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We revisit some aspects of the stringy approach to dipole-dipole interactions, scattering and entanglement
in QCD, using the Nambu-Goto (NG) string, without recourse to holography. We first show that the potential
between two static dipoles exchanging closed NG strings is attractive at all separations. Underlining the
exchange there is an emergent entropy, that is dominated by the tachyon at large separation, and vanishes at
short separation, a measure of the confinement-deconfinement transition. The same tachyon is dominant in
the scattering amplitude, as a correlator of two Wilson loops for two fixed dipolelike hadrons separated at
large rapidity gap, where the contribution of the world sheet fermions is included. While the tachyon causes
the mean string bit density to grow exponentially with the rapidity, the total scattering cross section still
satisfies the Froissart bound by quantum shadowing. The stringy scattering exchange also carries an
entanglement entropy, that saturates when the bound is reached. For hadrons with varying dipole sizes, the
tachyon exchange takes place in hyperbolic space in the conformal limit. The result for the full S-matrix is
reminiscent of the one fromMueller’s evolved dipole wave function, for the total dipole-dipole cross section
in perturbative QCD.
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I. INTRODUCTION

String theory has been hailed as a possible consistent
theory of quantum gravity. By pertinent compactifications,
it has the potential to lead to various extensions of the
standard model at higher energies. But perhaps the most
compelling application of string theory may still be in
strong interactions, where it originated from. It is plausible
that QCD in the large number of colors Nc limit, may be
dual to an effective string theory with a weak string
coupling gs ∼ 1

Nc
, as suggested by holography in higher

dimensions [1] (and references therein).

In so far, the compelling arguments for a QCD string stem
from lattice QCD simulations [2] (and references therein).
Indeed, detailed QCD lattice simulations in 1þ 2 dimen-
sions have shown that the closed flux tube in gauge theories
with various Nc, are well described by a Nambu-Goto (NG)
string in flat space dimensions [3]. Detailed studies of the
string mass on its length for variousNc, yield results that are
in good agreement with the NG string even for short
lengths, well-beyond the contribution of the Luscher term.
Although fuzzy, the string is well-approximated by a
fundamental NG string. The extension of the lattice analysis
to (1þ 3)-dimensions for Nc ¼ 3, 5 for the closed string
spectrum, has also shown convincing agreement with the
NG string [4].
The description of the heavy quark-antiquark potential

for fixed separation R, using a fully quantized NG string in
2þ D⊥-dimensions, was carried by Arvis with the result [5]

VðRÞ ¼
�
σ2TR

2 −
D⊥
24α0

�1
2

;

with the string tension σT ¼ 1=2πα0 and α0 ¼ l2s . The large
distance expansion of the NG potential, yields
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VðRÞ ≈ σTR −
πD⊥
24R

−
π2

2σTR3

�
D⊥
24

�
2

; ð1Þ

the linear confining potential, plus the universal Luscher
correction [6] and the Luscher-Weisz correction [7]. These
three contributions are well-reproduced by the high-
precision QCD lattice analysis of the interquark potential
in [8]. Yet, the full NG potential becomes imaginary below
a critical distance

Rc ¼ π

ffiffiffiffiffiffiffiffiffiffiffi
D⊥α0
6

r
¼ 1

2

jM0j
σT

→
1

3
fm:

The rightmost numerical estimate following from D⊥ ¼ 2,
with α0 ¼ 1=2m2

ρ the Regge rho meson slope. This behav-
ior is tied to the tachyon with negative squared massM2

0 <
0 in the dual spectrum, and doomed the NG string as a
fundamental string in 4-dimensions. Yet the tachyon mass
is also at the origin of the measured large distance 1=R
and 1=R3 corrections exhibited by the QCD string, which
is fuzzy and not fundamental. The interquark potential
below the critical Rc in QCD, is nonconfining. The lattice
results [8,9] (see Figs. 1–3 therein) set the deviations
at small separations r < r0, with the Sommer scale
r0 ∼ 0.5 fm. Hence, the use of the NG string to model
QCD interactions, should prove useful away from criti-
cality, for separations r > r0 > Rc. The additional correc-
tions to the NG string stemming from the constraints of
Lorentz symmetry [10] are observed to be small in this
range. In a way, this is consistent with the empirical
success of the Cornell potential for charmonia [11]. In
what follows, we will make use of these observations.
More specifically, we will use the NG string to analyze

the interaction potential and scattering amplitude in the
Regge limit (s ≫ −t ∼ Λ2

QCD), between two QCD dipoles
using the exchange of a NG string in flat 4-dimensional
space, without recourse to holography. When formulated
in Euclidean signature, the two calculations parallel each
other with the scattering following from the potential with
an Euclidean-angle valued rotation, followed by a perti-
nent analytical continuation to the hyperbolic angle or
rapidity. This construction was initially suggested for a
pair of quark scattering in [15]. For completeness, we
recall that this stringy approach to scattering in QCD, was
initially proposed in higher dimensions using the gauge-
gravity duality [16–18], and since then discussed by many
e.g., [19–22] (and references therein).
The present work relies on preceding construc-

tions [23,24], to derive a number of new results: 1) The
static dipole-dipole potential is dominated by the exchange
of NG closed strings, with the tachyon dominant at large
distances; 2) The NG exchanges are characterized by an
emergent entropy, that undergoes a phaselike transition with
varying separation; 3) The scattering of two dipoles at large
rapidity, is dominated by the two-particle irreducible (2PI)

NG surface of genus 2, with a total cross section that is
in good agreement with the recently reported data at the
LHC; 4) The NG estimate of the rapidity and parton-x at
saturation; 5) The contribution of the NG world sheet
fermions to both the Pomeron intercept, and quantum
entanglement at low parton-x; 6) A new entanglement
entropy for multiple NG exchanges in the process of
shadowing, that asymptotes a single qubit at the Froissart
bound; 7) The generalization of the NG tachyon diffusion
from flat to curved hyperbolic and confining space, to
include evolution in the size of the probing dipoles.
The organization of the paper is as follows: In Sec. II we

detail the construction of the potential between two static
dipoles of fixed and equal size, via the exchange of closed
NG strings. The potential is found to be attractive at all
separations, with the NG tachyon dominant at large sepa-
rations. In Sec. III we extend the potential analysis to the
scattering amplitude, through a simple rotation in Euclidean
signature, followed by an analytical continuation to rapidity
in Minkowski signature. The NG tachyon is shown to
dominate the scattering amplitude at large rapidities. Both
the potential and scattering amplitude exponentiate through
2PI “webs” that are identified with the exchange of a NG
string, in leading order in 1=Nc. This resummation in the
scattering channel, yields to saturation of the total cross
section by quantum shadowing, even though the string bits
density keeps increasing exponentially at large rapidities. In
Sec. IV we review and extend the string results for quantum
entanglement for hadron-hadron in the Regge limit, and
deep inelastic scattering (DIS) in the low-x regime. We
suggest that the quantum entanglement entropy saturates at
the Froissart bound. In Sec. V we show how to extend the
NG tachyon diffusion in curved transverse space, by
including the size of the probe dipoles and enforcing
conformal symmetry. The result is reminiscent of the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution result
following from Mueller’s wavefunction evolution for the
total cross section in perturbative QCD. Our conclusions are
in Sec. VI. A short parallel between the NG tachyon results
and pQCD in the Regge limit, is discussed in the Appendix.

II. STRINGY DIPOLE-DIPOLE INTERACTION

There are many indications from lattice simulations that
flux tubes in quenched QCD, can be described by an
effective theory of strings of which the NG action is the
leading contribution [2]. Remarkably, the NG string appears
to describe remarkably well the fuzzy QCD string, even for
relatively short distances. We now use this lattice observa-
tion, to analyze the potential between a pair of static dipoles,
in quenched QCD. This potential is amenable to a meas-
urement on the lattice.
This construction parallels closely the analysis of the

scattering of a pair of lightlike dipoles discussed in [23]
(and references therein), using the holographic construc-
tion. To our knowledge, the potential between two parallel
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dipoles was never analyzed using the holographic string. It
cannot be deduced from the twisted dipoles in [23] by
taking the twisting angle to zero, since the twisted exchange
presents an essential singularity in this limit. The singu-
larity reflects on the existence of a pair creation process
through a string-like Schwinger mechanism in the twisted
configuration, that is absent in the untwisted configuration
for the potential analysis.

