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We present a detailed theoretical study of nonfactorizable contributions of the charm-quark loop to the
amplitude of the By — yy decay. This contribution involves the B-meson three-particle Bethe-Salpeter
amplitude, (0[3(y)G,, (x)b(0)|B,(p)), for which we take into account constraints from analyticity and

continuity. The charming-loop contribution of interest may be described as a correction to the Wilson
coefficient Cy,, C7, = C7,(1 + 6Cy,). We calculate an explicit dependence of §C, on the parameter A .
Taking into account all theoretical uncertainties, 6C;, may be predicted with better than 10% accuracy for
any given value of A . For our benchmark point Az = 0.45 GeV, we obtain 6C;, = 0.045 £ 0.004.
Presently, Ap is not known with high accuracy, but its value is expected to lie in the range
0.3 < 15 (GeV) < 0.6. The corresponding range of 6C5, is found to be 0.02 < 6C5, < 0.1. One therefore
expects the correction given by charming loops at the level of at least a few percent.
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I. INTRODUCTION

Charming loops in rare flavor-changing neutral current
(FCNC) decays of the B-meson have impact on the B-decay
observables [1] and provide an unpleasant noise for the
studies of possible new physics effects (see, e.g., [2-11]).

A number of theoretical analyses of nonfactorizable (NF)
charming loops in FCNC B-decays has been published:
In [12], an effective gluon-photon local operator describing
the charm-quark loop has been calculated as an expansion
in inverse charm-quark mass m, and applied to inclusive
B — X,y decays (see also [13,14]); in [15], NF corrections
in B — K*y using local operator product expansion (OPE)
have been studied; NF corrections induced by the local
photon-gluon operator have been calculated in [16,17]
in terms of the light-cone (LC) 3-particle antiquark-
quark-gluon Bethe-Salpeter amplitude (3BS) of K*-meson
[18-20] with two field operators having equal coordinates,
(0[5(0)G,, (0)u(x)|K*(p)), x* =0. Local OPE for the
charm-quark loop in FCNC B decays leads to a power
series in Agcpmy,/m?~1. To sum up O(Agcpmy,/m?)"
corrections, Ref. [21] obtained a nonlocal photon-gluon
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operator describing the charm-quark loop and evaluated its
effect making use of 3BS of the B-meson in a collinear LC
configuration (0[3(x)G,, (ux)b(0)|B,(p)), x* = 0 [22,23].
The same collinear approximation [known to provide
the dominant 3BS contribution to meson tree-level form
factors [24,25]] was applied also to the analysis of other
FCNC B-decays [26].

In later publications [27-30], it was demonstrated that
the dominant contribution to FCNC B-decay amplitudes is
actually given by the convolution of a hard kernel with the
3BS in a different configuration—a double-collinear light-
cone configuration (0[5(y)G,,(x)b(0)|B,(p)), y* =0,
x*> =0, but xy # 0. The corresponding factorization for-
mula was derived in [30]. The first application of a double-
collinear 3BS to FCNC B-decays was presented in [31].

In this paper, we study NF charming loops in B, — yy
decays making use of the generic 3BS of the B-meson. The
main new features of this paper compared to the previous
analyses, in particular to [31], are as follows:

(i) The generic 3BS of the B-meson contains new
Lorentz structures (compared to the collinear and
the double-collinear approximations) and new three-
particle distribution amplitudes (3DAs) that appear
as the coefficients multiplying these Lorentz struc-
tures. Analyticity and continuity of the 3BS as the
function of its arguments at the point xp = yp =
x> =y> =0 leads to certain constraints on the
3DAs [30] which we take into account.

Published by the American Physical Society
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(ii)) We derive the convolution formulas for the
By — y*y* form factors involving this generic 3BS,
and obtain the corresponding numerical predictions.
We check that the deviation between our analysis
and the analysis based on double-collinear 3BS
differ by O(4g /Mp) terms that in practical calcu-
lations give a ~20% difference.

The paper is organized as follows: Sec. II presents general
formulas for the top and charm contribution to the B; — yy
amplitude. Section III considers the (AVV) charm-quark
triangle and gives a convenient representation for this quantity
via the gluon field strength G,, merely (not involving A,
itself). In Sec. IV, properties of the 3BS of the B-meson in the
general noncollinear kinematics are discussed and properly
modified 3DAs are constructed. Section V presents the
numerical results for the form factors and for the nonfactor-
izable charm-loop correction to the B, — yy amplitude.
Section VI gives our concluding remarks. Appendix A
compares the definition of the amplitude adopted in this
paper with the one of [32]. Appendix B gives details of the
numerical results for the form factors.

II. TOP AND CHARM CONTRIBUTIONS
TO B, — vy

A. The b — d s effective Hamiltonian
A standard theoretical framework for treating FCNC
b — g (¢ =s, d) transitions is provided by the Wilson
OPE: the b — ¢ effective Hamiltonian describing dynamics
at the scale y, appropriate for B-decays, reads [33-35]:

- G —
Hﬁﬁ‘f: Ly ,,,ZC YOI (W), (2.1)

G is the Fermi constant and V;; are CKM matrix elements.
The SM Wilson coefficients relevant for our analysis at the
scale pyp = 5 GeV have the following values [correspond-
ing to C(My) = —1]: Ci(uo) = 0.241, Cy(po) = —1.1,
C7(po) = 0.312 [21,34— 37]

The basis operators O ?(u) contain only light degrees of
freedom (u, d, s, c, and b-quarks, leptons, photons and
gluons); the heavy degrees of freedom of the SM (W, Z, and
t-quark) are integrated out and their contributions are encoded
in the Wilson coefficients C;(u). The light degrees of
freedom remain dynamical and the corresponding diagrams
containing these particles in the loops—in the case of
our interest virtual ¢ quarks—should be calculated and added
to the diagrams generated by the effective Hamiltonian.

B. The penguin contribution

The top-quark contribution to B, — yy decay is gen-
erated by penguin operator in 2.1

'Our notations and conventions are: > = iy%'y%/%, o,

: b/;u 7/1,] 0123 — _1 €abed = 6(1/3;4 (lbﬁcﬂdy € = 4”aem

Gr
\/_

€ < v
07}, == —@mb . SGW/(I + ]/S)b - FH,

HZ ==LV, ViCo, ()0,

(2.2)

The sign of the b — dy effective Hamiltonian (2.2) corre-
lates with the sign of the electromagnetic vertex. For a
fermion with the electric charge Q,e, we use in the
Feynman diagrams the vertex
iQ,eqy,qe", (2.3)

corresponding to the definition of the covariant derivative
in the form D, = d, —ieQ,A,.

The amplitude of the B — yy transition is defined
according to [32,38]:

B— b—=sy | 1
Awy ™ = {r(q.0).7(d'. &) HT|B,(p)
Gr e?
=-2— \/i Vi Vis SQx ) 2’nbcﬁf (M)
X |:FTV€aa’qq’ - iFTA (gaa’q/q - lel%’)} gag'a,,

(2.4)

Here ¢, ¢/, and ¢, ¢ are momenta and polarization vectors
of the outgoing real photons, and F4 and Fypy are the form
factors Fr4(q*> = 0,9 =0) and Fpy,(q* =0,¢? =0).
The latter are defined as [32,38,39]:

(r(q'.€)I50,,75b1Bs(p))q"

= ee4(9uad'q — 9a4,)Fra(d®. 4%),  (2.5)
(r(q'.€)[50,,b|By(p))q" = iee\€agy Frv(a®.q7). (2.6)
and satisfy a rigorous constraint F,(q*,0) = Fry (g%, 0).

Notice that the strange-quark charge Q; (or Q,, in the 1/m;,-
subleading diagram where the photon is emitted by the
b-quark) is included in the form factors F'7, and Fpy [32].

C. Nonfactorizable charm-quark loop
correction to B, — yy

As already noticed, the light degrees of freedom remain
dynamical and their contributions should be taken into
account separately. The relevant terms in H gf}’ § are those
containing four-quark operators:

Cr G *
HYp*e = —j%vcbvw{cl (WO + Cr (w0} (2.7)
where
O) = (37, (1 =p)c?) Sy (1 = )b )6:y6y5.  (2.8)
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O, = (3'7,(1 = r)e/) (S (1 = )b )6yjdp. (2.9)
differing from each other in the way color indices i, j, k, /
are contracted. By Fierz transformation O, may be written
in the following form (for anticommuting spinor fields):

_; _ , 1
0 = (51 = PP = ) (2t + 38103 ).

