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We present precise resummed predictions for Higgs boson rapidity distribution through bottom quark
annihilation at next-to-next-to-leading logarithmic (NNLL) accuracy matched to next-to-next-to-leading
order and at next-to-next-to-next-to-leading logarithmic (N3LL) accuracy matched to next-to-next-to-next-
to-leading order soft-virtual in the strong coupling. Exploiting the universal behavior of soft radiation near
the threshold, we determine the analytic expressions for the process-dependent and universal perturbative
ingredients for threshold resummation in double singular limits of partonic threshold variables z1, z2.
Subsequently, the threshold resummation is performed in the double Mellin space within the standard QCD
framework. The new third-order process-dependent nonlogarithmic coefficients are determined using
three-loop bottom quark form factor and third-order quark soft distribution function in rapidity distribution.
The effect of these new resummed coefficients are studied at the 13 TeV LHC. We observe a better
perturbative convergence in the resummed predictions on the Higgs rapidity spectrum in bottom quark
annihilation. We also find that the NNLL and N3LL corrections are sizeable which typically are of the order
of −2.5% and −1.5% over the respective available fixed orders with the scale uncertainty remaining at the
same level as the fixed order.
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I. INTRODUCTION

The Standard Model (SM) Higgs boson is one of the
important fundamental particles to study at colliders like
the Large Hadron Collider (LHC). Understanding the
Higgs properties is crucial to know the SM well and is
also critical to the search of new physics beyond the SM
(BSM) where new physics might couple to the Higgs
sector. Testing the Higgs properties and understanding its
interactions with other fundamental particles are indeed
main tasks at the LHC in the upcoming runs. Precision
calculations play a prominent role in these studies by
calculating the higher-order contributions in the perturba-
tion theory and improving the predictions of Higgs boson
properties to a very high accuracy.
The dominant mode of Higgs production at the LHC is

through gluon fusion. On the other hand, the Higgs
production in bottom annihilation channel, despite being
subdominant is also interesting to study. Firstly, Higgs
dominantly decays to bottom quarks which can give direct

access to the Higgs-Yukawa coupling. This purely hadronic
final state, however, is challenging to measure [1,2]. This
also requires production of Higgs bosons first, through
bottom annihilation channel along with the dominant gluon
fusion. Secondly, it also gives access to the Higgs-Yukawa
coupling to bottom quarks even when Higgs is decayed
through cleaner channels like diphotons [3,4] or four-lepton
[5,6] productions. Although in the SM the Higgs-Yukawa
coupling to bottom quark is suppressed by a small bottom
mass, in the extensions of the SM e.g., two-Higgs doublet
models, or minimal supersymmetric standard model the
coupling could be enhanced and is crucial to the search for
new physics. Therefore, a precise understanding of the SM
contribution will be beneficial in BSM analyses. Thirdly,
the Higgs production through bottom annihilation is also
interesting on how bottom quark is treated; whether it is a
part of the proton, taking the bottom quark as a massless
parton except in the Yukawa coupling which is done in the
5-flavor scheme (5FS) or whether it is taken as a massive
quark throughout and excluded from the proton structure as
is done in the 4-flavor scheme (4FS). While in the 4FS a
massive bottom quark is produced from gluon splitting
from protons, in the 5FS scheme, the massless bottom has
its own parton distributions.
Due to its high importance, the Higgs inclusive cross

section is now available theoretically to a very high accuracy
to next-to-next-to-next-to leading order (N3LO) [7,8] in
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Higgs effective field theory (HEFT) in the gluon fusion
channel providing a correction of around 2% with scale
uncertainty of around 3% reduced from 9% at NNLO
[9–11]. It is also known, up to N3LO in the vector boson
fusion [12–15], where the correction already stabilizes, and
the scale uncertainty is found to be below 0.2% at N3LO.
Beyond the fixed order, efforts were made to study the
dominant threshold contributions by studying the soft-
virtual (SV) corrections at fourth order as well as partial
subleading logarithmic effects in gluon fusion [16,17] with
a further enhancement of the cross section ranging from
0.2%–2.7% depending on the scale choices. The fixed order
cross section is further improved by performing threshold
resummation at the next-to-next-to-leading logarithmic
(NNLL) accuracy [18–21] and to the third logarithmic
accuracy (N3LL) [22,23] as well as resummation of π2

terms [24] arising from the timelike Sudakov form factor.
The finite top mass effect is also known at NLO [25,26],
partially at NNLO with top mass expansion [27–30], and
recently to exact NNLO [31] where an increment of 0.6% is
observed compared to theHEFTapproximation. The electro-
weak corrections are also known to NLO [32,33] which
amount to a positive correction of about 5% compared
to NNLO QCD. Higgs production through bottom annihi-
lation, despite being the subdominant channel, has also been
studied extensively in the literature. Due to the availability of
third-order form factor [34], the soft distributions [35], and
the relevant splitting functions [36,37], the inclusive cross
section is known up to N3LO [38–42] in the 5FS where the
residual scale uncertainties are found to be around 5% and to
NLO [43–45] in the 4FS. There have been several studies
to combine the 5FS and 4FS prediction through different
matching prescriptions [46–54]. Further, a complete N3LL
resummation is performed in [55,56] where the scale
uncertainty at this order reduces to about 4.9%. The pure
QED andmixed QCD-QED effects are studied in [57] where
the corrections are found to be below 0.03% of the LO.
Differential measurements like the rapidity distribution

