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Università degli Studi di Messina, I-98166 Messina, Italy
11INFN Sezione di Catania, I-95123 Catania, Italy

12Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
13Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47403, USA
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AI-supported algorithms, particularly generative models, have been successfully used in a variety
of different contexts. This work employs a generative modeling approach to unfold detector effects
specifically tailored for exclusive reactions that involve multiparticle final states. Our study demonstrates
the preservation of correlations between kinematic variables in a multidimensional phase space. We
perform a full closure test on two-pion photoproduction pseudodata generated with a realistic model in the
kinematics of the Jefferson Lab CLAS g11 experiment. The overlap of different reaction mechanisms
leading to the same final state associated with the CLAS detector’s nontrivial effects represents an ideal
test case for AI-supported analysis. Uncertainty quantification performed via bootstrap provides an
estimate of the systematic uncertainty associated with the procedure. The test demonstrates that GANs can
reproduce highly correlated multidifferential cross sections even in the presence of detector-induced
distortions in the training datasets, and provides a solid basis for applying the framework to real
experimental data.

DOI: 10.1103/PhysRevD.108.094030

I. INTRODUCTION

Photoproduction of two pions, with photon energies in
the few-GeV range, is an important process in hadron
spectroscopy. It has been widely used to address several
fundamental quests, such as the “missing baryons”

problem, and to demonstrate that multiparticle final states
are necessary to determine the spectrum of unstable excited
states. While copious data are available for single-pion
photoproduction, and the correspondent phenomenology is
well-understood, the addition of a third particle in the final
state makes the description of this reaction considerably
more complicated. At fixed photon energy, the unpolarized
single-pion photoproduction cross section is described by a
single independent variable, while for two pions three
additional variables are needed. At beam energies of a few
GeV, the highest statistics data sample is available from the
Jefferson Lab Hall B CLAS experiment g11 [1]. Even in
this case, some bins in the multidimensional space are
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unpopulated or subject to large statistical fluctuations. This
results in large uncertainties in extracting the underlying
reaction mechanisms.
The problem has been addressed by studying one or two

variables at a time, while integrating over the others. During
integration, correlations between variables, which in turn
contain relevant physics information, are partially lost,
making the results strongly model dependent. In this context,
generative models based on machine learning (ML), which
learn the original data distribution and create new so-called
synthetic data that mimic the original distribution, can
provide new opportunities for extracting the physics infor-
mation preserving correlations. Furthermore, these models
can provide another way to extract the ‘true’ values from
experimental data removing detector effects, with a pro-
cedure known as unfolding. The application of machine
learning (ML) for unfolding has gained significant attention
in recent years within the field of particle physics. A notable
method in this area has been proposed in Ref. [2], and has
been applied to several analyses [3–6]. In the present study,
we distinguish our work from previous investigations, such
as those mentioned in [2], by explicitly employing gener-
ative modeling techniques. Our research aligns in scope with
the work outlined in [7].
Recently, an event-level unfolding analysis using gen-

erative adversarial networks (GANs) in inclusive electro-
production was performed [8]. The analysis was able to
reconstruct accurately single-variable cross sections. Here,
we extend our analysis framework to a multiparticle final
state, demonstrating for the first time that the proposed
GAN based framework can be used to reproduce scattering
reactions in a higher-dimensional phase space. Specifically,
we optimize our ML analysis framework to the case of
two-pion photoproduction at CLAS g11 kinematics.
This study serves as an excellent testing ground for

evaluating the effectiveness of the ML analysis framework
in a highly nontrivial case. The presence of baryon and
meson resonances with diverse production mechanisms,
which overlap within a limited phase space, generate
intricate structures and correlations. Moreover, the CLAS
detector’s highly nonuniform response introduces addi-
tional complexities and distortions, adding another layer
of complication to the analysis. To test and validate the
framework, we generate Monte Carlo (MC) pseudodata
with a realistic model of two-pion photoproduction. We
produce a synthetic copy with an “unfolding” GAN trained
on pseudodata that incorporate detector effects through
GEANT simulations [9]. This would be equivalent to train
the GAN with experimental data. The detector effects are
unfolded using a “detector-simulation” GAN, independ-
ently trained on a second MC pseudodata sample generated
according to phase space and passed through the GEANT
model of the detector. We test the quality of the procedure
by a quantitative comparison between the generated MC
data and its synthetic copy. This closure test, based on MC

pseudodata, is a necessary step before applying our analysis
framework to experimental data.
The paper is organized as follows: in Sec. II we review

the importance of two-pion photoproduction in hadron
spectroscopy and provide a detailed description of the
g11 kinematics. In Sec. III we describe the MC framework
used to generate pseudodata and incorporate the CLAS
detector response. In Sec. IV we present the ML framework
used for reproducing the detector effects and unfold the
“true” distributions from the reconstructed pseudodata. The
GAN results are reported in Sec. V, where we compare
the generated events with the synthetic copy. Finally, in
Sec. VI we summarize the procedure and outline work in
progress to extend the current framework to the analysis of
real CLAS data from Jefferson Lab.

