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We present a detailed theoretical study of nonfactorizable contributions of the charm-quark loop to the
amplitude of the Bs → γγ decay. This contribution involves the B-meson three-particle Bethe-Salpeter
amplitude, h0js̄ðyÞGμνðxÞbð0ÞjB̄sðpÞi, for which we take into account constraints from analyticity and
continuity. The charming-loop contribution of interest may be described as a correction to the Wilson
coefficient C7γ , C7γ → C7γð1þ δC7γÞ. We calculate an explicit dependence of δC7γ on the parameter λBs

.
Taking into account all theoretical uncertainties, δC7γ may be predicted with better than 10% accuracy for
any given value of λBs

. For our benchmark point λBs
¼ 0.45 GeV, we obtain δC7γ ¼ 0.045� 0.004.

Presently, λBs
is not known with high accuracy, but its value is expected to lie in the range

0.3 ≤ λBs
ðGeVÞ ≤ 0.6. The corresponding range of δC7γ is found to be 0.02 ≤ δC7γ ≤ 0.1. One therefore

expects the correction given by charming loops at the level of at least a few percent.

DOI: 10.1103/PhysRevD.108.094022

I. INTRODUCTION

Charming loops in rare flavor-changing neutral current
(FCNC) decays of theB-meson have impact on theB-decay
observables [1] and provide an unpleasant noise for the
studies of possible new physics effects (see, e.g., [2–11]).
A number of theoretical analyses of nonfactorizable (NF)

charming loops in FCNC B-decays has been published:
In [12], an effective gluon-photon local operator describing
the charm-quark loop has been calculated as an expansion
in inverse charm-quark mass mc and applied to inclusive
B → Xsγ decays (see also [13,14]); in [15], NF corrections
in B → K�γ using local operator product expansion (OPE)
have been studied; NF corrections induced by the local
photon-gluon operator have been calculated in [16,17]
in terms of the light-cone (LC) 3-particle antiquark-
quark-gluon Bethe-Salpeter amplitude (3BS) of K�-meson
[18–20] with two field operators having equal coordinates,
h0js̄ð0ÞGμνð0ÞuðxÞjK�ðpÞi, x2 ¼ 0. Local OPE for the
charm-quark loop in FCNC B decays leads to a power
series in ΛQCDmb=m2

c ≃ 1. To sum up OðΛQCDmb=m2
cÞn

corrections, Ref. [21] obtained a nonlocal photon-gluon

operator describing the charm-quark loop and evaluated its
effect making use of 3BS of the B-meson in a collinear LC
configuration h0js̄ðxÞGμνðuxÞbð0ÞjB̄sðpÞi, x2 ¼ 0 [22,23].
The same collinear approximation [known to provide
the dominant 3BS contribution to meson tree-level form
factors [24,25]] was applied also to the analysis of other
FCNC B-decays [26].
In later publications [27–30], it was demonstrated that

the dominant contribution to FCNC B-decay amplitudes is
actually given by the convolution of a hard kernel with the
3BS in a different configuration—a double-collinear light-
cone configuration h0js̄ðyÞGμνðxÞbð0ÞjB̄sðpÞi, y2 ¼ 0,
x2 ¼ 0, but xy ≠ 0. The corresponding factorization for-
mula was derived in [30]. The first application of a double-
collinear 3BS to FCNC B-decays was presented in [31].
In this paper, we study NF charming loops in Bs → γγ

decays making use of the generic 3BS of the B-meson. The
main new features of this paper compared to the previous
analyses, in particular to [31], are as follows:

(i) The generic 3BS of the B-meson contains new
Lorentz structures (compared to the collinear and
the double-collinear approximations) and new three-
particle distribution amplitudes (3DAs) that appear
as the coefficients multiplying these Lorentz struc-
tures. Analyticity and continuity of the 3BS as the
function of its arguments at the point xp ¼ yp ¼
x2 ¼ y2 ¼ 0 leads to certain constraints on the
3DAs [30] which we take into account.
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(ii) We derive the convolution formulas for the
Bs → γ�γ� form factors involving this generic 3BS,
and obtain the corresponding numerical predictions.
We check that the deviation between our analysis
and the analysis based on double-collinear 3BS
differ by OðλBs

=MBÞ terms that in practical calcu-
lations give a ∼20% difference.

The paper is organized as follows: Sec. II presents general
formulas for the top and charm contribution to the Bs → γγ
amplitude. Section III considers the hAVVi charm-quark
triangle andgives a convenient representation for this quantity
via the gluon field strength Gμν merely (not involving Aμ

itself). In Sec. IV, properties of the 3BS of theB-meson in the
general noncollinear kinematics are discussed and properly
modified 3DAs are constructed. Section V presents the
numerical results for the form factors and for the nonfactor-
izable charm-loop correction to the Bs → γγ amplitude.
Section VI gives our concluding remarks. Appendix A
compares the definition of the amplitude adopted in this
paper with the one of [32]. Appendix B gives details of the
numerical results for the form factors.

II. TOP AND CHARM CONTRIBUTIONS
TO Bs → γγ

A. The b → d;s effective Hamiltonian

A standard theoretical framework for treating FCNC
b → q (q ¼ s, d) transitions is provided by the Wilson
OPE: the b → q effective Hamiltonian describing dynamics
at the scale μ, appropriate for B-decays, reads [33–35]:

Hb→q
eff ¼ GFffiffiffi

2
p V�

tqVtb

X
i

CiðμÞOb→q
i ðμÞ; ð2:1Þ

GF is the Fermi constant and Vij are CKMmatrix elements.
The SM Wilson coefficients relevant for our analysis at the
scale μ0 ¼ 5 GeV have the following values [correspond-
ing to C2ðMWÞ ¼ −1]: C1ðμ0Þ ¼ 0.241, C2ðμ0Þ ¼ −1.1,
C7ðμ0Þ ¼ 0.312 [21,34–37].
The basis operatorsOb→q

i ðμÞ contain only light degrees of
freedom (u, d, s, c, and b-quarks, leptons, photons and
gluons); the heavy degrees of freedom of the SM (W, Z, and
t-quark) are integrated out and their contributions are encoded
in the Wilson coefficients CiðμÞ. The light degrees of
freedom remain dynamical and the corresponding diagrams
containing these particles in the loops—in the case of
our interest virtual c quarks—should be calculated and added
to the diagrams generated by the effective Hamiltonian.

B. The penguin contribution

The top-quark contribution to Bs → γγ decay is gen-
erated by penguin operator in (2.1)1

Hb→sγ
eff ¼ GFffiffiffi

2
p VtbV�

tsC7γðμÞO7γ;

O7γ ¼ −
e
8π2

mb · s̄σμνð1þ γ5Þb · Fμν: ð2:2Þ

The sign of the b → dγ effective Hamiltonian (2.2) corre-
lates with the sign of the electromagnetic vertex. For a
fermion with the electric charge Qqe, we use in the
Feynman diagrams the vertex

iQqeq̄γμqϵμ; ð2:3Þ

corresponding to the definition of the covariant derivative
in the form Dμ ¼ ∂μ − ieQqAμ.
The amplitude of the B → γγ transition is defined

according to [32,38]:

AðB→γγÞ
top ≡ hγðq; εÞ; γðq0; ε0ÞjHb→sγ

eff jB̄sðpÞi

¼ −2
GFffiffiffi
2

p VtbV�
ts

e2

8π2
2mbC7γðμÞ

×
h
FTVϵαα0qq0 − iFTAðgαα0q0q − q0αqα0 Þ

i
εαε

0
α0 :

ð2:4Þ

Here q, q0, and ε; ε0 are momenta and polarization vectors
of the outgoing real photons, and FTA and FTV are the form
factors FTAðq2 ¼ 0; q02 ¼ 0Þ and FTVðq2 ¼ 0; q02 ¼ 0Þ.
The latter are defined as [32,38,39]:

hγðq0; ε0Þjs̄σμνγ5bjB̄sðpÞiqν
¼ eε0αðgμαq0q − qαq0μÞFTAðq2; q02Þ; ð2:5Þ

hγðq0; ε0Þjs̄σμνbjB̄sðpÞiqν ¼ ieε0αϵμαqq0FTVðq2; q02Þ; ð2:6Þ

and satisfy a rigorous constraint FTAðq2; 0Þ ¼ FTVðq2; 0Þ.
Notice that the strange-quark chargeQs (orQb in the 1=mb-
subleading diagram where the photon is emitted by the
b-quark) is included in the form factors FTA and FTV [32].

