitions of f; f0; c6, and c7 are defined in
Appendix B.
From these new dispersion relations, we obtain causality

conditions,

0 ≤
b1=21 � ðb1 − b2Þ1=2
6ð2τq − λ0ÞτπτΠ

≤ 1 and 0 ≤
f� f0

8ð2τq − λ0Þτπτϕ
≤ 1;

ð113Þ

which reproduce Eq. (96) when g1, g2 → 0.
Similarly, the stability conditions are given by

τq −
λ0

2
> 0; ð114Þ

Ds > 0; −4csλγ−1k jχ0xe j −Db > 0; ð115Þ

b1 > b2 > 0;
c2
c3

> 0; ð116Þ

g1g2 > 0; f > 0; f0 > 0; ð117Þ

Rec6 > 0; Rec7 > 0: ð118Þ

Unfortunately, we find that the extended qμ and ϕμν cannot
remove the unstable modes at finite k coming from
detM4 ¼ 0. We choose the parameters satisfying the cau-
sality conditions (113) and stability conditions (114)–(118),
and consider the influence on dispersion relations of g1, g2.
For simplicity, we choose the parameters as the same as in
Eq. (102) with ðg1=τΠ; g2=τΠÞ ¼ ð0.0; 0.0Þ; ð2.0; 0.1Þ;
ð6.0; 0.1Þ; ð6.0; 0.05Þ. We find that one modes from
detM5 ¼ 0 becomes unstable at finite k with
ðg1=τΠ; g2=τΠÞ ¼ ð6.0; 0.1Þ; ð6.0; 0.05Þ as shown in Fig. 2.
As a brief summary, the extended qμ and ϕμν can modify

the causality and stability conditions, but cannot remove

the zero modes when we turn off other dissipative effects.
The unstable modes at finite k cannot be cured by the
extended qμ and ϕμν.

E. Causality and stability in moving frames

Let us briefly discuss the causality and stability of the
minimal causal spin hydrodynamics in moving frames.
For the causality in a moving frame, we refer to the studies

in Refs. [168,176,177]. The authors in Refs. [168,176,177]
have studied the dispersion relations at the large k limit in
moving frames and demonstrate that the system is causal in
moving frames if it is causal in the rest frame. Thus, the
minimal causal spin hydrodynamics is causal in moving
frames when the causality condition (96) in the rest frame is
satisfied.
For the stability, it has also been proved that if a causal

theory is unstable in the rest frame, then it is also unstable in
moving frames (see Theorem 2 of Ref. [194]).We now apply
this theorem to the minimal causal spin hydrodynamics.
If the equation of state gives δωμν ¼ χ1δSμν with constant
χ1, the minimal causal spin hydrodynamics will be unstable
in moving frames since it has unstable modes in the rest
frame. For more general cases, the stability of the theory in
both moving frames and the rest frame depends on the
equation of state for Sμν and ωμν.
In summary, the minimal causal spin hydrodynamics is

causal in any reference frame when Eq. (96) is fulfilled.
Hence, we have solved the problem of acausality by
introducing the minimal causal spin hydrodynamics.
However, the stability of minimal causal spin hydrody-
namics remains unclear. Our findings indicate that the
validity of the stability condition (98) is highly contingent
upon the equation of state governing spin density and spin
chemical potential. Moreover, we also find that the stability

FIG. 2. Imaginary parts of ωτΠ as a function of kτΠ in one mode
derived from detM5 ¼ 0. The green solid, red dashed, blue dash-
dotted and brown dotted lines stand for the results with
ðg1=τΠ; g2=τΠÞ ¼ ð0.0; 0.0Þ; ð2.0; 0.1Þ; ð6.0; 0.1Þ; ð6.0; 0.05Þ.
Other parameters are also chosen as in Eq. (102).
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conditions (97)–(99) obtained at k → 0 and k → þ∞ are
necessary but not sufficient.

