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In this work, we analyze a large class of effective Yang-Mills-Higgs models constructed in terms of
adjoint scalars. In particular, we reproduce asymptotic properties of the confining string, suggested by
lattice simulations of SU(N) pure Yang-Mills theory, in models that are stable in the whole range of Higgs-
field mass parameters. These properties include N-ality, Abelian-like flux-tube profiles, independence of
the profiles with the N-ality of the quark representation, and Casimir scaling. We find that although these
models are formulated in terms of many fields and possible Higgs potentials, a collective behavior can be
established in a large region of parameter space, where the desired asymptotic behavior is realized.
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I. INTRODUCTION

The dual superconductivity scenario to describe confine-
ment in pure Yang-Mills (YM) theory has been a subject of
intense research for several decades [1-6]. According to
this mechanism, the Yang-Mills vacuum behaves as a
condensate of chromomagnetic objects that gives rise to
a confining flux tube between quark probes. This idea has
been explored extensively using lattice simulations. For
example, along the transverse direction to the flux tube, the
profile for the longitudinal component of the chromo-
electric field has been fitted with the solitonic Abelian
Nielsen-Olesen vortex [7]. The underlying objects that
could condense in four-dimensional spacetime have also
been studied [8—18]. Ensembles formed by monopoles that
propagate along worldlines and thin center-vortices, which
are gauge field configurations characterized by loops that
propagate along worldsurfaces, have been identified in the
YM vacuum [13]. In particular, the N-ality property
observed in large Wilson loops was reproduced when
the average over Monte Carlo configurations is replaced
by one over simpler thin center-vortex configurations,
extracted from the complete link variables, which happen
to percolate in the continuum limit. Then, one important
question is how to conciliate the Abelian-like behavior of
the flux tube and N-ality. These features can be accom-
modated in effective Yang-Mills-Higgs (YMH) field mod-
els with SU(N) — Z(N) spontaneous symmetry breaking
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(SSB) [19-26], with or without SU(N) flavor symmetry.
Moreover, SU(N) gauge field models constructed with
adjoint Higgs fields effectively describe the asymptotic
behavior of the different condensates observed in the lattice
[27] (see also [28]). In these models, the effective SU(N)
gauge field A, represents the Goldstone modes for
the percolating thin center vortices, with the natural
N-matching rule among center-vortex worldsurfaces. The
adjoint Higgs fields, minimally coupled to A,, effectively
describe monopole worldlines attached to worldsurfaces,
thus including the nonoriented (in the Lie algebra) center-
vortex component. The Higgs potential contains a mass
term m?(y;,y;) and the natural matching rules among
monopole worldlines. On this direction, an SU(N) color
and flavor symmetric model based on adjoint fields
w; €3u(N) with N> —1 flavors, I =1,...,N*> — 1, was
analyzed in Refs. [29-31]. Within this framework, when
m? = 0, the flux tube between external probes coincides
with the Abelian Nielsen-Olesen (finite) vortex. In addi-
tion, at asymptotic distances, as the group representation of
the external probes is varied, the string tension satisfies a
Casimir scaling law.

From a phenomenological point of view, studies in the
lattice cast some doubts about whether field models with
Nielsen-Olesen profiles are suitable to describe the con-
fining string. The analysis of the energy-momentum tensor
showed deviations from the Abelian counterparts at inter-
mediate distances [32]. A possible way out could be the
consideration of non-Abelian models away from the
Abelianization point. However, it could also happen that
the intermediate confining regime lies outside the domain
of applicability of the effective field model. Being origi-
nated from thin objects, it could only be used at asymptotic
distances. In this case, there is still an issue with the model
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studied in Ref. [30]; when moving from the Abelianization
point at m? = 0, there is a neighboring region (m?> < 0)
where the model becomes unstable. In fact, it would be
interesting if stability could be realized with negative m?,
which is naturally obtained in ensembles where monopole
worldlines have negative tension (monopole proliferation)
and positive stiffness [33,34]. On this direction, this state
could be stabilized by additional quartic terms not consid-
ered in the original formulation. Indeed, the model
described in Ref. [30] does not contain all possible terms
compatible with color and flavor symmetry. In this work,
we present a thorough investigation of the most general
flavor-symmetric SU(N) model with N> — 1 adjoint Higgs
flavors, studying the possibility of coexistence of asymp-
totic N-ality, Abelian-like profiles, Casimir scaling, and
stable regions in parameter space. These are important
properties compatible with present lattice simulations of
pure YM theory. The observed independence of the flux-
tube cross section with respect to the N-ality of the quark
representation [35] will also be discussed.