A. Dipole-dipole correlator

Consider the static correlators of two identical
Wilson loops

WW ¼ hWða;b⊥ÞWða; 0⊥Þi
hWihWi ; ð2Þ

with

Wða;x⊥Þ ¼
1

Nc
Tr

 
P exp

 
igY

Z
Ca

dτA:v

!!
: ð3Þ

The contour Ca runs along the rectangular loop of side a,
located at x⊥, with infinite extent along the temporal
direction in the v-direction. As usual, the Wilson-loop
correlator exponentiates through 2PI “webs” [25,26], which
we identify to leading order as a closed NG string with
genus 2. More specifically,

lnWW ≡WW2PI ¼ g2s

Z
dT
2T

KðTÞ; ð4Þ

with gs ∼ 1
Nc

the string coupling, and

KðTÞ ¼
Z
T
D½x�e−S½x�þghost; ð5Þ

the NG string partition function with cylindrical topology
and modulus T. The NG action in conformal gauge is [27]

S½x� ¼ σT
2

Z
T

0

dτ
Z

1

0

dσðẋμẋμ þ x0μx0μÞ: ð6Þ

Here ẋ ¼ ∂τx and x0 ¼ ∂σx. The string tension is
σT ¼ 1=ð2πα0Þ.
The evaluation of (4) in string theory, is in general

difficult due to the finite dipole sizes, and we need to make
reasonable approximations. For small size dipoles, we will
assume that the cylindrical boundaries are highly pinched,
and approximate them by straight lines. The exchanged
closed string forms a funnel, with linear end-points, much
like the exchange between static D0 branes, as detailed for
the twisted dipoles in [23]. However, funnels with higher
windings or N-ality are not suppressed between D0 branes,
but are suppressed between dipoles of finite transverse size.
A physical interpretation of the final result, will allow for a
simple extraction of the dipole-dipole potential from this
approximation below.

B. Static dipole-dipole potential

With this in mind, we now decompose the string
embedding coordinates using the world sheet normal modes
in 2þD⊥ flat space, with linear and periodic boundary
conditions in the affine time with period T [28],

x0ðτ; σÞ ¼ X þ cW
σT

τ þ
X∞

m¼−∞

X∞
n¼1

x0m;n exp

�
i2πm

τ

T

�
cosðπnσÞ;

x1ðτ; σÞ ¼
X∞

m¼−∞

X∞
n¼1

x1m;n exp

�
i2πm

τ

T

�
sinðπnσÞ;

x⊥ðτ; σÞ ¼
�
σ −

1

2

�
b⊥ þ

X∞
m¼−∞

X∞
n¼1

x⊥m;n exp

�
i2πm

τ

T

�
sinðπnσÞ; ð7Þ

with c ¼ 1=ls. Since

x0ðτ þ T; σÞ − x0ðτ; σÞ ¼ W

�
T

σTls

�
; ð8Þ

we interpret W ¼ 0;�1;�2;… as a winding number, with
2πlsT the circumference of the cylindrical funnel. Below we
will show that this is at the origin of an effective temperature
for the exchanged closed strings, in the dipole-dipole
potential. X;W plays the role of collective coordinates.

In terms of (7), all integrals in (5) are Gaussian with
the resultZ

dX
X
W

KðT;WÞ ¼ a2X
l3s

X
W

exp

 
−
T
2

�
σTb2 þ

c2W2

σTT2

�!

×
�Y∞
n¼1

2 sinh
�
nπT
2

��
−D⊥

: ð9Þ

The diverging products can be regularized by standard zeta
function regularization, using the representation
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sinhðπxÞ ¼ πx
Y∞
m¼1

�
1þ x2

m2

�
: ð10Þ

With this in mind, and trading the re-summation over the
windings using the Poisson summation formula, we obtain

Z
dX
X
W

KðT;WÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

c2α0T

r
a2X
l3s

X
k

exp

�
−
T
2

�
σTb2

þ 2πk2

c2α0T2

��
η−D⊥

�
i
T
2

�
; ð11Þ

where ηðxÞ is Dedekind eta function

ηðτÞ ¼ q
1
24

Y∞
n¼1

ð1 − qnÞ q ¼ e2iπτ: ð12Þ

Note that (12) satisfies ηðixÞ ¼ ηði=xÞ= ffiffiffi
x

p
, and relates to

the string density of modes [29]

η−D⊥ðixÞ ¼ x
D⊥
2 e

πD⊥
12x

X∞
n¼0

dðnÞe−n2πx ; ð13Þ

with dðnÞ being the string density of states normalized to
dð0Þ ¼ 1, with asymptotically

dðnÞ ≈ Cn−
D⊥þ3

4 e2π
ffiffiffiffiffiffiffiffiffiffi
D⊥n=6

p
: ð14Þ

The Poisson resummation trades the sum over the windings
W of the closed string exchanges, with the dual sum over
the N-alities or k fluxes [23]. For source dipoles as Wilson
loops in the fundamental representation, k ¼ 1;…; ½Nc

2
�

which runs to infinity in the large Nc limit. For QCD with
½3
2
� ¼ 1, only the k ¼ 1 N-ality is to be retained.
The leading contribution to the static potential for two

parallel dipoles of size a, is given by the 2-particle
irreducible (2PI) string exchange

VDDðbÞ ¼ −
lnWW

X
¼ −g20

X∞
n¼0

dðnÞΔðmn; bÞ ð15Þ

with the exchanged scalar propagator

Δðmn; bÞ ¼
Z

dkD⊥þ1

ð2πÞD⊥þ1

eik·b

k2 þm2
n

¼ 1

2π

�
mn

2πb

�D⊥−1
2

KD⊥−1
2

ðmnbÞ ð16Þ

and coupling to the dipole g0 ¼ gsa
α0 ð

ffiffiffiffiffiffi
2π

p
α0ÞD⊥

4 . HereKαðxÞ
is the modified Bessel function, and dðnÞ is the canonical
string density of states with dð0Þ ¼ 1, and gs the string

coupling. (15) amounts to a tower of closed string
exchanges or glueballs, with radial masses

mn ¼
1

cα0

�
1 −

D⊥c2
12πσT

þ 2nπc2

π2σT

�1
2

¼ σTβ

�
1 −

β2H
β2

þ 8πn
σTβ

2

�1
2

; ð17Þ

and with the inverse Hagedorn temperature βH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πD⊥=3σT

p
. β ¼ 2π=c ¼ 2πls is the circumference of

the exchanged cylindrical world sheet.
For large b, the exchange in (15) is dominated by the

tachyon mode with n ¼ 0

m0 ¼ σTβ

�
1 −

β2H
β2

�1
2 ¼ 1

ls

�
1 −

D⊥
6

�1
2

; ð18Þ

which is still real positive for D⊥ < 6. For D⊥ ¼ 2 and
using half the rho meson Regge slope α0 ¼ 1=4m2

ρ for a
closed string, we have m0 ≈ 1257 MeV, which is close to
them0þþ ¼ 1475 MeV glueball reported on the lattice [30].
The attractive and static dipole-dipole potential follows as

VDDðbÞ ≈ −
g2sa2

ffiffiffiffiffiffiffiffi
πσT

p
α0

�
πα0m0

b

�D⊥−1
2

KD⊥−1
2

ðm0bÞ: ð19Þ

For short separations, the exchange is also attractive

VDDðbÞ ≈ −
�
g2sa2

ffiffiffiffiffiffiffiffi
πσT

p
2α0

X
n

dðnÞ
�
Γ
�
D⊥ − 1

2

�

×

�
1

σTb2

�D⊥−1
2

; ð20Þ

and Coulombic for D⊥ ¼ 2, i.e., VDDðbÞ ∼ −g2s=b.
However, this contribution signals the onset of a critical
NG string, with a diverging mode sum for the overall
coefficient. At short separations, the exchange is not
confining. It is dominated by 2-gluon Coulomb exchange
in the 0þþ channel. The Casimir-Polder contribution
characterizes the fully nonconfining potential at large
separations [31] (and references therein).
Recall that the string coupling is gs ¼ fðλÞ=Nc, with

fðλÞ a nonuniversal function of the large ’t Hooft coupling
λ ¼ g2YNc. For instance, in holographic models, fðλÞ ¼
λ=4π (N ¼ 4 SUSY) and fðλÞ ¼ ðλ=3Þ32=π (Witten model).
This observation shows that the 2-PI contribution (15) is
dominant in large Nc, as the higher #-PI contributions are
suppressed by ð1=N2

cÞ1þ#.