II. TWO-PION PHOTOPRODUCTION

A. The physics case

The ππN final state is one of the largest contributors to the
total photoproduction cross section off protons at center-of-
mass (CM) energiesW ≲ 2.5 GeV. Studies of this final state
have considerably extended the available information on the
spectrum of the excited states of the nucleon (N�) and their
photoexcitation amplitudes. The quantum numbers of these
resonances can be assessed by studying the correlations
between the invariant mass and the angular dependencies of
their decay products. Theoretical estimates based on phe-
nomenological approaches [10–14], continuum Schwinger
methods [13,14] as well as from first principles within
lattice QCD calculations [15], have predicted more states
than apparently observed in experiments (for reviews, see
Refs. [16–19]), which is referred to as the “missing baryons”
problem.
A strategy to improve the sensitivity to the most elusive

states is to impose consistency constraints by performing
combined analyses of several final states at once, with ππN
playing a pivotal role for the resonances heavier than
1.6 GeV. This allows one to disentangle process-dependent
nonresonant contributions, and extract the resonance
properties in a nearly model-independent manner [20].
Furthermore, combining photoproduction and electropro-
duction data has recently proven to be effective in iden-
tifying overlapping resonances with the same quantum
numbers, as in the case of the Nð1720Þ and N0ð1720Þ
states [21–23].
In the same reaction, by looking at the invariant mass

distribution of the ππ pair, one can study meson resonances,
such as the ρ or the f2ð1270Þ. While the properties of these
resonances are well-known, a detailed understanding of
their production mechanisms is still missing. At low W ≲
2 GeV one can study how each N� state contributes to the
meson production process. At higher energies, above the
N� resonance region, the reaction is well-described in terms
of Regge theory [24,25]. The two energy regimes are
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smoothly connected, making it nontrivial to study the
intermediate region rigorously. A formalism to do so has
been proposed recently for the production of single π or η
mesons [26,27]. The extension to two-pseudoscalar final
states requires having the full multidimensional depend-
ence under control [28]. In particular, a complete under-
standing of meson production mechanisms in the ππN final
state, where resonances are well-known, is necessary before
facing the more complicated ηπN and η0πN channels,
where exotic hadrons are expected to appear [29].

B. γp → π +π − p kinematics

Measurement of the three-body final state in two-pion
photoproduction represents a significant challenge to
experiment. Recently a large body of data on πþπ−p
photoproduction observables has become available from
measurements by the CLAS Collaboration, with W ≤
2.9 GeV [17,22,30–32]. For a given collision energy, the
differential cross section for this process depends on five
independent variables, which can be chosen to be the
invariant masses of the two pions, Mπþπ− , and the proton-
π− pair, Mpπ− , and three angles in the CM frame. Two of
the angles are the polar angle θπþ , with the z-axis along the
photon three-momentum, and the angle α½πþp�½π−p0� between
the plane containing the initial target proton p and πþ three-
momenta and the plane containing the π− and recoiling
proton p0 three-momenta. An equivalent choice would
replace θπþ with the invariant momentum transferred tπþ ,
defined as the difference squared between the photon and
πþ four-momenta. The fifth variable ϕ is the azimuthal
angle of π− with respect to the plane containing the photon
three-momentum and the polarization vector, and is rel-
evant only in experiments with polarized beam or target.
For unpolarized data, one can still define ϕ by pointing the
polarization vector in an arbitrary direction, resulting in a
ϕ-independent cross section. Other possible choices for
variables are Mpπþ (invariant mass of the proton-πþ pair),
tπ− (momentum transferred between photon and π−),
t (momentum transferred between target and recoil
protons), or cos θ (cosine of the angle between target
and recoil protons in the CM frame).
Multidimensional analyses are becoming standard, albeit

computationally difficult, in modern high statistics experi-
ments [33,34]. However, some specific reactions can suffer
from limited statistics. In particular, the direct extraction of
πþπ−p photoproduction events at a givenW value, on a 5D
grid (or 4D, if integrated over the angle ϕ) with a bin size
acceptable for physics analyses, is quite challenging. Even
the highest statistics πþπ−p photoproduction sample col-
lected with CLAS [22,30] results in a limited number of
counts in the 4D cells (typically < 10 events per cell). In
Ref. [22], theoretical curves were fitted to the marginal 1D
distributions, determined by integrating the acceptance-
and efficiency-corrected 5D distribution over the remaining
four variables. This procedure largely washes out the

correlations present in the original data, leading to a
significant loss of relevant information contained in the
joint distribution. In this paper we aim to overcome this
problem with ML techniques.
To illustrate this, in Fig. 1 we show two examples of 2D

distributions and their 1D projections, as measured in
CLAS g11 experiment without efficiency corrections [30].
From these distributions one immediately sees the presence
of intermediate resonances that appear as enhancements in
the invariant mass of the system in which they decay. For
example, the band at M2

pπþ ≃ 1.5 GeV2 corresponds to the
Δð1232Þ baryon resonance, which appears as an inter-
mediate unstable state in the reaction γp → Δþþπ− →
pπþπ−. The band centered at M2

πþπ− ≃ 0.6 GeV2 corre-
sponds instead to the ρð770Þ meson resonance, in the
reaction γp → pρ0 → pπþπ−. The two resonances are
clearly visible as bumps in the respective 1D projections.
However, looking at the 1D projections only, one can easily
miss the presence of a resonance if the relevant invariant
mass distribution is not explicitly considered; for example,
no peak is visible in the M2

pπ− invariant mass distribution
shown in the right panel of Fig. 1. This is an example of
loss of information that is contained in correlations.
Moreover, because of quantum interference, the production
of ρ0 and Δþþ are not independent processes, and it is
impossible to associate one event exclusively with either
process. This interference appears in the correlations
between the invariant masses, and can be partially lost
in the 1D projections.