of the Higgs boson is important to understand Higgs
interaction within the SM. Similar to the total production
cross section, rapidity is also inclusive to extra radiations.
While this sheds light on the spin of the particle itself, it is
also useful to constrain the parton distribution functions
(PDFs). In particular, the region with large momentum
fraction is not well-constrained where the resummed results
could play an important role. Rapidity distribution has been
known to NNLO for the Higgs production through gluon
fusion [58,59], as well as in bottom quark annihilation
[60,61]. The accuracy is further extended beyond the
NNLO level by studying the threshold contributions up
to the third order [62,63] in gluon fusion as well in to
bottom annihilation [64]. It was observed that the threshold
contributions play a prominent role in the rapidity distri-
butions for these processes. Recently, even complete N3LO
corrections were also obtained for Higgs [65] and Drell-
Yan (DY) [66] rapidities using qT subtractions [67–70]

where the corrections are shown to be around 3% and −2%
respectively over NNLO in the central rapidity range.
However, unlike the DY case, the uncertainty band for
the Higgs rapidity distribution at N3LO show a nice
perturbative convergence, reducing the scale uncertainty
below 5% and residing within the NNLO uncertainty band.
Beyond NNLO, large threshold logarithms are also
included at next-to-next-to-leading logarithmic (NNLL)
accuracy [71] in the gluon fusion channel. Efforts [72]
are also made to resum partial subleading logarithms in the
gluon fusion.
In this article we focus on the bottom induced rapidity

distribution which is known to NNLO [60,61] for quite
some time.We aim to improve this by including the threshold
effects at NNLL and beyond. Within the traditional QCD
resummation framework, a formalism [71,73–77] has been
already developed to resum the large threshold logarithms in
rapidity distribution for colorless particles. Originally the
formalismwas proposed for thexF distribution in the seminal
work [73] by Catani and Trentadue. Later it was extended for
rapidity1 following the framework developed in [62,78]. The
idea is to identify proper scaling variables z1, z2 correspond-
ing to partonic threshold (z) and rapidity (yp). One then
resums large rapidity logarithms by resumming these scaling
variables simultaneously going to the threshold limit z1,
z2 → 1. This was termed [71,75,76] as the Mellin-Mellin
(M-M) approach as the resummation is performed in the
double Mellin space corresponding to z1, z2. Essentially, in
this approach one resums all the double singular terms arising
from the delta function δðz̄iÞ and plus-distributions ½lnn z̄iz̄i

�þ,
where z̄i ¼ 1 − zi. This is also consistent with the general-
ized threshold resummation approach [79] employing soft-
collinear effective theory (SCET) in the double singular
limit. A recent comparison for different approaches up to
the next-to-leading power (beyond double soft) level can be
found in [80].
In this paper we follow the standardM-M approach at the

leading power within the traditional QCD resummation
framework and study the impact of these threshold loga-
rithms for the Higgs boson rapidity distribution in the
bottom quark annihilation channel. We organize the paper
as follows: In Sec. II we lay out the theoretical framework
for the resummation of rapidity distributions in the M-M
approach. In Sec. III we present the results relevant at the
13 TeV LHC, and finally we conclude in Sec. IVand collect
all the analytical results required upto N3LL in the
Appendices A–D.

II. THEORETICAL FRAMEWORK

The effective Lagrangian for the interaction of a scalar
Higgs boson with the bottom quark is given as

1Note that the threshold behavior is same for both xF and
rapidity.
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LðSÞ
int ¼ −λψ̄bðxÞψbðxÞϕðxÞ; ð1Þ

where ψbðxÞ and ϕðxÞ are the bottom quark field and the
Higgs field respectively. Here λ is the Yukawa interaction
which is given by λ ¼ mb=v, with v being the vacuum
expectation value (VEV), and mb being mass of the bottom
quark. We follow the 5FS where we use nonzero mass of
the bottom quark only in the Yukawa coupling; elsewhere it
is treated as a massless quark. The rapidity distribution
of the Higgs boson at proton-proton collider takes the
following form:

dσðτ; yÞ
dy

¼
X

i;j¼q;q̄;g

Z
1

0

dx1

Z
1

0

dx2fiðx1; μfÞfjðx2; μfÞ

×
Z

1

0

dz1

Z
1

0

dz2δðx01 − x1z1Þδðx02 − x2z2Þ

× σ̂d;ijðz1; z2; μf; μrÞ; ð2Þ

where τ ¼ m2
H=S ¼ x01x

0
2 with S being the hadronic center-

of-mass energy. The hadronic rapidity is defined as y ¼
1
2
ln ðx01=x02Þ. The rapidity-dependent partonic coefficient

function (σ̂d;ij) can be decomposed in terms of singular SV
piece consisting of plus-distributions and delta function in
partonic threshold variables (z1, z2) and nonsingular or
regular piece as