C. Nonfactorizable charm-quark loop
correction to Bs → γγ

As already noticed, the light degrees of freedom remain
dynamical and their contributions should be taken into
account separately. The relevant terms in Hb→s

eff are those
containing four-quark operators:

Hb→sc̄c
eff ¼ −

GFffiffiffi
2

p VcbV�
csfC1ðμÞO1 þ C2ðμÞO2g ð2:7Þ

where

O1 ¼
�
s̄iγμð1 − γ5Þcj��c̄kγμð1 − γ5Þbl�δilδkj; ð2:8Þ

1Our notations and conventions are: γ5 ¼ iγ0γ1γ2γ3, σμν ¼
i
2
½γμ; γν�, ε0123 ¼ −1, ϵabcd ≡ ϵαβμνaαbβcμdν, e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4παem
p

.
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O2 ¼
�
s̄iγμð1 − γ5Þcj��c̄kγμð1 − γ5Þbl�δijδkl; ð2:9Þ

differing from each other in the way color indices i, j, k, l
are contracted. By Fierz transformation O2 may be written
in the following form (for anticommuting spinor fields):

O2 ¼ ðs̄iγμð1 − γ5ÞblÞðc̄kγμð1 − γ5ÞcjÞ
�
2tailt

a
jk þ

1

3
δilδjk

�
;

ð2:10Þ

The singlet-singlet operator O1 and the singlet-singlet part
of O2 at the leading order generate factorizable charm
contributions to the B → γγ amplitude. These factorizable
contributions vanish for real photons in the final state. A
nonzero contribution is induced by the octet-octet part of
the operator O2 and needs the emission of one soft gluon

from the charm-quark loop. So relevant for us is the octet-
octet operator

Hb→sc̄c½8×8�
eff ¼ −

GFffiffiffi
2

p VcbV�
cs2C2ðs̄γμð1 − γ5ÞtabÞ

× ðc̄γμð1 − γ5ÞtacÞ: ð2:11Þ

Therefore, similar to the top contribution, we find

AðB→γγÞ
charm ¼ hγðq; εÞ; γðq0; ε0ÞjHb→sc̄c½8×8�

eff jB̄sðpÞi: ð2:12Þ

Here quark fields are understood as Heisenberg field
operators with respect to the SM interactions. Expanding
them to the second order in electromagnetic interaction and
to the first order in strong interaction gives

AðB→γγÞ
charm ¼ 1

2
i3hγðq; εÞ; γðq0; ε0Þj

× T

�
Hb→sc̄c½8×8�

eff ð0Þ;
Z

dzje:m:
ρ ðzÞAρðzÞ;

Z
dyje:m:

η ðyÞAηðyÞ;
Z

dxc̄ðxÞγνtbcðxÞgsBb
νðxÞ

�
jB̄sðpÞi ð2:13Þ

where the quark electormagnetic current has the form je:m:
α ¼ e

P
Qiq̄iγαqi. Equation (2.13) may be rewritten as:

AðB→γγÞ
charm ¼ −i3

GFffiffiffi
2

p 2C2VcbV�
cse2QcQs

Z
dzdxdy

h
ερeiqzε0ηeiq

0y þ ðq ↔ q0; ε ↔ ε0Þ
i

× h0jT
n
c̄γρcðzÞ; c̄ð0Þtaγμð1 − γ5Þcð0Þ; c̄ðxÞtbγνcðxÞ

o
j0i

× h0jT
n
s̄ðyÞγηsðyÞ; s̄ð0Þtaγμð1 − γ5Þbð0ÞgsBb

νðxÞ
o
jB̄sðpÞi: ð2:14Þ

Figure 1 shows one of the corresponding diagrams when
the photon is emitted by the B-meson valence s-quark. We
will neglect the 1=mb-suppressed contribution when the
photon is emitted by the valence b-quark.
A detailed treatment of the operator, describing charm-

quark triangle [second line in Eq. (2.14)] is given in the
next section. Here we only notice two important features of
this operator:

(i) The c̄γμc part of the V − A weak current does not
contribute and one is left with hVVAi charm-quark
triangle.

(ii) The hVVAi charm-quark triangle contracted with the
gluon field Bb

ν may be written as a gauge-invariant
nonlocal operator containing gluon field strength
Gb

να for any gluon momentum (cf. [14]).
Making use of the result for the charm-quark VVA triangle
from the next section, we obtain the following expression
for the amplitude:

FIG. 1. One of the diagrams describing charming loop con-
tribution to Bs → γγ decay via nonfactorizable soft gluon
exchange. Other diagrams are those corresponding to an opposite
direction in the charm-quark loop and diagrams with the
interchanged photons q ↔ q0; ε ↔ ε0.
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AB→γγ
charm ¼ GFffiffiffi

2
p 4C2VcbV�

cse2QsQcAρηðq; q0Þερε0η; ð2:15Þ

Aρηðq; q0Þ ¼
1

ð2πÞ8
Z

dkdye−iðk−q0Þydxdκe−iκxΓμνρðabÞ
cc ðκ; qÞh0js̄ðyÞγη =kþms

m2
s − k2

γμð1 − γ5ÞtaBb
νðxÞbð0ÞjB̄sðpÞi

¼ 1

4ð2πÞ8
Z

dkdye−iðk−q0Þydxdκe−iκxΓ̄μνρα
cc ðκ; qÞh0js̄ðyÞγη =kþms

m2
s − k2

γμð1 − γ5ÞtbGb
ναðxÞbð0ÞjB̄sðpÞi: ð2:16Þ

For real photons in the final state, the amplitude Aρηðq; q0Þ
has the same Lorentz structure as the penguin amplitude
and contains two form factors HV ¼ HVðq2 ¼ 0; q02 ¼ 0Þ
and HA ¼ HAðq2 ¼ 0; q02 ¼ 0Þ (Appendix A presents
comparison with the form factors defined in [32]):

Aρηðq; q0Þ ¼ HVϵρηqq0 − iHAðgρηqq0 − q0ρqηÞ; ð2:17Þ

Comparing Eqs. (2.4) and (2.17), and taking into account
that VtbV�

ts ≃ −VcbV�
cs, it is convenient to describe the

effect of charm as an additions to the Wilson coefficient C7γ

(however, nonuniversal, i.e., different in the axial and
vector Lorentz structures):

ϵρηqq0∶ C7γ → C7γð1þ δVC7γÞ;
gρηqq0 − q0ρqη∶ C7γ → C7γð1þ δAC7γÞ; ð2:18Þ

with

δVðAÞC7γ ¼ 8π2QsQc
C2

C7γ

HVðAÞ
mbFTVðTAÞ

: ð2:19Þ

Our goal will be to calculate these corrections.

The B-meson structure contributes to the AB→γγ
charm ampli-

tude via the full set of 3BS

h0js̄ðyÞΓitabð0ÞGa
ναðxÞjB̄sðpÞi; ð2:20Þ

with Γi the appropriate combinations of γ-matrices. This
quantity is not gauge invariant, since it contains field
operators at different locations. To make it gauge-invariant,
one needs to insert Wilson lines between the field oper-
ators. To simplify the full consideration, it is convenient to
work in a fixed-point gauge, where the Wilson lines reduce
to unity factors. As first noticed in [27], the dominant
contribution of charm to amplitudes of FCNC B decays
comes from the “double collinear” LC configuration [30],
where x2 ¼ 0, y2 ¼ 0, but xy ≠ 0, i.e., 4-vectors x and y are
not collinear. Respectively, we need to parametrize the 3BS
in this kinematics; this is discussed in Sec. IV. But before
studying 3BS, we present in the next section a convenient
representation for the operator describing the contribution
of charm-quark loop.

III. CHARM-QUARK hVVAi TRIANGLE

The charm-quark loop contribution is described by the
three-point function (see Fig. 2):

ΓμνρðabÞ
cc ðκ; qÞ ¼

Z
dx0dz eiqzþiκx0 h0jTfc̄ðzÞγρcðzÞ; c̄ð0Þγμð1 − γ5Þtacð0Þ; c̄ðx0Þγνtbcðx0Þgj0i ¼

1

2
δabΓμνρ

cc ðκ; qÞ; ð3:1Þ

where q is the momentum of the external virtual photon (vertex containing index ρ) and κ is the gluon momentum (vertex
containing index ν). Here tc, c ¼ 1;…; 8 are SUcð3Þ generators normalized as TrðtatbÞ ¼ 1

2
δab. The octet current

c̄ð0Þγμð1 − γ5Þtacð0Þ is a charm-quark part of the octet-octet weak Hamiltonian. Its vector piece does not contribute to

ΓμνρðabÞ
cc (Furry theorem) and will be omitted. Taking into account vector-current conservation, it is convenient to

parametrize Γμνρ
cc ðκ; qÞ as follows [40]

Γμνρ
cc ðκ; qÞ ¼ −iðκμ þ qμÞϵνρκqF0 − i

�
q2ϵμνρκ − qρϵμνqκ

�
F1 − i

�
κ2ϵμρνq − κνϵμρκq

�
F2: ð3:2Þ

The form factors F0;1;2 are functions of three independent invariant variables q2, κ2, and κq. The lowest order QCD
diagrams describing Γμνρ

cc ðκ; qÞ are shown in Fig. 2. A convenient representation of the form factors has the form [41]

Fiðκ2; κq; q2Þ ¼
1

π2

Z
1

0

dξ
Z

1−ξ

0

dη
Δiðξ; ηÞ

m2
c − 2ξηκq − ξð1 − ξÞq2 − ηð1 − ηÞκ2 ; i ¼ 0; 1; 2;

Δ0 ¼ −ξη; Δ1 ¼ ξð1 − η − ξÞ; Δ2 ¼ ηð1 − η − ξÞ: ð3:3Þ
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This representation may be applied to the physical amplitude
in the regionof the externalmomenta far below the thresholds,
q2; κ2; ðκ þ qÞ2 ≪ 4m2

c. Taking into account the momentum
distribution of quarks and gluons inside the B-meson, the
dominant contribution of the charm-quark loop to the
B-decay amplitude comes from the region κ2 ∼ Λ2