VI. CONCLUSION

In this work, we investigate the linear causality and
stability of the spin hydrodynamics proposed in
Refs. [45,48].
In linear modes analysis, we consider perturbations to the

spin hydrodynamics near the static equilibrium. We obtain
the dispersion relations ω ¼ ωðkÞ and analyze all of the
possible modes. The results show the stability condition
(46) cannot be fulfilled. Moreover, the value of jω=kj in
Eqs. (48)–(50) is unbounded, which violates the causality
condition (23). In Refs. [45,70,71], the expression of qμ is
modified by using the equation of motion for the fluid. We
emphasize that the first order spin hydrodynamics in
Refs. [45,70,71] are still acausal since one mode shown
in Eq. (56) breaks the causality condition (23). We conclude
that the spin hydrodynamics in the first order of gradient
expansion are acausal and unstable.
We then follow the basic idea in MIS, BRSSS, and

DNMR theories and consider the minimal causal spin
hydrodynamics. The constitutive equations (16)–(20) in a
minimal extended causal spin hydrodynamics are replaced
by Eqs. (59)–(62). One can view it as a natural extension of
the first order spin hydrodynamics or a simplified version of
the complete second order spin hydrodynamics [73]. We
investigate the causality and stability for this minimal causal
spin hydrodynamics. We analyze the causality and stability
for dissipative fluids with qμ and ϕμν only and find the zero
modes in the linear modes analysis. This suggests that linear
mode analysis is inadequate in this case. Therefore, we
consider dissipative spin fluids with shear viscous tensor
and bulk viscous pressure.
For causality, we find that the modes with infinite speed

disappear and all modes are causal in the rest frame if the
conditions in Eq. (96) are fulfilled. Following the statement
in Refs. [168,176,177], we comment that the minimal causal
spin hydrodynamics are causal in any reference frame when
the conditions (96) are fulfilled.
For the stability, although we obtain the stability con-

ditions in Eqs. (97)–(99) from the constraints in the k → 0

and k → þ∞ limits, the stability of the theory in both
moving frames and the rest frame remains unclear. Two
kinds of problems can lead to instabilities. The first one is
related to stability condition (98). Interestingly, we prove
that the coefficients Ds, Db do not obey the stability
condition (98) if the equation of state Sμν ∼ T2ωμν is
adopted. In more general cases, the fulfillment of the
stability condition (98) hinges on the specific equations

of state. One has to assess the condition (98) on a case-by-
case basis. Surprisingly, different with the conventional
hydrodynamics, we find that the stability condition (24)
breaks at finite k as shown in Fig. 1. It implies that the
conditions (97)–(99) are necessary but may not be
sufficient.
We also considered the extended qμ and ϕμν, in which

the qμ and ϕμν are coupled in the second order constitutive
equations. The causality and stability conditions are modi-
fied in this case. However, in dissipative fluids with qμ and
ϕμν only the zero modes cannot be removed. The unstable
modes at finite wavelength are still there.
We conclude that the spin hydrodynamics in the first

order of gradient expansion, proposed in Refs. [45,48], are
always acausal and unstable. The minimal causal extension
of it makes the theory be causal in the sense of Eqs. (22)
and (23). However, the linear stability of the minimal causal
spin hydrodynamics remains unclear. The studies beyond
the linear modes analysis may provide us a better and clear
answer to the problem of stability.
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APPENDIX A: OFF-DIAGONAL SUBMATRICES
IN EQS. (36) AND (77)

In this appendix, we list all of the off-diagonal subma-
trices introduced in Eqs. (36) and (77):

A1 ≡

0
BBB@

−4iðωλχ0ye þ kγsχ
xy
e Þ 0 0

8λχ0ye 0 0

8γsχ
xy
e 0 0

1
CCCA;

A2 ≡

0
BBB@

−4iðωλχ0ze þ kγsχxze Þ 0 0

8λχ0ze 0 0

8γsχ
xz
e 0 0

1
CCCA; ðA1Þ
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A3 ¼
�
8γsχ

yz
e ; 0; 0

	
; A4 ¼

0
BBB@

8γsχ
xy
e 0 0 0 0

0 0 0 0 0

8λχ0ye 0 0 0 0

0 0 0 0 0

1
CCCA; A5 ¼

0
BBB@

8γsχ
xz
e 0 0 0 0

0 0 0 0 0

8λχ0ze 0 0 0 0

0 0 0 0 0

1
CCCA; ðA2Þ

A6 ¼

0
BBB@

2γsχ
yz
e 0 0 0 0

0 2
3
ikγ⊥ 0 0 0

0 0 0 0 0

1
CCCA: ðA3Þ

APPENDIX B: DEFINITIONS OF COEFFICIENTS

The coefficients introduced in Eqs. (90)–(95) are defined as follows:

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1=21 � ðb1 − b2Þ1=2
6ð2τq − λ0ÞτπτΠ

s
; or −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1=21 � ðb1 − b2Þ1=2
6ð2τq − λ0ÞτπτΠ

s
; ðB1Þ

c2 ¼ −3c41½2τπτΠ þ ð2τq − λ0Þðτπ þ τΠÞ� þ 48c31λχ
0x
e τπτΠ − 3c2sγkλ0 þ c21f6γkτq þ ð6γk − 8γ⊥Þτπ

þ 8γ⊥τΠ þ 3c2s ½2τπτΠ þ ð3λ0 þ 2τqÞðτπ þ τΠÞ�g − 8c1λχ0xe ½ð3γk − 4γ⊥Þτπ þ 4γ⊥τΠ�; ðB2Þ

c3 ¼ −2c2sλ0½ð3γk − 4γ⊥Þτπ þ 4γ⊥τΠ� − 18c41ð2τq − λ0ÞτπτΠ þ 4c21½3c2sð3λ0 þ 2τqÞτπτΠ
þ 2ð3γk − 4γ⊥Þτqτπ þ 8γ⊥τqτΠ�; ðB3Þ

c4 ¼
γ⊥½τqð2τq − λ0Þ þ λ0τπ�τ2ϕ þ γ0τ2π½τqð2τq − λ0Þ þ λ0τϕ�

2ð2τq − λ0Þτqτπτϕðγ0τπ þ γ⊥τϕÞ
;

ðB4Þ

c5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Dsγ⊥ðγ0τπ þ γ⊥τϕÞ − ðγ0 þ γ⊥Þ2

q
; ðB5Þ

where

b1 ¼ f8γ⊥τqτΠþ τπ½2τqð3γk− 4γ⊥Þþ 3τΠc2sð3λ0 þ 2τqÞ�g2;
ðB6Þ

b2 ¼ 12c2sλ0ð2τq − λ0ÞτπτΠ½τπð3γk − 4γ⊥Þ þ 4γ⊥τΠ�: ðB7Þ

The coefficients used in Eqs. (110)–(112) are given by

f ¼ mτπ þ 8γ⊥τqτϕ; ðB8Þ

f0 ¼ f−32g1g2γ⊥ð2τq − λ0Þτπτϕ þ ðmτπ þ 8γ⊥τqτϕÞ2g1=2;
ðB9Þ

c6 ¼ −
1

ðf02 þ fd1=2Þ ½mτπð2τq − λ0Þðτϕ − τπÞ þ 8γ⊥τqτϕðτq − τπÞðλ0 − 2τϕÞ þ 16γ0τ2πτϕð2τq − λ0Þ

−f0ð2τq − λ0Þðτπ þ τϕÞ þ 2τπτϕð−mτπ − 8γ⊥λ0τϕ þ 8γ0τ2q − f0Þ�; ðB10Þ

c7 ¼ −
c72
c71

; ðB11Þ

where

m ¼ 2g1g2 þ 8g1γ0 þ g2λ0 þ 8γ0τq; ðB12Þ

c71 ¼ −4g21ðg2 þ 4γ0Þ2τ2π þ ½g2λ0τπ þ 8τqðγ0τπ þ γ⊥τϕÞ�ð−g2λ0τπ − 8γ0τqτπ − 8γ⊥τqτϕ þ d1=2Þ
− 2g1τπf2g22λ0τπ þ g2½8γ0ðλ0 þ 2τqÞτπ þ 16γ⊥λ0τϕ − 16γ⊥τqτϕ − d1=2�− 4γ0ð16γ0τqτπ þ 16γ⊥τqτϕ − d1=2Þg; ðB13Þ
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c72 ¼ −f0ð2τq − λ0Þðτπ þ τϕÞ þmτπð2τq − λ0Þðτπ − τϕÞ − 16γ0τ2πτϕð2τq − λ0Þ − 8γ⊥τqτϕð2τq − λ0Þðτπ − τϕÞ
þ τπτϕð−2f0 þ 2mτπ − 16γ⊥τqτϕ þ 16γ⊥λ0τϕÞ; ðB14Þ