σ̂d;ijðz1; z2; μf; μrÞ ¼ σ0ðμrÞðΔsv
d;ijðz1; z2; μf; μrÞ

þ Δreg
d;ijðz1; z2; μf; μrÞÞ: ð3Þ

The singular SV (Δsv
d;ij) part gets contributions only from

the diagonal channel i.e., in the present case i; j ¼ b; b̄
for the SV part [81]. On the other hand, the regular
terms (Δreg

d;ij) are subdominant at the threshold and gets
contributions from all partonic channels. The overall Born
normalization factor σ0ðμrÞ takes the following form:

σ0ðμrÞ ¼
πλ2ðμrÞτ
6m2

H
≡ πm2

bðμrÞτ
6m2

Hv
2

: ð4Þ

Note that the μr dependence in the Born factor above comes
only through the running of bottom mass [mbðμrÞ] or
equivalently the Yukawa [λðμrÞ]. The Yukawa running is
performed using the mass anomalous dimensions γm which
we collect in Appendix B up to the third order.
Resummation is conveniently performed in the Mellin

space where the double Mellin transformation is performed
taking Mellin transformation on both partonic threshold
variables z1, z2 in the following way (suppressing the μr, μf
dependence):

Δd;bb̄ðN1; N2Þ ¼
Z

1

0

dz1z
N1−1
1

Z
1

0

dz2z
N2−1
2 Δsv

d;bb̄
ðz1; z2Þ;

ð5Þ

where Ni is the Mellin variable corresponding to partonic
threshold zi. The singular SV contribution can be
resummed through the integral form in terms of universal
cusp anomalous dimensions Ab and rapidity-dependent
threshold noncusp anomalous dimension Db

d as well as
process-dependent coefficients g0b0 . In the double-Mellin
space this can be written in the following integral form:

Δ̃d;bb̄ðN1;N2Þ¼g0bd;0ðaSÞexp
�Z

1

0

dz1z
N1−1
1

Z
1

0

dz2z
N2−1
2

×

�
δðz̄2Þ

�
1

z̄1

�Z
M2

Hz̄1

μ2f

dη2

η2
Abðasðη2ÞÞ

þDb
dðasðM2

Hz̄1ÞÞ
��

þ

þ
�

1

2z̄1z̄2

�
Abðasðz12ÞÞþ

dDb
dðasðz12ÞÞ
dlnz12

��
þ

þðz1↔ z2Þ
��

; ð6Þ

where z12 ¼ M2
Hz1z2 and z̄i ¼ 1 − zi. Expansion of the

above expression at a fixed order in the strong coupling will
reproduce the Mellin space fixed-order results correspond-
ing to Eq. (5). Performing the Mellin integration above
will produce some nonlogarithmic constants in double
Mellin space which can be combined with the process-
dependent prefactor (g0bd;0) and one can finally organize the
large threshold logarithms in the Mellin space in the
following form:

Δ̃d;bb̄ðN1; N2Þ ¼ gbd;0ðaS; μr; μfÞ expðGb
dðaS; ω̄; μr; μfÞÞ:

ð7Þ
The nonlogarithmic coefficient (gbd;0) has the following
perturbative expansion:

gbd;0 ¼ 1þ
X∞
i¼1

aiSg
b;ðiÞ
d;0 : ð8Þ

To achieve N3LL accuracy, they are needed up to the third
order in strong coupling. We have obtained these using
the third order bb̄H form factor [34] and third-order soft
distribution function [35], and we present these in
Appendix C. The exponent is universal and resums the
large logarithms (which now appear in Ni → ∞ limit) to all
orders. It can be expanded in the strong coupling and the
inclusion of successive terms defines the resummed order,2

Gb
dðaS; ω̄Þ ¼ gbd;1ðω̄Þ lnðN1N2Þ þ

X∞
i¼0

aiSg
b
d;iþ2ðω̄Þ; ð9Þ

2Note that in the threshold region lnðN1N2Þ ∼ 1=aS.
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where ω̄¼ asβ0 lnðN1N2Þ, withNi ¼ eγENi; i¼ 1, 2. These
process-independent resummed exponent are same as the
quark-initiated Drell-Yan process and up to N3LL accuracy
these can be found e.g., in [82].
The resummed expression in Eq. (7) only resums the

leading singular terms which appear through the large
logarithms of N1 and N2 in Mellin space. This lacks the
subleading regular pieces which can be included through
the available fixed order results to improve the resummed
predictions. However, one can not simply add them as the
fixed order also contains the same logarithmic contribu-
tions up to a certain order which are already taken into
account in the resummed expression. Therefore, a match-
ing procedure has to be invoked removing these loga-
rithms which also appear in the fixed order. This is done
through the following all order matched expression,

dσres

dy
¼ dσf:o:

dy
þ σ0ðμrÞ

X
k;l¼b;b̄

Z
c1þi∞

c1−i∞

dN1

2πi

×
Z

c2þi∞

c2−i∞

dN2

2πi
eyðN2−N1Þð ffiffiffi

τ
p Þ−N1−N2

× f̃kðN1Þf̃lðN2Þ½Δ̃d;bb̄ðN1; N2Þ − Δ̃f:o:
d;bb̄ðN1; N2Þ�:

ð10Þ

The first term on the right-hand side of the equality is the
fixed-order contribution containing singular and regular
contribution up to a fixed order in strong coupling. The
first term inside the square bracket organizes the
resummed series up to a certain logarithmic accuracy
provided by the knowledge of cusp and rapidity anoma-
lous dimensions as well as the process-dependent gbd;0
coefficients. The symbol “f.o.” in the second term inside
the square bracket means the function is truncated to a
fixed order in order to avoid double counting of singular
terms already present in the fixed order (dσ

f:o:

dy ). Here

f̃jðNiÞ≡ R
1
0 dziz

Ni−1
i fjðziÞ are the PDFs in the Mellin

space. In practice, we use the x-space PDF through the
LHAPDF6 [83] interface using the derivatives of PDF as
described in [84].
The Mellin inversion in Eq. (10) is not straightforward as

the resummed expression diverges when ω̄ ¼ 1. This
corresponds to the Landau pole where strong coupling
diverges. The perturbative formalism thus break down in
this region. One way to proceed is by choosing the contour
of the Mellin inversion according to the minimal prescrip-
tion (MP) [85]. The basic idea is to choose the contour in
such a way that all the poles remain at the left of the contour
except for the Landau pole which remains far right of the
contour. In double Mellin space this is little involved as the
Landau pole is now a function of two Mellin variables.
Typically, one needs to project the complex integra-
tion on real variables ri and chose the contour accordingly.

One can still fix the contour of one of the Mellin variable
[N1 ¼ c1 þ r1 expðiϕ1Þ] according to MP. Once one fixes
the contour for N1 through c1 and ϕ1, the Landau pole is
not constrained anymore on the real axis of the second
Mellin variable [N2 ¼ c2 þ r2 expðiϕ2Þ] and in fact, it
now depends on the first Mellin variable (N1). In order
to satisfy the MP, a reasonable choice [74,82] of the con-
tour for the second Mellin variable as ϕ2 ¼ max ðπ=2−
1=2 argð 1

N1
expð 1

aSβ0
− 2γEÞÞ; 3π=4Þ.

III. NUMERICAL RESULTS

With the setup introduced in the previous section, we
now focus on the numerical impact of the threshold
logarithms in the rapidity distribution. We focus on
13 TeV LHC with CT14 as our default PDF choice which
is used through the LHAPDF6 [83] interface.3 The fixed-
order results are obtained from [61] using the N-jettiness
slicing method [86,87] as implemented in MCFM [88–90].
The strong coupling is taken through the corresponding
PDF sets. At the third order we evolve the strong coupling
using four-loop QCD beta function [91–102] for which we
set the initial condition as αSðmZÞ ¼ 0.118, where mZ ¼
91.1876 GeV is the Z boson mass. We set the Higgs mass
to be mH ¼ 125 GeV. The central scale choice for this
process is taken as ðμcr; μcfÞ ¼ ð1; 1=4ÞmH GeV. The choice
of the low μcf scale is done following the observation in [40]
to minimize the effect of large collinear logarithms
which appear at μcf ∼mH=4. The Yukawa coupling is also
evolved through renormalisation group equation using
4-loop mass anomalous dimensions with bottom mass
mbðmbÞ ¼ 4.18 GeV. The required mass anomalous
dimensions are collected in the Appendix B. To have an
estimation of the residual scale uncertainties we follow the
standard seven-point scale variations around the central
scale choice stated above, with the restriction
1=2 ≤ ðμr=μcrÞ=ðμf=μcfÞ ≤ 2. This amounts to seven con-
figurations for the scale ðμr; μfÞ. For each bin, the uncer-
tainty envelope is obtained by considering the maximum
and minimum deviations from the central scale choice.
Note that the scale variation also includes the scale
dependence as arising from the Yukawa running in the
MS scheme. The double Mellin inversion in Eq. (10) is
performed with an in house code which we also interface
to LHAPDF6 as well as to Cuba [103,104] for the final
integration. Accordingly, we chose the contour in Eq. (10)
as c1 ¼ c2 ¼ 1.9 and ϕ1 ¼ 3π=4 and ϕ2 given in the
previous section.
We further define the following perturbative quantities in

order to assess the higher-order effects. We define the ratios
K-factor and R-factor [105–107] corresponding to the fixed
order and resummed order respectively as

3The fixed-order results for bb̄H rapidity at NNLO are
available with CT14 PDF set from [61].
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Kij ¼
�
dσ
dy

�
NiLO

	�
dσ
dy

�
NjLO

;

Rij ¼
�
dσ
dy

�
NiLOþNiLL

	�
dσ
dy

�
NjLOþNjLL

: ð11Þ

Further, we define the RFij rations to estimate the
resummed contributions over the fixed orders as