(2.10)

The singlet-singlet operator O; and the singlet-singlet part
of O, at the leading order generate factorizable charm
contributions to the B — yy amplitude. These factorizable
contributions vanish for real photons in the final state. A
nonzero contribution is induced by the octet-octet part of
the operator O, and needs the emission of one soft gluon

|

A(B—’}’V)

charm

P(r(q.e).r(q. )]

N =

from the charm-quark loop. So relevant for us is the octet-
octet operator

b—scc8x8] GF % < a
Heff - _7§VcbV0S2C2(S7M(1 - VS)I b)
x (ey*(1 —ys)t“c). (2.11)
Therefore, similar to the top contribution, we find
B— b—scc[8x8]| ¢
AT = (r(q.€), 7(d &) Heg " |By(p)).  (2.12)

Here quark fields are understood as Heisenberg field
operators with respect to the SM interactions. Expanding
them to the second order in electromagnetic interaction and
to the first order in strong interaction gives

X T{Hff? (), / dzjy™(2)A,(2), / dyjy™ (Y)Ay (). / dx?f(X)mbC(X)gsB’Z(X)}|1_35(P)> (2.13)

where the quark electormagnetic current has the form j$™ = e > Q,4,7,9;- Equation (2.13) may be rewritten as:

charm

= G . o
.A(B ) _ -3 7%2C2VchVZ‘-s€2QcQs / dzdxdy {8/,61418:761qy + (q g e e/)]

x (O[T { e7,¢(2), (0)1%7, (1 = 75)e(0), 2(x)Pr,c(x) 0)

X OIT{50:)7, (). 5007, (1 = 75)b(0)g,B2(x) } 1By ().

Figure 1 shows one of the corresponding diagrams when
the photon is emitted by the B-meson valence s-quark. We
will neglect the 1/my-suppressed contribution when the
photon is emitted by the valence b-quark.

A detailed treatment of the operator, describing charm-
quark triangle [second line in Eq. (2.14)] is given in the
next section. Here we only notice two important features of
this operator:

(i) The cy,c part of the V — A weak current does not
contribute and one is left with (VVA) charm-quark
triangle.

(i) The (VVA) charm-quark triangle contracted with the
gluon field B2 may be written as a gauge-invariant
nonlocal operator containing gluon field strength
G?!, for any gluon momentum (cf. [14]).

Making use of the result for the charm-quark VV A triangle
from the next section, we obtain the following expression
for the amplitude:

(2.14)

[

B(p)

FIG. 1. One of the diagrams describing charming loop con-
tribution to By — yy decay via nonfactorizable soft gluon
exchange. Other diagrams are those corresponding to an opposite
direction in the charm-quark loop and diagrams with the
interchanged photons ¢ <> ¢, & < €.
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G .
Afhagg = 7%4C2VchV”€2QX 0.A,,(q.9 )e,e,, (2.15)
- (k=03 g dice—ixeUP(ab) s(y)pr EE s 5\ja b :
A, ) = 20y dkdye™ "=V dxdxe™* e (k, g){O[5(y)y" —5— 57 (1 = r°)1“Bu(x)b(0)|B; (p))
- / dkdye= 6 dxdre S (i, q) (O[5 (V)7 x5 74 (1 = 1) P Gla()bO)BL (). (2.16)
4(2x)8 ’ m? — k? . *
|
For real photons in the final state, the amplitude A, (¢, ¢’) The B-meson structure contributes to the Afh;’gg ampli-
has the same Lorentz structure as the penguin amplitude  tude via the full set of 3BS
and contains two form factors Hy, = Hy(g> =0, ¢ = 0) .
and H, = H,(¢*> = 0,4 =0) (Appendix A presents (O[5(y)T;2b(0)Gio(x) By (), (2.20)

comparison with the form factors defined in [32]):

Apn(q’ q/) = Hvepnqq’ - iHA(.gpr]qql - q;)(’In)’ (217)
Comparing Egs. (2.4) and (2.17), and taking into account
that V,Vj, ~ -V Vi, it is convenient to describe the
effect of charm as an additions to the Wilson coefficient C,
(however, nonuniversal, i.e., different in the axial and
vector Lorentz structures):

€pnqq - C1p = Cpy(1+6vCyy),

999 — 4,q,: C7, = C7,(1 4+ 6,C7,), (2.18)
with
C, Hyun
Byia)Cry = 8720,0, - ——Y (2.19)

Cry mpFry(ra)

Our goal will be to calculate these corrections.

with I'; the appropriate combinations of y-matrices. This
quantity is not gauge invariant, since it contains field
operators at different locations. To make it gauge-invariant,
one needs to insert Wilson lines between the field oper-
ators. To simplify the full consideration, it is convenient to
work in a fixed-point gauge, where the Wilson lines reduce
to unity factors. As first noticed in [27], the dominant
contribution of charm to amplitudes of FCNC B decays
comes from the “double collinear” LC configuration [30],
where x> = 0, y> = 0, but xy # 0, i.e., 4-vectors x and y are
not collinear. Respectively, we need to parametrize the 3BS
in this kinematics; this is discussed in Sec. IV. But before
studying 3BS, we present in the next section a convenient
representation for the operator describing the contribution
of charm-quark loop.

III. CHARM-QUARK (VVA) TRIANGLE

The charm-quark loop contribution is described by the
three-point function (see Fig. 2):

vpla 1 iex! - - - l v
e (k. q) = / d'dz ¢4 O[T {2(2)p"e(2). 2(0)p# (1 = y5)i“e(0). e(x' )y Pe(x)}[0) = 387 TEe (k. ). (3.1)

where ¢ is the momentum of the external virtual photon (vertex containing index p) and « is the gluon momentum (vertex
containing index v). Here 1, ¢ =1,...,8 are SU.(3) generators normalized as Tr(1t") = 38. The octet current
¢(0)y#(1 —ys5)t“c(0) is a charm-quark part of the octet-octet weak Hamiltonian. Its vector piece does not contribute to

r ’C’Z’)(ab) (Furry theorem) and will be omitted. Taking into account vector-current conservation, it iS convenient to
parametrize I (k, ) as follows [40]
e (k, q) = —i(k* + g")e’* 1 F — i(g?e"P* — gP eI F\ — i(k?€"" — k*e"P" 1) F. (3.2)

The form factors F;, are functions of three independent invariant variables ¢*, k?, and xq. The lowest order QCD
diagrams describing %’ (x, ¢) are shown in Fig. 2. A convenient representation of the form factors has the form [41]

1 ! 1-¢ Ai(&.n .
Fi(KZ,Kq,LIZ)——Z/ df/ dn 2 ( ) 5 5 i=0,1,2,
7 Jo 0 mg = 2&nkq — (1 = &)g” —n(1 —n)x
2 p—

Ay = —=&n, Ay =¢(1-n-9), Ay =n(l-n=2%).

(3.3)
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am .
t W t Y,
FIG. 2. The (VVA) triangle one-loop diagrams for T*"\*?).

This representation may be applied to the physical amplitude
in the region of the external momenta far below the thresholds,
g%, k%, (k + q)* < 4m?. Taking into account the momentum
distribution of quarks and gluons inside the B-meson, the
dominant contribution of the charm-quark loop to the
B-decay amplitude comes from the region k* ~ Agcp.
(g +x)*> <0. So, the representation (3.3) is applicable
and proves convenient for numerical calculations.

As the next step, one takes the convolution of the
amplitude (3.2) with the gluon field B,(x). The Lorentz
structures multiplying Fy and F; contain €,,, ,, With some
indices a; and a,. After multiplying by B, (x) and perform-
ing parts integration, their contribution may be reduced to
the convolution with the gluon strength tensor G,,:

/ e~ e B, (x)dx

0 .
= i/ [E e‘”‘"} €“P?B (x)dx

] . 0 0
= —%/ e~ kX garpw [E B,(x) — 6_xyBa(x) dx

= —;/e‘i""e"”/’“’Ga,,(x)dx.