II. SU(N) EFFECTIVE MODELS
WITH ADJOINT SCALARS

Lattice simulations showed that oriented (in the Lie
algebra) and nonoriented center vortices are relevant
variables to describe the various aspects of the infrared
behavior of SU(N) Yang-Mills theory (for a recent review,
see Ref. [36]). In Ref. [27], it was shown that the effective
description of a 4d mixed ensemble of percolating oriented
and nonoriented center-vortex worldsurfaces is given by a
Yang-Mills-Higgs model with a Higgs content based on a
set of adjoint scalars. The ensemble was initially defined on
the lattice, with the oriented component generated by
means of a Wilson action for dual SU(N) link variables V,,

Sert = (Retr[I =V, (x)V,,(x + 2) V] (x + D)V (x)eow)],
(1)

with frustration e~*% () The latter is nontrivial on pla-
quettes that intersect a surface S(C) whose border is the
Wilson loop C and is trivial otherwise. The nontrivial value
is given by
e~ — e_izﬂ/))e‘qu[’

which is the center-element generated when an elementary
center-vortex world surface links the Wilson loop for
quarks in representation D(-). Here, T,, g=1,....N -1,
are the Cartan generators and the (N — 1)-tuple S, is a
magnetic weight of the quark representation. Indeed, when
an expansion in powers of { is performed, because of the
properties of the Haar measure, a nonvanishing contribu-
tion arises from links on plaquettes that form closed
surfaces. Because of the frustration, these contributions

are accompanied by a center element when the vortex
surfaces link the Wilson loop. Moreover, as the group is
SU(N), plaquette configurations where N vortex surfaces
are attached to a curve also contribute. These are the
fingerprints of center-vortices. In that reference, nonor-
iented configurations where pairs of world surfaces are
attached to closed monopole worldlines, as well as the
natural three and four-line rules to match open monopole
worldlines at a common endpoint, were also introduced.
This was done by including a diluted gas of adjoint loop
hololomies together with structures formed by holonomies
along open lines with various natural matching rules among
the possible adjoint charges of monopoles [the roots of
31 (N)]. In the naif continuum limit, Eq. (1) gives rise to a
dual SU(N) gauge field A, governed by a Yang-Mills
action (F,,(A) — J,,)?* with frustration J,,, proportional to
B and localized on S(C). In the gas of adjoint monopole
loops and structures formed by three and four matched
lines, each holonomy gets replaced by the continuum

I,[A] = Ad <exp { /y A”dx”] ) 2)

where y is a monopole worldline. These lines were
equipped with tension u and positive stiffness 1/x.
Using polymer techniques, it was shown that the gas of
adjoint loop holonomies lead to an effective description
in terms of adjoint scalars y; (I is a flavor label) with
squared mass m? « pk, which are minimally coupled to the
dual gauge field A,. In addition, the three and four-line
structures correspond to cubic and quartic interaction
terms for these scalars. In this setting, the emergence of
N(N —1) flavors is immediate, as this is the number of
adjoint monopole charges (roots) in the Lie algebra 8u(N).
The consideration of additional adjoint scalars y,,
g=1,...,N—1, could also be useful to implement other
matching rules as well as a color and flavor symmetry in an
effective model with N> — 1 flavors. As lattice simulations
have not yet constrained the possible correlations between
the monopoles, we will study a large class of models with
or without color and flavor symmetry. In the former case,
all cubic and quartic terms compatible with color and flavor
symmetry shall be considered. Among the possibilities, the
model studied in Refs. [29-31] is an interesting particular
case that is characterized by just one cubic and one quartic
term. At m?> =0 and asymptotic distances, it displays
N-ality, exact Casimir scaling, and Abelian-like profiles
independent of the quark representation, properties which
are compatible with those observed in the lattice for the
confining flux tube. Nonetheless, it could well happen that
future simulations regarding the properties of nonoriented
center vortices favor a mass parameter m> < 0. In this case,
the model studied in Refs. [29-31] could not be applicable
because, in that region, the potential energy is not bounded
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from below. Note that a negative squared mass is a common
feature in monopole-only lattice scenarios based on the
Abelian projection, as it effectively describes the observed
monopole proliferation (monopole condensate) [33,34,37].
For these reasons, we will look for the possibility of stable
generalized models, which are consistent when m? < 0 and
that keep the above mentioned interesting asymptotic
properties of the confining flux tubes.