RFij ¼
�
dσ
dy

�
NiLOþNiLL

	�
dσ
dy

�
NjLO

: ð12Þ

For such ratios, we calculate the correlated error by taking
both the numerator and the denominator at the same
scale and obtain the seven-point uncertainties from seven
such ratios. In order to shorten the notation, we denote
þLL, þNLL, þNNLL to indicate the complete matched
resummed results, meaning the resummed corrections are
matched to the fixed-order results according to Eq. (10).
At the third order similar notation is adopted where the
complete resummed N3LL resuls are matched to the next-
to-next-to-next-to-leading order soft-virtual (N3LOsv)
results and are denoted as þN3LLsv.
In Fig. 1, we present the rapidity distribution of the

Higgs boson in bottom quark annihilation up to NNLO
(left panel) and to þNNLL (right panel). The asymmetric
band is obtained by taking the envelope of maximum
(minimum) deviation from the central scale according to
the seven-point scale variation. On the fixed-order side,
the NLO gets a correction of similar size to LO, which
gets further increased at NNLO by 9.3% compared to
NLO in the central rapidity region (at y ¼ 0–1.6). In the
higher-rapidity region (at y ¼ 2–4), the behavior is
different where NLO gets negative correction up to
50% compared to LO, whereas on the other hand, the
NNLO gets positive correction up to 27% of NLO. The
corresponding scale uncertainties are respectively þ62.9

−53.9 %

at LO, þ22.0
−31.1 % at NLO, and þ1.7

−20.0% at NNLO in the

central rapidity region. In the resummed case, the
convergence is faster with þNLL getting a correction
73% compared to þLL whereas þNNLL gets a further
increment of 10.1% compared to þNLL in the central
region. Corresponding corrections at the higher rapidity
(y ¼ 3.2) region are −31.7% and 8.6%, respectively. The
scale uncertainty does not improve compared to the FO, a
behavior which is also seen in the neutral and charged
DY productions [82]. In the central region, the asym-
metric scale uncertainties are þ63.4

−54.0 % at þLL, þ27.1
−32.2 % at

þNLL, and þ3.8
−20.4% at þNNLL, respectively. At y ¼ 3.2

the corresponding uncertainties are þ52.9
−50.4 % at þLL,

þ19.8
−27.6 % at þNLL, and þ11.9

−5.4 % at þNNLL, respectively.
We notice that while þLL gets a positive contribution
ranging from 13.7% to 22.8% over LO, the þNLL gets
−3.2% to −2.3% corrections over NLO and þNNLL gets
a relatively flat correction ranging −2.4% to −3.1%
going from central rapidity to higher rapidity. On the
right panel of Fig. 1, we present the new third-order SV
results which is further matched with the third order
resummed results. While SV results at the third order gets

FIG. 1. Higgs rapidity distribution in bottom annihilation for 13 TeV LHC. The left figure compares different fixed and matched-
resummed orders. The notation þNkLL indicates that the matched resummed results are obtained by matching with the corresponding
fixed-order results. The right figure compares the SV results at the third order against the matched result at the same order where the
matching is done with corresponding SV results.

FIG. 2. RF factor [as defined in Eq. (12)] along with correlated
errors up to the third order. For the third order, resummed N3LL
results are matched to the N3LOsv results.
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a increment up to 0.5% compared to the NNLO, the scale
uncertainty is not improved. The third order matched
results however gets a flat correction of about 1.8%
throughout the rapidity region compared to þNNLL with
the scale uncertainties are at the similar level as the
fixed order.
It is also possible to match the resummed result in a

multiplicative way instead of the additive matching in
Eq. (10). In order to estimate the effect of such a procedure,
we followed the prescription4 as presented in [108]. We
find that the þNLL gets an increment of around 84% at
y ¼ 0 compared toþLL whereas atþNNLL the correction
is less that 1% of þNLL. Similarly, at y ¼ 3.2, the
corrections are −31% and 5% respectively. Thus, we
observe a faster convergence for multiplicative matching
compared to the additive matching. The corresponding
asymmetric scale uncertainties at y ¼ 3.2 are þ53.9

−50.8 % at
þLL, þ25.0

−33.8 % at þNLL, þ6.4
−2.9 % at þNNLL respectively. Up

toþNLL, the uncertainties remains similar compared to the
additive matching, at þNNLL, the uncertainties gets better
at higher rapidities. On the other hand we see similar scale
uncertainties as the additive case at y ¼ 0 at þNNLL level.
In the rest of the article we follow the additive matching as
provided by Eq. (10).
A better way to visualize the higher order effects is

through the ratios viz. the K, R, and RF factors as
defined in Eqs. (11) and (12) which are presented in
Figs. 3 and 2. In the left panel we show these ratios up to
the second order. It is clear that NLO (or þNLL)
corrections shapes the rapidity distributions very well,
whereas the corrections from NNLO (or þNNLL) are
rather flat over a large rapidity region. Compared to the
K21 factor we observe slight increment of the central
scale in the case of R21 in the higher rapidity region. On
the right panel of Fig. 3, we present the these ratios at the
third order. Again we observe a relatively flat QCD
correction over the large rapidity range at N3LOsv