FIG. 1. Examples of 2D normalized yield distributions and
their 1D projections measured in CLAS g11 experiment (before
unfolding detector effects) [30]. Plots show invariant mass
distributions for the yields M2

π−πþ versus M2
pπþ (left) and

M2
pπ− versus M2

pπþ (right). For each 2D plot, the correspondent
1D projections are shown on top and right. The distributions are
dominated by the prominent contributions from Δþþ and ρ
resonances, which appear as bands in the 2D distributions and
peaks in the appropriate 1D projection. In particular, the Δþþ
appears as a vertical band in the 2D plots, and as a peak in the 1D
M2

pπþ projection. The ρ is the horizontal band in the left 2D plot,
the diagonal band in the right 2D plot, and the peak in the 1D
M2

πþπ− yields. From the right plots one can see that, choosing
M2

pπþ andM2
pπ− as independent variables, the existence of the ρ is

lost if one studies the 1D projections only.
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C. Two-pion photoproduction with CLAS

The CLAS spectrometer in Hall B at Jefferson Lab was
based on a ∼1.25 T toroidal magnet which bends charged
particles produced in the hadronic interaction along the polar
angles θlab (the z-axis along the photon beam), while the
preserving azimuthal angles ϕlab. The polarity of the field
determined if positive/negative charges were bent towards/
away from the beam line into the acceptance of the detector.
A system of three layers of multiwires drift chambers [35]
provided momentum information with the resolution, σp=p,
ranging from 0.5% to 1.0%, depending on the kinematics.
Charged hadron identification was obtained by time-of-flight
scintillators [36]. Photoproduction experiments were con-
ducted with a bremsstrahlung photon beam produced by the
CEBAF continuous electron beam impinging on 8 × 10−5

radiation lengths thickness gold foil. A bremsstrahlung
tagging system [37] with a photon energy resolution of 0.1%
was used to measure the photon energy in each recorded
event. The target cell was a 4 cm in diameter and 40 cm long
Mylar cylinder, filled with liquid hydrogen at 20.4 K.
The experimental conditions reported in this paper, and

simulated in the framework described in Sec. III, corre-
spond to the g11 experiment that ran in CLAS in 2004.
During the experiment, the torus field was such that
positive particles were bent away from the beam line.
The detector geometrical acceptance for each positive
particle in the relevant kinematic region was about 40%
and somewhat less for negative particles (bent towards the
beamline and out of the detector acceptance). The primary
electron beam energy was 4.02 GeV, providing a tagged
photon beam in the energy range from 0.8 to 3.8 GeV.
For this analysis we focus on the highest energy region,
3.0–3.8 GeV, that was analyzed in Ref. [30].
The exclusive reaction γp → πþπ−p was isolated by

detecting the proton and the πþ in the CLAS spectrometer,
while the π− was reconstructed from detected particle
four-momenta using the missing-mass technique. In this
way, the exclusivity of the reaction was ensured, keeping
the contamination from the multipion background to a
minimum level. Only events within a fiducial volume
were retained in the analysis, in order to avoid the regions
at the edge of the detector acceptance. Cuts were defined
on the minimum proton momentum and the hadron
minimum and maximum polar angle. After all the cuts,
approximately 40 M events were identified as produced
in exclusive two-pion photoproduction, making the g11
dataset the largest statistics sample of this reaction in the
above photon energy range. Details of the g11 analysis
can be found in Ref. [30].

III. MC SIMULATION FRAMEWORKS

In this section we describe the simulation frameworks
used to perform the closure test. Pseudodata corresponding
to two-pion photoproduction in the kinematics of the

g11 experiment were generated using two different MC
event generators that produce the four-momenta of the final
state particles. A realistic GEANT simulation was used to
reproduce the finite resolution and limited acceptance of
the CLAS detector.
Detector effects were assessed with a first MC generator

based on a pure phase-space distribution. To perform the
closure test, we deployed a second MC generator based on
a realistic physics model. The use of two different MC
generators minimizes the model dependence in the extrac-
tion of the original information and mimics a real situation,
where the detector effects are estimated with simulations
that are similar but not identical to the experimental
distributions.