C. Emergent entropy in dipole-dipole interaction

The circumference β ¼ 2πls in (15), plays the role of an
inverse effective temperature, associated with the spatial
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exchange of closed strings or glueballs, in the transverse
b-direction. Remarkably, TR ¼ 1=β ¼ 1=2πls is identical
to the Rindler temperature of falling matter on the stretched
horizon, a membrane a string length away from the event
horizon of a stationary black hole. With this in mind, we
may interpret the potential in (15) as a free energy. As a
result, the stringy exchange in the dipole-dipole potential,
carries an emergent entropy,

SEVðbÞ ¼ β2
�
∂VDDðbÞ

∂β

�
: ð21Þ

To understand the nature of this entropy and how it may
relate to the spatial entanglement entropy in QCD4 at large
Nc, we note that (15) at large separation is given by

VDDðbÞ∼
ffiffiffi
π

2

r �
g2sa2

α032

��
2πα0

b2

�D⊥−1
2 X∞

n¼0

dðnÞx
D⊥
2
−1

n e−xn ð22Þ

with α0 ¼ l2s and xn ¼ mnb. Inserting (22) in (21) gives

SEVðbÞ ∼ ð2πÞD⊥
2
þ4

�
g2sa2

2b2

��
ls
b

�
D⊥−1X∞

n¼0

dðnÞx
D⊥
2
−2

n e−xn :

ð23Þ

Equation (23) amounts to the entropic function at large
xn ≫ 1,

CDDðbÞ ¼
∂SEVðbÞ
∂ ln b

∼ −ð2πÞD⊥
2
þ4

�
g2sa2

2b2

�

×

�
ls
b

�
D⊥−1X∞

n¼0

dðnÞx
D⊥
2
−1

n e−xn : ð24Þ

Using the radial mass spectrum (17) and the string density of
states (14), the sum is dominated by the large-n contribution

X∞
n¼0

dðnÞx
D⊥
2
−1

n e−xn ∼
Z

∞

nlow

dnn−
5
4e−mnbþ2π

ffiffiffiffiffiffi
D⊥n
6

p
: ð25Þ

Using the change of variable t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πn=σT

p
=β we can

rewrite (25) as

Z
∞

tlow

dt

t
3
2

e
1
2
σTββHt−σTβb

ffiffiffiffiffiffiffi
1þt2

p
; ð26Þ

which can be undone by saddle point approximation for
β=b ≪ 1, with the result,

X∞
n¼0

dðnÞx
D⊥
2
−1

n e−xn ∼ e−σTb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−ðβH=2Þ2

p
; ð27Þ

to exponential accuracy. The branch point singularity
b ¼ 1

2
βH ¼ Rc reflects on the diverging sum for small

distances in agreement with (2).
We now recall that the entropic function for spatial

entanglement in QCD4 at large Nc, was argued to be of the
form [32]

C1þ3ðbÞ ∼
1

32
ffiffiffi
π

p V2

b2
X∞
n¼0

dðnÞðMnbÞ32e−2Mnb

∼
Z

∞
dMMαeðβH−2bÞM; ð28Þ

where Mn ∼
ffiffiffi
n

p
=α0 was used for the asymptotic of the

glueball spectrum. If instead, the exact radial glueball
spectrum (17) with Mn ¼ 1

2
mn which carries the same

asymptotics is used in (25), then to exponential accuracy in
the entropic function for spatial entanglement in QCD4

X∞
n¼0

dðnÞðMnbÞ32e−2Mnb ∼ e−σTb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−ðβH=2Þ2

p
ð29Þ

in agreement with (27).
We conclude that the entropic function constructed from

the emergent entropy (21) associated to two interacting
dipoles, shares the same asymptotic behavior as the entropic
function for spatial entanglement in QCD4 at large Nc. It
also diverges at the same location b ¼ 1

2
βH. The divergence

reflects on the transition from a confining to a deconfining
phase as probed by (21) and similarly by (29). Amusingly,
the mode sums in both cases are identical for D⊥ ¼ 5 or a
NG in (2þ 5)-dimensions, which is somehow reminiscent
of the holographic proposal.

III. STRINGY DIPOLE-DIPOLE SCATTERING

At large center-of-mass energy with a large rapidity gap,
the hadron-hadron scattering amplitude is universal. The
amplitude is that of two fixed-size dipoles scattering
elastically. For small angle scattering, the amplitude is
dominated by gluon exchanges with vacuum quantum
numbers. In perturbative QCD, the exchange is captured
by the BFKL resummation of rapidity ordered gluons, the
so-called hard Pomeron. In nonperturbative QCD, the
resummation is captured by Reggeized gluons. In the planar
approximation, the exchange is stringlike with the topology
of a cylinder, the so-called soft Pomeron. The existence of a
hard and soft Pomeron at large rapidity, was initially pointed
out in [33]. It finds a natural description in the gravity dual
approach to QCD [19,20], using a critical string in ten
dimensions in the conformal limit (hard Pomeron), followed
by conformal symmetry breaking (soft Pomeron).
The purpose of this section is to show that the NG string

which is noncritical, allows for the description of the elastic
dipole-dipole scattering amplitude using 1=Nc counting
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rules, already in four dimensions. The result is a soft
Pomeron with parameters that are distinct from the holo-
graphic results. The scattering construction parallels that of
the dipole-dipole interaction, showing the interconnected-
ness of the potential and scattering problems. The hard
Pomeron can also be retrieved, by allowing the tachyon
mode in the NG string to diffuse both in transverse and
longitudinal size, a point inspired by holography [24].
Since the NG string provides the closest description of the
QCD string potential, it should prove relevant for the QCD
scattering amplitude in the eikonal limit. In particular, a
more transparent approach to the unitarization of the cross
section, as well as the partonic string bit content and
entanglement, are seen to emerge.
The present construction using a NG string in D ¼ 4

dimensions is the closest to the holographic construction
using D > 4 presented in [23,24], with an essential differ-
ence in the Pomeron intercept. The twisted dipole-dipole
correlator follows from the reduction of the eikonal QCD
scattering amplitude, and then evaluated using the closed
and noncritical NG string in flat D ¼ 4 dimensions. The
exchange is solely in the confining regime of QCD. It
differs from the holographic Pomeron discussed in [19], by
the value of its intercept, the coupling to the sourcing
dipoles, and the absence of a conformal limit. This can
remedied as we discuss below.

A. Scattering amplitude

In Euclidean signature, the scattering between two
dipoles follows the same analysis as that for the potential
between two static dipoles presented above, with one
difference; the dipoles are not parallel but slated at an
angle θ. This angle maps by analytical continuation to the
rapidity or boost angle χ, thanks to Minkowski historical
observation. With this in mind, a rerun of the preceding
arguments gives for the twisted world sheet propagator [23]

KðT; θÞ ¼ a2

α0
e−

σT
2
Tb2

2 sinh
�
θT
2

�Y∞
n¼1

Y
s¼�

sinhðnπT
2
Þ

sinh
h
TðnπþsθÞ

2

i

×

"Y∞
n¼1

2 sinh

�
nπT
2

�#−D⊥
: ð30Þ

The details regarding the twisted string world sheet mode
decomposition analogous to (7), followed by the detailed
mode integration leading to (30) are given in [23]. The
double analytical continuation T → iT and θ → −iχ, maps
this twisted dipole-dipole correlator onto the scattering
amplitude of two light-likeWilson loops. With this in mind,
inserting (30) in the correspondingWW 2PI correlator and
using (12), (13), yield [23]

WW2PIðχ; a; bÞ ¼
g2sa2

4α0
X∞
k¼1

ð−1Þk
k

e−k
πσTb

2

χ η−D⊥
�
ikπ
χ

�

¼ g2sa2

4α0
X∞
k¼1

X∞
n¼0

dðnÞ ð−1Þ
k

k

�
kπ
χ

�D⊥
2

× exp

�
−
2χ

k

�
nþ b2

α0ð2χ=kÞ2 −
D⊥
24

��
;