d ¼ 4g21ðg2 þ 4γ0Þ2τ2π þ ½g2λ0τπ þ 8τqðγ0τπ þ γ⊥τϕÞ�2 þ 4g1τπ½g22λ0τπ þ 4g2γ0ðλ0 þ 2τqÞτπ
þ 8g2γ⊥ðλ0 − τqÞτϕ þ 32γ0τqðγ0τπ þ γ⊥τϕÞ�: ðB15Þ

APPENDIX C: CAUSALITY AND STABILITY
OF THE MINIMAL CAUSAL SPIN

HYDRODYNAMICS WITH qμ AND ϕμν ONLY

In this appendix, we study the causality and stability of
minimal causal spin hydrodynamics, considering only qμ

and ϕμν. We will discuss two different cases. We name the
system in which qμ and ϕμν are not coupled, as depicted in
Eqs. (59) and (60), as case I. Conversely, we name the
system in which qμ and ϕμν are coupled, as described by
Eqs. (103) and (104), as case II.

1. Analysis for the case I

We let δΠ ¼ δπij ¼ 0 in Eqs. (65), (66), (69), and (70)
and remove Eqs. (67) and (68). Then we substitute the
plane wave solutions Eq. (33) into Eqs. (65), (66), (69),
and (70) and derive

M0
2δX̃

0
2 ¼ 0; ðC1Þ

where δX̃0
2 and M0

2 are given by

δX̃0
2 ≡ ðδẽ; δϑ̃x; δS̃0x; δϑ̃y; δS̃0y; δS̃xy; δϑ̃z; δS̃0z; δS̃xz; δS̃yzÞT;

ðC2Þ

and

M0
2 ≡

0
BBBB@

M0
4 0 0 0

A0
4 M0

5 0 0

A0
5 0 M0

5 0

A0
6 0 0 M0

6

1
CCCCA; ðC3Þ

with

M0
4 ¼

0
BBB@

iω −ik 1
2
ωk

−ikc2s iω 1
2
ω2

λ0c2sikþ 8λχ0xe λ0iω 2Dbþ τqω
2− iω

1
CCCA; ðC4Þ

M0
5 ¼

0
BBB@

iω 1
2
ω2 − 1

2
ωk

λ0iω 2Db þ τqω
2 − iω 0

2γ0ik 0 −τϕω2 þ iωþ 2Ds

1
CCCA;

ðC5Þ

M0
6 ¼ −τϕω2 þ iωþ 2Ds: ðC6Þ

The off-diagonal matrices A0
4;5;6 are given by

A0
4 ≡

0
B@

0 0 0

8λχ0ye 0 0

8γsχ
xy
e 0 0

1
CA; A0

5 ≡
0
B@

0 0 0

8λχ0ze 0 0

8γsχ
xz
e 0 0

1
CA;

A0
6 ¼

�
8γsχ

yz
e ; 0; 0

	
: ðC7Þ

The dispersion relations ω ¼ ωðkÞ are derived from

detM0
2 ¼ detM0

4 · ðdetM0
5Þ2 · detM0

6 ¼ 0: ðC8Þ

We find that there exist two zero modes coming from the
equation detM0

5 ¼ 0. Now, let us focus on the nonzero
modes. The detM0

6 ¼ 0 gives two nonhydrodynamic
modes

ω ¼ 1

2τϕ
ði� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Dsτϕ − 1
p Þ: ðC9Þ

From detM0
4 ¼ 0 and detM0

5 ¼ 0, we obtain the dispersion
relation in the small k limit,

ω ¼ �csk ∓ 2icsλχ0xe D−1
b k2 þOðk3Þ; ðC10Þ

ω¼
�
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4Dbð2τq−λ0Þ−1

q �
ð2τq−λ0Þ−1þOðkÞ; ðC11Þ

ω ¼ 1

2τϕ
ði� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Dsτϕ − 1
p Þ þOðkÞ; ðC12Þ