A. Two-pion event generators

The two MC generators simulate the interaction of an
incoming unpolarized photon beam with a bremsstrahlung
spectrum, in the energy range 3.0–3.8 GeV, with a target
proton at rest. With the choice of variables described in
Sec. II B, the yields are proportional to the differential cross
section, and thus to the squared of the production amplitude
A summed over polarizations,

d5σ
dM2

pπ−dM2
πþπ−dtπþdα½πþp�½π−p0�dϕ

∝
h�
W2 − ðMpπ− þmπÞ2

��
W2 − ðMpπ− −mπÞ2

�i−1=2

×
X
pol

���A�M2
pπþ ;M

2
πþπ− ; cos θπ− ; α½πþp�½π−p0�

����2: ð1Þ

The first MC generator, referred to as phase space or
PS-MC, distributes final-state events according to the
πþπ−p phase space. This corresponds to assuming that
the production amplitude is a constant. This is clearly
unrealistic since, as discussed above, two-pion photopro-
duction has a much more complicated structure. However,
it has the advantage of being well-defined, agnostic to
physics models, and distributes events uniformly across the
full reaction kinematics. The 1D-projected PS-MC event
distributions are shown in Fig. 2, while the 2D distributions
are illustrated in Fig. 3.
The second MC event generator, which we refer to as

realistic or RE-MC, considers the amplitude squared as an
incoherent sum of the three dominant intermediate reso-
nances observed, γp → ðpρ0;Δþþπ−;Δ0πþÞ → πþπ−p,
added to a ∼10% constant that mimics the nonresonant
two-pion photoproduction contribution. Each process has
been weighted with the corresponding contribution to the
total cross section as reported in Ref. [38]. The angular
distributions relative to resonance production are para-
metrized from measured differential cross sections reported
in the same database. The decays ρ → ππ and Δ → pπ are
described using the correct spin structure with the decay
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matrix elements detailed in Ref. [39]. The resulting 1D and
2D projections for events generated by RE-MC are shown
in Figs. 4 and 5, respectively. We note that this model
neglects the interference terms between the intermediate
resonances. Despite this, the resulting distribution provides
a reasonable description of the experimental data, showing
resonance structures in the invariant masses and the correct
angular behavior of particles in the final states.

B. CLAS detector simulation

The CLAS detector response has been simulated using
the standard GEANT Monte Carlo simulation package,

GSIM, used by the CLAS Collaboration [40]. It consists of
a central steering and control package that calls a number of
independent detector geometry and response packages.
A postprocessing code (GSIM-Post-Processor or GPP)
has been used to fine tune the GSIM output to match the
tails of the experimental resolution and other effects, such as
the detector’s dead channels, not described by the idealized
GEANT-based simulation. The GSIM output has been fed to
the same reconstruction code, RECSIS, used to process
experimental data. We will refer to REC or detector-level
events to identify the set of pseudodata as processed by the
detector simulation, while GEN or vertex-level will identify
the “true” events as generated by the MC code.
As reported in Sec. II C, the CLAS detector has a

nonuniform acceptance, reduced in the azimuthal angle
ϕlab (around the beam) by the presence of the six coils of
the toroidal magnet, and in the polar angle θlab (with respect
to the beam direction) by the limited area covered by the
drift chambers, calorimeter and time-of-flight systems.

FIG. 3. Normalized 2D distributions generated with PS-MC:
invariant mass distributions M2

πþπ− versus M2
pπþ (top left), and

M2
pπ− versus M2

pπþ (top right), M2
πþπ− invariant mass versus

momentum transfer t (bottom left), and CM angle versus M2
pπþ

(bottom right).

FIG. 4. Normalized 1D projections of events generated with
RE-MC. The panel descriptions are as in Fig. 2.

FIG. 5. 2D distributions generated with RE-MC. The panel
descriptions are as in Fig. 3.

FIG. 2. Normalized 1D projections of events generated with
PS-MC: πþπ− invariant mass squared (top left), pπ− invariant
mass squared (top right), square of the four-momentum trans-
ferred from the target to the recoil proton, tπþ (bottom left), the
angle α½πþp�½π−p0 � in the CM frame between the plane containing
the initial target p and π− three-momenta and the plane formed by
πþ and the scattered proton three-momenta (bottom right).
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A further limitation concerns the minimum accepted
momenta of charged hadrons, due to the energy loss in
materials crossed along the track and to the effect of the
toroidal magnetic field that bends low-momentum particles
out of the detector acceptance. The limited CLAS accep-
tance results in a reduced yield in REC with respect to GEN
events, since not all generated events are reconstructed. The
effect of the CLAS acceptance on the πþ variables in the
laboratory frame is shown in Fig. 6.
As any detector, CLAS has finite resolution, which

“smears” the measured kinematic variables resulting in a
difference between REC and GEN, even when the event is
accepted. The smearing affects the reconstructed three-
momenta of any detected particle within the CLAS accep-
tance with a distortion depending on the three-momentum
of the particle. Figure 7 shows the resolution on the
detected (REC) πþ momentum and polar angle as a
function of the “true” (GEN) momentum, along with the
projections in 1D corresponding to the CLAS relative
momentum and angular resolution. Fitting the two curves
to a double Gaussian line, we obtained δp=p ∼ 0.8% and
δθ=θ ∼ 0.5%. A similar smearing affects the kinematic
variables of the detected proton.
The resolution of the CLAS detector is sufficiently high

so as to allow the use of the missing mass technique to
identify the exclusive two-pion reaction against the multi-
pion background. The technique uses knowledge of the
initial state and of the detected particles to calculate the
invariant mass of the undetected system to fulfill energy-
momentum conservation, within detector resolution. If all
particles are detected, the missing mass is zero. If a single
particle is undetected, its mass appears as a peak in the
missing mass spectrum. If two or more particles are lost, the
missing mass of the system is unconstrained and does not
peak, but rather distributes smoothly. The technique is only