ð31Þ

after analytical continuation, with χ ≈ lnðα0sÞ identified as
the rapidity, for large invariant mass

ffiffiffi
s

p
. The scattering

amplitude in momentum space is

1

−2is
T DDðχ; qÞ≈

Z
d2beiq⊥·bWW2PIðχ; a;bÞ

≈
π2g2sa2

2

X∞
n¼0

X∞
k¼1

dðnÞ ð−1Þ
k

k

�
kπ
χ

�D⊥−2
2

× exp

�
−
2χ

k

�
nþ α0

4
q2⊥ −

D⊥
24

��
: ð32Þ

Again, k sums over the N-ality with k ¼ 1;…; ½Nc
2
� all the

way to infinity at large Nc. In our case, only the k ¼ 1 term
contributes to the scattering of two dipoles as twisted
Wilson loops, in the fundamental representation of SUð3cÞ.
With this in mind, and in the large rapidity limit, (32)
simplifies

T DDðχ;qÞ≈ isðπgsaÞ2
�
π

χ

�D⊥
2
−1
exp

�
−χ
�
α0

2
ðq2⊥þM2

0Þ
��

;

ð33Þ

with the tachyon squared mass M2
0 ¼ − D⊥

6α0 .
The closed string exchange amounts to a Pomeron

exchange, with a Regge trajectory

αPðtÞ ¼
D⊥
12

þ α0

2
t; ð34Þ

hence a dipole-dipole (hadron-hadron) scattering amplitude
that rises as σPðsÞ ∼ sαPðtÞ. In the Regge limit with −t ≪ s,
this amplitude is dominated by a single NG string
exchange, given by

Aðs; tÞ∼−2is
Z

d2beiq·bWW2PIðs;a;bÞ∼ is1þαPðtÞ; ð35Þ

with t ¼ −q2.

B. Cross section and Froissart bound

The elastic-scattering amplitude (36) yields the total
cross section
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σðsÞ ¼ 1

s
ImAðs; 0Þ ∼ −2

Z
d2bWW2PIðs; a; bÞ ∼ sαPð0Þ;

ð36Þ

by the optical theorem. (36) increases with the squared
invariant mass s, in violation of unitarity. This shortcoming
can be addressed by noting that hWWi as a correlator of
two Wilson loops, requires the exponentiation of all the 2PI
contributions in leading order in 1

Nc
, much like in the

potential between the two static dipoles discussed earlier

WWðχ; a; bÞ ¼ hWχ
2
ða;b⊥ÞW−χ

2
ða; 0⊥Þi

hWihWi
¼ exp½WW2PIðχ; a; bÞ�: ð37Þ

WW2PI is the 2PI “web” contributions [25,26], which is
dominated by a string exchange with genus 2 as detailed
above, with higher genus contributions suppressed by
powers of g2s ∼ 1=N2

c. Since WW ≡ S identifies with the
full S-matrix, and using S ¼ 1þ iT as detailed in
Appendix, we obtain

σðsÞ ¼ 2

Z
d2bReð1 − Sðχ; a; bÞÞ

¼ 2

Z
d2bð1 − eWW2PIðχ;a;bÞÞ; ð38Þ

since WW2PIðχ; a; bÞ is real. To proceed, it is useful to
recast the tachyon contribution in (31) in impact parameter
space, as follows [23]:

WW2PIðχ; a; bÞ ≈ −
g2sa2

4α0

�
π

χ

�D⊥
2

e−Scl−S1loop : ð39Þ

The first contribution in the exponent of (39)

Scl ¼ σT

Z
TP

0

cos2ðχτÞbdτ
Z

1

0

bdσ ¼ 1

2
σTβb ¼ b2

2α0χ
;ð40Þ

is identified with a semiclassical world sheet instanton,
with a tunneling time TP ¼ 1=β ¼ 2πb=χ. The second
contribution in the exponent of (39)

S1loop ¼
D⊥
2

lndetð−∂2⊥Þ ¼ −
πD⊥
6

b
β
¼ −

D⊥
12

χ; ð41Þ

is the 1-loop zeta regulated corrective action, around the
world sheet instanton.
Using (39)–(41), we now note that the integrand in (38)

is controlled by the exponent in (31), which is a tradeoff
between the minimal world sheet instanton action Scl and
its 1-loop quantum correction S1loop. The black disc radius
is reached when

Scl ¼ jS1loopj → b2max ¼
D⊥α0
6

χ2; ð42Þ

so that eWW2PI → θðb − bmaxÞ. As a result (38) yields the
total cross section

σðsÞ∼ 2

Z
d2bθðbmax − bÞ∼ 2πb2max ¼ 2πα0

D⊥χ2
6

: ð43Þ

At large rapidity, the 2PI NG contribution saturates the
Froissart bound, with a scale fixed by the string tension
σT ¼ 1=2πα0, and not the pion mass as suggested in
[23,34,35].
More specifically, (38) evaluates exactly to

σðsÞ ¼ 2πα0
 
D⊥χ2
6

− χ lnðD⊥χÞ þ
�
a2g2sπ
4α0

χ þ γE

�

þO
�
e−

a2g2s π

4α0χ e
D⊥χ
6

�!
; ð44Þ

with χ ¼ lnðα0sÞ, in agreement with the estimate (43). The
new result (44) stemming from the NG exchange, is to be
compared with the empirical parametrization of the pp data
by the COMPETE Collaboration [12]

σppðsÞ ∼
�
35.5þ 0.307 ln2

�
s

29.1 GeV2

��
mb; ð45Þ

after dropping the Reggeon contributions at large
ffiffiffi
s

p
. In

Fig. 1 we show the NG result for the total cross section (44)
for a ¼ ls and gs ¼ 1withO ¼ 30: green-solid upper curve
with α0 ¼ l2s ¼ 1=2m2

ρ (the rho meson trajectory slope), and
red-solid curve with α0 ¼ l2s ¼ 1=4m2

ρ (half the rho meson

500 1000 5000 104
s GeV50

100

150

200

(s)mb

FIG. 1. Total cross section in mb versus
ffiffiffi
s

p
in GeV: solid-red

lower curve is the empirical pp cross section as parametrized by
the COMPETE Collaboration in [12] and quoted in (45). It is in
agreement with the cross sections currently measured by the
LHC [13]. The solid-blue lower curve is the NG result (44) with
a ¼ ls and gs ¼ 1 and O ¼ 30, with α0 ¼ 1=4m2

ρ, while the
solid-green upper curve is for α0 ¼ 1=2m2

ρ.
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trajectory slope). The empirical parametrization (45) blue-
solid lower curve, has been used by the COMPETE
Collaboration to reproduce the compiled pp and pp̄ data,
two decades ago. It is in good agreement with the recently
reported TOTEMmeasurements for pp at the highest

ffiffiffi
s

p ¼
13 TeV at the LHC [13]. The NG result is mostly sensitive
to the string length, and is undistinguishable from the
COMPETE parametrization for α0 ¼ l2s ¼ 1=4m2

ρ. Note that
the value of this parameter is tied to glueball spectrum
in (18). This shows the duality between the scattering
amplitude of two dipoles, and the static potential between
two dipoles.

C. Shadowing of wee string bits

We now note that the total cross section (38) amounts to

σðsÞ ∼ 2

Z
d2bNðs; a; bÞ; ð46Þ

with

1

2

dσ
d2b

¼Nðs;a;bÞ¼ 1−Sðs;a;bÞ¼ 1−eWW2PIðs;a;bÞ; ð47Þ

and 1
2
the effective number of wee-string bits flowing

through the cylindrical annulus 2πbdb. The effective
number N, obeys a nonlinear diffusionlike equation

ð∂ξ þM2
0 −∇2⊥Þ lnð1 − NÞ ¼ 0; ð48Þ

with ξ ¼ 1
2
α0χ playing the role of an effective (Gribov)

time, or

∂ξN −M2
0ð1 − NÞ lnð1 − NÞ −∇2⊥N −

ð∇⊥NÞ2
1 − N

¼ 0: ð49Þ

In the small number limit lnð1 − NÞ ∼ −N, one recovers the
linear diffusion equation, with nonlinear corrections for
larger N, that cause saturation asymptotically. For instance,
in the quadratic approximation, the nonlinear evolution is
given by

ð∂ξþM2
0−∇2⊥ÞN −

M2
0

2
N2− ð∇⊥NÞ2þOðN3Þ ¼ 0; ð50Þ

which is reminiscent of the nonlinear Gribov-Levin-Ryskin
equation, for the unintegrated gluon distribution [36].
In Fig. 2 we show the behavior of the integrand in the

total cross section (46) versus the rapidity, for three different
values of the impact parameter b. The green-solid upper
curve, red-solid middle curve, and the blue-solid lower
curve are for impact parameters b ¼ 2, 4, 6, in units of the
string length. We have set the string coupling gs ¼ 1, and
the static dipole sizes a ¼ 1 in units of the string length. The
dependence on the impact parameter is mild.