III. GENERAL SU(N) MODEL
WITH N2 -1 FLAVORS

In this section, we shall initially review the effective
SU(N) YMH model with N> —1 adjoint scalar fields
proposed in Ref. [38]. Its action reads

1 1
S:/d4x<Z<FﬂwF/w>+§<DﬂV/1vDMWI>+VH(W))’
wrEsu(N),

F,

i
= (DD Dy=0,+ A, A,
s K
Vuly) = C+E<‘/’A»V/A> +§fABC<ll/A AW W)

A
WA NwB YA AYE). 3)
Here, we used the notation X A Y = —i[X, Y], while the
brackets denote the Killing product between two Lie
algebra elements, defined by
(X,Y) = Tr(Ad(X)Ad(Y)), X, Yesu(N), (4)
where Ad(X) refers to the adjoint representation. In our
conventions, the basis T, satisfies (T4, Tp) = 845. This
model is invariant under color transformations

w; — Uy UL, UeSU(N) (5)

and under flavor transformations

v = Ad(U) ;. (6)

For an appropriate choice of the parameters, an SU(N) —
Z(N) spontaneous symmetry breaking (SSB) pattern is
triggered. Then, as the first homotopy group of the vacuum
manifold M = SU(N)/Z(N) is Z(N), the topologically
stable vortex solutions display N-ality. At m> = 0, they are
Abelian-like and have an exact Casimir law at asymptotic
distances for the k-antisymmetric representations [30].
Furthermore, at A = ¢?, this scaling law was shown to
be stable as the energy of the k-antisymmetric irrep is
the smallest among the irreps with N-ality k [31]. These
properties are compatible with those of the confining string
observed in lattice simulations [35,39]. Note that the

SU(N) — Z(N) SSB becomes unstable for m? < 0, as
the energy of aligned configurations (y, = yp for all A, B)
is arbitrarily negative for large (y4,y4). This happens
because both the cubic and the quartic terms are zero in this
case. Thus, we are led to look for new models with
additional relevant terms to stabilize the desired phase.
Initially, it is interesting to consider a potential that depends
on y 4 through the real variable

d(x.9) = (wa.gTag™").  g€SU(N), (7)

as follows:
b
V(y) =co+ / du(g) <g¢2 + §¢3 + 24)4)- (8)

This potential can be shown to be invariant under both color
and flavor transformations [cf. Egs. (5), (6)] after using the
invariance of the Haar measure [du(g) = [du(gU),
UeSU(N). Here, it is also clear that the quartic term is
non-negative and the potential is bounded from below. In
particular, that term would vanish only if ¢(g) itself
vanished for every U, in which case the quadratic term
would also be zero. Therefore, the above-mentioned
stability issue does not exist in this case. Indeed, when
compared with Eq. (3), this model generates additional
terms, which happen to be all possible terms that are
compatible with color and flavor symmetry up to quartic
order, given in a specific combination. In what follows, we
will show this statement while, in the next section, we will
study the most general model with this symmetry, obtained
by assigning arbitrary coefficients to all generated terms.

Since w(g) = Raa (9)waa, where R(g) stands for the
adjoint representation matrix of g, the integrand contains
two, three and four tensor products of adjoint representa-
tions of SU(N). Only the singlet part of these tensor
products yields a nonvanishing contribution for the integral.
According to Refs. [40,41], the tensor product of two
adjoint representations R(g),,R(g)., can be decomposed
into 7 different irreps’ (the Young tableaux are shown in
Fig. 1). The associated Hermitian projectors are

1
Psléh = ﬁ5A35CD, (9a)
PF|é‘% = fagefcoEs (9b)
PD|éB = N—szBEdCDEv (9¢)
PN?-4

"This is for N > 3. For N = 2, only the representations S, F
and X exist and are associated with spins 0, 1, and 2 respectively.
For N = 3, the representation Y does not exist. Notice that this
does not mean that the corresponding projectors vanish if one
naively sets N =2 or N =3. Simply, they should not be
considered in these particular cases.
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1 N+2 1