and, in the large k limit,

ω ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sð3λ0 þ 2τqÞ

2τq − λ0

s
þ 4iλ0

ð2τq − λ0Þð2τq þ 3λ0Þ

∓ 8λχ0xe
cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλ0 − 2τqÞð3λ0 þ 2τqÞ
p þOðk−1Þ; ðC13Þ

ω ¼ i� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − 4Dbð2τq þ 3λ0Þp

2τq þ 3λ0
þOðk−1Þ; ðC14Þ
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ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γ0τq
ð2τq − λ0Þτϕ

s
kþ i

½τqð2τq − λ0Þ þ λ0τϕ�
2τqτϕð2τq − λ0Þ þOðk−1Þ;

ðC15Þ

ω ¼ i� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − 8Dbτq

p
2τq

þOðk−1Þ: ðC16Þ

The causality conditions (22) and (23) require

0 ≤
c2sð3λ0 þ 2τqÞ

2τq − λ0
≤ 1; 0 ≤

2γ0τq
ð2τq − λ0Þτϕ

≤ 1; ðC17Þ

which implies that the relaxation times τq; τϕ cannot be
arbitrarily small. It is consistent with the discussion
in Sec. IV.
The stability condition (24) leads to

τq > λ0=2; Ds > 0; Db < 0; χ0xe ¼ 0; ðC18Þ

where χ0xe ¼ 0 comes from the stability of the sound mode
(C10). Although the conditions in Eq. (C18) are derived
from the small k and large k limits only, we can implement
the Routh-Hurwitz criterion [168–170,188,192,193] to
prove that the conditions (C18) are sufficient and necessary
for stability, i.e., if (C18) are satisfied, then Imω > 0 for all
k ≠ 0. Details for the proof are given below.

2. Condition (C18) is sufficient and necessary
for the stability

As mentioned, we have derived the stability condition
(C18) from the linear modes analysis in small and large
k limits only. Now, we implement the Routh-Hurwitz
criterion [168–170,188,192,193] to prove that the condition
(C18) guarantees stability for all real nonzero k.
We only need to prove that the nonzero modes derived

from detM0
4 ¼ 0 and detM0

5 ¼ 0 satisfy Imω > 0 for all k.
First, we discuss the modes coming from the detM0

4 ¼ 0.
The detM0

4 ¼ 0 gives

a0ω4 − ia1ω3 − a2ω2 þ ia3ωþ a4 ¼ 0; ðC19Þ

with

a0 ¼
1

2
ð2τq − λ0Þ;

a1 ¼ 1;

a2 ¼
1

2
c2sk2ð3λ0 þ 2τqÞ − 2Db;

a3 ¼ c2sk2;

a4 ¼ −2c2sDbk2: ðC20Þ

We redefine ω ¼ −iΔ and rewrite Eq. (C19) as

a0Δ4 þ a1Δ3 þ a2Δ2 þ a3Δþ a4 ¼ 0: ðC21Þ

Notice that the coefficients a0;1;2;3;4 are pure real. According
to the Routh-Hurwitz criterion [168–170,188,192,193], the
stability condition (24), i.e., Imω > 0 or ReΔ < 0, is
fulfilled for all nonzero k if and only if

ai > 0;

a1a2a3 − a21a4 − a0a23 > 0: ðC22Þ

When the conditions in Eq. (C18) are fulfilled, the first
inequality ai > 0 is automatically satisfied. The second
inequality can be expressed as λ0 ¼ 2λ=½eð0Þ þ pð0Þ� > 0,
which has already been guaranteed by entropy principle
(21). Thus, the modes derived from detM0