D. Deep inelastic scattering view of wee-string bits

In the stringy approach to the Pomeron and unitarization,
the picture of a hadron at large rapidities or small x, is
different from that following from pQCD, where a hadron at
large rapidity χ preserves its transverse size, and shrinks its
longitudinal size by the gamma factor γ ¼ e

1
2
χ. In contrast,

when a string is exchanged, the hadron transverse size
grows logarithmically as jΔx⊥j ∼

ffiffiffiffiffiffiffi
χα0

p
, while its light front

longitudinal size grows parametrically as jΔx−j ∼ χ0α0=0þ,
with 0þ the time resolution in the light front coordinate
xþ [14] (note that Δx−Δxþ ∼ α0 by the uncertainty princi-
ple). Parton as wee-string bits do not behave as normal
matter under Lorentz boost.
The number of wee-string bits grows exponentially with

WW2PI ∼ eαPχ . This growth is similar to the growth of the
longitudinal light front momentum Pþ ∼ γ ∼ e

1
2
χ , of the

boosted hadron. The string growth persists, even though
the total cross section saturates by quantum shadowing,
with ρðχÞ the number of string bits per light front volume
jΔx⊥jjΔx−j,

diffusive regime∶ b⊥ ∼
ffiffiffiffiffiffiffi
α0χ

p
ρðχÞ∼ eαPχ

χα02=0þ
;

ballistic regime∶ b⊥ ∼
ffiffiffiffi
α0

p
χ ρðχÞ∼ 1

χ2α02=0þ
: ð51Þ

An illustration of this spatial growth under boosting of the
nucleon is shown in Fig. 3. The ballistic regime dominates
the total cross section.
These features are accessible to DIS scattering at large

Q2=m2
H ≫ 1 and small parton faction x ≪ 1, where the

virtual photon can be viewed as a small projectile dipole of

10 20 30 40 50

0.5

1.0

1.5

2.0

d

d2 b

FIG. 2. Differential cross section (46) for fixed impact param-
eter b between two dipoles of fixed size a ¼ 1 and gs
¼ 1, as it unitarizes by shadowing, at large rapidity χ. The
green-solid upper curve, red-solid middle curve, and the blue-
solid lower curve are for impact parameters b ¼ 2, 4, 6, in units of
the string length. The dashed line follows from the saturation
condition (55).
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size aP ∼ 1=
ffiffiffiffiffiffi
Q2

p
, scattering off a target hadron also as a

dipole of a larger size aT , as illustrated in Fig. 4. We recall
the DIS kinematics

s −m2
H ¼ Q2

�
1

x
− 1

�

with the identification χ → ln 1
x. For a fixed target size, (39)

translates to

WW2PIðQ2; x; bÞ ∼ g2s
1ffiffiffiffiffiffiffiffiffiffi
α0Q2

p 1

xαPð0Þ
e
−

b2⊥
2α0 ln1x

∼
�
Q2ðxÞ
Q2

�1
2

e
−

b2⊥
2α0 ln1x; ð52Þ

after re-insertion of the preexponent, with

QðxÞ ¼ g2sffiffiffiffi
α0

p 1

xαPð0Þ
: ð53Þ

The arguments presented in Appendix show that the F2

structure function is

F2ðx;Q2Þ ∼ xGPðx;Q2Þ ∼
�
Q2ðxÞ
Q2

�1
2

; ð54Þ

at low-x, where QðxÞ maybe regarded as the stringy analog
of the so-called saturation momentum, with differences
with the original proposal by Golec-Biernat-Wusthoff
(GBF) [37]. The standard condition for saturation is set
by the requirement that Sðs; a; bÞjS ¼ e−

1
2 in (47) (a drop by

one standard deviation in the GBF Gaussian proposal for
S), or equivalently

dσ
d2b

				
S
¼ 2
�
1 − e−

1
2

� ¼ 0.79 → 14 < χS ¼ ln
1

xS
< 20:

ð55Þ

The rightmost result follows numerically from the black-
dashed curve in Fig. 2, for the impact parameter b in the
range 2 < b=ls < 6. This stringy estimate puts a lower
bound on parton x at saturation xS > 10−6, which falls
outside the reach of current colliders, including the future
EIC. This conclusion is specific to the Pomeron as the
exchange of noncritical NG string in D ¼ 4 dimensions.
Finally, (52) may be viewed as the number of wee string

bits with parton x, at a distance b⊥ ¼
ffiffiffiffiffiffi
b2⊥

p
in the trans-

verse plane, surrounding a fast moving hadron sourced by
a fixed size dipole. The number is small for Q2 ≫ Q2ðxÞ,
whatever b⊥. It is large for Q2 ≪ Q2ðxÞ, only in the disc

b⊥ ∼
ffiffiffiffiffiffiffiffiffiffiffi
α0 ln 1

x

q
, which is seen to grow diffusively in the

immediate surrounding of the target dipole. It drops
substantially in the much wider corona b⊥ ∼

ffiffiffiffi
α0

p
ln 1

x,
where the growth is ballistic.

IV. ENTANGLEMENT IN SCATTERING

In the large rapidity limit, (31) is dominated by the
tachyon contribution in the closed string exchange described
by the Nambu-Goto string. The tachyon as a mode encodes
the quantum entanglement between the projectile and the
target, carried geometrically by the world sheet. A way to
quantify this, is to recast (31) in the form (41). This is readily
identified as the free energy of D⊥ massless bosons trapped
in a box of size b at temperature 1=β as illustrated in Fig. 5,
with [38]

S1loop ¼ βFB ¼ D⊥
Z

bdp
2π

lnð1 − e−βjpjÞ: ð56ÞFIG. 4. DIS scattering as two Wilson loops WD exchanging a
closed NG string, in the Regge limit.

FIG. 3. Boosted nucleon with large longitudinal momentum
Pþ ∼ e

1
2
χ . The confined quark-diquark pair is highly contracted,

with a vanishingly small longitudinal size 1=Pþ, and fixed
transverse size χ0. It is surrounded by a halo of partons as string
bits, which extends transversely as

ffiffiffi
χ

p
(diffusive regime) and up to

χ (ballistic regime). The halo remains parametrically large longi-
tudinally as χ0=0þ, with 0þ the time resolution along xþ [14].
Throughout, it is described by a continuous NG string with
longitudinal momentum Pþ. All dimensions are in string units.
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As a result, the exchange in Fig. 5 carries a quantum or
entanglement bosonic entropy

SEB ¼ β2
∂FB

∂β
¼D⊥

Z
bdp
2π

2βjpj
eβjpj − 1

¼D⊥
6

χ ¼ 2αPð0Þχ:

ð57Þ

Equation (57) clearly captures the entropy of fluctuating
string bits (gluonic dipoles) on the instanton world sheet of
size β × b.

A. Fermionic contribution to the Pomeron intercept
and deep inelastic scattering

The fermionic correction to (57) follows immediately
from this physical observation, as nf massless world sheet
fermions also trapped in β × b as illustrated in Fig. 5, with
the result

βFF ¼ nf

Z
bdp
2π

lnð1þ e−βjpjÞ; ð58Þ

in total analogy with (56). The corresponding quantum or
entanglement fermionic entropy is then

SEF ¼ β2
∂FF

∂β
¼ nf

Z
bdp
2π

2βjpj
eβjpj þ 1

¼ 1

2

nf
6
χ; ð59Þ

with a net entanglement entropy

SEE ¼ SEB þ SEF ¼
�
1þ 1

2

nf
D⊥

�
D⊥
6

χ: ð60Þ

The result (60) implies that the stringy Pomeron intercept
is affected by the fermionic corrections on the world sheet.
More specifically, the Pomeron contribution in hadron-
hadron scattering is modified, with a shifted intercept

αPðtÞ ¼
D⊥
12

þα0

2
t→ α̃PðtÞ ¼

�
1þ1

2

nf
D⊥

�
D⊥
12

þα0

2
t; ð61Þ

due to the fermionic contribution.
Also in DIS, we can reinterpret the gluonic F2 structure

function (54) at low x as

F2ðx;Q2Þ ∼ xGPðx;Q2Þ ∼ 1

xα̃Pð0Þ
; ð62Þ

at the resolution fixed by the probing dipole size Q ∼ 1=a.
Note that (60) is still solely given by the gluon density (62)
at low x

SEEðx;Q2Þ ∼ lnðxGPðx;Q2Þ; ð63Þ

albeit with a fermion corrected gluonic intercept. At low x,
the partonic evolution does not follow from Dokshizer-
Gribov-Lipatov-Altarelli-Parisi equations (DGLAP), but
rather BFKL (weak coupling) or surfaces (strong coupling).
An alternative proposal to account for the fermionic
contribution to the entanglement entropy at low x was
suggested in [39–41].