The Lorentz structure multiplying F, at first glance does
not have this property. However, using the identity

(3.4)

gala2€a3a4asa6 — gﬂ’l% %2350 + gala4€a2013055% — ga]a5 eX2%324%

+ gH1%6 eh® s — 0, (3.5)

multiplying it by «, k4,49, and setting a3 — u, a4 = v,
as — p, this Lorentz structure takes the form
K'zeﬂl/pq + K'I/eﬂqu — K-ﬂeKl//?tI + K'peK/'”/q — K'qe’q'”/p

(3.6)

and may be also reduced to the convolution with G,.
Finally, the operator describing the contribution of the
charm-quark loop takes the form

/ die= T ) (i, q)BY (x)dx

1 A
= —/ dKe_leFl:*Zp(l(Ka q)Gga('x)dx

. (3.7)

with

l:;;z/)a(K’ q) _ (K_’,{ + qM)GW)aqFO + (q/)e;waq + qZGMD/Ja)Fl

+ (KHe™Pd 4 kP — kqe™ P )F . (3.8)

e’ (x, q) = —il%"*(k, q)k, is real in the Euclidean region
and T0 (x, q) = =Tt (k, @)Ky

IV. 3BS OF THE B-MESON IN A NONCOLLINEAR
KINEMATICS

As already mentioned, the contribution of collinear
LC configuration dominates the 3BS corrections to the
B — 7, K form factors. These corrections reflect the follow-
ing picture: in the rest frame of the B-meson, a fast light
quark, produced in weak decay of an almost resting b-quark,
emits a soft gluon and continues to move practically in the
same direction, before it fragments into the final light meson.

Contributions of charming loops in FCNC B-decay
have a qualitatively different picture [29]: In the rest
frame of the decaying B-meson, two fast systems produced
in the weak decay of an almost resting b-quark move in
opposite space directions. Formulated in terms of the
LC variable, this means that the s-quark produced in weak
decay moves along one of the LC directions, whereas
the ¢c-pair moves along the other LC direction. Introducing
vectors n, and nj, such that n* =n” =0, n'n=2,
v, = p,/Mg =%(n,+n},), one finds that the dominant
contribution of charming loops to an FCNC B-decay
amplitude comes from the double-collinear configura-
tion [27-31] when the coordinates of the field operators
in (0[5(y)G,,(x)b(0)|B,(p)) are aligned along the ortho-
gonal light-cone directions x, ~n,, y, ~n,. The 3BS
amplitude in the collinear and the double-collinear kin-
ematics contain the same Lorentz structures [42] but the
distribution amplitudes corresponding to the collinear and
the double-collinear kinematics differ from each other.

In this paper we do not consider the double-collinear
approximation but make use of the general noncollinear 3BS.
This quantity contains new Lorentz structures and new 3DAs.
The B; — yy amplitude calculated using the general non-
collinear 3BS differs by terms O(Az /M) from the ampli-
tude calculated within the double-collinear approximation.

A. Collinear 3BS of B-meson

We summarize in this section well-known results con-
cerning the collinear 3BS that will be used for constructing
a generalization to a noncollinear kinematics appropriate
for charming loops in FCNC B-decays.

1. The Lorentz structure of the collinear 3BS

We start with the collinear LC 3BS [23], where the
arguments of the s-quark field, 5(y), and the gluon field
G,.(x) are collinear to each other, x = uy, u #0 is a
number (in this case x> = 0 leads to y> = 0):
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_ faMy

(O15(7) Gua (uy)TH(0)|Bs(p)) = =

/ D(a. z)e—fﬂw—inTr{ysr(l + )

1 . YoPa — YaDv )7/
X |:(pu}/a - payy)_[lPA - va] - lGualPV —Q XA +EMBW

Mg yp
- wpb HoplP .
Qe V), <YA cwe MBZ> = vy Rop + iy P M YA} }
yp yp yp yp
(4.1)
|
where D(w, 1) takes into account rigorous constraints on W, (w, 1) = (¢35 + ¢4)/2,
the variables w and A:
Yy (@,2) = (—¢3 + ¢4)/2.
D(@, 1) = dodd0(@)oN0(1 —w—2).  (42) Xal@A) = (=3 —di+2p)/2,
Ya(w,2) = (=3 — ¢4 +wa —ws)/2,
In Eq. (4.1), T is an arbitrary combination of Dirac ~ Xa(@.1) = (=3 + s — 2004)/2.
matrl.ces, v, = pﬂ/.MB, gnd all 8 DAs (¥,, Wy, etc) are Vo (@,2) = (=bs + pa — 0+ 75) /2,
functions of two dimensionless arguments 0 < 4 < 1 and _ B
0 < w < 1. Here A refers to the momentum carried by the W(w,2) = (s =4 — s + s +ws +¥s)/2,
s-quark, and o refers to the momentum carried by the Z(@,2) = (=¢bs + s — 24 + s + 25 — pg) /4. (4.5)

gluon.
The normalization conditions for ¥, and ¥y have the
form [23]:

/ D(w, )%, (@, 1) = 3%
/12
/D(a), Ny (w, 1) = ﬁ (4.3)

Some of the Lorentz structures in (4.1) contain factors
x,/xp or x,x,/(xp)%. Since 3BS (4.1) is a continuous
regular function at x> =0 and xp = 0, the absence of
singularities at xp — 0 leads to the following constraints:

/D(a),/l){XA, Y. X4 Y4, Z, W} =0,

/ D(w, )w{Z. W} =0, / D(w, )A{Z. W} =0,

(4.4)

These constraints are obtained by expanding the exponen-
tial in the integral representation (4.1) under the condition
x, = uy, to the necessary order and requiring that the
coefficients multiplying terms singular in xp — O vanish.

2. Twist expansion of the 3DAs

The DAs in (4.1) have no definite twist. According
to [23], the distribution amplitudes might be written as an
expansion in functions with definite twist as follows:

where we keep the contributions up to twist 6 inclusively
(the subscript “i” in ¢; and y; denote the twist value).

3. Model for DAs entering the collinear 3BS

The powers of @ and A determine the behavior at small
quark and gluon momenta. This power scaling is related
to the conformal spins of the fields and remains the key
property of the model.

The starting point of our analysis will be the set of
DAs in LD model of [23] for twist 3- and 4, complemented
by twist 5 and 6 DAs reconstructed using the constraints
(4.4) [43]:

_ 105(4 — 47)

_ 20 (200 — 0 — 2)202w0 — @ — 1),
¢3 320)(7)M% @ ( Wy — ) ( Wy — 0 )
(4.6)
3502 +42)
M= ey, B0 AR 0 =)
(4.7)
5% (o 260 M. (48)
Yy = —— 5 o2y — o — Wy — @ —A4), '
16wjM?%
7y = 2100 2)%0(2 2. (49)
= ——F AW\ LWy — @ — Wy — W — ’ .
Va 16wjM?% 0 ’
35(72+ 12
b= D) ) e 0wy —0—1),  (4.10)

64w M3
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3512

=L _0wQRwy—w—-1)*02wy—w—1), 4.11
Ys 6460(7)M%w( Wy —w ) ( Wy —w ) ( )
7 35 2 2)%0(2 2., (412)

=————>w(2w)—w— wy—w—21), .
LT VER 0

7(Ag — %)

=—L_ " Qwy—w—-1)02wy —w —1). 4.13

¢6 64(1)6M% ( Wy — @ ) ( Wy — ) ( )

Dimensionless parameter @, is related to Az, the inverse
moment of the B-meson LC distribution amplitude, as

5
=——. 4.14
@o 2 M, ( )
For this model, the integration limits take the following
form 2wy < 1):
|

2wy 2wy—w
/ D(.2)0(2w — )= / dw / "N
0 0

(4.15)

However, as we shall show shortly, certain modifications of
the integrated DAs [which emerge when performing parts
integrations of the 3BS (4.1)] at large values of w and 4 will
be necessary in order to satisfy the continuity of the 3BS
considered in a noncollinear kinematics.