applicable if the experimental resolution is sufficient to
disentangle the missing mass peak from this multiparticle
background. Clearly, the more particles are detected, the
lower is the resolution for the missing mass due the error
propagation, limiting the validity of the technique to
reactions with a small number of particles in the final
state. When the missing particle has been identified, its
four-momentum is determined by energy and momentum
conservation, and the final state can be fully reconstructed.
In two-pion photoproduction, the requirement of at most

a single undetected particle corresponds to the following
topologies (missing particle in parentheses): pπþðπ−Þ,
pπ−ðπþÞ, πþπ−ðpÞ and πþπ−p (all three detected).
Considering the CLAS acceptance, the yield of different
topologies is quite different, with a ratio of ð100∶37∶
30∶35Þ for the respective topologies. Since the pπþðπ−Þ is
by far the dominant contribution to REC data, we focus on
this topology, although similar conclusions also hold for
the others. Each topology is in one-to-one correspondence
with different areas of the allowed phase space, and a
combination of different topologies would therefore extend
the kinematic coverage of the measurement, mitigating the
effect of the limited detector acceptance.
Figure 8 shows the missing mass distribution of the

pπþðπ−Þ topology. This exclusive final state is identified
by selecting events with missing mass in the peak. Since
these simulations only contain the two-pion final state, no
multiparticle background populates the plot. The equivalent
distribution for g11 data shows a significant multipion
background [30] that populates the positive side of the
missing mass spectrum, and is rejected during the analysis
to assure the reaction exclusivity.

FIG. 6. The πþ kinematic variables in the laboratory reference
frame as GENerated with RE-MC (left) and REConstructed
by CLAS (right): px versus py (top panels) and θlab versus ϕlab

(bottom panels).

FIG. 7. The smearing of πþ kinematic variables in the labo-
ratory reference frame. Top: relative momentum resolution
ðpREC − pGENÞ=pGEN as a function of pGEN. Bottom: relative
angular resolution defined as ðθREC − θGENÞ=θGEN as a function
of pGEN. The right panels display the 1D projections of the 2D
distributions as histograms, and the red lines represent double
Gaussian fits. Pseudodata events were generated with RE-MC.

T. ALGHAMDI et al. PHYS. REV. D 108, 094030 (2023)

094030-6



IV. GAN-BASED UNFOLDING METHODOLOGY

GANs, a type of neural networks that have gained
significant attention in recent years, are powerful generative
models highly effective in generating high-quality, realistic
data in various fields [41]. The architecture of a typical
GAN involves a generator network that learns to produce
data and a discriminator network that learns to differentiate
between the generated and reference data. The two net-
works are trained alternately in a competitive setting, where
the generator tries to produce more realistic data to fool
the discriminator, and the discriminator tries to correctly
identify the generated data. This iterative process leads to
the generation of data that are progressively more realistic,
with the ultimate goal of producing synthetic data that are
indistinguishable from the reference data.
GANs have been widely applied in many domains,

such as image synthesis [42], text generation [43], music
composition [44], and videos [45], and have demonstrated
impressive results. In image synthesis, GANs have been
used to generate highly realistic images visually indistin-
guishable from real images, which has numerous practical
applications in fields such as gaming, film, and art.
Successfully training GANs can be notoriously challeng-

ing, however. Numerous GANmodels experience significant
issues, such as mode collapse, nonconvergence, model
parameter oscillation, destabilization, vanishing gradients,
and overfitting, resulting in an unbalanced training of the
generator and discriminator [46–49]. In contrast to typical
GAN applications, the success of a GAN-based event
generator in nuclear and particle physics depends on its
ability to accurately reproduce correlations among the
momenta of the particles, which becomes increasingly
challenging beyond two dimensions. Moreover, the multi-
dimensional momentum distributions of events associated
with nuclear and high-energy physics reactions, such as the
two-pion photoproduction process considered in this work,
exhibit highly complex patterns and range over orders of
magnitude across the phase space. The task of developing an
appropriate GAN architecture that is able to simultaneously
reproduce all the correlations among particle momenta, and

accurately reproduce multidimensional histograms, is there-
fore rather difficult.
Machine learning event generators have gained promi-

nence as efficient fast simulation tools in various scientific
fields, including high-energy and nuclear physics [50–56].
Unlike traditional simulation methods that rely on a
theoretical framework for the underlying reaction, machine
learning event generators learn from large datasets and use
this knowledge to produce new events with high fidelity.
GANs have emerged as powerful tools in the field of fast
simulation, where they learn to generate events that closely
resemble reference data, capturing the underlying physics
processes and their distributions [54,55,57–59].
Furthermore, GANs have been employed to address

the challenge of simulating detector effects in fast simu-
lation [8,60]. This application of GANs helps bridge the
gap between simulated and reference data, enabling more
realistic and precise simulations for experimental analyses.
A comprehensive survey of existing ML-based event
generators can be found in Ref. [61]. In this study, we
employ the architectural framework of the Least Squares
GAN, which involves substituting the cross entropy loss
function in the discriminator component of a conventional
GAN with a least square term. For further details,
see Ref. [62].
In the following, we describe the GAN architecture

used to generate the synthetic data that reproduce the
γp → πþπ−p RE-MC pseudodata. As mentioned above,
two different GANs were developed and combined. The
detector simulation GAN (DS-GAN) was trained on
PS-MC pseudodata to learn the detector effects, and was
later inserted between the generator and the discriminator
of the unfolding GAN (UNF-GAN) to unfold the GEN
vertex-level information from REC pseudodata.