ZéACSBD + 4N 6AD63C - W_'_U&ABSCD

Pyleh =

- ZfADEfBCE + Z dADEdBCE
N

2(N + 2) dABEdCDEv (9d)

N-2 N-=-2
Pyleh = “an_ Oacdsp + 8apdc) + m@uﬁa)

N

y (dacedppE + dapedper)

+ —]X((]]Vv __ ;))‘ dagedcpe: (%)
PT|é% = % (6acOBD — Bandac) — %fABEfCDE

+ i% (fapedsce + dapefBeE)- (9f)
Prleh = Prleh. (%)

where the symmetryc and antisymmetryc structure con-
stants dypc and f,pc are defined as

Ty ANTg = fapcTec, (10a)

19
{Ta.Tp} = %H + dapcTc. (10b)

These projectors allow us to obtain explicit expressions
for the different integrals by decreasing the number of
matrices in the integrand up to a point where the ortho-
gonality relations [42],

N N s{_nglet
N-1 : R N-t : — N :
x v
N-2 : P N-1 T

FIG.I._ N

4 . 0;:0e0pp
[ aul@DO oDV gl =22 )
1

can be used. The indices i, j label irreducible representa-
tions, while d; is the dimension of D). Since these
representations are unitary, their components satisfy
D(g7") g = D(9)}yz = D*(g)gp- For the quadratic term,
we can directly use Eq. (11) to obtain

/dﬂ(g)¢2 = <WA’TA’><1//B5TB’>/d:“(g)R(g)AA’R(g)BB’

<WA7 l//A>
NZ—-1"

(12)

To evaluate the cubic term, the completeness property

6AA’($BB/ = PS|2€3’ + PF|A%/ + (13)
leads to
L = [ du@R9) RO R(G)
— [ AR @) Rl (Pl
+Pelyg +Polyg + - )R@)ce  (14)
2
= fapcfapc + N2 _4 dapcdapc- (15)

Here, we used that P; selects the subspace carrying the
irreducible representation i so that, in each term, the

product Ryq Rpp P; |ﬁ7§,ﬁ can be thought of as components

of a single D), which allows us to use the orthogonality
relations to evaluate the group integral. As the last factor in
Eq. (14) is in the adjoint, the only contribution is originated

Edjoint _adjoint

@ N-1l
1 1

D

Young tableaux of all irreps. contained in the tensor product of two Ad(SU(N)) representations.
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from the two independent subspaces that carry an adjoint
representation in Ad ® Ad. In this manner, we get

NZdABC<V/A Vyp.pe)

/dﬂ(g)¢3_fABC<l//A /\‘//Bvl//C>+

N?-1 (N’=1)(N?*-4) ~
(16)
where we defined
X,Y
XVY:{X,Y}—<A’[2>. (17)

Similarly, We can proceed with the quartic term when
computing

I4|£5§g’p’ :/dﬂ(Q)R(Q)AA’R(Q)BB’R(Q)CC’R(Q)DD’-
(18)

This time we can introduce a pair of completeness relations
to reduce the components of R(g) in terms of components
of D) and then use the orthogonality relation in Eq. (11).
Most of the contributions will be originated from products
reduced by the same projectors. Two notable exceptions are
the products between the representations 7 and T and the
two different adjoints, one associated with f,pc and the
other with d,pc. The result for the quartic term is

/ () = (wa T W Te)we Te)wo. To)

ABCD

X I4|A/B/C/D/7

(19a)
TLI8A2,,
_ szABEdCDEfA’B’E’dC’D’E’ + deABEfCDEdA’B’E’fC’D’E’
(N> —1)(N?* - 4)
APr| ¢ PrI&%, + 4PFIEhPr|25,
(N> =1)(N* - 4)

1
AB p |A'B
+ E ZPi|CDPi|C’D"
i=S.FDXy i

(19b)

Now, let us see that the terms generated by the model in
Eq. (8) are all possible terms invariant under the desired
symmetry. It is clear that the quadratic term on the right-
hand side of Eq. (12) is the only possibility. As for the cubic
term, the most general combination is given by

CABS cWan Wy cc (20)

with wau = (w4, Ty), ie., primed indices refer to color
and unprimed refer to flavor. To ensure that color and flavor
symmetries