B. Generalization to a noncollinear kinematics

When the coordinates x and y are independent variables,
the 3BS has the following decomposition that involves
more Lorentz structures and more 3DAs compared to the
collinear approximationz:

I f =1 iwx 1 o
(03(y)Goa(x)TB(0)|By(p)) == IsMy D(w, 2)e= P~ PTrq ysU(1 + ) | (Pura — pah)M (Wa —¥y] —io, Py
_ (x,,Pa - xapv) <X1(4X) _i_iMBw( > (Xﬂ’a a}/y ( + 'l( MBZ( ))
xp xp Xp
_ (yupa B yapzz) <X1(4\) + iMBW(y)> 4 (yvya B yayy) MB (YX) + W(V) 4 iMBZ(y)>
yp yp yp yp
X"Pﬂ S50 4 e X sy gt P sem) o XY s s
Xy LMY —ie g ——1 X)) MY b
baﬂ/f A + leuay/j xp 4 BL A uauﬁ xp VAL + leuayﬁ xp 4 Bt A
(4.16)
|
All invariant amplitudes ® = ¥,, ¥y, ... are functions X =X 4 x0), X ={X4,Ya X4, Ya},
of 5 variables, ®(w, 1, x%, y, xy), for which we may write  y; _ y/(x LW, 7 — 700 1 70, (4.17)

Taylor expansion in x?, y2, xy. Here we limit our analysis to
zero-order terms in this expansion. The corresponding zero-
order terms in @’s are functions of dimensionless arguments
A and w and are referred to as the DAs. These DAs contain at
least the kinematical constraint 0(1 — @ — 1). However, the
DAs may have support in more restricted areas: e.g., the DAs
of the LD model Eqgs. (4.6)—(4.13) have support in the region
02wy —w — 1), 2w, < 1.

Obviously, the functions ¥4 and ¥y in (4.1) and (4.16)
are the same. Other DAs in (4.1) and (4.16) are related to
each other as follows:

*We do not include here those structures that vanish in the
collinear limit x = uy, such as e.g. (x,y, — x,¥,)/xy. We also do
not consider structures of the type 1/(xpyp) that may emerge
when generalizing the Lorentz structures multiplying W and Z
DAs in (4.1); according to our analysis the W and Z-structures
anyway give a marginal contribution to the FCNC B-decay
amplitude.

The amplitude (4.16) contains two independent kinematical
singularities 1/xp and 1/yp in the Lorentz structures.
These kinematical singularities of the Lorentz structures
should not be the singularities of the amplitude; this
requirement leads to certain constraints which we are going
to consider now. We shall present these constraints for the
case when all DAs contain 62wy — w — 1), 2w, < 1.

For the amplitudes of the type F, the Lorentz structures
of which contain first power of 1/xp or 1/yp, the
appropriate constraint is obtained by expanding the expo-
nential in (4.16) to zero order and requiring that the singular
terms vanish:

2wy—A
/’ doX(0,2) =0 V2,
0

2w9—
/ XD (0,0) =0 Yo (4.18)
0

Let us introduce the primitives
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X (w,2) = /w d' X9 (', 2),
0

(4.19)

_ A
XN (w,2) = / A XY (w, ), (4.20)
0

which, by virtue of (4.18), vanish at the boundary of the DA
support region:
X0(0,2) = X2y —4,4) =0 VA,
XO0,0) = X (0,200 —0) =0 Yo. (421)
|

709 (@, 4) = / ? 4/ 20 (o 7).
0

_ A
Z0(w, ) = / A7) (w, 1),
0

For the functions Z and W, the Lorentz structure of which
contain 1/(xp)? and 1/(yp)?, the exponential should be
expanded to first order leading to:

2wp—A
/ da)a)”Z<x)(a),ﬂ) =0 VI,
0

2wy—@
/ A ZO(w,0) =0 Yo, n=01.  (4.22)
0
By introducing primitives and double primitives
79 (0, 2) = / " 4/ 70 (o 7)
0
= P
7w, 1) = / do'Z0) (w,2), (4.23)
0

one can show that the requirements (4.22) lead to the vanishing of these functions at the boundaries of the DAs support regions:

Z9(0,2) = Z9 2wy — 1,4) = 0,
ZV(w,0) = ZU) (@, 2wy — @) = 0,

Z90,2) =ZW 2wy —1.4) =0 VA,
ZV(0,0) = ZV (0,200 —®) =0 V.

(4.24)

These relations are verified making use of Eq. (4.22). For instance,

pION

792wy —1,2) = /

0 0

2wp—A
= / " doZ (w,2) 2wy — A — w) =0,
0

The analogous relations are valid for W.

) 104 2wy—A
da)’/ doZ™) (w,2)0(w < 2wy —A) = / " doz (w,4) / do'0(0 < w < @' <2wy— 1)
0

(4.25)

For calculating the contribution of (4.16) to the FCNC amplitude, the presence of the 1/xp and 1/yp structures
are inconvenient. To facilitate the calculation, one may perform parts integration in w for the structure containing 1/xp and in
A for the structure containing 1/yp. The conditions (4.21) and (4.24) lead to the absence of the surface terms when performing
the parts integrations. So, we can rewrite (4.16) in the convenient form not containing the 1/xp and 1/yp factors:

[M3
4

(15(3)Gua(x)T(0)|By(p)) =

. . 1
/ D<w,z>e-”<>‘m-lw<xp>n{ysm ) {wa LI M I

My

- i(xvpa - xapy) (XXC) =+ ZXMBVT/(X)) + i<xy7/a - xayu)MB (Y,EAX) + W(x) + IXMBZ(X))

- i(yl/p(l - y(lpl/) ()_(ﬁxy) + ly,MBV:V(})) + l.(yI./Y(l - y(lyl/)MB ()_]‘(Ay) + WO) + lfMBi(‘))

—+ evaﬂﬂxﬂpﬁJ/SXI(:) - €va;tﬂxﬂyﬁ75MB ?EAX) + eva;tﬂyﬂpﬁYSng) - €va;tﬂyﬂyﬁ75MB Yfﬁy):| } (426)

We emphasize that if the conditions (4.18) and (4.22) are
not fulfilled, then the parametrizations (4.16) and (4.26) are
not equivalent: they differ by a nonzero surface term.
Noteworthy, the requirements of the absence of singular-
ities at xp — 0 and yp — 0 and the continuity of the 3BS
(4.16) at x> =0, y> =0, xp =0, and yp =0 lead to a
number of constraints on the DAs which guarantee the
equivalence of the forms (4.16) and (4.26).

[

C. Adapting the LD model for the case
of noncollinear 3BS

First, let us point out that the primitives calculated for
the DAs of the LD model (4.6)-(4.13) do not satisfy the
constraints (4.21) and (4.24). As already emphasized, the
parametrizations (4.16) and (4.26) are then not equivalent
and cannot be both correct. So, there are two different
possibilities to handle this situation:
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1. Scenario 1

Since the behavior of the DAs of the definite twist at

small w and A are fixed, we choose the following procedure:

(1) The functions ¥4 (w, 1) and ¥y (w, 4) remain intact.

(2) We split each function ® (® = X,.Y,, X4, 7,,
Z, W) into ®¥)(w, 2) and ®)(w, ) as follows:

O (0,4) =w, ®(0,4), OV (w.1)=w,®(w,),

wy+w, =1. (4.27)

(3) We make use of the DAs of LD model for the
functions ®(w, 1) and calculate primitives of higher
orders. Taking into account that higher primitives
obtained in this way do not satisfy the constraints
(4.21) and (4.24), we modify them in the way
explained below and allow them to depend on
one additional parameter a.