B. Entanglement and Froissart bound

Finally, we suggest that in Reggeized hadron-hadron
scattering at the Froissart bound, the entanglement entropy
saturates by quantum shadowing, even though the entangle-
ment entropy as measured by (63) in DIS does not. For that,
we interpret the 2PI stringy exchanges in the shadowing
process in (38), as a net-quantum free energy

F2PI ¼ −
1

β
lnð2ð1 − eWW2PIÞÞ: ð64Þ

Note that it reduces to the stringy free energy for small
WW2PI and large rapidity. Hence the 2PI quantum or
entanglement entropy

S2PI ¼ β2
∂F2PI

∂β
¼ lnð1 − eWW2PIÞ þ β

∂βWW2PI

1 − e−WW2PI

þ ln 2 → ln 2; ð65Þ

which is seen to asymptote a constant for fixed b and large
rapidity χ ≫ 1. In the unitarity limit, the entanglement is that
of a single qubit! Recall that in the black disc limit, the
scattering choice appears to be binary, as the elastic and
inelastic cross sections are equal to the classical cross section
(Babinet theorem).
In Fig. 6 we show the entanglement entropy versus

rapidity, using our proposal (64) for the 2PI contribution,
for different values of the impact parameter b. The green-
solid lower curve, red-solid middle curve, and blue-solid
upper curve, are for impact parameters b ¼ 2, 4, 6 and fixed
dipole size a ¼ 1, all units of the string length. We have

FIG. 5. String world sheet exchange β × b in the Regge limit.
The transverse fluctuations xi⊥ with i ¼ 1;…; D⊥, and the nf
massless fermions q, are subject to periodic boundary conditions
in β.
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fixed the string coupling gs ¼ 1. The rapid initial rise with
rapidity, is caused by the NG tachyon in the single-string
exchange (60). This rise overshoots the unitarity line,
before it is overtaken by quantum shadowing in (65), to
level off at the Froissart bound. This leveling off is generic
of chaotic systems in their approach to equilibrium [38,42],
although here from above and not below.

V. NG TACHYON DIFFUSION IN A CONFINING
WARPED SPACE

The scattering amplitude of two fixed dipoles of size a
in (33), is dominated by the exchange of the NG tachyon

exp

�
−χ
�
α0

2
ðq2⊥ þM2

0Þ
��

; ð66Þ

in the transverse D⊥ dimensions, where the rapidity χ
emerges as a proper time. This exchange is diffusive, and
can be recast (66) using the contour integral

Z þi∞

−i∞

dj
2iπ

eχj

jþ α0
2
ðM2

0 þ q2⊥Þ
¼ 2

α0

Z þi∞

−i∞

dj
2iπ

eχjGðj;q⊥Þ:

ð67Þ

The propagator in the complex j-plane satisfies

ðq2⊥ þm2
jÞGðj;q⊥Þ ¼ 1; ð68Þ

with the j-dependent mass m2
j ¼ 2

α0 ðj − j0Þ and j0 ¼ D⊥
12
.

This stringy result captures the exchange of an emergent

spin-j in the Regge limit, for fixed momentum transfer q⊥,
sourced by a projectile and a target dipole of fixed sizes
(both set to a).

A. Warped diffusion

In QCD a boosted hadron is a collection of wee dipole of
various sizes as we discussed earlier. The scattering between
these dipoles is mediated by a noncritical NG string. Large-
size wee dipoles scattering mostly in the IR, through the
exchange of a closed NG string in the confining regime.
Small size dipoles scatter mostly in the conformal regime,
albeit at strong coupling in our case. The chief results are
different transverse growth size of the string, at the origin of
the transverse size dependence of the saturation scale: 1) in
the confining regime the growth is linear in the root of the
rapidity as in (52); 2) in the conformal regime, the growth is
exponential in the rapidity as we show below.
With this in mind, the sourcing dipole sizes vary as well,

with the combined change in a; b⊥, expected to be
conformal in the UV, and stringy in the IR. To realize this,
we rewrite (68) in a general coordinate space

−
1ffiffiffiffiffijgjp ∂μð

ffiffiffiffiffi
jgj

p
gμν∂νGÞ þm2

jG

¼ 1ffiffiffiffiffijgjp δðz − z0ÞδD−1ðx⃗ − x⃗0Þ; ð69Þ

by combining ða;b⊥Þ → ðz; x⃗Þ ¼ xμ in D ¼ 1þD⊥
space. But what is the metric gμν when z is added as a
coordinate? (69) can be viewed as an evolution equation in
our QCD analysis of the scattering amplitude, with the
evolution taking place in z ∼ 1=

ffiffiffiffiffiffi
Q2

p
and rapidity χ.

Hence, the metric should exhibit conformal symmetry
for small z. Inspired by holography, we fix gμν through the
line element

ds2 ¼ R2

z2
e∓κ2z2ðdz2 þ d2x⊥Þ: ð70Þ

For small size dipoles z → 0, (70) reduces to that of AdS3
which is conformal. For large size dipoles z → 1=κ as
expected from confinement for both warping signs.
Although (70) is reminiscent of the holographic analysis
of the Pomeron in AdS5 × S5 [19], we emphasise that the
present construction is not holographic. The starting point
is the NG string in flat space with a tachyon for D⊥ ¼ 2,
with no reference to type-IIB string theory in 10-dimensions
with no tachyon [1] (and references therein). As we noted
earlier, the NG string in 4-dimension is the only effective
string model currently supported by QCD lattice simula-
tions. We define

R2

α0
≡ ffiffiffi

λ
p

; ð71Þ

20 30 40 50 60

0.5

1.0

1.5

2.0

S(b, )

FIG. 6. The entanglement entropy between two light-light
scattering dipoles in the Regge limit, versus the rapidity χ,
following from the 2PI NG string contribution to the total cross
section shown in Fig. 6. The green-solid lower curve, red-solid
middle curve, and blue-solid upper are for impact parameters
b ¼ 2, 4, 6, for a pair of dipoles of fixed size a ¼ 1, in units of the
string length. The rapid and linear rise in the entanglement
entropy with rapidity, is stopped and reversed by quantum
shadowing. It levels off asymptotically when the Froissart bound
is reached.
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with κ, R to be tied below. Since our approach is not
holographic, the identification λ ¼ g2YNc does not follow.
However, it is natural to expect that R=ls ≫ 1, since R is the
radius of the hyperbolic space, where the warped evolution
of the NG tachyon is justified for large transverse
separations.
With this in mind, and using (70) in (69), we obtain

− ∂
2
zGðz; z0; tÞ þ ðD − 2Þ

�
1

z
� κ2z

�
∂zGðz; z0; tÞ

þ
�
tþ S

z2
e∓κ2z2

�
Gðz; z0; tÞ

¼ zD−2e�ðD
2
−1Þκ2z2δðz − z0Þ; ð72Þ

with ∂
2⊥ → t and

S≡ Sj ¼ 2
ffiffiffi
λ

p
ðj − j0Þ: ð73Þ

To remove the first order derivative, we redefine

Gðz; z0; tÞ → z
D−2
2 e�D−2

4
κ2z2z0D−2

2 e�D−2
4
κ2z02Gðz; z0; tÞ; ð74Þ

set u ¼ κz, expand e∓u2 ¼ 1 ∓ u2 þOðu4Þ (moderately
small size dipoles) to obtain