4 ¼ 0 are stable for
all k if condition (C18) is satisfied.
Second, we consider the nonzero modes derived from

detM0
5 ¼ 0. The detM0

5 ¼ 0 gives ω ¼ 0 or

a00ω
4 − ia01ω

3 − a02ω
2 þ ia03ωþ a04 ¼ 0; ðC23Þ

where

a00 ¼
1

2
τϕð2τq − λ0Þ;

a01 ¼ τϕ þ
1

2
ð2τq − λ0Þ;

a02 ¼ 1þDsð2τq − λ0Þ þ k2γ0τq − 2Dbτϕ;

a03 ¼ γ0k2 þ 2Ds − 2Db;

a04 ¼ −4DbDs − 2Dbγ
0k2: ðC24Þ

Similarly, the Routh-Hurwitz criterion provides the neces-
sary and sufficient conditions for Imω > 0 in Eq. (C23),

a0i > 0; ðC25Þ

a01a
0
2a

0
3 − a021 a

0
4 − a00a

02
3 > 0: ðC26Þ

Each a0i > 0 does not give new constraints for stability. We
now show that the second inequality holds for all k if the
conditions in Eq. (C18) are fulfilled. Define a new function
FðDb;Ds; kÞ,

FðDb;Ds; kÞ≡ a01a
0
2a

0
3 − a021 a

0
4 − a00a

02
3

¼ 4τ2ϕD
2
b þ

1

2
½8Dsð2τq − λ0Þτϕ þ GðkÞ�Db

þHðDs; kÞ; ðC27Þ

with

GðkÞ≡−ð2þ k2γ0λ0Þð2τq − λ0Þ− 2½2þ k2γ0ð3λ0 − 4τqÞ�τϕ;
ðC28Þ
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HðDs; kÞ≡ 1

2
ð2Ds þ k2γ0Þð2τq − λ0Þ

× ½1þDsð2τq − λ0Þ þ k2γ0τq�

þ 1

2
ð2Ds þ k2γ0Þð2þ k2γ0λ0Þτϕ: ðC29Þ

Since τq > λ0=2 in Eq. (C18), we have HðDs; kÞ > 0 for
any k and any Ds > 0.
Then, we discuss two cases. When

8Dsð2τq − λ0Þτϕ þ GðkÞ ≤ 0; ðC30Þ

we find FðDb;Ds; kÞ > 0 for any Db < 0. In another case,
8Dsð2τq − λ0Þτϕ þ GðkÞ > 0, i.e.,

Ds >
−GðkÞ

8ð2τq − λ0Þτϕ
; ðC31Þ

for each fixedDs > 0 and k, the function FðDb;Ds; kÞ gets
its minimal value

FðDb;Ds; kÞ ≥ FðDb;Ds; kÞjDb¼−½8Dsð2τq−λ0ÞτϕþGðkÞ�=ð16τ2ϕÞ

¼ 1

64τ2ϕ
ð2þ k2γ0λ0Þðλ0 − 2τq − 2τϕÞ2

× ½16τϕDs − 2 − k2γ0ðλ0 − 8τϕÞ�; ðC32Þ

at

Db ¼ −½8Dsð2τq − λ0Þτϕ þGðkÞ�=ð16τ2ϕÞ: ðC33Þ

Substituting Eq. (C31) into Eq. (C32) leads to

FðDb;Ds;kÞ≥
ð2þk2γ0λ0Þ2ðλ0−2τq−2τϕÞ2ð2τq−λ0 þ4τϕÞ

64ð2τq−λ0Þτ2ϕ
>0; ðC34Þ

where we have used τq > λ0=2 in Eq. (C18). Thus, the
nonzero modes derived from detM0

5 ¼ 0 are stable for all k
if the conditions in Eq. (C18) are fulfilled.
Therefore, the conditions in Eq. (C18) are sufficient and

necessary for the stability of fluids with qμ and ϕμν only.