A. Detector simulation GAN (DS-GAN)

In order to capture the detector effects, we have
developed an ML-based detector simulation using a condi-
tional GAN [63], as illustrated in Fig. 9. Our approach
involves training a conditional GAN generator to simulate
the detector’s smearing effect so that it generates synthetic
REC detector-level events from input noise and PS-MC
GEN events. The GEN PS-MC accepted events are passed
through the GEANT chain to obtain REC pseudodata. As
proposed in Ref. [60], both the synthetic REC and REC
pseudodata are “concatenated” with original GEN events
and fed to the GAN discriminator as input to facilitate
convergence. In the training phase, from the event-by-event
comparison of GEN and REC pseudodata, the DS-GAN
learns how the detector impacts on the original data. After
successful training, the DS-GAN generator serves as
the ML detector surrogate that will be integrated into the
UNF-GAN architecture.
Summarizing the model architecture of the DS-GAN, the

generator, conditioned on accepted events (GEN), takes in

FIG. 8. The π− missing mass spectrum for the pπþðπ−Þ
topology from REC data. Pseudodata events were generated
with RE-MC.
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as input a 100-dimensional array of random values with a
mean of 0 and a standard deviation of 1. The generator
network consists of five hidden layers, each with 128
neurons, using a leaky rectified linear unit (ReLU) activa-
tion function. The final hidden layer is connected to a four-
neuron output layer, which uses a linear function to
represent the generated features. At the end of the training,
the DS-GAN generator learns how to convert the GEN
accepted events into REC events, effectively mimicking the
smearing due to the detector as described by GEANT.
The discriminator is made of a neural network with five

hidden dense layers. The first three layers have 256 neurons
each, while the fourth has 128 neurons and the fifth has
32 neurons. A leaky ReLU activation function is used for
all the layers. To prevent overfitting during training, a 5%
dropout rate is implemented for each hidden layer. The last
hidden layer is fully connected to a single-neuron output,
activated by a linear function, where “1” indicates a true
event and “0” is a fake event. The DS-GAN was trained
using about 1M two-pion event samples for 80K adversa-
rial epochs, with an epoch defined as one pass through the
training dataset. Both the generator and discriminator were
trained using the Adam optimizer [64] with a learning
rate of 10−5 and exponential decay rates for the moment
estimates (β1 ¼ 0.5, and β2 ¼ 0.9).

B. Unfolding GAN (UNF-GAN)

The training process for the UNF-GAN is illustrated
in Fig. 10, which depicts the variation of a typical GAN
model structure consisting of a conditional generator
and a discriminator. The generator takes as input the

photon energy generated by the RE-MC, along with a
100-dimensional white noise vector centered at zero with a
unit standard deviation. This combination of inputs allows
the generator, implemented as a deep neural network, to
transform the noise and photon energy into a minimal set
of event features/variables that effectively describe the
two-pion photoproduction reaction.
To strike a balance between execution time and con-

vergence, the generator network is designed with seven
hidden dense layers. The number of neurons in each layer
follows the sequence: 16, 32, 64, 128, 256, 512, and 1024,
all of which are activated by the ReLU function. The last
hidden layer is fully connected to a 4-neuron output layer,
activated by a linear function. This output layer represents
the independent variablesM2

πþπ− ,M
2
pπ− , tπþ , and α½πþp�½π−p0�

that are specifically chosen to describe the reaction.
The synthetic GEN event features, generated by the

conditional GAN generator, are then fed into the DS-GAN
to incorporate the detector effects, and then compared to
REC pseudodata obtained by passing the GEN RE-MC
pseudodata through Geant. The training process involved
utilizing approximately 400k two-pion event samples for a
duration of around 200 k adversarial epochs per UNF-GAN
model. Consistent configuration parameters for the Adam
optimizer were maintained, utilizing the same settings as
employed for the DS-GAN. During the training, the gen-
erator and the discriminator engage in an adversarial
competition, with both updating their parameters throughout
the process. Eventually, the generator is able to generate
synthetic REC samples that are indistinguishable from
the REC pseudodata samples. This means that the

FIG. 9. Schematic view of the ML detector simulation GAN (DS-GAN), where the GAN generator converts input GEN vertex-level
events features and noise to REC detector-level events. The training is performed on PS-MC pseudodata passed through the GEANT
simulation. Synthetic REC and REC pseudodata are concatenated with GEN PS-MC events and fed to the discriminator.
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discriminator’s ability to correctly classify whether a sample
is genuine or synthetic approximates random chance.