QCD,
ðqþ κÞ2 < 0. So, the representation (3.3) is applicable
and proves convenient for numerical calculations.
As the next step, one takes the convolution of the

amplitude (3.2) with the gluon field BνðxÞ. The Lorentz
structures multiplying F0 and F1 contain ϵνκα1α2 with some
indices α1 and α2. After multiplying by BνðxÞ and perform-
ing parts integration, their contribution may be reduced to
the convolution with the gluon strength tensor Gαν:Z

e−iκxϵανρωκαBνðxÞdx

¼ i
Z 	

∂

∂xα
e−iκx



ϵανρωBνðxÞdx

¼ −
i
2

Z
e−iκxϵανρω

	
∂

∂xα
BνðxÞ −

∂

∂xν
BαðxÞ



dx

¼ −
i
2

Z
e−iκxϵανρωGανðxÞdx: ð3:4Þ

The Lorentz structure multiplying F2 at first glance does
not have this property. However, using the identity

gα1α2ϵα3α4α5α6 − gα1α3ϵα2α4α5α6 þ gα1α4ϵα2α3α5α6 − gα1α5ϵα2α3α4α6

þ gα1α6ϵα2α3α4α5 ¼ 0; ð3:5Þ

multiplying it by κα1κα2qα6, and setting α3 → μ, α4 → ν,
α5 → ρ, this Lorentz structure takes the form

κ2ϵμνρq þ κνϵμρκq ¼ κμϵκνρq þ κρϵκμνq − κqϵκμνρ ð3:6Þ

and may be also reduced to the convolution with Gαν.
Finally, the operator describing the contribution of the
charm-quark loop takes the formZ

dκe−iκxΓμνρðabÞ
cc ðκ; qÞBb

νðxÞdx

¼ 1

4

Z
dκe−iκxΓ̄μνρα

cc ðκ; qÞGa
ναðxÞdx ð3:7Þ

with

Γ̄μνρα
cc ðκ; qÞ ¼ ðκμ þ qμÞϵνραqF0 þ ðqρϵμναq þ q2ϵμνραÞF1

þ ðκμϵανρq þ κρϵαμνq − κqϵαμνρÞF2: ð3:8Þ
Γμνρ
cc ðκ; qÞ ¼ −iΓ̄μνρα

cc ðκ; qÞκα is real in the Euclidean region
and Γμνρ

cc ðκ; qÞ ¼ −iΓ̄μνρα
cc ðκ; qÞκα.

IV. 3BS OF THE B-MESON IN A NONCOLLINEAR
KINEMATICS

As already mentioned, the contribution of collinear
LC configuration dominates the 3BS corrections to the
B → π; K form factors. These corrections reflect the follow-
ing picture: in the rest frame of the B-meson, a fast light
quark, produced inweak decay of an almost resting b-quark,
emits a soft gluon and continues to move practically in the
samedirection, before it fragments into the final lightmeson.
Contributions of charming loops in FCNC B-decay

have a qualitatively different picture [29]: In the rest
frame of the decaying B-meson, two fast systems produced
in the weak decay of an almost resting b-quark move in
opposite space directions. Formulated in terms of the
LC variable, this means that the s-quark produced in weak
decay moves along one of the LC directions, whereas
the c̄c-pair moves along the other LC direction. Introducing
vectors nμ and n0μ such that n2 ¼ n02 ¼ 0, n0n ¼ 2,
vμ ¼ pμ=MB ¼ 1

2
ðnμ þ n0μÞ, one finds that the dominant

contribution of charming loops to an FCNC B-decay
amplitude comes from the double-collinear configura-
tion [27–31] when the coordinates of the field operators
in h0js̄ðyÞGμνðxÞbð0ÞjB̄sðpÞi are aligned along the ortho-
gonal light-cone directions xμ ∼ nμ, yμ ∼ n0μ. The 3BS
amplitude in the collinear and the double-collinear kin-
ematics contain the same Lorentz structures [42] but the
distribution amplitudes corresponding to the collinear and
the double-collinear kinematics differ from each other.
In this paper we do not consider the double-collinear

approximation butmake use of the general noncollinear 3BS.
This quantity contains newLorentz structures and new 3DAs.
The Bs → γγ amplitude calculated using the general non-
collinear 3BS differs by terms OðλBs

=MBÞ from the ampli-
tude calculated within the double-collinear approximation.

A. Collinear 3BS of B-meson

We summarize in this section well-known results con-
cerning the collinear 3BS that will be used for constructing
a generalization to a noncollinear kinematics appropriate
for charming loops in FCNC B-decays.

1. The Lorentz structure of the collinear 3BS

We start with the collinear LC 3BS [23], where the
arguments of the s-quark field, s̄ðyÞ, and the gluon field
GναðxÞ are collinear to each other, x ¼ uy, u ≠ 0 is a
number (in this case x2 ¼ 0 leads to y2 ¼ 0):

FIG. 2. The hVVAi triangle one-loop diagrams for ΓμνρðabÞ
cc .
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h0js̄ðyÞGναðuyÞΓbð0ÞjB̄sðpÞi ¼
fBM3

B

4

Z
Dðω; λÞe−iλyp−iωuypTr

�
γ5Γð1þ =vÞ

×

	
ðpνγα − pαγνÞ

1

MB
½ΨA −ΨV � − iσναΨV −

ðyνpα − yαpνÞ
yp

�
XA þ =y

yp
MBW

�

þ ðyνγα − yαγνÞ
yp

MB

�
YA þW þ =y

yp
MBZ

�
− iϵναμβ

yμpβ

yp
γ5X̃A þ iϵναμβ

yμγβ

yp
γ5MBỸA


�
;

ð4:1Þ

where Dðω; λÞ takes into account rigorous constraints on
the variables ω and λ:

Dðω; λÞ ¼ dωdλθðωÞθðλÞθð1 − ω − λÞ: ð4:2Þ

In Eq. (4.1), Γ is an arbitrary combination of Dirac
matrices, vμ ¼ pμ=MB, and all 8 DAs (ΨA, ΨV , etc) are
functions of two dimensionless arguments 0 < λ < 1 and
0 < ω < 1. Here λ refers to the momentum carried by the
s-quark, and ω refers to the momentum carried by the
gluon.
The normalization conditions for ΨA and ΨV have the

form [23]:

Z
Dðω; λÞΨAðω; λÞ ¼

λ2E
3M2

B
;

Z
Dðω; λÞΨVðω; λÞ ¼

λ2H
3M2

B
: ð4:3Þ

Some of the Lorentz structures in (4.1) contain factors
xμ=xp or xμxν=ðxpÞ2. Since 3BS (4.1) is a continuous
regular function at x2 ¼ 0 and xp ¼ 0, the absence of
singularities at xp → 0 leads to the following constraints:

Z
Dðω; λÞfXA; YA; X̃A; ỸA; Z;Wg ¼ 0;

Z
Dðω; λÞωfZ;Wg ¼ 0;

Z
Dðω; λÞλfZ;Wg ¼ 0:

ð4:4Þ

These constraints are obtained by expanding the exponen-
tial in the integral representation (4.1) under the condition
xμ ¼ uyμ to the necessary order and requiring that the
coefficients multiplying terms singular in xp → 0 vanish.

2. Twist expansion of the 3DAs

The DAs in (4.1) have no definite twist. According
to [23], the distribution amplitudes might be written as an
expansion in functions with definite twist as follows:

ΨAðω; λÞ ¼ ðϕ3 þ ϕ4Þ=2;
ΨVðω; λÞ ¼ ð−ϕ3 þ ϕ4Þ=2;
XAðω; λÞ ¼ ð−ϕ3 − ϕ4 þ 2ψ4Þ=2;
YAðω; λÞ ¼ ð−ϕ3 − ϕ4 þ ψ4 − ψ5Þ=2;
X̃Aðω; λÞ ¼ ð−ϕ3 þ ϕ4 − 2ψ̃4Þ=2;
ỸAðω; λÞ ¼ ð−ϕ3 þ ϕ4 − ψ̃4 þ ψ̃5Þ=2;
Wðω; λÞ ¼ ðϕ4 − ψ4 − ψ̃4 þ ϕ5 þ ψ5 þ ψ̃5Þ=2;
Zðω; λÞ ¼ ð−ϕ3 þ ϕ4 − 2ψ̃4 þ ϕ5 þ 2ψ̃5 − ϕ6Þ=4; ð4:5Þ

where we keep the contributions up to twist 6 inclusively
(the subscript “i” in ϕi and ψ i denote the twist value).

3. Model for DAs entering the collinear 3BS

The powers of ω and λ determine the behavior at small
quark and gluon momenta. This power scaling is related
to the conformal spins of the fields and remains the key
property of the model.
The starting point of our analysis will be the set of

DAs in LD model of [23] for twist 3- and 4, complemented
by twist 5 and 6 DAs reconstructed using the constraints
(4.4) [43]:

ϕ3 ¼
105ðλ2E − λ2HÞ
32ω7

0M
2
B

λω2ð2ω0 − ω − λÞ2θð2ω0 − ω − λÞ;

ð4:6Þ

ϕ4 ¼
35ðλ2E þ λ2HÞ
32ω7

0M
2
B

ω2ð2ω0 − ω − λÞ3θð2ω0 − ω − λÞ;

ð4:7Þ

ψ4 ¼
35λ2E

16ω7
0M

2
B
λωð2ω0 − ω − λÞ3θð2ω0 − ω − λÞ; ð4:8Þ

ψ̃4 ¼
35λ2H

16ω7
0M

2
B
λωð2ω0 − ω − λÞ3θð2ω0 − ω − λÞ; ð4:9Þ

ϕ5¼
35ðλ2Eþλ2HÞ
64ω7

0M
2
B

λð2ω0−ω−λÞ4θð2ω0−ω−λÞ; ð4:10Þ
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ψ5¼−
35λ2E

64ω7
0M

2
B
ωð2ω0−ω−λÞ4θð2ω0−ω−λÞ; ð4:11Þ

ψ̃5¼−
35λ2H

64ω7
0M

2
B
ωð2ω0−ω−λÞ4θð2ω0−ω−λÞ; ð4:12Þ

ϕ6 ¼
7ðλ2E − λ2HÞ
64ω7

0M
2
B

ð2ω0 − ω − λÞ5θð2ω0 − ω − λÞ: ð4:13Þ

Dimensionless parameter ω0 is related to λB, the inverse
moment of the B-meson LC distribution amplitude, as

ω0 ¼
5

2

λB
MB

: ð4:14Þ

For this model, the integration limits take the following
form (2ω0 < 1):

Z
Dðω;λÞθð2ω0−ω−λÞð…Þ¼

Z
2ω0

0

dω
Z

2ω0−ω

0

dλð…Þ:

ð4:15Þ

However, as we shall show shortly, certain modifications of
the integrated DAs [which emerge when performing parts
integrations of the 3BS (4.1)] at large values of ω and λ will
be necessary in order to satisfy the continuity of the 3BS
considered in a noncollinear kinematics.