(4) We still want that after taking the appropriate
derivatives of the modified primitives, we reproduce
Eq. (4.16) with 6 modified functions (Xy4, Yy,

|

X4.Y4,Z, W) which in turn also depend on the
additional parameter a. The simplest consistent
scheme that fulfills this requirement is the following:
(a) For the functions in Eq. (4.16) containing factors
1/xp and 1/yp (ie. X =X,,Y,.X,,Y,) the
primitives entering Eq. (4.26) are constructed as

follows:
w A
{R(w,i,a)/ da)’/ d/I’X(a)’,i’)],
0 0

_ w A
X0 :_{R(w,j,a)/ da)// dﬂ/X(w/’,y)]

ow 0 0
(4.28)

X&) —

SN

(b) For the functions in Eq. (4.16) containing factors
1/xpand 1/ypand 1/(xp)>and 1/(yp)* (i.e., Z
and W) the primitives entering Eq. (4.26) are
constructed in a different way (the same for-
mulas for W):

— 02 w A o A
79 =2 [R(a),/l, a) / do / dar / do” / d/l”Z(a)”,/l”)],
oA 0 0 0 0

- 02 w A o A
AU [R(a),/l,a) / do' / i / do" / d,l”z(w”,,l”)],
dw 0 0 0 0

70

2
70) 90

The function R(w, 4, a) is chosen in the form
2
1+ 2NY (2(1}0110)—1)

R(w,,a) = (4.30)

such that for a # 0 the function itself and all its derivatives
vanish at the boundary o + 1 = 2w,. Respectively, for
a # 0, all modified higher primitives of the necessary order
vanish at the boundary 2wy — @ — 4 = 0, providing the
absence of the 1/xp and 1/yp singularities at xp — 0 and
yp — 0 and the continuity of the 3BS at the point x> = 0,
y> =0, xp =0, and yp = 0.

For small values of the parameter a, our model DAs
reproduce well the collinear DAs including their magni-
tudes and power behavior at small @ and A but (strongly)
deviate from them near the upper boundary.

*In principle, one can take different w, for each of the 3DAs.
We will not discuss this possibility but will assume that w, is the
same for all 3DAs.

w A 104 A
=—— |R(w, A, a / da)’/ d/i’/ da)”/ d'Z (", A" ]
0/16602[ ( ) 0 0 0 0 ( )

_ 2% [Rw.ia) / " do / L / " da / L z(e )
0w 072 T Jo 0 0 0 ’ 7

(4.29)

2. Scenario I1

One declares Eq. (4.26) as the starting point
but calculates the necessary primitives using the
3DAs from Eq. (4.16). Then, however, Eq. (4.16) itself
is not complete and should contain nonzero surface
terms obtained by rewriting Eq. (4.26) to the form
(4.16). These surface terms guarantee the absence of
singularities in (4.16) at xp - 0 and yp — 0. This
scenario does not seem to us logically satisfactory: For
instance, the double-collinear limit [30,31] that may be
readily taken in the 3BS given by Eq. (4.16) is not
reproduced by Eq. (4.26) if the surface terms are nonzero!
Nevertheless, for comparison we also present the results
for the form factors calculated using this prescription
referred to as scenario II. It should be emphasized that for
one and the same set of 3DAs, the form factors obtained
using scenario I in the limit a — 0 do not reproduce the
form factors obtained using scenario II: the difference
amounts to certain surface terms that arise in the
limit a — 0.
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V. RESULTS FOR THE B, — yy AMPLITUDE
AND 8C;,

We are ready to evaluate the form factors H 4 . We shall
also calculate the penguin form factor F7, and in the end,
the charming-loop correction to C5,.

A. The charming-loop form factors H, y/(0,0)

Using Eqgs. (2.15) and (2.16) and calculating the trace
in (4.26) for
I=y"(f+m)y"(1=7s). (5.1)
leads to the B; — yy amplitude expressed via the DAs and
their primitives.
The expression (4.26) contains powers of x and/or y, but
these are easy to handle. Let us go back to Eq. (2.16): Any

factor x, may be represented as x, — aa e~™** then taking

K
the k-derivative over to [%¢”” (k, ¢) by parts integration in «.
9

Any factor y, may be represented as y, — a—kae"'ky , then

moving the derivative onto the strange-quark propagator by
parts integration in k. Doing so, we get rid of all powers of x
and y, and the integrals over x and y in (2.16) then lead to
the o functions:

/dx - (27)*8(k+wp), /dy - (2n)*8(k—q'+Ap),
(5.2)

which allow us to further take the integrals over x and k. In
the end, the invariant functions H;, i = A,V are given by
integral representations of the form

s n 2wy 2wy—w 1
Hi(‘]a‘]):/ dw/ dﬂ/ dé
0 0 0

1-¢
x /0 dnhi(o. 4 Enl. %) (5.3)

where h; are linear combinations of the DAs and their
primitives entering Eq. (4.26). Equation (5.3) gives now the
form factors H 4 y as the convolution integrals of the known
expression for the charming loops and the DAs and its
primitives from (4.26). We make use of the modified LD
model described above.

Obviously, the form factors H, and Hy depend linearly
on A% and 2. So, we present the results for the form factors
R, and R,y defined as follows:

H;(0,4”)=R;(0.4*)2%+R;n(0,4*)23;,, i=AV. (5.4)

The form factors R,z ;; depend on Az , but do not contain
dependence on Ay and Ag. These three parameters, how-
ever, are expected to be strongly correlated and we take into
account this correlation later when evaluating 6C,.

All numerical inputs necessary for calculating R; are
summarized in Table I. Making use of the estimate for the
ratio Ag /Ap = 1.19 £0.04 [44] and available theoretical
results for A5 [45-49], we consider the range 15 = 0.45 +
0.15 GeV with /1%? = 0.45 GeV as the benchmark value.

Presently, the theoretical knowledge of noncollinear
3DAs is poor to give good arguments for the choice of
the function R, Eq. (4.30), and the weight factors w,. We
present our results for the form factors for w, = 0.5 and
reflect the sensitivity to its variations in the ranges 0 <
w, < 1 in the final uncertainties. We restrict the parameter
a by the requirement that the 3DAs are affected by, say, not
more than 10% in the region of “small” 1 and w, e.g., at
A/ (2wy), w/(2wy) < 0.1. This leads to the restriction
a <0.1. So we set the benchmark point a = 0.05 and
allow its variations in the range 0 < a < 0.1. We shall see
that the sensitivity of the calculated form factors to a > 0.1
is rather mild.

Other parameters in Table I are taken from [50,51].

We are interested in obtaining the form factors R,z ;; at
g* = 0 and ¢"> = 0. Whereas ¢> = 0 may be readily set in
the integral representation (5.3), this integral representation
is not expected to give reliable predictions at ¢”> = 0: The
s-quark propagator at ¢’> = 0 is not sufficiently far off-shell
and at ¢’ — 0 one observes a steep rise of R;z ; related to
the nearby quark singularity. This rise is unphysical as the
nearest physical singularity in the form factors is located at
4" = Mj. To avoid this problem, we choose the following
strategy: we take the results of our calculation for
Rini£(0,¢) in the interval —5 < ¢”?(GeV?) < —0.7 and
extrapolate them numerically to ¢’> = 0 making use of a
modified pole formula which takes into account the
presence of the physical pole at g = Mj:

F(0)
(1= q*/M3%)(1 = 01(¢*/M%}) — 62(q*/M%)?)
(5.5)

F(q*) =

In this way we obtain Rz ;5 (0,0).
Figure 3 shows the results of our direct calculation
and the fits obtained using Eq. (5.5). Figures 3(a) and 3(b)

TABLE I. Input parameters for the calculation of the form factors R;g ;5 defined in Eq. (5.4).
ﬁ’lc(ﬁ’le) ﬁ1s(2 GCV) 1‘43x M¢ st ABS (1 GeV) a Wy
1.30 GeV 0.1 GeV 5.3 GeV 1.020 GeV 0.23 GeV 0.45 +£0.15 GeV 0.05 £ 0.05 0.5+0.5
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FIG. 3.