−
d2

du2
Gðu;u0; tÞ þ

 
Sj þ DðD−2Þ

4

u2
þ u2

4
ðD− 2Þ2 þ t

κ2
∓ Sj

� 1

2
ðD− 2ÞðD− 3Þ

!
Gðu;u0; tÞ ¼ δðu− u0Þ: ð75Þ

For D ¼ 1þD⊥ ¼ 3, we have explicitly

−
d2

du2
Gðu; u0; tÞ þ

�
Sj þ 3

4

u2
þ u2

4
þ t
κ2

∓ Sj

�
Gðu; u0; tÞ

¼ δðu − u0Þ: ð76Þ

B. Repulsive warping

The repulsive warping with eþκ2z2 acts as absolute
confinement for the dipole sizes in hyperbolic space,
characterizing the evolution. (In holography, it is a regu-
lated hard wall in bulk AdS). In this case the linear and
homogeneous equation (76) becomes

−
d2

du2
GðuÞ þ

 
Sþ DðD−2Þ

4

u2
þ u2

4
ðD − 2Þ2 þ t

κ2

þ S −
1

2
ðD − 2ÞðD − 3Þ

!
GðuÞ ¼ 0: ð77Þ

To simplify the equation, we consider u→ u0 ¼ ffiffiffiffiffiffiffiffiffiffiffi
D− 2

p
u¼ffiffiffiffiffiffiffiffiffiffiffi

D− 2
p

κz, for which (77) reads

−
d2

du2
GðuÞþ

 
SþDðD−2Þ

4

u2
þu2

4
þ t̃þ S̃−

1

2
ðD−3Þ

!
GðuÞ¼0:

ð78Þ

With

D⊥ ¼ D− 1; t̃ ¼ t
ðD− 2Þκ2 ; S̃ ¼ S

D− 2
; ð79Þ

the general solutions are of the form

G1ðuÞ ¼ e−
u2
4 u1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2⊥
4
þðD⊥−1ÞS̃

q
M

0
@2 − D⊥

2
þ S̃þ t̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2⊥
4
þ ðD⊥ − 1ÞS̃

q
2

; 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2⊥
4

þ ðD⊥ − 1ÞS̃
r

;
u2

2

1
A;

G2ðuÞ ¼ e−
u2
4 u1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2⊥
4
þðD⊥−1ÞS̃

q
U

0
@2 − D⊥

2
þ Sþ t̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2⊥
4
þ ðD⊥ − 1ÞS̃

q
2

; 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2⊥
4

þ ðD⊥ − 1ÞS̃
r

;
u2

2

1
A; ð80Þ

where Mða; b; zÞ and Uða; b; zÞ are the Kummer M
function and the Tricomi U function, respectively. M is
regular at u ¼ 0, while U has a branch cut at u ¼ 0. The
solution to (76) reads

Gðu; u0Þ ¼ AG2ðuÞG1ðu0Þ u > u0;

Gðu; u0Þ ¼ AG1ðuÞG2ðu0Þ u < u0; ð81Þ

with A−1 given by the Wronskian

A ¼ 1

WðG1; G2Þ

∼ −Γ

0
B@2 − D⊥

2
þ t̃þ S̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD⊥ − 1ÞS̃þ D2⊥

4

q
2

1
CA: ð82Þ
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C. Reggeized trajectories

A has poles when

t̃þ S̃þ 2 − D⊥
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD⊥ − 1ÞS̃þ D2⊥

4

q
2

¼ −n ð83Þ

or squared masses jtðj; nÞj given by

jt̃ðj; nÞj ¼ 2nþ S̃þ 2 −
D⊥
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD⊥ − 1ÞS̃þD2⊥

4

r
: ð84Þ

By extending the tachyon diffusion to AdS3 space,
the original tachyon pole morphs into a multitude of
Regge poles,

S̃ ¼ 2
ffiffiffi
λ

p ðj − j0Þ
D⊥ − 1

¼
−5þ 2D⊥ − 4nþ 2jtj

ðD⊥−1Þκ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2D⊥ − 3Þ2 − 8ðD⊥ − 1Þnþ 4jtj

κ2

q
2

: ð85Þ

For n ¼ 0 and small t, the Regge trajectories for the �
signs are

jþ ¼ j0 þ
ðD⊥ − 1ÞðD⊥ − 2Þffiffiffi

λ
p þ

�
3D⊥ − 4

D⊥ − 2

�
α0

2
jtj þOðt2Þ

j− ¼ j0 −
D⊥ − 1

2
ffiffiffi
λ

p þ α0

2
jtj þOðt2Þ ð86Þ

provided that

κ2R2 ¼ D⊥ − 2

2D⊥ − 3

with
ffiffiffi
λ

p ¼ R2=α0. The dominant contribution to the Pom-
eron stems from the j− trajectory, which is the closest to the
origin in the j-plane. The warping shifts down the flat space
intercept j0.

D. Confining regime

For large t and large n the poles in the j-plane become
imaginary, but with negative real parts. To proceed with the
contour integration in (67) for the tachyon propagator, we
select the branch cut of

ffiffiffiffiffiffiffiffiffiffiffi
Sþ 1

p
from −1 − i∞ to −1. With

this in mind, the dominant contribution stems from the first
pole n ¼ 0 with j ¼ j−. At the pole, the hypergeometric
functions in (80) simplify

M

�
0; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SþD2⊥

4

r
;
u2

2

�
¼ 1;

U

�
0; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SþD2⊥

4

r
;
u2

2

�
¼ 1. ð87Þ

Using (80), (81), and (87) in (67) and carrying the j-integral
gives the warped tachyon propagator

Gðz; z0; b⊥Þ ∼ ðzz0ÞD⊥−1
2

Z
d2q
ð2πÞ2 e

χðj0−D⊥−1
2
ffiffi
λ

p −α0q2
2
Þþiq·b ð88Þ

after rewinding the redefinition (74), for large χ. The result
for the warped tachyon propagator is

Gðz; z0; b⊥Þ ∼ ðzz0ÞD⊥−1
2eχðj0−

D⊥−1
2
ffiffi
λ

p Þ− b2⊥
2χα0 ð89Þ

(89) reduces to the unwarped result with a shifted down
intercept.

E. Conformal regime

The effects of the warping is mostly in action away from
the confining regime. Indeed, in the conformal regime, the
hypergeometric functions are limited to small u ¼ κz and
large t ≫ κ2, which we will refer to as the conformal limit.
More specifically, this amounts to the limits

lim
κ→0

G1ðuÞ; G2ðuÞ; ð90Þ

which are not simply the u → 0 limits, because t
κ2

in the
second argument has to go to infinity. To obtain these
limits, the simplest way is to note that the differential
equation (78) reduces to

−
d2

dz2
GðzÞ þ

 
Sþ DðD−2Þ

4

z2
þ t

!
GðzÞ ¼ 0; ð91Þ

with two solutions

G̃1ðzÞ ¼
ffiffiffi
z

p
J
−

ffiffiffiffiffiffiffiffiffi
SþD2⊥

4

q ð−i ffiffi
t

p
zÞ; ð92Þ

G̃2ðzÞ ¼
ffiffiffi
z

p
Y
−

ffiffiffiffiffiffiffiffiffi
SþD2⊥

4

q ð−i ffiffi
t

p
zÞ: ð93Þ
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Here −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ D2⊥

4

q
is chosen to have a negative real part. With this in mind, the warped tachyon propagator in the conformal

limit is of the form

Gðz; z0; b⊥Þ ¼
πt
2

ffiffiffiffiffiffi
zz0

p
J
−

ffiffiffiffiffiffiffiffiffi
SþD2⊥

4

q ð−i ffiffi
t

p
z<ÞY

−

ffiffiffiffiffiffiffiffiffi
SþD2⊥

4

q ð−i ffiffi
t

p
z>Þ: ð94Þ

For b⊥ ≫ z; z0, the Bessel functions reduce to

J
−

ffiffiffiffiffiffiffiffiffi
SþD2⊥

4

q ð−i ffiffi
t

p
zÞ → 1

Γð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ D2⊥

4

q
Þ

� ffiffi
t

p
z

2

�
−

ffiffiffiffiffiffiffiffiffi
SþD2⊥

4

q
; ð95Þ

Y
−

ffiffiffiffiffiffiffiffiffi
SþD2⊥

4

q ð−i ffiffi
t

p
z>Þ → cos

�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SþD2⊥

4

r �
Γ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SþD2⊥
4

r �� ffiffi
t

p
z

2

�
−

ffiffiffiffiffiffiffiffiffi
SþD2⊥

4

q
: ð96Þ

As a result, the warped tachyon propagator in the conformal regime is dominated by the following S integral

Gðz; z0; b⊥Þ ∼
Z

d2q
ð2πÞ2 e

iq·n⊥
Z

dS exp

 
χ

�
j0 þ

S

2
ffiffiffi
λ

p
�
þ
 
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2⊥
4

þ S

r !
ln

�
zz0q2

2b2⊥

�!
; ð97Þ

with n⊥ a unit vector along q⊥ after rescaling away
the transverse momentum, and trading j → S̃ using (79).
The result is

Gðz; z0; b⊥Þ ∼
ξ

ð4πDχÞ32 exp
�
χ

�
j0 −

DD2⊥
4

�
−

ξ2

4χD

�
;

ð98Þ

with the conformal variable ξ ¼ ln b2⊥
zz0 and diffusion like

constant D ¼ 1

2
ffiffi
λ

p .