3. Analysis for case II

We now consider a more general case where qμ and ϕμν

are coupled as shown in Eqs. (103) and (104). Here we
consider the qμ and ϕμν only and neglect other dissipative
terms for simplicity. In this case, M0

5 in Eq. (C5) should be
replaced with

M0
5 ¼

0
BBB@

iω 1
2
ω2 − 1

2
ωk

λ0iω 2Db þ τqω
2 − iω g1ωk

2γ0ik − 1
4
g2ωk −τϕω2 þ iωþ 2Ds

1
CCCA;

ðC35Þ

while the matrix M0
4 is the same as before. The dispersion

relations in Eqs. (C15) and (C16) become

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
4ð2τq − λ0Þτϕ

r
kþ 1

2
i

�
2

2τq − λ0
þ 1

τϕ
−
8γ0

m

�

þOðk−1Þ; ðC36Þ

ω ¼ 4γ0ði�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 −Dbmγ0−1

p
Þ

m
þOðk−1Þ; ðC37Þ

where m ¼ 2g1g2 þ 8g1γ0 þ g2λ0 þ 8γ0τq. We also notice
that the zero modes mentioned before cannot be solved by
introducing the coupling between qμ and ϕμν.
Imposing Eq. (22) to the propagating modes in Eqs. (92)

and (93), the causality conditions (C17) are replaced with

0 ≤
c2sð3λ0 þ 2τqÞ

2τq − λ0
≤ 1; 0 ≤

m
4ð2τq − λ0Þτϕ

≤ 1: ðC38Þ

Inserting Eq. (24) into the new dispersion relations, we
obtain the new stability conditions

τq > λ0=2; Ds > 0; Db < 0; χ0xe ¼ 0;

m > 8γ0
�

2

2τq − λ0
þ 1

τϕ

�
−1
: ðC39Þ

Similarly, we can still implement the Routh-Hurwitz
criterion to verify that the conditions in Eq. (C39) are
sufficient and necessary for stability.

4. Condition (C39) is sufficient and necessary
for the stability

Let us now prove that the condition (C39) ensures
Imω > 0 for all nonzero real k. Consider the nonzero
modes derived from detM0

5 ¼ 0. The detM0
5 ¼ 0 gives

a00ω
4 − ia01ω

3 − a02ω
2 þ ia03ωþ a04 ¼ 0; ðC40Þ

where
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a00 ¼
1

2
τϕð2τq − λ0Þ;

a01 ¼ τϕ þ
1

2
ð2τq − λ0Þ;

a02 ¼ 1þDsð2τq − λ0Þ þ 1

8
k2m − 2Dbτϕ;

a03 ¼ γ0k2 þ 2Ds − 2Db;

a04 ¼ −4DbDs − 2Dbγ
0k2: ðC41Þ

The necessary and sufficient conditions for Imω > 0 in
Eq. (C40) are

a0i > 0; ðC42Þ

a01a
0
2a

0
3 − a021 a

0
4 − a00a

02
3 > 0: ðC43Þ

The first conditions are automatically satisfied when we
have the constraints for stability. Then we need to analyze
whether Eq. (C43) is satisfied under the existing constraints.
Define a function FðDb;Ds; kÞ,

FðDb;Ds; kÞ≡ a01a
0
2a

0
3 − a021 a

0
4 − a00a

02
3

¼ FaD2
b þ FbDb þ Fc; ðC44Þ

where

Fa ≡ 4τ2ϕ;

Fb ≡
�
1

2
k2γ0ð2τq − λ0Þ þ ð4Ds þ 3k2γ0Þτϕ

�
ð2τq − λ0Þ − 1

8
ðmk2 þ 8Þð2τϕ þ 2τq − λ0Þ;

Fc ≡ 1

16
ð2Ds þ k2γ0Þf8Dsð2τq − λ0Þ2 þ ð2τq − λ0Þ½8þ k2ðm − 8γ0τϕÞ� þ 2ð8þ k2mÞτϕg

>
1

2
ð2Ds þ k2γ0Þf2τϕ þ ð2τq − λ0Þ½1þDsð2τq − λ0Þ�g > 0: ðC45Þ

When Fb < 0, i.e.,

Ds <
ðmk2 þ 8Þð2τϕ þ 2τq − λ0Þ

32ð2τq − λ0Þτϕ
−
k2γ0ð2τq − λ0Þ

8τϕ
−
3

4
k2γ0;