The contributions R;z and R,y to the form factors H; [i = A, V] defined according to Eq. (5.4) for different scenarios of

treating the B-meson 3DA. (a),(b) The appropriate modifications of the 3DAs X, Y 4, etc. are taken into account (scenario I). (c),(d) The
form factors are calculated using Eq. (4.26) with the primitives obtained from X,, Y,, etc. without modifications (scenario II).
(e),(f) Only the contributions of ¥, and ¥ are taken into account. Dashed lines show the calculation results for 1z = 0.45 GeV,
a =0.05, w, = w, = 0.5 and other inputs from Table I, and solid lines are the fits using Eq. (5.5).

gives the form factors evaluated with the modified 3DAs
for a = 0.05 (scenario I). Figures 3(c) and 3(d) shows the
results for unmodified functions (scenario II). For com-
parison, Figs. 3(e) and 3(f) shows the contribution of the
3DAs w4 and yy. Good news is that the latter give the
dominant contribution (which does not depend on w, and a
and thus reduces the uncertainty in the R; related to the
values of these parameters). The contribution of other
Lorentz 3DAs is however not negligible and depend on
the way one handles these 3DAs: e.g. for R4£(0,0) in

scenario I they give a negative correction of 30%.
Appendix B presents details of the contributions of differ-
ent Lorentz 3DAs to the form factors Rz ;(0, ) at > =

—2 GeV? for scenarios I and II.
Figure 4 demonstrates the sensitivity of R,z ;5(0,0) to

Ap, - Since the form factors at q'"> = 0 are obtained via extra-
polation, we take 15 from the range 0.3 < 15 (GeV) < 0.5,
calculate R,z (0, ¢”*) in the range —5 < ¢"*(GeV?) < —0.7
and then extrapolate to ¢’> = 0 for each value of A,
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FIG. 4. The dependence on parameter A5 of the form factors obtained in scenario I: (a) Rz ;5(0,0), i = A, V; (b) Linear combination
R;£(0,0) + 2R;4(0,0) that determines 5C5, taking into account approximate relation A3 ~ 243.
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FIG. 5.
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The dependence on parameter a of the form factors obtained in scenario I: (a) Rz ;5(0,0), i = A, V; (b) Linear combination

Ri£(0,0) 4+ 2R;4(0,0) that determines §C;, taking into account approximate relation 17, ~ 243.

The same procedure applies to the dependence on
parameter a [enters the function R, Eq. (4.30)] shown in
Fig. 5. We restirct a in the range 0 < a < 0.1, but, as seen
from Fig. 5, the sensitivity to the value of @ in the region
a > 0.01 is rather weak anyway.

The uncertainties in our theoretical predictions for the
form factors thus come from the following sources:

(1) The sensitivity to the precise way one handles the
3BS at large values of w and A. This is probed by
comparing the results obtained with our benchmark
scenario I with those from scenario II.

(i) The sensitivity to the precise functional form of the
B-meson 3DAs; this is probed by using as our
benchmark model (4.6)—(4.13) [Model IIB from
[23]] and comparing with a different model [Model
ITA given by Eq. (5.23) from [23]]. The uncertaintes
related to (i) and (ii) are denotes as [3DA].

(iii) The sensitivity to the numerical values of the
parameters of the 3DAs, mainly parameter a of
the function R, Eq. (4.30). Notice that we do not
perform any averaging over Az ; we keep the full

dependence on this parameter in the form factors and
in our final result for the correction 6C5,.
(iv) The sensitivity to the extrapolation procedure from
the interval where the form factors may be calcu-
lated by our approach to the physical point g’> = 0.
We make use of the calculations of the form factors
in the interval —5 < ¢’*(GeV?) < —0.7. However,
the value at ¢”> = 0 obtained by the extrapolation is
sensitive to the precise choice of the upper boun-
dary of this interval. For instance, moving the upper
boundary in the range (—1-—0.5) GeV? leads to
the variations of the extrapolated value of the form
factor at ¢’> = 0 by £5%. We therefore assign the
additional uncertainty of 5% (denoted as [extr])
related to the extrapolation procedure.
Table II compares the form factors at ¢> = ¢ =0
for two different sets of 3DAs and for two different
scenarios to treat the 3DAs. The individual form factors
R;; and R;y demonstrate a sizeabe dependence on the
scenario. However, in the combinations appropriate for the
calculation of 6C7,, Ryg + 2Ry and Ryp + 2R,y these
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TABLE IL

Our results for the form factors R,y ;;; in GeV~! defined in Eq. (5.4). In addition to the results obtained in scenario I and

scenario II for the basic set of 3DAs given in (4.6)—(4.13), referred to as (B), we present the results obtained using scenario I for 3DAs of

Model ITA of Eq. (5.23) from [23], referred to as (A).

10°Ry 10°Ry 10°(Ryg +2Ryy) 10°R 4 10°R 4y 10°(Rap + 2Rup)
Scenario I, 3DA (B) 138.1 128.1 394.3 134.7 131.0 396.7
Scenario I, 3DA (A) 146.4 133.7 413.6 142.7 137.0 425.4
Scenario II, 3DA (B) 180.2 116.7 413.8 182.6 121.4 416.7
uncertainties cancel to great extent and we obtain for the benchmark value 1z = 0.45 GeV:
103(Ry g + 2Ry y) [GeV™!] = 410 + 10[3DA] + 15[a] & 20[extr] — 410 + 30, (5.6)
103(R4g + 2Rap) [GeV~!] = 415 £ 15[3DA] + 15[a] & 20[extr] — 415 + 30, (5.7)

and we have slightly increased our final “theoretical uncertainty.” In the end, for a given value of the 15 , we predict the
combination of the form factors (5.6) and (5.7) relevant for the calculation of C;, (see Sec. V C) with about 8% accuracy.

B. The penguin form factor F(0,0)

The form factors F TA’TV(qZ, ¢'*) may be calculated via the B-meson 2DAs using HQET formula (see, e.g., [25])

if pMp

< R —ilpx ¢ A _¢— A
OB, () = =720 [ aremsote{ e+ g, ) - -0 (58)
|
leading to the following expression for the F;(0,0) = 72— 223)
Fr(0,0) = Fry(0,0): ¢-(4) :wng@wo—i)z [6(20’0—/1)2 —T(15ﬂz
¢+ — )+ @) > }
0,0) = — M 5.9 —20wpd+4wg) | 02wy —A). 5.12
F1(0.0) = =0.fubty [ ar®oDEZA D (5 o+ 403) |02 —2) (5.12)
where An explicit check shows that ®(1 = 0) = ®(2w,) = 0.
The contribution of the term ~(4% — A% to the form factor
- Lo , , turns out numerically negligible and may be safely omitted.
®(4) = A dX (¢ (V) = -(X)). (5.10) Let us obtain numerical estimates for F(0,0). Notice

The absence of the kinematical singularity at vx — 0 in
Eq. (5.8) requires that the primitive ®(4) vanishes at the
boundaries of the 2DA support region. Then the parts
integration in A, necessary to handle the 1/vx term, does not
contain any nonzero surface term.

All contributions O(m,;/Mp) in the numerator of (5.9) are
omitted; keeping such terms will be inconsistent as contri-
butions of this order arise also from the diagrams describing
photon emission from the B-quark which are not taken into
account. According to the estimates obtained in [32], cor-
rections due to the photon emission from the b-quark amount
to 10%—-20% of the leading contribution (5.9).

For the 2DAs we use the same model from [23] as we do
for 3DAs:

5

(D) = g 542wy = 20200 = 7). (5.11)
0

that the numerator of the integrand in Eq. (5.9) contains
factor 4, so no singularity at 1 — 0 arises in the integrand
even in the limit m, — 0. Therefore, the F;,(0,0) may be
calculated by applying directly the representation for the
form factor Eq. (5.9). [Recall that in order to obtain the
form factors H, y(0,0) we had to perform extrapolation
from the region ¢’> < —0.5 GeV?2.] Figure 6(a) shows that
the ¢’>-behavior of F74(0, ¢’*) is well compatible with the
location of the physical pole at ¢ = Mé in a broad range
of ¢? <0, up to ¢’>=0. Figure 6(b) illustrates the
sensitivity of F7(0,0) to Ag. This dependence is not
negligible and partly compensates the A -dependence of
H, y(0,0), leading to more stable predictions for 6Cy,.