Wan = RypWap. Wan = Rapypa, (21)

are independently present, Cﬁ%?c, must be a linear combi-
nation of the antisymmetric and symmetric structure con-
stants of 3u(N) in both sets of prime and unprimed indices.
Indeed, these structure constants are the only invariant
tensors with three indices, that is, the only singlets in
Ad® = Ad ® Ad ® Ad. Therefore, the most general
cubic term can be parametrized by

K K
?ffABcQ//A Ayp.we) + ?ddABC@//A VW We). (22)

which corresponds to assigning arbitrary coefficients to the
terms obtained in Eq. (16). Regarding the quartic term, the
most general possibility is

ABCD

CypopWan¥esWcecWpo - (23)
This time, C4552 ,, must be a linear combination of terms
of the form

T?BCDT?’B’C’D” (24)

with both tensors 7; and 7, being invariant under
the adjoint action of SU(N). The space of invariants with
four adjoint indices (singlets in Ad®*) has basis” 04B0CD>
64cOpp>  0apOpc,  dapedcpes  dacedppes  dapedpce
fasefcpes facefppe, and fapefpce [40]. In principle,

with 9 invariants, the most general C4555,, is written as a
linear combination of 81 interactions. However, at most 9
of these 81 interactions’ are nonvanishing and linearly
independent. The key equations to eliminate these redun-

dancies are

fABEfCDE = dACEdBDE - dADEdBCE

2
+ N2 (84cOpp — S4pdpC). (25)
Sfaedcpe = dapefsce + dacefBpE- (26)

For organizational purposes, these 9 interactions can be
subdivided into four sets, depending on how the flavor
indices of the Higgs fields are matched. In the flavor-singlet
set, the flavor indices are contracted with each other:

*In fact, for SU(2) and SU(3) this basis is overcomplete and
should include only 3 and 8 elements, respectively. For SU(2),
dapc = 0 and fagefepe = Oacdpp = 6apdpc. For SU(3), Bur-
goyne’s identity  3(dapedcpe + dacedspe + dapedpce) =
5AB(SCD + (sAc(SBD + 5AD63C can be used.

*The number drops to 3 and 8 for SU(2) and SU(3)
respectively.
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VIV = (wawa))s VY = (wasws) wasws) (27a)

4 4
V<3 = (Wa ANwg.wa Awg); Vi)

(27b)

Notice Vj is the interaction that was analyzed in previous
papers [30,31,38]. In the f-adjoint set, the flavor indices are
matched with two copies of the antisymmetric structure
constants f4pc:

V?) = fapefepe(Wa. we) (W wp); (28a)

4
V) = fasefeos(Wa Aws.we Awp).  (28b)
The d-adjoint set is analogous to the f-adjoint one, but
with symmetric structure constants d,p- instead:

V§4) = dABEdCDE<WA’ WB> <WC’ l//D>; (298')

4
Vé ) = daprdcepe(Wa vV wpwe VY wp),  (29b)
Finally, there is the mixed adjoint set, where the flavor
indices are matched with both f,p- and dypc:

vé‘” = fapedcpe(Wa A We.We V W), (30)

These terms are all generated in Eq. (19a).

IV. ANSATZ FOR THE VORTEX SOLUTIONS

In this section, we shall study the most general color and
flavor symmetric model for a set of N> — 1 SU(N) adjoint
Higgs fields. The total energy in the presence of static
Ao = 0 gauge fields is

B [ (5808 (D, D) + Vi) )

(31)

The most general potential, as discussed in the previous
section, is given by

1 1 -1
Veen(W) = co +§m2V(2) + §’<fv(3)_f +§’<dV(3)_d

IS~ @
SNTAVI ). 2
+4l§:1 A4Vt (y) (32)

Here, we defined

= WA Vya,wpVyg).

V(z) = <WA7 WA>7
VO = fasclwa ANwg.ye),
Ve = dapc(Wa V yp.we). (33)

Regarding the stability of the potential in Eq. (32), all of
the interactions Vl-4 are positive, except for Vg4 , which was
verified numerically to have an indefinite sign. However, it
is clear that this term can be present in a stable model
as it occurs in the one defined in Eq. (8). Moreover, the
instability problem pointed out in Sec. I when m? < 0 can
be easily overcome in a large region of parameter space
while keeping Abelian-like behavior and Casimir Scaling.
This will be revisited at the end of Secs. V and VI B.