amounting to about 8% uncertainty at the higher rap-
idities. The matched result becomes almost flat even in
the higher-rapidity region and the correlated scale uncer-
tainty reduces to 4%.
To estimate the intrinsic PDF uncertainty, we define

the quantity δPDF ¼ 1� δ½dσdy�=½dσdy�0 × 100%, where the

numerator δ½dσdy� is the intrinsic PDF uncertainty and the

denominator ½dσdy�0 is the central prediction. We study only
the SV part of the fixed order which might be improved
by resummed results. This is shown in Fig. 4. Notice that
the central predictions are different for FO and resummed
cases. Indeed, we observe a −2.5% to −2.1% change in
the central predictions for resummed case compared to
FO SV while going from y ¼ 0 to y ¼ 4. The PDF
uncertainties at the second order (SV) results are about
8% in the central rapidity (y ¼ 0) which gets reduced to
about 4.5% at y ¼ −2. At the higher-rapidity region the
uncertainties further increases. This is a known behavior
which is also observed in the case of DY rapidities [82].
The matched resummed results show a slight improve-
ment (below 0.1%) over the fixed-order PDF uncertainty
in all rapidity regions.

FIG. 3. K, R factors [as defined in Eq. (11)] along with correlated errors up to second order (left) and the same at third order (right).
The third order results are up to SV accuracy and same for matched.

FIG. 4. Effects of matched NNLL results to NNLOsv are
presented and compared against the NNLOsv for CT14 PDF
at 13 TeV LHC.4See Eq. (4.3) of [108].
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IV. CONCLUSIONS

At the LHC, soft gluons play an important role in
predicting observables correctly in different phase space
corners. Particularly in the threshold region their contribu-
tion dominates and hence to have a reliable prediction one
needs to resum them and match them to the available fixed
order to better predict an observable. For rapidity distri-
bution in the threshold region both threshold variables
corresponding to partonic threshold and rapidity become
equally important and one needs to resum both of them
consistently order-by-order in the perturbation theory. In
QCD, this is achieved by the M-M approach, and we
exploit this to resum large threshold logarithms to NNLL
accuracy matched to available NNLO result. The threshold
effects at fixed order amount to −3.2% enhancement over
the NLO distribution over a large range of rapidity. On the
other hand, the resummed corrections at NNLOþ NNLL
amount to −2.5% enhancement over the fixed order NNLO.
In general, we find a better perturbative convergence in
the resummed spectrum which combines merit of both
resummed logarithms and nonsingular contributions from
fixed order which are not captured in purely resummed
predictions. While the third-order analytic ingredients pre-
sented in this article will be useful to match to the third-order
fixed-order results once they become available, we present
the first predictions at the third order coming from the
dominant threshold logarithms and also match them to
N3LL. We observe a relatively flat correction in the third
order matched results for all rapidities with reduced scale

uncertainties to below 4% particularly in the higher rapid-
ities, a region dominated by the large threshold logarithms.
Our resummed results can be useful in constraining the
bottom quark PDFs at the large momentum fraction.
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APPENDIX A: ANOMALOUS DIMENSIONS

The cusp anomalous dimensions have the following
perturbative expansion in strong coupling,

Ab ¼
X∞
i¼1

aiSA
b
i : ðA1Þ

We collect here the coefficients up to fourth order [111–113]
needed at N3LL,

Ab
1 ¼ 4CF;

Ab
2 ¼ 8CFCA

�
67

18
− ζ2

�
þ 8CFnf

�
−
5

9

�
;

Ab
3 ¼ 16CFC2

A

�
245

24
−
67

9
ζ2 þ

11

6
ζ3 þ

11

5
ζ22

�
þ 16C2

Fnf

�
−
55

24
þ 2ζ3

�
þ 16CFCAnf

�
−
209

108
þ 10

9
ζ2 −

7

3
ζ3

�

− 16CFn2f

�
1

27

�
;

Ab
4 ¼ CFn3f

�
−
32

81
þ 64

27
ζ3

�
þ C2

Fn
2
f

�
2392

81
−
640

9
ζ3 þ

64

5
ζ22

�
þ CACFn2f

�
923

81
þ 2240

27
ζ3 −

608

81
ζ2 −

224

15
ζ22

�

þ C3
Fnf

�
572

9
− 320ζ5 þ

592

3
ζ3

�
þ C2

ACFnf

�
−
24137

81
þ 2096

9
ζ5 −

23104

27
ζ3 þ

20320

81
ζ2 þ

448

3
ζ2ζ3 −

352

15
ζ22

�

þ CAC2
Fnf

�
−
34066

81
þ 160ζ5 þ

3712

9
ζ3 þ

440

3
ζ2 − 128ζ2ζ3 −

352

5
ζ22

�

þ C3
ACF

�
84278

81
−
3608

9
ζ5 þ

20944

27
ζ3 − 16ζ23 −

88400

81
ζ2 −

352

3
ζ2ζ3 þ

3608

5
ζ22 −

20032

105
ζ32

�

þ nf
dð4ÞFF

NF

�
−
1280

3
ζ5 −

256

3
ζ3 þ 256ζ2

�
þ dð4ÞFA

NF

�
3520

3
ζ5 þ

128

3
ζ3 − 384ζ23 − 128ζ2 −

7936

35
ζ32

�
: ðA2Þ

The quartic Casimirs appearing above are defined as
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dð4ÞFA