B. Generalization to a noncollinear kinematics

When the coordinates x and y are independent variables,
the 3BS has the following decomposition that involves
more Lorentz structures and more 3DAs compared to the
collinear approximation2:

h0js̄ðyÞGναðxÞΓbð0ÞjB̄sðpÞi ¼
fBM3

B

4

Z
Dðω; λÞe−iλyp−iωxpTr

�
γ5Γð1þ =vÞ

	
ðpνγα − pαγνÞ

1

MB
½ΨA −ΨV � − iσναΨV

−
ðxνpα − xαpνÞ

xp

�
XðxÞ
A þ =x

xp
MBWðxÞ

�
þ ðxνγα − xαγνÞ

xp
MB

�
YðxÞ
A þWðxÞ þ =x

xp
MBZðxÞ

�

−
ðyνpα − yαpνÞ

yp

�
XðyÞ
A þ =y

yp
MBWðyÞ

�
þ ðyνγα − yαγνÞ

yp
MB

�
YðyÞ
A þWðyÞ þ =y

yp
MBZðyÞ

�

− iϵναμβ
xμpβ

xp
γ5X̃ðxÞ

A þ iϵναμβ
xμγβ

xp
γ5MBỸ

ðxÞ
A − iϵναμβ

xμpβ

xp
γ5X̃ðyÞ

A þ iϵναμβ
xμγβ

xp
γ5MBỸ

ðyÞ
A


�
:

ð4:16Þ

All invariant amplitudes Φ ¼ ΨA;ΨV;… are functions
of 5 variables, Φðω; λ; x2; y2; xyÞ, for which we may write
Taylor expansion in x2; y2; xy. Here we limit our analysis to
zero-order terms in this expansion. The corresponding zero-
order terms inΦ’s are functions of dimensionless arguments
λ andω and are referred to as the DAs. These DAs contain at
least the kinematical constraint θð1 − ω − λÞ. However, the
DAsmay have support inmore restricted areas: e.g., theDAs
of the LDmodel Eqs. (4.6)–(4.13) have support in the region
θð2ω0 − ω − λÞ, 2ω0 < 1.
Obviously, the functions ΨA and ΨV in (4.1) and (4.16)

are the same. Other DAs in (4.1) and (4.16) are related to
each other as follows:

X ¼ XðxÞ þ XðyÞ; X ¼ fXA; YA; X̃A; ỸAg;
W ¼ WðxÞ þWðyÞ; Z ¼ ZðxÞ þ ZðyÞ: ð4:17Þ
The amplitude (4.16) contains two independent kinematical
singularities 1=xp and 1=yp in the Lorentz structures.
These kinematical singularities of the Lorentz structures
should not be the singularities of the amplitude; this
requirement leads to certain constraints which we are going
to consider now. We shall present these constraints for the
case when all DAs contain θð2ω0 − ω − λÞ, 2ω0 < 1.
For the amplitudes of the type F, the Lorentz structures

of which contain first power of 1=xp or 1=yp, the
appropriate constraint is obtained by expanding the expo-
nential in (4.16) to zero order and requiring that the singular
terms vanish:

Z
2ω0−λ

0

dωXðxÞðω; λÞ ¼ 0 ∀ λ;
Z

2ω0−ω

0

dλXðyÞðω; λÞ ¼ 0 ∀ω: ð4:18Þ

Let us introduce the primitives

2We do not include here those structures that vanish in the
collinear limit x ¼ uy, such as e.g. ðxσyν − xνyσÞ=xy. We also do
not consider structures of the type 1=ðxpypÞ that may emerge
when generalizing the Lorentz structures multiplying W and Z
DAs in (4.1); according to our analysis the W and Z-structures
anyway give a marginal contribution to the FCNC B-decay
amplitude.
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X̄ðxÞðω; λÞ ¼
Z

ω

0

dω0XðxÞðω0; λÞ; ð4:19Þ

X̄ðyÞðω; λÞ ¼
Z

λ

0

dλ0XðyÞðω; λ0Þ; ð4:20Þ

which, by virtue of (4.18), vanish at the boundary of the DA
support region:

X̄ðxÞð0; λÞ ¼ X̄ðxÞð2ω0 − λ; λÞ ¼ 0 ∀ λ;

X̄ðyÞðω; 0Þ ¼ X̄ðyÞðω; 2ω0 − ωÞ ¼ 0 ∀ω: ð4:21Þ

For the functions Z and W, the Lorentz structure of which
contain 1=ðxpÞ2 and 1=ðypÞ2, the exponential should be
expanded to first order leading to:

Z
2ω0−λ

0

dωωnZðxÞðω; λÞ ¼ 0 ∀ λ;
Z

2ω0−ω

0

dλλnZðyÞðω; λÞ ¼ 0 ∀ω; n ¼ 0; 1: ð4:22Þ

By introducing primitives and double primitives

Z̄ðxÞðω; λÞ ¼
Z

ω

0

dω0ZðxÞðω0; λÞ; ¯̄ZðxÞðω; λÞ ¼
Z

ω

0

dω0Z̄ðxÞðω0; λÞ

Z̄ðyÞðω; λÞ ¼
Z

λ

0

dλ0ZðyÞðω; λ0Þ; ¯̄ZðyÞðω; λÞ ¼
Z

λ

0

dω0Z̄ðyÞðω; λ0Þ; ð4:23Þ

one can show that the requirements (4.22) lead to the vanishing of these functions at the boundaries of the DAs support regions:

Z̄ðxÞð0; λÞ ¼ Z̄ðxÞð2ω0 − λ; λÞ ¼ 0; ¯̄ZðxÞð0; λÞ ¼ ¯̄ZðxÞð2ω0 − λ; λÞ ¼ 0 ∀ λ;

Z̄ðyÞðω; 0Þ ¼ Z̄ðyÞðω; 2ω0 − ωÞ ¼ 0; ¯̄ZðyÞðω; 0Þ ¼ ¯̄ZðyÞðω; 2ω0 − ωÞ ¼ 0 ∀ω: ð4:24Þ
These relations are verified making use of Eq. (4.22). For instance,

¯̄ZðxÞð2ω0 − λ; λÞ ¼
Z

2ω0−λ

0

dω0
Z

ω0

0

dωZðxÞðω; λÞθðω< 2ω0 − λÞ ¼
Z

2ω0−λ

0

dωZðxÞðω; λÞ
Z

dω0θð0< ω< ω0 < 2ω0 − λÞ

¼
Z

2ω0−λ

0

dωZðxÞðω; λÞð2ω0 − λ−ωÞ ¼ 0: ð4:25Þ

The analogous relations are valid for W.
For calculating the contribution of (4.16) to the FCNC amplitude, the presence of the 1=xp and 1=yp structures

are inconvenient. To facilitate the calculation, onemay perform parts integration inω for the structure containing 1=xp and in
λ for the structure containing 1=yp. The conditions (4.21) and (4.24) lead to the absence of the surface termswhen performing
the parts integrations. So, we can rewrite (4.16) in the convenient form not containing the 1=xp and 1=yp factors:

hjs̄ðyÞGναðxÞΓbð0ÞjB̄sðpÞi ¼
fBM3

B

4

Z
Dðω; λÞe−iλðypÞ−iωðxpÞTr

�
γ5Γð1þ =vÞ

	
ðpνγα −pαγνÞ

1

MB
½ΨA −ΨV �− iσναΨV

− iðxνpα − xαpνÞ
�
X̄ðxÞ
A þ i=xMB

¯̄WðxÞ
�
þ iðxνγα − xαγνÞMB

�
ȲðxÞ
A þ W̄ðxÞ þ i=xMB

¯̄ZðxÞ
�

− iðyνpα − yαpνÞ
�
X̄ðyÞ
A þ i=yMB

¯̄WðyÞ
�
þ iðyνγα − yαγνÞMB

�
ȲðyÞ
A þ W̄ðyÞ þ i=yMB

¯̄ZðyÞ
�

þ ϵναμβxμpβγ5 ¯̃XðxÞ
A − ϵναμβxμγβγ5MB

¯̃YðxÞ
A þ ϵναμβyμpβγ5 ¯̃XðyÞ

A − ϵναμβyμγβγ5MB
¯̃YðyÞ
A


�
: ð4:26Þ

We emphasize that if the conditions (4.18) and (4.22) are
not fulfilled, then the parametrizations (4.16) and (4.26) are
not equivalent: they differ by a nonzero surface term.
Noteworthy, the requirements of the absence of singular-
ities at xp → 0 and yp → 0 and the continuity of the 3BS
(4.16) at x2 ¼ 0, y2 ¼ 0, xp ¼ 0, and yp ¼ 0 lead to a
number of constraints on the DAs which guarantee the
equivalence of the forms (4.16) and (4.26).