C. Uncertainty quantification

As neural networks become increasingly employed in
physics analysis, it becomes crucial to accurately assess the
reliability of ML predictions. The statistics of the synthetic
samples can be made arbitrarily high, so that there is no
need to consider a statistical uncertainty. However, it is
important to quantify the systematic uncertainty related to
the training procedure, and for this a bootstrap resampling
technique was employed. For the DS-GAN, the procedure
involved training a total of 20 neural networks independ-
ently from the beginning. Each one was trained on a
different random sample set drawn from the original dataset
with replacement, resulting in datasets of the same size but
with potentially different observations.
For the UNF-GAN a similar procedure was adopted,

with 20 different networks trained independently using the
same bootstrap resampling technique. Moreover, each of
the 20 UNF-GANs used a different DS-GAN of the 20
discussed above. In this way, the systematic uncertainties
associated with the DS- and UNF-GANs are effectively
combined. While it is possible that using a higher number
of bootstraps could potentially lead to more precise
uncertainty estimates, we found that training 20 GANs
provided reasonably stable and consistent results.
It is important to note that the specific number of

bootstraps can vary depending on the characteristics of
the problem, available data, and desired level of uncertainty
quantification. In this particular case, 20 bootstraps
were deemed sufficient for accurately capturing and quan-
tifying the uncertainties associated with the observables.
Furthermore, changing the network architecture was not
essential because the convergence we achieved, along
with the estimated error and uncertainty quantification,
clearly indicate that this architecture is capable of

accurately reproducing the data without introducing further
systematic uncertainties.

V. RESULTS

In this section we now discuss the DS-GAN and UNF-
GAN performance, comparing synthetic to the REC and
GEN pseudodata. We use the nomenclature RECSYN
and GENSYN to indicate synthetic data at the detector
and vertex levels, respectively. To visualize the comparison,
we build marginal 1D and 2D histograms for some
kinematic variables. To show that correlations are correctly
accounted for, we also study the distribution of one variable
in some slices of the other variables.
Synthetic data are generated with the bootstrap pro-

cedure detailed in Sec. IV C, so that the standard deviation
σSYN corresponds to the systematic uncertainty. In all our
results, the average μSYN is shown as a solid line, together
with an error band of width �1σSYN, while pseudodata are
represented by dots with their statistical uncertainty
σpseudodata. To quantify the level of agreement between
the synthetic data and pseudodata, we plot the pull for each
bin, defined as

pull ¼ μSYN − μpseudodataffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2SYN þ σ2pseudodata

q ; ð2Þ

where μpseudodata denotes the mean of the pseudodata.

A. DS-GAN

The DS-GAN is trained on four independent variables:
the invariant masses M2

pπ− and M2
πþπ− , tπþ , and the angle

α½πþp�½π−p0�. The comparison between RECSYN and pseudo-
data PS-MC REC distributions is shown Fig. 11. In Fig. 12
the comparison is extended to other physics-relevant
distributions not used in the training and derived from

FIG. 10. Schematic view of the UNF-GAN training framework: the UNF-GAN utilizes a generator that converts a GEN photon energy
and random noise into synthetic GEN event features, which are passed through the DS-GAN to incorporate detector effect, and are
converted into synthetic REC event features. The generator is updated using gradients constructed by a deep neural network
discriminator, which compares the features of synthetic and reference REC detector-level events obtained through Geant.
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the four above-mentioned variables, namely M2
pπþ, tπ− , t,

and cos θ. The agreement, quantified by the pull distribu-
tions shown at the bottom of each plot, is remarkable, in
both cases, with most of the points lying within 1σ. This
indicates that the DS-GAN is indeed able to learn the
CLAS detector effects. Bidimensional distributions from
MC and synthetic data are shown in Fig. 13.

The πþ absolute momentum resolution as obtained
from pseudodata (REC − GEN) is shown in Fig. 14,
along with synthetic data (RECSYN − GEN). The two
distributions are in very good agreement, indicating that
synthetic data incorporate the correct resolution of the
detector. Similar results hold for other kinematic varia-
bles of all particles.
These comparisons demonstrate the ability of the

DS-GAN to learn and reproduce detector effects in a
multidimensional space, even in the tails of the distribu-
tions. This confirms that generative models can indeed be
used as an efficient and fast proxy for more computational
expensive Geant simulations [60].

B. UNF-GAN

As described in Sec IV B, the final step in the closure test
is to use REC RE-MC pseudodata to train the UNF-GAN,
extract the GENSYN distributions, and compare them with
GEN pseudodata. Figure 15 shows the comparison between
GEN and GENSYN for the four training variables. We can
see very good agreement between pseudo- and synthetic
data at the vertex level, despite the fact that the UNF-GAN

FIG. 11. Training variable PS-MC REC pseudodata distribu-
tions (black points) are compared to the synthetic data produced
by the DS-GAN (yellow band). The band size reflects the
uncertainty estimated using the bootstrap procedure, while the
pull distributions (bottom of panels) quantify the agreement
between the two, with the horizontal dotted lines corresponding
to �1σ.

FIG. 12. Same as Fig. 11, but for derived quantities not used in
the training process.

FIG. 13. 2D distributions of πþπ− and pπþ invariant masses
squared in PS-MC REC pseudodata (left) and synthetic data
output of one of the 20 DS-GANs (right).