ðC46Þ

we get

FðDb;Ds; kÞ > Fð0; Ds; kÞ ¼ Fc > 0: ðC47Þ

In another case, Fb ≥ 0, i.e.,

Ds ≥
ðmk2 þ 8Þð2τϕ þ 2τq − λ0Þ

32ð2τq − λ0Þτϕ
−
k2γ0ð2τq − λ0Þ

8τϕ
−
3

4
k2γ0;

ðC48Þ

the function has its minimal value

FðDb;Ds; kÞmin ¼ FðDb;Ds; kÞjDb¼−Fb=ð2FaÞ

¼ −
ð2τϕ þ 2τq − λ0Þ2

1024τ2ϕ
f8þ k2½m − 4γ0ð2τq − λ0Þ�gf8þ k2½m − 4γ0ð2τq − λ0Þ� − 32k2τϕðγ0 þ 2DsÞg

≥
f8þ k2½m − 4γ0ð2τq − λ0Þ�g2ð2τϕ þ 2τq − λ0Þ3

1024τ2ϕð2τq − λ0Þ > 0; ðC49Þ

at

Db ¼ −
Fb

2Fa
; ðC50Þ

Ds ¼
ðmk2 þ 8Þð2τϕ þ 2τq − λ0Þ

32ð2τq − λ0Þτϕ
−
k2γ0ð2τq − λ0Þ

8τϕ
−
3

4
k2γ0:

ðC51Þ

Therefore, the nonzero modes are stable for all k if the
stability condition (C39) is satisfied.

APPENDIX D: DISCUSSIONS ON THE
STABILITY CONDITIONS (98)

Here, we discuss the stability conditions (98), i.e.,
Ds > 0, Db < 0.
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Let us consider an isotropic fluid at equilibrium, i.e., we
assume that there are not preferred directions induced by
spin and external fields. In this case, the variation of spin
chemical potential is

δωμν ¼ χμναβδSαβ þ χμνe δe; ðD1Þ

with a rank-4 tensor χμναβ and rank-2 tensor χμνe . We find
that χμναβ satisfies χμναβ ¼ −χνμαβ ¼ −χμνβα.
In an irrotational isotropic background fluid without any

external fields, any rank-n tensor can only be constructed
by uμ; gμν; ∂μ; ϵμναβ. Back to rank-4 tensor χμναβ, in the
linear modes analysis, we do not need to consider the part
in χμναβ proportional to space-time derivatives ∂

μ since
those terms in χμναβδSαβ becomes nonlinear and will be
dropped. The tensor ϵμναβ violates the reflection symmetry
and cannot be used there. According to the antisymmetric
properties of χμναβ, the only possible expression is

χμναβ¼ χ1
2
ðgμαgνβ−gμβgναÞþχ2

2
ðΔμαΔνβ−ΔμβΔναÞ; ðD2Þ

where χ1 and χ2 are scalars.
Substituting Eq. (D2) into Eq. (D1), we obtain

δωμν ¼ χ1δSμν þ χ2ΔμαΔνβδSαβ: ðD3Þ

One can also write it as

uμδωμν ¼ χ1uμδSμν; ðD4Þ

ΔμαΔνβδωαβ ¼ ðχ1 þ χ2ÞΔμαΔνβδSαβ: ðD5Þ

From the definitions in Eqs. (26) and (32), we then have

Ds ¼ 4γsðχ1 þ χ2Þ; Db ¼ 4λχ1: ðD6Þ

Since γs > 0; λ > 0, the stability condition (98), Ds > 0,
Db < 0, is equivalent to

χ2 > −χ1 > 0: ðD7Þ

The equation of state used in our previous works [62,64]
corresponds to χ2 ¼ 0 [see Eq. (17) of Ref. [62] and
Eq. (38) of Ref. [64]]. In that case, Eq. (D7) cannot be
satisfied and there exist unstable modes, although the
analytic solutions in Refs. [62,64] do not rely on it. For
general cases where χ2 ≠ 0, whether the stability condition
(98) Ds > 0, Db < 0 is satisfied depends on χ1, χ2, which
relates with the equation of state for Sμν and ωμν. To
determine the value of χ1, χ2, further investigations should
be done from the microscopic theory.
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