C. Adapting the LD model for the case
of noncollinear 3BS

First, let us point out that the primitives calculated for
the DAs of the LD model (4.6)–(4.13) do not satisfy the
constraints (4.21) and (4.24). As already emphasized, the
parametrizations (4.16) and (4.26) are then not equivalent
and cannot be both correct. So, there are two different
possibilities to handle this situation:
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1. Scenario I

Since the behavior of the DAs of the definite twist at
smallω and λ are fixed, we choose the following procedure:
(1) The functions ΨAðω; λÞ and ΨVðω; λÞ remain intact.
(2) We split each function Φ ðΦ ¼ XA; YA; X̃A; ỸA;

Z;WÞ into ΦðxÞðω; λÞ and ΦðyÞðω; λÞ as follows3:

ΦðxÞðω;λÞ¼wxΦðω;λÞ; ΦðyÞðω;λÞ¼wyΦðω;λÞ;
wxþwy¼1: ð4:27Þ

(3) We make use of the DAs of LD model for the
functions Φðω; λÞ and calculate primitives of higher
orders. Taking into account that higher primitives
obtained in this way do not satisfy the constraints
(4.21) and (4.24), we modify them in the way
explained below and allow them to depend on
one additional parameter a.

(4) We still want that after taking the appropriate
derivatives of the modified primitives, we reproduce
Eq. (4.16) with 6 modified functions ðXA; YA;

X̃A; ỸA; Z;WÞ which in turn also depend on the
additional parameter a. The simplest consistent
scheme that fulfills this requirement is the following:
(a) For the functions in Eq. (4.16) containing factors

1=xp and 1=yp (i.e. X ¼ XA; YA; X̃A; ỸA) the
primitives entering Eq. (4.26) are constructed as
follows:

X̄ðxÞ ¼ ∂

∂λ

	
Rðω; λ; aÞ

Z
ω

0

dω0
Z

λ

0

dλ0Xðω0; λ0Þ


;

X̄ðyÞ ¼ ∂

∂ω

	
Rðω; λ; aÞ

Z
ω

0

dω0
Z

λ

0

dλ0Xðω0; λ0Þ


:

ð4:28Þ

(b) For the functions in Eq. (4.16) containing factors
1=xp and 1=yp and 1=ðxpÞ2 and 1=ðypÞ2 (i.e., Z
and W) the primitives entering Eq. (4.26) are
constructed in a different way (the same for-
mulas for W):

¯̄ZðxÞ ¼ ∂
2

∂λ2

	
Rðω; λ; aÞ

Z
ω

0

dω0
Z

λ

0

dλ0
Z

ω0

0

dω00
Z

λ0

0

dλ00Zðω00; λ00Þ


;

¯̄ZðyÞ ¼ ∂
2

∂ω2

	
Rðω; λ; aÞ

Z
ω

0

dω0
Z

λ

0

dλ0
Z

ω0

0

dω00
Z

λ0

0

dλ00Zðω00; λ00Þ


;

Z̄ðxÞ ¼ ∂

∂ω

∂
2

∂λ2

	
Rðω; λ; aÞ

Z
ω

0

dω0
Z

λ

0

dλ0
Z

ω0

0

dω00
Z

λ0

0

dλ00Zðω00; λ00Þ


;

Z̄ðyÞ ¼ ∂

∂λ

∂
2

∂ω2

	
Rðω; λ; aÞ

Z
ω

0

dω0
Z

λ

0

dλ0
Z

ω0

0

dω00
Z

λ0

0

dλ00Zðω00; λ00Þ


: ð4:29Þ

The function Rðω; λ; aÞ is chosen in the form

Rðω; λ; aÞ ¼ 2

1þ exp
�

a
2ω0−ω−λ

� ; ð4:30Þ

such that for a ≠ 0 the function itself and all its derivatives
vanish at the boundary ωþ λ ¼ 2ω0. Respectively, for
a ≠ 0, all modified higher primitives of the necessary order
vanish at the boundary 2ω0 − ω − λ ¼ 0, providing the
absence of the 1=xp and 1=yp singularities at xp → 0 and
yp → 0 and the continuity of the 3BS at the point x2 ¼ 0,
y2 ¼ 0, xp ¼ 0, and yp ¼ 0.
For small values of the parameter a, our model DAs

reproduce well the collinear DAs including their magni-
tudes and power behavior at small ω and λ but (strongly)
deviate from them near the upper boundary.

2. Scenario II

One declares Eq. (4.26) as the starting point
but calculates the necessary primitives using the
3DAs from Eq. (4.16). Then, however, Eq. (4.16) itself
is not complete and should contain nonzero surface
terms obtained by rewriting Eq. (4.26) to the form
(4.16). These surface terms guarantee the absence of
singularities in (4.16) at xp → 0 and yp → 0. This
scenario does not seem to us logically satisfactory: For
instance, the double-collinear limit [30,31] that may be
readily taken in the 3BS given by Eq. (4.16) is not
reproduced by Eq. (4.26) if the surface terms are nonzero!
Nevertheless, for comparison we also present the results
for the form factors calculated using this prescription
referred to as scenario II. It should be emphasized that for
one and the same set of 3DAs, the form factors obtained
using scenario I in the limit a → 0 do not reproduce the
form factors obtained using scenario II: the difference
amounts to certain surface terms that arise in the
limit a → 0.

3In principle, one can take different wx for each of the 3DAs.
We will not discuss this possibility but will assume that wx is the
same for all 3DAs.
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V. RESULTS FOR THE Bs → γγ AMPLITUDE
AND δC7γ

We are ready to evaluate the form factors HA;V . We shall
also calculate the penguin form factor FT, and in the end,
the charming-loop correction to C7γ .

A. The charming-loop form factors HA;Vð0;0Þ
Using Eqs. (2.15) and (2.16) and calculating the trace

in (4.26) for

Γ ¼ γηð=kþmsÞγμð1 − γ5Þ; ð5:1Þ

leads to the Bs → γγ amplitude expressed via the DAs and
their primitives.
The expression (4.26) contains powers of x and/or y, but

these are easy to handle. Let us go back to Eq. (2.16): Any
factor xα may be represented as xα →

∂

∂κα
e−iκx then taking

the κ-derivative over to Γ̄μνρα
cc ðκ; qÞ by parts integration in κ.

Any factor yα may be represented as yα → ∂

∂kα
e−iky, then

moving the derivative onto the strange-quark propagator by
parts integration in k. Doing so, we get rid of all powers of x
and y, and the integrals over x and y in (2.16) then lead to
the δ functions:

Z
dx→ ð2πÞ4δðκþωpÞ;

Z
dy→ ð2πÞ4δðk−q0 þλpÞ;

ð5:2Þ

which allow us to further take the integrals over κ and k. In
the end, the invariant functions Hi, i ¼ A; V are given by
integral representations of the form

Hiðq2; q02Þ ¼
Z

2ω0

0

dω
Z

2ω0−ω

0

dλ
Z

1

0

dξ

×
Z

1−ξ

0

dη hiðω; λ; ξ; ηjq2; q02Þ ð5:3Þ

where hi are linear combinations of the DAs and their
primitives entering Eq. (4.26). Equation (5.3) gives now the
form factorsHA;V as the convolution integrals of the known
expression for the charming loops and the DAs and its
primitives from (4.26). We make use of the modified LD
model described above.
Obviously, the form factors HA and HV depend linearly

on λ2E and λ2H. So, we present the results for the form factors
RiE and RiH defined as follows:

Hið0;q02Þ¼RiEð0;q02Þλ2EþRiHð0;q02Þλ2H; i¼A;V: ð5:4Þ

The form factors RiE;iH depend on λBs
, but do not contain

dependence on λH and λE. These three parameters, how-
ever, are expected to be strongly correlated and we take into
account this correlation later when evaluating δC7γ.
All numerical inputs necessary for calculating Ri are

summarized in Table I. Making use of the estimate for the
ratio λBs

=λB ¼ 1.19� 0.04 [44] and available theoretical
results for λB [45–49], we consider the range λBs

¼ 0.45�
0.15 GeV with λ0Bs

¼ 0.45 GeV as the benchmark value.
Presently, the theoretical knowledge of noncollinear

3DAs is poor to give good arguments for the choice of
the function R, Eq. (4.30), and the weight factors wx. We
present our results for the form factors for wx ¼ 0.5 and
reflect the sensitivity to its variations in the ranges 0 <
wx < 1 in the final uncertainties. We restrict the parameter
a by the requirement that the 3DAs are affected by, say, not
more than 10% in the region of “small” λ and ω, e.g., at
λ=ð2ω0Þ;ω=ð2ω0Þ ≤ 0.1. This leads to the restriction
a ≤ 0.1. So we set the benchmark point a ¼ 0.05 and
allow its variations in the range 0 ≤ a ≤ 0.1. We shall see
that the sensitivity of the calculated form factors to a > 0.1
is rather mild.
Other parameters in Table I are taken from [50,51].
We are interested in obtaining the form factors RiE;iH at

q2 ¼ 0 and q02 ¼ 0. Whereas q2 ¼ 0 may be readily set in
the integral representation (5.3), this integral representation
is not expected to give reliable predictions at q02 ¼ 0: The
s-quark propagator at q02 ¼ 0 is not sufficiently far off-shell
and at q02 → 0 one observes a steep rise of RiE;iH related to
the nearby quark singularity. This rise is unphysical as the
nearest physical singularity in the form factors is located at
q02 ¼ M2