NF
≡ dabcdF dabcdA

nc
¼ ðn2c − 1Þðn2c þ 6Þ

48
¼ 5

2
;

dð4ÞFF

NF
≡ dabcdF dabcdF

nc
¼ ðn2c − 1Þðn4c − 6n2c þ 18Þ

96n3c
¼ 5

36
; ðA3Þ

with NF ¼ nc ¼ 3 for QCD. The threshold noncusp anomalous dimensionsDb
d has the following perturbative expansion in

the strong coupling,

Db
d ¼

X∞
i¼1

aiSD
b
d;i: ðA4Þ

The coefficients are the same as the quark ones (see e.g., [82]). Up to the N3LL accuracy, these are needed up to third order
[62] which we collect below,

Db
d;1 ¼ 0;

Db
d;2 ¼ CFnf

�
112

27
−
8

3
ζ2

�
þCACF

�
−
808

27
þ 28ζ3 þ

44

3
ζ2

�
;

Db
d;3 ¼ CFn2f

�
−
1856

729
−
32

27
ζ3 þ

160

27
ζ2

�
þCACFnf

�
62626

729
þ 208

15
ζ22 −

536

9
ζ3 −

7760

81
ζ2

�

þC2
Fnf

�
1711

27
−
32

5
ζ22 −

304

9
ζ3 − 8ζ2

�
þC2

ACF

�
−
297029

729
−
616

15
ζ22 − 192ζ5 þ

14264

27
ζ3 þ

27752

81
ζ2 −

176

3
ζ2ζ3

�
:

ðA5Þ

APPENDIX B: YUKAWA RUNNING

The Higgs Yukawa coupling with bottom quark is given
as λ ¼ mb=v. Here mbðμrÞ is the MS running mass of the
bottom quark. Thus, the running of Yukawa goes through
the running of bottom mass as

μ2r
d
dμ2r

λðμrÞ ¼ γmðaSÞλðμrÞ: ðB1Þ

The mass anomalous dimension (γm) has the following
perturbative expansion:

γm ¼
X∞
i¼0

aiþ1
S γðiÞm ; ðB2Þ

where the coefficients are known up to four loops [99,
114–117]. We collect all the coefficients up to four-loop
order,

γð0Þm ¼ CFð3Þ; ðB3Þ

γð1Þm ¼ C2
F

�
3

2

�
þ CACF

�
97

6

�
þ nfCF

�
−
5

3

�
; ðB4Þ

γð2Þm ¼C3
F

�
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2

�
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F

�
−
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4

�
þC2
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�
11413
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�
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Fð−23þ 24ζ3ÞþnfCACF

�
−
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− 24ζ3

�
þn2fCF

�
−
35

27

�
;

ðB5Þ

γð3Þm ¼ dFA
Nc

�
69383

21
−
10560

7
ζ5 þ

16384

21
ζ3

�
þ C4

F

�
−
1261

8
− 336ζ3

�
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F

�
15349
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�

þ C2
AC

2
F

�
182015

252
−
2200

7
ζ5 þ
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21
ζ3

�
þ nfC3

F

�
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3
− 240ζ5 − 444ζ3

�

þ nfCAC2
F

�
−
13139

54
þ 40ζ5 þ 784ζ3 −

264

5
ζ22

�
þ nfC2

ACF

�
−
59843
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þ 200ζ5 −

1732

3
ζ3 þ

264

5
ζ22

�
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2
F

�
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− 40ζ3 þ
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5
ζ22

�
þ n2fCACF

�
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þ 40ζ3 −
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5
ζ22

�
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�
−
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9
ζ3

�
: ðB6Þ
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APPENDIX C: THE PROCESS DEPENDENT COEFFICIENT gbd;0

Below we present the new process dependent coefficients (gbd;0i) up to N3LL accuracy,

gbð1Þd;0 ¼ CFf−4þ 16ζ2 þ ð−6ÞLfrg; ðC1Þ

gbð2Þd;0 ¼ CFnf

�
8

9
þ 8

9
ζ3 −

40

3
ζ2 þ

�
2
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3
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�
Lfr þ

�
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�
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−
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�
;

ðC2Þ

gbð3Þd;0 ¼ CFn2f
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Lqr þ

�
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9
ζ2

�
L2
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�
þC2

Fnf

�
−
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9
−
608

9
ζ5 þ

8872

27
ζ3 −
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256

3
ζ2ζ3

−
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�
−
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3
−
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9
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3
ζ23 þ
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ζ2
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3
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�
−
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2
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3
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5
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APPENDIX D: SOFT-VIRTUAL COEFFICIENTS IN DOUBLE MELLIN SPACE

For completeness, here we collect all the singular SV coefficients [81] up to third order in the double Mellin space as
defined in Eq. (5). The perturbative expansion in Mellin space takes the following form:

Δd;bb̄ðN1; N2Þ≡ Δ̃f:o:
d;bb̄ðN1; N2Þ ¼ 1þ

X∞
i¼1

aiSΔ
ðiÞ
d;bb̄

: ðD1Þ

Defining L≡ lnðN1N2Þ, the coefficients up to third order take the form,

Δð1Þ
d;bb̄

¼ L2fð2ÞCFg þLfðð−4ÞLqr þ ð4ÞLfrÞCFg þ gbð1Þd;0 ; ðD2Þ
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�
−
22

3

�
Lqr þ

134

9

�
CACF þ ð32ζ2 þ ð−16ÞLqrLfr þ ð−12ÞLfr þ ð8ÞL2

qr þ ð8ÞL2
fr − 8ÞC2

F

þ
��

4

3

�
Lqr −

20

9

�
CFnf

�
þL

��
−28ζ3 þ

�
−8ζ2 þ

268

9

�
Lfr þ

�
8ζ2 −

268

9

�
Lqr þ

�
−
22

3

�
L2
fr

þ
�
22

3

�
L2
qr þ

808

27

�
CACF þ ðð−64ζ2 þ 16ÞLqr þ ð64ζ2 − 16ÞLfr þ ð−24ÞL2

fr þ ð24ÞLqrLfrÞC2
F

þ
��

−
40

9

�
Lfr þ

�
−
4

3

�
L2
qr þ

�
4

3

�
L2
fr þ

�
40

9

�
Lqr −

112

27

�
CFnf

�
þ gbð2Þd;0 ; ðD3Þ

Δð3Þ
d;bb̄

¼ L6

��
4

3

�
C3
F

�
þL5

�
ðð−8ÞLqr þ ð8ÞLfrÞC3

F þ
�
−
8

9

�
C2
Fnf þ

�
44

9

�
CAC2

F

�

þL4

��
−8ζ2 þ

�
−
220

9

�
Lqr þ

�
88

9

�
Lfr þ

268

9

�
CAC2

F þ ð32ζ2 þ ð−32ÞLqrLfr þ ð−12ÞLfr þ ð16ÞL2
qr

þ ð16ÞL2
fr − 8ÞC3

F þ
��

−
16

9

�
Lfr þ

�
40

9

�
Lqr −

40

9

�
C2
Fnf þ

�
−
44

27

�
CACFnf þ

�
4

27

�
CFn2f þ

�
121

27

�
C2
ACF

�

þL3

��
−
88

9
ζ2 þ

�
−
484

27

�
Lqr þ

3560

81

�
C2
ACF þ

�
−
64

9
ζ2 þ

�
−
136

9

�
Lfr þ

�
8

3

�
L2
fr þ

�
16

3

�
LqrLfr

þ
�
160

9

�
Lqr þ ð−8ÞL2

qr −
212

27

�
C2
Fnf þ

�
16

9
ζ2 þ

�
176

27

�
Lqr −

1156

81

�
CACFnf

þ
�
352

9
ζ2 − 56ζ3 þ

�
−32ζ2 þ

940

9

�
Lfr þ

�
32ζ2 −

1072

9

�
Lqr þ

�
−
88

3

�
LqrLfr

þ
�
−
44

3

�
L2
fr þ ð44ÞL2

qr þ
1352

27

�
CAC2

F þ
�
ð−128ζ2 þ 32ÞLqr þ ð128ζ2 − 32ÞLfr

þ ðð−32ÞLfr þ ð32ÞLqr þ 48ÞLqrLfr þ
�
−
32

3

�
L3
qr þ

�
32

3

�
L3
fr þ ð−48ÞL2

fr

�
C3
F

þ
��

−
16

27

�
Lqr þ

80

81

�
CFn2f

�
þ L̄2

��
−
504

5
ζ22 þ

3824

9
ζ2 þ

560

9
ζ3 þ

�
−176ζ2 þ 64ζ3 −

3088

27

�
Lqr

þ
�
−
104

3
ζ2 − 64ζ3 þ

514

27

�
Lfr þ

�
−32ζ2 þ

1072

9

�
L2
qr þ

�
−32ζ2 þ

1270

9

�
L2
fr

þ
�
64ζ2 þ

�
88

3

�
Lqr þ

�
88

3

�
Lfr −

1748

9

�
LqrLfr þ

�
−
88

3

�
L3
qr þ

�
−
88

3

�
L3
fr −

68

3

�
CAC2

F

þ
�
88

5
ζ22 −

536

9
ζ2 − 88ζ3 þ

�
88

3
ζ2 −

3560

27

�
Lqr þ

�
242

9

�
L2
qr þ

15503

81

�
C2
ACF

þ
�
1104

5
ζ22 − 64ζ2 − 120ζ3 þ ð−256ζ2 þ ð−48ÞLqr þ ð96ÞLfr þ 64ÞLqrLfr þ ð−144ζ2 − 96ζ3 þ 42ÞLfr

GOUTAM DAS PHYS. REV. D 108, 094028 (2023)

094028-10
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