In Ref. [30] an ansatz for a vortex with charge k was
proposed for the model defined by Eq. (3). In this
subsection, we will show that the same ansatz closes the
equations of motion for the general model of Eq. (31).
The ansatz is proposed in the Cartan-Weyl basis of the Lie
algebra, which consists of N —1 diagonal generators
T,,q=1,...N—1,and w pairs of off-diagonal gen-
erator T, T4, which are labeled by the positive roots a of

SU(N)." The ansatz reads

A; = SAS™! + ;Sals—‘, (34a)
A== 1) 0BT, (34)
w, = hypST,S™", (34c¢)
Waja = haSTaaS™, (34d)
S =T p=2NQ. (34e)

Here, f is the magnetic weight, and Q is the highest
weight of the representation of the static quarks. We used
the notation f-T = f,T, and, for later convenience, we
will assume h_, = h, even though the profiles h, were
initially defined only for positive roots.

These profile functions depend only on the cylindrical
coordinate distance p and must obey boundary conditions
to reproduce smooth vortex configurations centered on the
z-axis. At infinity, they must be such that the fields are in
the vacuum manifold, that is
— 00

When p - o0,a — 1,h

shyp hy = v.  (35)

ap»
Moreover, some of them must also obey regularity con-
ditions in the vortex center p = 0. The gauge profile
a(p) must vanish there to avoid a divergent magnetic field.

See Appendixes A and B for a review of some aspects of the
Lie algebra of SU(N) which are relevant for this work.
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As for the Higgs profiles, one must consider the behavior of
the local frame

ST,S™' =T, (36a)
ST,S™' =cos (B-ap)T, —sin (B ap)T;, (36b)
ST5S™! = sin (B - a@)T, + cos (B - ap)T;. (36¢)

This implies that if § - a # 0, the field y, is ill defined at
p = 0. This leads to the regularity condition at p = 0,

a=0 and h,=0 if f-a#0. (37)

We will restrict the analysis to the k-antisymmetric
representations, as these are expected to give rise to the
most stable confining strings in the asymptotic regime.
Their highest weights are given by [see Appendix A for a
very brief review of the weights of SU(N)]

Q=00 =%"w, (38)

where w;, i =1, ..., N are the weights of the fundamental
representation. We must now show that the full equations of
motion of the model can be reduced to a set of scalar ones
for the profiles a, hy),, h,. In this respect, let us initially
investigate the implications for the gauge field equation

DjFij = ig[‘//Aa Dil//A}' (39)

In Ref. [30], this ansatz was shown to work for a potential
that corresponds to the particular choice m? >0,
kg = 0,4;.3 =0 in the notation of the present paper.
|

Since the equation for the gauge field is the same regardless
of the potential, the same must hold for the general case. A
nontrivial question is whether the equations for the Higgs
fields close or not. These are

oV
Dy, = —5" 40
YA /A ( )
Using the commutation relations (B5), the left-hand side
can be evaluated as

2 2
Dy =Vohy,T),

DZWa/d = (Vzha+ (1 _a)z(a'ﬁ/p)z)STa/aS_l' (41)

To present the results obtained for the right-hand side of
(40) (i.e., the forces), we define the following quantities

@)
Foa_ 1oV® @-a _LoVi o
2 5WA 9 1 4 5WA 9 9 ey
(42a)
Fora _ LoV Gaa _ 1OV
3 oyt 3 oyt (426)
v w

We shall start by analyzing the Cartan sector, i.e., when
A = gq. In light of Eq. (41), the ansatz closes if the right-
hand side is proportional to a combination of the Cartan
generators.

In the ansatz, the expressions for the lower-order forces,
as well as those in the flavor-singlet category, are easier to
obtain than the ones in the other categories. For this reason,
we simply present them below

F@=4=h,T, FO~/~1 = hla| a- T, FO)-d-a =, (43a)
FO™ = (Tr(WTH) + 202)hg, Ty FS ™ = hyhyhpToe  Fs' ™" =202k pal,a- T, (43b)
FU™ = (4N)2hgpo;],(@; - HTH.0;) (0; - 0))w; - T + 8NK2(@ - ;) hgpoy| yo; - T, (43c)

where H|,, = hg,, i and j are summed from 1 to N and « is
summed over the positive roots.