For our further numerical estimates we use F7(0,0) =
0.155 4 0.015 for Az = 0.45 GeV, where the uncertainty
of ~10% is assigned on the basis of the size of the neglected
1/Mg-suppressed contributions which have been calcu-
lated in [32].
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FIG. 6.
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(a) The form factor F74(0, ¢*), where ¢’ is the momentum of the photon emitted from the s-quark, for 2DAs given by (5.11)

and (5.12) and our benchmark value 13 = 0.45 GeV. Dotted line—calculation results; solid line—interpolation using the modified pole
formula Eq. (5.5). (b) The dependence of F7,(0,0) on Ay in the range 1z = 0.45 £ 0.15 GeV.

C. 8Cy,

We are ready to evaluate the relative contribution of the
nonfactorizable charming loops given by Eq. (2.19):

G o0 =

2 2
RigAg + Rigy
C CC s cc — T 4

7yMp

Fr
(5.13)

51’ C7y = 8”2Qs Qc

i=AV.

This expression is useful as it allows us to separate the
uncertainties related to the precise values of the Wilson
coefficients and m,, to be used in the numerical estimates and
those related to the description of the B-meson structure.

Let us focus on pglc) The parameters Ag , Ag and Ay,
entering pE? are strongly correlated with each other
and should not be treated as independent quantities. As
noticed in [23] (see also [52,53]), QCD sum rules suggest
an approximate relation 12, =212. Combining this
relation with the constraints from the QCD equations of
motion [23], one obtains approximate relations

A ~0.675 A= 1225 . (5.14)

As the result, p’. turns out to be the function of one
variable, 4z , and the appropriate combinations of the form
factors that determines the correction 6C5, are Ryg + 2Ryy
and R,g + 2R, g, presented in Table 1L

Figure 7 shows the dependence of p.. on Ag, for
Ry ¢ given in Fig. 4 and F7 given in Fig. 6. The results
presented in the plot correspond to scenario I calculated
with 3DAs of Model IIB. To a good accuracy, we may

set plt) = pld.

Using the values C, = —1.1, C;, = —0.31 and taking
my,(my,) = 4.2 GeV for m,, Eq. (5.13) yields:

5C7,(25.) = (0.15 GeV™)10%p, . (25).  (5.15)

The final result for 5C5, is very sensitive to the precise
value of 1z . Recall, however, that for a given value of 1z ,
P may be calculated with an accuracy around 10%. So we
prefer to present our results for §Cy, as the function of Az .
For our benchmark point A%? = 0.45 GeV, we find

5C, (29, ) = 0.045 £ 0.004. (5.16)

For Ap_in the range 0.3 < A3 (GeV) < 0.6, the correspond-
ing 6C5, covers the range

6Cy, = (2-10)%. (5.17)
We therefore conclude that the effect of nonfactorizable
charming loops is expected at the level of a few percent. As
soon as the parameter Ap_is known with a better accuracy,
our results allow one to obtain a (relatively) accurate
estimate for 6Cs,.

VI. DISCUSSION AND CONCLUSIONS

We presented a detailed analysis of NF charming loops
in FCNC B, — yy decay and reported the following results:

0.8
10 pec[GeV]
0.6 (V)
)

0.4
I

""" Ag,[GeV]

0.3 0.35 04 0.45 0.5 0.55 0.6

FIG. 7. The functions pE’C) i=A,V [Eq. (5.13)] vs g .
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®

(i)

(iii)

We derived and made use of the expression for the
(VVA) charm-quark loop that is fully given in terms
of the gluon field strength G,,(x). This has an
advantage that no explicit use of any specific gauge
for the gluon field is necessary. Still, nonlocal
operator describing the charm-loop contribution to
the amplitude of FCNC B-decay contains field
operators at different coordinates, 5(y)G,,(x)b(0),
and thus needs the Wilson lines joining the field
operators at different points. These Wilson lines are
reduced to unity operators in the Fock-Schwinger
gauge x,A,(x) = 0, so this gauge is used implicitly.
We studied the generic noncollinear 3BS of the
B-meson; this quantity contains new Lorentz struc-
tures and new 3DAs compared to collinear and
double-collinear 3BS. We took into account con-
straints on the noncollinear 3BS coming from the
requirement of analyticity and continuity [30] and
implemented proper modifications of the corre-
sponding 3DAs X;(w,4) at large values of their
arguments.

We calculated the form factors H;(¢> = 0, ¢"> = 0),
i=A, V, describing the B — yy amplitude.
Whereas ¢ = 0 [¢ the momentum emitted from
the charm-quark loop] may be set directly in the
analytic formulas, the physical point ¢’> = 0 [¢’ the
momentum emitted by the light s-quark] was
reached by an extrapolation from the spacelike
region —5 < ¢'*(GeV?) < —(0.5-1). An explicit
dependence of the form factors and the correction
6C7, on the parameter Az was calculated. Taking
into account all uncertainties (excluding that of 45 ),
we found that for any specific value of 45 , 6C;, may
be obtained with better than 8% accuracy. For our
benchmark point 23 = 0.45 GeV, we found

5C4, (29, ) = 0.045 £ 0.004.

For Az in the range 0.3 < 15 (GeV) < 0.6, 6C,
covers the range 2%—10%. Thus, one should expect
the NF charm-loop correction to B — yy decays at
the level of a few %. As soon as a more accurate
value of Ap is available, our results allow one to
obtain the corresponding 5C, .

(iv) In the double-collinear kinematics that domi-
nates the NF charm-loop contribution to FCNC
B-decay amplitudes in the HQ limit [30], the leading
contribution to the amplitude is given by the con-
volution of the form factor Fy describing the charm-
quark loop Eq. (3.2) and the following combination
of the 3DAs [31,42]:

W+ Wy +2(WO ¥ P~ (2 422). (6.1)

[The explicit expressions for these 3DAs show that
this combination is proportional to (1% + 4%).]
Equation (6.1) implies that in the HQ limit,
Ryrg = Ryy and R, = R,py. Our results presented
in Fig. 3 show that these relations are sizeably
violated by O(4g /Mp) corrections that come into
the game via other Lorentz structures describing the
charm-quark loop (3.2) and other 3DAs and worth to
be taken into account. Numerically, these correc-
tions are around 20%.

It might be useful to notice that the B, — yy decay
amplitude receives contributions from the weak-annihilation
type diagrams [54-56]. The weak-annihilation mechanism
differs very much from the mechanism discussed in this
paper and is therefore beyond the scope of our interest here.
However, weak-annihilation diagrams should be taken into
account in a complete analysis of B; — yy decays.

In conclusion, we emphasize that the approach of this
paper may be readily applied to the analysis of non-
factorizable charming loops in other FCNC B-decays
and looks promising for treating NF effects in nonleptonic
B-decays (see, e.g., [57]).
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APPENDIX A: COMPARISON WITH THE
CHARM-LOOP CONTRIBUTION FROM [32]

Here we compare the definition of the B — yy amplitude
(2.13) with the definition adopted in [32]. The starting point
in [32] is the matrix element

Honla-) =i [ dee 01T {er,c(2). 55 OHB(p),

p=4q+4, (A1)
where quark operators are Heisenberg operators in the SM,
i.e., the corresponding S-matrix includes weak and strong
interactions. For real photons in the final state, at least one
soft gluon should be emitted from the charm-quark loop, we
expand the S-matrix to first order in G and first order in g,:
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H,(d\q) =i / dze = (0| T{2()7,c(2). i / dy Lyea(y). i / dx Looo (x). €0,5(0)7,5(0)}[B,(p)).  (A2)

For comparison with Eq. (2.13), we place L., at y = 0 by shifting coordinates of all operators through the translation
O(x) = e”O(x — y)e™". Using the relations (0]e™) = (0| and e'0")|B,(p)) = e~(»)|B,(p)), and changing the
variables x —y - x, z—y — z, y — —y, we find

H,,(q.q') = i*eQ, / dxdydz e+ (0|T{2(2)7,¢(2), Lueak (0)s Lgee (%), 5(0)7,5(3) }Bs(P))- (A3)
Taking into account that L, = —va:afc[gxg] [the latter given by Eq. (2.11)], we obtain

H,(q.9) =2C272VcbV$serl / dxdydz e'+14Y (0|T{e(2)y,c(z),€(0)y,(1 — 75)°c(0). &(x)y, 7 ¢c(x)|0)