ϕ. To avoid this problem, we choose the following
strategy: we take the results of our calculation for
RiH;iEð0; q02Þ in the interval −5 < q02ðGeV2Þ < −0.7 and
extrapolate them numerically to q02 ¼ 0 making use of a
modified pole formula which takes into account the
presence of the physical pole at q02 ¼ M2

ϕ:

Fðq2Þ ¼ Fð0Þ
ð1 − q2=M2

RÞð1 − σ1ðq2=M2
RÞ − σ2ðq2=M2

RÞ2Þ
:

ð5:5Þ

In this way we obtain RiE;iHð0; 0Þ.
Figure 3 shows the results of our direct calculation

and the fits obtained using Eq. (5.5). Figures 3(a) and 3(b)

TABLE I. Input parameters for the calculation of the form factors RiE;iH defined in Eq. (5.4).

m̄cðm̄cÞ m̄sð2 GeVÞ MBs
Mϕ fBs

λBs
ð1 GeVÞ a wx

1.30 GeV 0.1 GeV 5.3 GeV 1.020 GeV 0.23 GeV 0.45� 0.15 GeV 0.05� 0.05 0.5� 0.5
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gives the form factors evaluated with the modified 3DAs
for a ¼ 0.05 (scenario I). Figures 3(c) and 3(d) shows the
results for unmodified functions (scenario II). For com-
parison, Figs. 3(e) and 3(f) shows the contribution of the
3DAs ψA and ψV . Good news is that the latter give the
dominant contribution (which does not depend on wx and a
and thus reduces the uncertainty in the Ri related to the
values of these parameters). The contribution of other
Lorentz 3DAs is however not negligible and depend on
the way one handles these 3DAs: e.g. for RAEð0; 0Þ in

scenario I they give a negative correction of 30%.
Appendix B presents details of the contributions of differ-
ent Lorentz 3DAs to the form factors RiE;iHð0; q02Þ at q02 ¼
−2 GeV2 for scenarios I and II.
Figure 4 demonstrates the sensitivity of RiE;iHð0; 0Þ to

λBs
. Since the form factors at q02 ¼ 0 are obtained via extra-

polation, we take λBs
from the range 0.3 < λBs

ðGeVÞ < 0.5,

calculate RiE;iHð0; q02Þ in the range −5<q02ðGeV2Þ<−0.7
and then extrapolate to q02 ¼ 0 for each value of λBs

.

FIG. 3. The contributions RiE and RiH to the form factors Hi [i ¼ A, V] defined according to Eq. (5.4) for different scenarios of
treating the B-meson 3DA. (a),(b) The appropriate modifications of the 3DAs XA, YA, etc. are taken into account (scenario I). (c),(d) The
form factors are calculated using Eq. (4.26) with the primitives obtained from XA, YA, etc. without modifications (scenario II).
(e),(f) Only the contributions of ΨA and ΨV are taken into account. Dashed lines show the calculation results for λBs

¼ 0.45 GeV,
a ¼ 0.05, wx ¼ wy ¼ 0.5 and other inputs from Table I, and solid lines are the fits using Eq. (5.5).
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The same procedure applies to the dependence on
parameter a [enters the function R, Eq. (4.30)] shown in
Fig. 5. We restirct a in the range 0 ≤ a ≤ 0.1, but, as seen
from Fig. 5, the sensitivity to the value of a in the region
a > 0.01 is rather weak anyway.
The uncertainties in our theoretical predictions for the

form factors thus come from the following sources:
(i) The sensitivity to the precise way one handles the

3BS at large values of ω and λ. This is probed by
comparing the results obtained with our benchmark
scenario I with those from scenario II.

(ii) The sensitivity to the precise functional form of the
B-meson 3DAs; this is probed by using as our
benchmark model (4.6)–(4.13) [Model IIB from
[23]] and comparing with a different model [Model
IIA given by Eq. (5.23) from [23]]. The uncertaintes
related to (i) and (ii) are denotes as [3DA].

(iii) The sensitivity to the numerical values of the
parameters of the 3DAs, mainly parameter a of
the function R, Eq. (4.30). Notice that we do not
perform any averaging over λBs

; we keep the full

dependence on this parameter in the form factors and
in our final result for the correction δC7γ .

(iv) The sensitivity to the extrapolation procedure from
the interval where the form factors may be calcu-
lated by our approach to the physical point q02 ¼ 0.
We make use of the calculations of the form factors
in the interval −5 ≤ q02ðGeV2Þ ≤ −0.7. However,
the value at q02 ¼ 0 obtained by the extrapolation is
sensitive to the precise choice of the upper boun-
dary of this interval. For instance, moving the upper
boundary in the range ð−1– − 0.5Þ GeV2 leads to
the variations of the extrapolated value of the form
factor at q02 ¼ 0 by �5%. We therefore assign the
additional uncertainty of 5% (denoted as [extr])
related to the extrapolation procedure.

Table II compares the form factors at q2 ¼ q02 ¼ 0
for two different sets of 3DAs and for two different
scenarios to treat the 3DAs. The individual form factors
RiE and RiH demonstrate a sizeabe dependence on the
scenario. However, in the combinations appropriate for the
calculation of δC7γ , RVE þ 2RVH and RAE þ 2RAH these

FIG. 4. The dependence on parameter λBs
of the form factors obtained in scenario I: (a) RiE;iHð0; 0Þ, i ¼ A, V; (b) Linear combination

RiEð0; 0Þ þ 2RiHð0; 0Þ that determines δC7γ taking into account approximate relation λ2H ≃ 2λ2E.

FIG. 5. The dependence on parameter a of the form factors obtained in scenario I: (a) RiE;iHð0; 0Þ, i ¼ A, V; (b) Linear combination
RiEð0; 0Þ þ 2RiHð0; 0Þ that determines δC7γ taking into account approximate relation λ2H ≃ 2λ2E.
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uncertainties cancel to great extent and we obtain for the benchmark value λBs
¼ 0.45 GeV:

105ðRVE þ 2RVHÞ ½GeV−1� ¼ 410� 10½3DA� � 15½a� � 20½extr� → 410� 30; ð5:6Þ

105ðRAE þ 2RAHÞ ½GeV−1� ¼ 415� 15½3DA� � 15½a� � 20½extr� → 415� 30; ð5:7Þ

and we have slightly increased our final “theoretical uncertainty.” In the end, for a given value of the λBs
, we predict the

combination of the form factors (5.6) and (5.7) relevant for the calculation of C7γ (see Sec. V C) with about 8% accuracy.

B. The penguin form factor FTð0;0Þ
The form factors FTA;TVðq2; q02Þ may be calculated via the B-meson 2DAs using HQET formula (see, e.g., [25])

h0js̄ðxÞΓbð0ÞjB̄sðpÞi ¼ −
ifBMB

4

Z
dλe−iλpxTr

�
γ5Γð1þ =vÞ

	
ϕþðλÞ −

ϕþðλÞ − ϕ−ðλÞ
2vx

=x


�
ð5:8Þ

leading to the following expression for the FTð0; 0Þ ¼
FTAð0; 0Þ ¼ FTVð0; 0Þ:

FTð0; 0Þ ¼ −QsfBMB

Z
dλ

ϕþðλÞð1 − λÞ þ Φ̄ðλÞ
m2

s þ λð1 − λÞM2
B

ð5:9Þ

where

Φ̄ðλÞ ¼
Z

λ

0

dλ0½ϕþðλ0Þ − ϕ−ðλ0Þ�: ð5:10Þ

The absence of the kinematical singularity at vx → 0 in
Eq. (5.8) requires that the primitive Φ̄ðλÞ vanishes at the
boundaries of the 2DA support region. Then the parts
integration in λ, necessary to handle the 1=vx term, does not
contain any nonzero surface term.
All contributionsOðms=MBÞ in the numerator of (5.9) are

omitted; keeping such terms will be inconsistent as contri-
butions of this order arise also from the diagrams describing
photon emission from the B-quark which are not taken into
account. According to the estimates obtained in [32], cor-
rections due to the photon emission from the b-quark amount
to 10%–20% of the leading contribution (5.9).
For the 2DAs we use the same model from [23] as we do

for 3DAs:

ϕþðλÞ ¼
5

8ω5
0

λð2ω0 − λÞ3θð2ω0 − λÞ; ð5:11Þ

ϕ−ðλÞ¼
5

192ω5
0

ð2ω0−λÞ2
	
6ð2ω0−λÞ2−7ðλ2E−λ2HÞ

M2
Bω

2
0

ð15λ2

−20ω0λþ4ω2
0Þ


θð2ω0−λÞ: ð5:12Þ

An explicit check shows that Φ̄ðλ ¼ 0Þ ¼ Φ̄ð2ω0Þ ¼ 0.
The contribution of the term ∼ðλ2E − λ2HÞ to the form factor
turns out numerically negligible and may be safely omitted.
Let us obtain numerical estimates for FTð0; 0Þ. Notice

that the numerator of the integrand in Eq. (5.9) contains
factor λ, so no singularity at λ → 0 arises in the integrand
even in the limit ms → 0. Therefore, the FTAð0; 0Þ may be
calculated by applying directly the representation for the
form factor Eq. (5.9). [Recall that in order to obtain the
form factors HA;Vð0; 0Þ we had to perform extrapolation
from the region q02 ≲ −0.5 GeV2.] Figure 6(a) shows that
the q02-behavior of FTAð0; q02Þ is well compatible with the
location of the physical pole at q02 ¼ M2

ϕ in a broad range
of q02 < 0, up to q02 ¼ 0. Figure 6(b) illustrates the
sensitivity of FTð0; 0Þ to λBs

. This dependence is not
negligible and partly compensates the λBs

-dependence of
HA;Vð0; 0Þ, leading to more stable predictions for δC7γ.
For our further numerical estimates we use FTð0; 0Þ ¼

0.155� 0.015 for λBs
¼ 0.45 GeV, where the uncertainty

of∼10% is assigned on the basis of the size of the neglected
1=MB-suppressed contributions which have been calcu-
lated in [32].