F. Cross section in conformal regime

In terms of (98), the dipole-dipole scattering amplitude
in the conformal regime is now

WW2PI ¼ −
g2s
4
ð2πÞ32G ¼ −

g2sξ

4ð2DχÞ23 e
j̃0χ−

ξ2

4χD; ð99Þ

with j̃0 ¼ j0 − 1
4
DD2⊥. Inserting (99) in the 2PI contribu-

tion to the total cross section (38) gives

σðsÞ ¼ 2

Z
d2bð1 − eWW2PIÞ

¼ 2πzz0
Z

∞

0

dξeξ
�
1 − exp

�
−

g2sξ

4ð2DχÞ23 e
j̃0χ−

ξ2

4χD

��
:

ð100Þ

For j̃0 < 4D, the integral in (100) can be undone for large
χ, with the result for the total cross section in the conformal
regime

σðsÞ → 2πzz0
g2s

ffiffiffi
π

p

2
ffiffiffi
2

p e
χ



j0−D



D2⊥
4
−1
��

: ð101Þ

It grows exponentially, i.e., σðsÞ ∼ zz0sj0 with j0 ¼ D⊥
12

¼ 1
6

for D⊥ ¼ 2, much like the BFKL result in pQCD, which is
also conformal at weak coupling.
Modulo the NG string assignments for j0 and D,

the contribution (98) to the Reggeized scattering ampli-
tude, and the total dipole-dipole cross section, is analo-
gous to the result following from Mueller’s dipole wave
function evolution in pQCD [43]. More importantly, the
results (89) (confining regime) and (98) (conformal regime),
show that the general and warped NG result (80) interpolates
continuously between these two regimes in Reggeized
scattering. This point was originally made in the context
of the gravity dual construction [19,20], with no tachyon
in bulk.

VI. CONCLUSIONS

One of the most striking features of the detailed lattice
studies of the fuzzy QCD string, is its description as a
fundamental NG string for large and even relatively small
lengths. This observation has been numerically checked in
both 3- and 4-dimensions, and for different SU(Nc)
realizations. We have used this observation, to analyze
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the stringy potential between a pair of static and scattering
dipoles, as well as their quantum entanglement.
The derivation of the static potential of two fixed-size

dipoles, follows from the exchange of closed strings or
glueballs in the quenched approximation (large Nc limit).
Using the NG string, we have shown that this exchange is
dominated by the tachyonic mode and attractive at large
distances. The attraction persists at short distances, albeit in
a power law form following from the resummation over the
string states. This change in the static potential is captured
by an emergent quantum entropy.
The derivation of the scattering amplitude for two

fixed-size dipoles can be obtained using similar argu-
ments, by noting that it follows from a potential between
two dipoles set at an angle θ, which is then analytically
continued to the rapidity iχ. In the Regge limit, the
scattering amplitude is totally fixed by the tachyonic
mode of the NG string, as all the excited modes are
suppressed at large rapidity. There is a total parallel
between the potential channel and the scattering channel,
where the 2PI contribution is retained in both, in leading
order in 1=Nc. This contribution yields unitarization by
saturation of the Froissart bound.
We have extended some results regarding the quantum

entanglement as captured by the NG tachyon in dipole-
dipole scattering. The inclusion of the world sheet
fermions, modify the intercept of the stringy Pomeron,
thereby changing the quantum entanglement as measured
by DIS through solely a modification of the gluonic
density. In the presence of shadowing, the quantum
entanglement entropy is depleted, and saturates at the
Froissart bound.
The NG tachyon contribution to the Reggeized scattering

amplitude of two dipoles, captures two key aspects of the
exchanged string: (1) an exponential growth in the number
of string bits at the origin of the growth of the total cross
section at large rapidity prior to saturation; (2) a diffusive
spread of the string bits in the transverse plane. It is the
balance between these two phenomena that yields satu-
ration by quantum shadowing, as captured by the 2PI
contribution.
Perturbative QCD arguments using BFKL evolution

of gluons as dipoles, have shown that the gluon sizes
evolve and that the evolution is conformal in the UV.
This aspect of QCD in the Regge limit, can be extended
to the exchanged NG string, by considering the diffusive
spreading of the string bits in the transverse plane
together with the changes in the source and target dipole
sizes. In other words, the NG tachyonic mode should
diffuse in conformal 3-dimensional space (transverse space
plus dipole size) as opposed to simply 2-dimensional space
(transverse space).
We have shown how to explicitly extend the diffusion of

the NG tachyon mode in flat transverse space, to curved
AdS3 plus a repulsive wall. We have emphasized that this

approach is not holographic, since no string-gauge duality
is used. In the conformal limit, the modified NG tachyon
diffusion in proper time and curved space, yields results for
the scattering amplitude of two dipoles with evolving sizes,
similar to those following from the BFKL evolution of
Mueller’s wave function in QCD. In the confining regime,
the NG tachyon diffusion is preserved, albeit with a shifted
down intercept.
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APPENDIX: RELATION TO pQCD DIPOLES

There are few parallels between the stringy results we
have developed, and those established using pQCD. In
particular, the 2PI string amplitude (38) at fixed b, can be
recast in the form

1 − eWWðs;a;bÞ ¼ 1 − exp

�
−
g2s
4

a2

α0
xGPðx; 1=a2ÞSðbÞ

�
;

ðA1Þ

with gs ¼ fðλÞ=Nc, the Gaussian profile

SðbÞ ¼
�
π

χ

�D⊥
2

e−Smin ¼
�
π

χ

�D⊥
2

e−
b2

2χα0 ; ðA2Þ

and χ ¼ ln 1
x in DIS. The diffusion of the string bits in the

transverse plane is manifest in (A2). (A1) is very similar to
the Glauber-Mueller formula for multiple dipole-target
interactions [44]

NGMðx01; x; bÞ

¼ 1 − exp

�
−

λ

N2
c

x201
8R2

xGDGLAPðx; 4=x201ÞSðbÞ
�
; ðA3Þ

where the dipole size is x01 (a in our case), R is the radius of
the target (#

ffiffiffiffi
α0

p
in our case), and SðbÞ is identified with the

dipole profile function inside the target [(A2) in our case].
Equation (A3) is an extension of the original Golec-
Biernat-Wusthoff formula for the analysis of saturation
in DIS at HERA [37], through the addition of the profile
function.
In general, the forward amplitude T ðb⊥; χÞ of dipole-

nucleus scattering at impact parameter b⊥ and rapidity χ,
relates to the full S-matrix Sðb⊥; χÞ as
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1 − Sðb⊥; χÞ ¼ −iT ðb⊥; χÞ; ðA4Þ

and the total cross section is given by

σðχÞ ¼ 2

Z
d2bReð1 − Sðb⊥; χÞÞ: ðA5Þ

In our case or in the color glass condensate model (CGC),
the full S-matrix is approximated by the Wilson-loop
average

S ¼ 1

Nc
hTrVx⃗0V

†
x⃗1
itarget; ðA6Þ

with Vx⃗ a Wilson line located at x⃗. If the target is another
Wilson-loop, it simply reduces to theWW corrector. In the
CGC model, this Wilson-loop average exponentiates [45]
(and references therein)

S ¼ exp

�
−
1

4
x2⊥Q2

sðb⊥; YÞ ln
1

jx⊥jΛ
�
: ðA7Þ

Our large b⊥ result cuts off the growth by a delicate balance

between the factors e
D⊥χ
12 (growth of the string bits) and e−

b2

2χα0

(diffusion penalty).
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