X (0|T{3(y)7,5(y). 5(0)y,(1 — 75)1“b(0). BL(x) }|Bs(p)) (A4)

It is convenient to insert under the integral (A4) the identity

1 , ,
BY(x) = —4/d1<dx’ Bb(x)e =), (A5)

(27)

This allows us to isolate the contribution of the charm-quark loop I**“") (k. ¢):

H,(q.q) = 2c2$—gvcbvaegsﬁ / dy e dx e (0] T{5(0)7,,(1 = 75)b(0). BL(¥).3(»)7,5(y) }|B. (1))
x / dxdze s (0T {2(2)7,¢(2). £(0)7, (1 = 75)1c(0). 2(x)y, () }0)- (A6)
) (e )

Using momentum representation for the s-quark propagator

1 . K+ m
o|T 5(0)}0) = dke o~ 5 A7
TSSO 0) = s [ ke o (A7)
we obtain
Gr .
H,(q.q9') = 2C2E‘/cbvcs€Qs
1 —i(k—q")y —ikxHvp(ab < k—’_m‘ a
x —— [ dkdye™ =2 dxdce = TE ™ (k) (05 (v 55 7"(1 = ¥*)1“BL(x)b(0) By (p)).  (A8)
(27) m: —k
A/m
Comparing this expression with Eq. (2.15) gives a useful relation
Afh:rg = 2eQ.He,8,. (A9)

The amplitude H,, may be decomposed via the form factors H Ay (denoted as H, y in Eq. (5.2) from [32]):

G
Hpn(Qﬂ q/) =-—=

Vcbvj‘se epnqq’HV - i(gpnq/q - Q;an)HV . (AIO)
V2

Comparing with (2.16) we find

Hy () = —2C,Q,Hys). (Al1)
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APPENDIX B: ANATOMY OF THE FORM
FACTORS H, y(0.42) AT g7 = -2 Ge V>

This appendix presents detailed numerical results for the
form factors at ¢> =0 and ¢ = ¢’} = =2 GeV?, giving
separately contributions of different Lorentz 3DAs for the
coefficients R;; and R;y defined in Eq. (5.4). Table III gives
the results obtained with scenario I of Sec. IV C for 3DAs
given by Egs. (4.6)—(4.13) (Model IIB of Eq. (5.27) from
[23]). Table IV presents the results obtained with scenario II
and the same set of 3DAs. Table V gives the results
corresponding to scenario I but using different 3DAs, those
of Model ITA of Eq. (5.23) from [23]. Separate contributions
coming from different Lorentz 3DAs are isolated keeping the
explicit dependence on w, and wy, w, + wy, = 1. The results
correspond to Az = 0.45 GeV and the central values of m,
and m. For 3DAs modified according to scenario I, a = 0.05.

Setting w, = 1 (1 + 6w), w, =1 (1 — 6w) and summing
the contributions of all 3DAs in Table III, we obtain,

Hy(0,g2) = (47.72 — 4.585,) [GeV~'] 22

+ (33.88 +2.075,,) [GeV~']2%4.  (BI)
For the expected relationship A%, = 242, the dependence on
ow is further suppressed leading to extremely stable
predictions with respect to §,,:

Hy(0,g3) = (115.48 — 0.445,,) [GeV~1]3. (B2)
For scenario II (Table IV), one finds
Hy(0,q2) = (53.81 — 11.765,,) [GeV~']12
+ (31.75 + 18.515,,) [GeV~']4%,.  (B3)
For 12, = 242, this gives
Hy(0,g¢) = (117.31 + 25.255,,) [GeV~'|2z.  (B4)

For §,, = 0, both scenario I and II give close results but
the sensitivity of the form factor to o,, in scenario II is
strong.

For scenario I but using different 3DAs, those of Model
ITA of Eq. (5.23) from [23], one finds (Table V):

Hy(0.g2) = (50.58 — 2.125,) [GeV~1]13

+ (3537 4 0.645,) [GeV-']2%.  (BS)
For /2, = 242, this yields:
Hy(0.q2) = (12132 - 0.845,) [GeV~']%.  (B6)

TABLEIIL. Hy(0.¢¢) and Hy(0, gf) at g = —2 GeV? calculated for scenario I and 3DAs of Egs. (4.6)—(4.13) for 43 = 0.45 GeV

and a = 0.05. H,’(O, ql2) = RZEA%;‘ + Rl‘Hﬂ%_!,l' = A, V.

10°Hy (¢%. q57)

10°Ha(q. q5)

Lorentz 3DA 10°Ry; [GeV™']

10°Ryy [GeV™!]

103R 5 [GeV™'] 10°R,y [GeV™!]

WA 45.84 7.54 43.44 7.67

vy 4.62 252 4.61 26.7

X, —0.28w, + 0.49w, —1.64w, + 0.99w, —=0.39w, + 0.24w, —1.63w, + 0.81w,
Y4 —8.37w, + 1.52w, 8.33w, + 0.06w, —8.52w, + 0.70w, 8.48w, + 0.63w,
X, —0.65w, — 0.05w, =0.11w, +0.11w, —0.70w, + 0.22w, —0.07w, — 0.19w,
Y, 1.65w, —0.01w, —2.45w, — 1.51w, 1.70w, — 0.59w, —2.51w, — 0.68w,
w —0.61w, — 0.39w, —=0.61w, — 0.39w, —=0.63w, — 0.35w, —0.63w, — 0.35w,
Z 0.93w, +0.27w, —0.31w, — 0.19w, 0.95w, +0.03w, —0.31w, — 0.02w,

TABLEIV. Hy(0,q) and H,(0, qf) at gf = —2 GeV? calculated for scenario IT and 3DAs of Eqs. (4.6)—(4.13); 43 = 0.45 GeV.

105Hv(q2, 6162)

10°H (4% q§)

Lorentz 3DA 10°Ry; [GeV™!]

10°Ryy [GeV~']

10°R,; [GeV~'] 10°R,y [GeV~']

WA 45.84 7.54
Wy 4.62 25.2
X4 —L54w, — 1.17w,

Y, —17.4w, = 5.93w,
X, —1.73w, — 0.80w,
'R 3.53w, + 109w,
w 2.27w, —0.52w,
Z 6.45w, + 0.75w,

—4.08w, — 1.71w,
253w, — 114w,
=0.12w, + 0.32w,
—4.89w, — 5.69w,
227w, —0.52w,
—=0.96w, — 0.50w,

43.44 7.67

4.61 26.7
—1.02w, — 1.40w, —4.73w, +0.11w,
—17.6w, + 5.36w, 254w, — 12.0w,
—1.62w, + 0.59w, —0.42w, — 0.65w,
351w, + 115w, —4.96w, —5.11w,
2.38w, —0.38w, 2.38w, — 0.38w,
6.28w, + 0.05w, —0.93w, — 0.02w,
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TABLE V. Hy(0,g?) and H, (0, gF) at g¢ = —2 GeV? calculated for scenario I and 3DAs of Model IIA given by Eq. (5.23) of [23]

for A5 = 0.45 GeV and a = 0.05.

IOSHV(q27 qg)

105H (4. q§)

Lorentz 3DA 10°Ry g [GeV™']

10°Ryy [GeV™]

10°R,; [GeV™1] 10°R,y [GeV™1]

Wa 46.7 6.97
wy 474 28.9
X, 0.08w, + 0.00w,

Y, —3.50w, + 0.96w,
X, —0.17w, — 0.02w,
v, 0.52w, + 0.31w,
w —0.04w, — 0.04w,
zZ 0.13w, + 0.05w,

~0.39w, +0.17w,
1.79w, — 031w,
0.04w, + 0.03w,
~1.18w, — 0.94w,
—0.04w, — 0.04w,
~0.08w, — 0.05w,

44.8 7.05

4.74 30.1
0.07w, — 0.04w, ~0.39w, + 0.18w,
~3.56w, + 0.70w, 1.82w, — 0.21w,
~0.18w, + 0.06w 0.05w, — 0.05w,

y
0.54w, + 0.20w, —1.21w, — 0.68w,
~0.04w, — 0.04w,

—=0.04w, — 0.04w,
0.14w, + 0.01w, —0.08w, — 0.01w,
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