TABLE II. Our results for the form factors RiE;iH in GeV−1 defined in Eq. (5.4). In addition to the results obtained in scenario I and
scenario II for the basic set of 3DAs given in (4.6)–(4.13), referred to as (B), we present the results obtained using scenario I for 3DAs of
Model IIA of Eq. (5.23) from [23], referred to as (A).

105RVE 105RVH 105ðRVE þ 2RVHÞ 105RAE 105RAH 105ðRAE þ 2RAHÞ
Scenario I, 3DA (B) 138.1 128.1 394.3 134.7 131.0 396.7
Scenario I, 3DA (A) 146.4 133.7 413.6 142.7 137.0 425.4
Scenario II, 3DA (B) 180.2 116.7 413.8 182.6 121.4 416.7
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C. δC7γ

We are ready to evaluate the relative contribution of the
nonfactorizable charming loops given by Eq. (2.19):

δiC7γ ¼ 8π2QsQc
C2

C7γmb
ρðiÞcc ; ρðiÞcc ¼ RiEλ

2
E þ RiHλ

2
H

FT
;

i ¼ A; V: ð5:13Þ

This expression is useful as it allows us to separate the
uncertainties related to the precise values of the Wilson
coefficients andmb to be used in the numerical estimates and
those related to the description of the B-meson structure.
Let us focus on ρðiÞcc . The parameters λBs

, λE and λH,

entering ρðiÞcc , are strongly correlated with each other
and should not be treated as independent quantities. As
noticed in [23] (see also [52,53]), QCD sum rules suggest
an approximate relation λ2H ¼ 2λ2E. Combining this
relation with the constraints from the QCD equations of
motion [23], one obtains approximate relations

λ2E ≃ 0.6λ2Bs
; λ2H ≃ 1.2λ2Bs

: ð5:14Þ

As the result, ρicc turns out to be the function of one
variable, λBs

, and the appropriate combinations of the form
factors that determines the correction δC7γ are RVE þ 2RVH

and RAE þ 2RAH, presented in Table II.
Figure 7 shows the dependence of ρicc on λBs

for
RiH;iE given in Fig. 4 and FT given in Fig. 6. The results
presented in the plot correspond to scenario I calculated
with 3DAs of Model IIB. To a good accuracy, we may

set ρðAÞcc ¼ ρðVÞcc .
Using the values C2 ¼ −1.1, C7γ ¼ −0.31 and taking

m̄bðm̄bÞ ¼ 4.2 GeV for mb, Eq. (5.13) yields:

δC7γðλBs
Þ ¼ ð0.15 GeV−1Þ102ρccðλBs

Þ: ð5:15Þ

The final result for δC7γ is very sensitive to the precise
value of λBs

. Recall, however, that for a given value of λBs
,

ρcc may be calculated with an accuracy around 10%. So we
prefer to present our results for δC7γ as the function of λBs

.
For our benchmark point λ0Bs

¼ 0.45 GeV, we find

δC7γðλ0Bs
Þ ¼ 0.045� 0.004: ð5:16Þ

For λBs
in the range 0.3 < λBs

ðGeVÞ < 0.6, the correspond-
ing δC7γ covers the range

δC7γ ¼ ð2–10Þ%: ð5:17Þ

We therefore conclude that the effect of nonfactorizable
charming loops is expected at the level of a few percent. As
soon as the parameter λBs

is known with a better accuracy,
our results allow one to obtain a (relatively) accurate
estimate for δC7γ.

VI. DISCUSSION AND CONCLUSIONS

We presented a detailed analysis of NF charming loops
in FCNC Bs → γγ decay and reported the following results:

FIG. 6. (a) The form factor FTAð0; q02Þ, where q0 is the momentum of the photon emitted from the s-quark, for 2DAs given by (5.11)
and (5.12) and our benchmark value λBs

¼ 0.45 GeV. Dotted line—calculation results; solid line—interpolation using the modified pole
formula Eq. (5.5). (b) The dependence of FTAð0; 0Þ on λBs

in the range λBs
¼ 0.45� 0.15 GeV.

FIG. 7. The functions ρðiÞcc ; i ¼ A, V [Eq. (5.13)] vs λBs
.
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(i) We derived and made use of the expression for the
hVVAi charm-quark loop that is fully given in terms
of the gluon field strength GμνðxÞ. This has an
advantage that no explicit use of any specific gauge
for the gluon field is necessary. Still, nonlocal
operator describing the charm-loop contribution to
the amplitude of FCNC B-decay contains field
operators at different coordinates, s̄ðyÞGμνðxÞbð0Þ,
and thus needs the Wilson lines joining the field
operators at different points. These Wilson lines are
reduced to unity operators in the Fock-Schwinger
gauge xμAμðxÞ ¼ 0, so this gauge is used implicitly.

(ii) We studied the generic noncollinear 3BS of the
B-meson; this quantity contains new Lorentz struc-
tures and new 3DAs compared to collinear and
double-collinear 3BS. We took into account con-
straints on the noncollinear 3BS coming from the
requirement of analyticity and continuity [30] and
implemented proper modifications of the corre-
sponding 3DAs Xiðω; λÞ at large values of their
arguments.

(iii) We calculated the form factors Hiðq2 ¼ 0; q02 ¼ 0Þ,
i ¼ A, V, describing the B → γγ amplitude.
Whereas q2 ¼ 0 [q the momentum emitted from
the charm-quark loop] may be set directly in the
analytic formulas, the physical point q02 ¼ 0 [q0 the
momentum emitted by the light s-quark] was
reached by an extrapolation from the spacelike
region −5 ≤ q02ðGeV2Þ ≤ −ð0.5–1Þ. An explicit
dependence of the form factors and the correction
δC7γ on the parameter λBs

was calculated. Taking
into account all uncertainties (excluding that of λBs

),
we found that for any specific value of λBs

, δC7γ may
be obtained with better than 8% accuracy. For our
benchmark point λ0Bs

¼ 0.45 GeV, we found

δC7γðλ0Bs
Þ ¼ 0.045� 0.004:

For λBs
in the range 0.3 < λBs

ðGeVÞ < 0.6, δC7γ

covers the range 2%–10%. Thus, one should expect
the NF charm-loop correction to B → γγ decays at
the level of a few %. As soon as a more accurate
value of λBs

is available, our results allow one to
obtain the corresponding δC7γ .
(iv) In the double-collinear kinematics that domi-

nates the NF charm-loop contribution to FCNC
B-decay amplitudes in the HQ limit [30], the leading
contribution to the amplitude is given by the con-
volution of the form factor F0 describing the charm-
quark loop Eq. (3.2) and the following combination
of the 3DAs [31,42]:

ΨAþΨVþ2ðWðyÞ þYðyÞ
A − ỸðyÞ

A Þ∼ðλ2Eþλ2HÞ: ð6:1Þ

[The explicit expressions for these 3DAs show that
this combination is proportional to ðλ2E þ λ2HÞ.]
Equation (6.1) implies that in the HQ limit,
RVE ¼ RVH and RAE ¼ RAH. Our results presented
in Fig. 3 show that these relations are sizeably
violated by OðλBs

=MBÞ corrections that come into
the game via other Lorentz structures describing the
charm-quark loop (3.2) and other 3DAs and worth to
be taken into account. Numerically, these correc-
tions are around 20%.