FIG. 14. Left: Comparison of πþ absolute momentum reso-
lution for PS-MC REC pseudodata (top) and DS-GAN synthetic
data (bottom) as a function of pGEN. Right: The same but
integrated over pGEN (upper) or for a narrow slice at pGEN ¼
1 GeV (lower).
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was trained on detector-level pseudodata. This clearly
demonstrates the success of the unfolding procedure.
The vast majority of pulls lie within �1σ, indicating that
the uncertainty quantification is appropriate. One observes
residual correlations, particularly in the high statistics
regions. In other regions, the pulls appear to be randomly
scattered. At a practical level, this implies that the quoted
1σ uncertainty is not necessarily purely statistical, but also
includes a systematic component.
The key point of this closure test is to demonstrate that

synthetic data maintain the correlations of the original
pseudodata. This is indeed the case, as seen in Fig. 16
which shows an example of 2D distributions featuring
strong correlations. A quantitative determination of the
success of the procedure is seen in the calculated pulls in
Fig. 17. The highest values of the pulls are randomly
scattered in the 2D-distributions (left panel), so no evident
systematic trend is present. This is also confirmed by the

histogram of the 2D-pulls (right panel), which appears to be
normally distributed.
The good agreement and preservation of correlations

remains valid for derived kinematic variables that were
not used for training. Examples are shown in Fig. 18 for
invariant and CM variables, and in Fig. 19 for variables in
the lab frame. It is worth noting that in the lab frame the
GEN pseudodata exhibits sharp features due to detector
acceptance. These features cannot be properly captured by
the GANs, which is trained on invariant variables. Even so,
this results in a ≲2σ local discrepancy in the 1D projec-
tions. If better agreement is needed, lab frame variables can
be added to the training set.
Finally, in Fig. 20 we compare 1D distributions in a

given bin of the other variables. The success of this test
shows that correlations underlying the multidifferential
cross section are correctly reproduced in the synthetic
datasets.

FIG. 15. Comparison of GEN and GENSYN distributions for the
four training variables obtained by the UNF-GAN. Pseudodata
were generated using RE-MC.

FIG. 16. 2D distributions of πþπ− and pπþ invariant masses
squared in GEN RE-MC pseudodata (left) and synthetic data
output of one of the 20 UNF-GANs (right).

FIG. 17. Left panel: 2D pulls of the distributions shown in
Fig. 16. Color palette shows the value of the pull. Right panel:
histogram of the 2D pulls with a fitted Gaussian distribution
centered at zero with a standard deviation of 1.3.

FIG. 18. Comparison of GEN and GENSYN for four derived
variables M2

pπþ , tπ− , t, and cos θ. Events were generated using
RE-MC.
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VI. CONCLUSIONS AND OUTLOOK

One of the central results of this paper is the demon-
stration that a generative adversarial network can be used to
reproduce a realistic multibody physics reaction. As a case
study, we have used two-pion photoproduction in the
kinematics of the Jefferson Lab CLAS g11 experiment.
This process represents an ideal test case, where several
baryon and meson production mechanisms overlap, result-
ing in rich and complex observable distributions. The
nonuniformity of the CLAS detector response further adds
complication to the challenge.
In order to validate the framework, we have performed a

closure test to demonstrate that synthetic data correctly
reproduce the multidifferential cross section preserving

correlations between kinematic variables. Detector
effects were also correctly unfolded by the procedure.
We deployed two MC event generators, one distributed
according to pure phase space, and the other incorporat-
ing a realistic physics model. Generated pseudodata were
fed into a Geant-based detector model to realistically take
into account the detector response. Phase-space pseudo-
data were used to train a GAN-based proxy to learn the
detector effects, and realistic pseudodata were then used
to train the unfolding GAN and generate synthetic copies
of MC events.
The uncertainty quantification of the entire procedure

was assessed by combining a bootstrap for the two NNs.
Comparison between the true and GAN-generated samples
demonstrated that, within the quoted systematic error, the
NN is able to reproduce training and derived kinematic
variables, as well as to unfold the detector effects in
multiple dimensions.
This work represents a first step towards a full AI-

supported analysis of CLAS exclusive two-pion photo-
production data. It demonstrates that the same analysis
framework, trained on CLAS data, can provide a synthetic
copy of the experimental data, preserving correlations
between kinematic variables and unfolding the detector
effects. Physics interpretation in term of production mech-
anisms, separating different contributions and extracting
resonance parameters from the unfolded data, will follow.
An extension of this framework to include the different
topologies and extrapolating in a controlled (albeit model-
dependent) outside detector acceptance is also in progress.
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FIG. 19. Comparison of GEN and GENSYN for p momentum
components and θlab in the laboratory reference frame using
RE-MC data.

FIG. 20. 1D histograms for fixed slice of the other
variables (2.55 < W < 2.60 GeV, −0.7<tπþ <−0.3GeV2,
2.5 < M2

pπ− < 3.3 GeV2). Left panel: α½πþp�½π−p0 � distribution
for 0.6 < M2

πþπ− < 0.9 GeV2. Right panel: M2
πþπ− distribution

for 2.0 < α½πþp�½π−p0 � < 2.5.
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