It might be useful to notice that the Bs → γγ decay
amplitude receives contributions from theweak-annihilation
type diagrams [54–56]. The weak-annihilation mechanism
differs very much from the mechanism discussed in this
paper and is therefore beyond the scope of our interest here.
However, weak-annihilation diagrams should be taken into
account in a complete analysis of Bs → γγ decays.
In conclusion, we emphasize that the approach of this

paper may be readily applied to the analysis of non-
factorizable charming loops in other FCNC B-decays
and looks promising for treating NF effects in nonleptonic
B-decays (see, e.g., [57]).
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APPENDIX A: COMPARISON WITH THE
CHARM-LOOP CONTRIBUTION FROM [32]

Here we compare the definition of the B → γγ amplitude
(2.13) with the definition adopted in [32]. The starting point
in [32] is the matrix element

Hρηðq;q0Þ¼ i
Z

dzeiqzh0jTfc̄γρcðzÞ; je:m:
η ð0ÞgjBsðpÞi;

p¼qþq0; ðA1Þ

where quark operators are Heisenberg operators in the SM,
i.e., the corresponding S-matrix includes weak and strong
interactions. For real photons in the final state, at least one
soft gluon should be emitted from the charm-quark loop, we
expand the S-matrix to first order inGF and first order in gs:
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Hρηðq0; qÞ ¼ i
Z

dzeiqzh0jTfc̄ðzÞγρcðzÞ; i
Z

dyLweakðyÞ; i
Z

dxLGccðxÞ; eQss̄ð0Þγηsð0ÞgjBsðpÞi: ðA2Þ

For comparison with Eq. (2.13), we place Lweak at y ¼ 0 by shifting coordinates of all operators through the translation
OðxÞ ¼ eiP̂yOðx − yÞe−iyP̂. Using the relations h0jeiðP̂yÞ ¼ h0j and e−iðyP̂ÞjBsðpÞi ¼ e−iðpyÞjBsðpÞi, and changing the
variables x − y → x, z − y → z, y → −y, we find

Hρηðq; q0Þ ¼ i3eQs

Z
dxdydz eiqzþiq0yh0jTfc̄ðzÞγρcðzÞ; Lweakð0Þ; LGccðxÞ; s̄ðyÞγηsðyÞgjBsðpÞi: ðA3Þ

Taking into account that Lweak ¼ −Hb→sc̄c½8×8�
weak [the latter given by Eq. (2.11)], we obtain

Hρηðq; q0Þ ¼ 2C2

GFffiffiffi
2

p VcbV�
cseQsi

Z
dxdydz eiqzþiq0yh0jTfc̄ðzÞγρcðzÞ; c̄ð0Þγμð1 − γ5Þtacð0Þ; c̄ðxÞγνtbcðxÞj0i

× h0jTfs̄ðyÞγηsðyÞ; s̄ð0Þγμð1 − γ5Þtabð0Þ; Bb
νðxÞgjBsðpÞi ðA4Þ

It is convenient to insert under the integral (A4) the identity

Bb
νðxÞ ¼

1

ð2πÞ4
Z

dκdx0 Bb
νðx0Þeiκðx−x0Þ: ðA5Þ

This allows us to isolate the contribution of the charm-quark loop ΓμνρðabÞ
cc ðκ; qÞ:

Hρηðq; q0Þ ¼ 2C2

GFffiffiffi
2

p VcbV�
cseQs

i
ð2πÞ4

Z
dy eiq

0ydκ e−iκx
0 h0jTfs̄ð0Þγμð1 − γ5Þbð0Þ; Bb

νðx0Þ; s̄ðyÞγηsðyÞgjBsðpÞi

×
Z

dxdzeiqzþiκxh0jTfc̄ðzÞγρcðzÞ; c̄ð0Þγμð1 − γ5Þtacð0Þ; c̄ðxÞγνtbcðxÞgj0i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΓμνρðabÞ
cc ðκ;qÞ

: ðA6Þ

Using momentum representation for the s-quark propagator

h0jTfsðyÞs̄ð0Þgj0i ¼ 1

ð2πÞ4i
Z

dk e−iky
=kþms

m2
s − k2 − i0

; ðA7Þ

we obtain

Hρηðq; q0Þ ¼ 2C2

GFffiffiffi
2

p VcbV�
cseQs

×
1

ð2πÞ8
Z

dkdye−iðk−q0Þydxdκe−iκxΓμνρðabÞ
cc ðκ; qÞh0js̄ðyÞγη =kþms

m2
s − k2

γμð1 − γ5ÞtaBb
νðxÞbð0ÞjBsðpÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Aρη

: ðA8Þ

Comparing this expression with Eq. (2.15) gives a useful relation

AB→γγ
charm ¼ 2eQcHρηερε

0
η: ðA9Þ

The amplitude Hρη may be decomposed via the form factors H̃A;V (denoted as HA;V in Eq. (5.2) from [32]):

Hρηðq; q0Þ ¼ −
GFffiffiffi
2

p VcbV�
cse

h
ϵρηqq0H̃V − iðgρηq0q − q0ρqηÞH̃V

i
: ðA10Þ

Comparing with (2.16) we find

H̃VðAÞ ¼ −2C2QsHVðAÞ: ðA11Þ
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APPENDIX B: ANATOMY OF THE FORM
FACTORS HA;Vð0;q020 Þ AT q020 = − 2 GeV2

This appendix presents detailed numerical results for the
form factors at q2 ¼ 0 and q02 ¼ q020 ¼ −2 GeV2, giving
separately contributions of different Lorentz 3DAs for the
coefficients RiE and RiH defined in Eq. (5.4). Table III gives
the results obtained with scenario I of Sec. IV C for 3DAs
given by Eqs. (4.6)–(4.13) (Model IIB of Eq. (5.27) from
[23]). Table IV presents the results obtained with scenario II
and the same set of 3DAs. Table V gives the results
corresponding to scenario I but using different 3DAs, those
of Model IIA of Eq. (5.23) from [23]. Separate contributions
coming from different Lorentz 3DAs are isolated keeping the
explicit dependence on wx and wy, wx þ wy ¼ 1. The results
correspond to λBs

¼ 0.45 GeV and the central values of mc

andms. For 3DAsmodified according to scenario I,a ¼ 0.05.
Setting wx ¼ 1

2
ð1þ δwÞ, wy ¼ 1

2
ð1 − δwÞ and summing

the contributions of all 3DAs in Table III, we obtain,

HVð0; q020 Þ ¼ ð47.72 − 4.58δwÞ ½GeV−1�λ2E
þ ð33.88þ 2.07δwÞ ½GeV−1�λ2H: ðB1Þ

For the expected relationship λ2H ¼ 2λ2E, the dependence on
δw is further suppressed leading to extremely stable
predictions with respect to δw:

HVð0; q020 Þ ¼ ð115.48 − 0.44δwÞ ½GeV−1�λ2E: ðB2Þ

For scenario II (Table IV), one finds

HVð0; q020 Þ ¼ ð53.81 − 11.76δwÞ ½GeV−1�λ2E
þ ð31.75þ 18.51δwÞ ½GeV−1�λ2H: ðB3Þ

For λ2H ¼ 2λ2E, this gives

HVð0; q020 Þ ¼ ð117.31þ 25.25δwÞ ½GeV−1�λ2E: ðB4Þ

For δw ¼ 0, both scenario I and II give close results but
the sensitivity of the form factor to δw in scenario II is
strong.
For scenario I but using different 3DAs, those of Model

IIA of Eq. (5.23) from [23], one finds (Table V):

HVð0; q020 Þ ¼ ð50.58 − 2.12δwÞ ½GeV−1�λ2E
þ ð35.37þ 0.64δwÞ ½GeV−1�λ2H: ðB5Þ

For λ2H ¼ 2λ2E, this yields:

HVð0; q020 Þ ¼ ð121.32 − 0.84δwÞ ½GeV−1�λ2E: ðB6Þ

TABLE III. HVð0; q020 Þ and HAð0; q020 Þ at q020 ¼ −2 GeV2 calculated for scenario I and 3DAs of Eqs. (4.6)–(4.13) for λBs
¼ 0.45 GeV

and a ¼ 0.05. Hið0; q02Þ ¼ RiEλ
2
E þ RiHλ

2
H; i ¼ A, V.

105HVðq2; q020 Þ 105HAðq2; q020 Þ
Lorentz 3DA 105RVE [GeV−1] 105RVH [GeV−1] 105RAE [GeV−1] 105RAH [GeV−1]

ψA 45.84 7.54 43.44 7.67
ψV 4.62 25.2 4.61 26.7
XA −0.28wx þ 0.49wy −1.64wx þ 0.99wy −0.39wx þ 0.24wy −1.63wx þ 0.81wy

YA −8.37wx þ 1.52wy 8.33wx þ 0.06wy −8.52wx þ 0.70wy 8.48wx þ 0.63wy

X̃A −0.65wx − 0.05wy −0.11wx þ 0.11wy −0.70wx þ 0.22wy −0.07wx − 0.19wy

ỸA 1.65wx − 0.01wy −2.45wx − 1.51wy 1.70wx − 0.59wy −2.51wx − 0.68wy

W −0.61wx − 0.39wy −0.61wx − 0.39wy −0.63wx − 0.35wy −0.63wx − 0.35wy

Z 0.93wx þ 0.27wy −0.31wx − 0.19wy 0.95wx þ 0.03wy −0.31wx − 0.02wy

TABLE IV. HVð0; q020 Þ and HAð0; q020 Þ at q020 ¼ −2 GeV2 calculated for scenario II and 3DAs of Eqs. (4.6)–(4.13); λBs
¼ 0.45 GeV.

105HVðq2; q020 Þ 105HAðq2; q020 Þ
Lorentz 3DA 105RVE [GeV−1] 105RVH [GeV−1] 105RAE [GeV−1] 105RAH [GeV−1]

ψA 45.84 7.54 43.44 7.67
ψV 4.62 25.2 4.61 26.7
XA −1.54wx − 1.17wy −4.08wx − 1.71wy −1.02wx − 1.40wy −4.73wx þ 0.11wy

YA −17.4wx − 5.93wy 25.3wx − 11.4wy −17.6wx þ 5.36wy 25.4wx − 12.0wy

X̃A −1.73wx − 0.80wy −0.12wx þ 0.32wy −1.62wx þ 0.59wy −0.42wx − 0.65wy

ỸA 3.53wx þ 10.9wy −4.89wx − 5.69wy 3.51wx þ 11.5wy −4.96wx − 5.11wy

W 2.27wx − 0.52wy 2.27wx − 0.52wy 2.38wx − 0.38wy 2.38wx − 0.38wy

Z 6.45wx þ 0.75wy −0.96wx − 0.50wy 6.28wx þ 0.05wy −0.93wx − 0.02wy
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