When it comes to F gi)s_q, the calculations are more

subtle. For illustrative purposes, we will show the main
steps to compute F 24) since it represents well the overall
complexity. Recalling Eq. (28b), we have

F 24)_A = faefcoews N (We A wp). (44)

The first step is to consider all the nonvanishing
possibilities for the indices B, C, and D given that
A =g, ie.,

I
F (64)—4 = 2f qaaf paaWa N Wp AWa) + 2f jaaf paa¥Wa
AWy AWa) + fgaaf maWa N (W, Awy)
+ foaaf 77aWa N (W7 AWg) + 2f gaal yiaWa
A (v, A ), (45)

where the sum in «a is to be performed over all positive
roots and in y and # over all positive roots as long as
a#n#y#a Using the properties of the structure
constants, we can reduce Eq. (45) to a sum of two terms.
The first one can be readily evaluated using Egs. (BS)
and (B8a),
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4fqadfpadl//a A (l//p A l//a) = 4a|qa|phplh§alarTr
=4hz(a-H-a)ala-T. (46)

The second one reads

4fqa&fyndl//a A (l//y N Wn)
= 4hahyh,7a|qu&fmgS(Ta AT3)S7!, (47)

where a, y, 1 and 6 are summed over the positive roots. To
simplify this expression further, Eq. (B8c) plays a crucial
role. First, notice that the above expression vanishes unless
a = J since both § and « are positive roots. The positivity is
important here because, otherwise, Eq. (B8c) would allow
other possibilities like, for example, @ = y —n = —4. Also,
using Eq. (B10), we find

1 1
}%'755 =5N J%»’i (5w+rl + 5a.—7—ri) + EN %-—n (50!»7—'1 + 5%'1—7/)

where we changed the sum on y and # in the last equality
to be overall roots, positive and negative, as long as
y #n # a # y. This implies

4fqa&fyn&Wa A (Wy A Wi’]) = 2chl,yhahyha+ya|qa|pr'
(49)
Additionally, provided one keeps in mind the properties
of the symmetric constants [see Egs. (B26) and (B27)], the
previous remarks can be readily applied to all of the other
forces over the field y,. After doing so, the expressions for
f-adjoint forces are

F§4)_q = 2h2al,a-H-T, (50a)
F"™ = 4h%al (a - W a)a - T+ 2N3 hoh,hyyal o T
(50b)

2
_ 1 N2 S (48) In the d-adjoint case, the forces after applying the ansatz
5 VrnCartn become
|
FV™ = (4N) 2w, (@; - @) (@, HHT - @) (; - B - T) + 8Nh2wy| ,(; - @) (e, - H - T), (51a)
FO™ = (4N)H (7 - H - 0p) (07 - ) (0; - H - 0,)2 (0, - @p)a;| 05 - T+ 423 (@ - H-@)a- T
while the mixed adjoint one turns out to be
4)-q _ A2y 2 PR
Fy' " =2al|, (@ -H-a)hza T + Ny, hoh,hyy(al,al, + @,@,)T,
(AN 0, B 0)) (@, ) ;- @)oo, - T+ 2 H-a)hal @ T. (52)

Again, in the above expressions, @ must be summed over the positive roots while y must be summed over all of the roots,
provided y # +a. The indices i, j, a, and b label the weights of the fundamental representation, thus ranging from 1 to N.
Because of the terms involving the symmetric constants d g, we defined a vector @ = w, + w,, for each root @« = w, — w,,

(for details, see Appendix B).
In the root sector, i.e., setting A = ¢, we have

4)—
Fé = 2faq&fpa{'zl//q A (l//p A l//a) + f(ltif_lfi"’l&l//q A (l//?’ A l//”) + faq(}f;?ﬁ&l//q A (VIT' A ll/i’)
+ 2 aaqfaaq¥a N Wa AWa) + foafessy N We Awe) + foafezsty A (W A we)

=+ Zfa;‘/éfg;”zil//y A (l//s A WE)

Here, there is no sum over « and there are sums over all
@ > 0 and all roots y, 7, €, £, both positive and negative.
The above expression brings two notable differences when
compared to its Cartan sector counterpart. First, there are
terms with summations over 5 positive roots, instead of just
3. These terms can be treated just like before but with the
use of Eq. (B8) twice. Second, a completely new kind of
term shows up, namely

(53)

[
2fadqfa’5(’ql//& A (Wa' A l//&’) = (a' a/)zhi’haSTaS_l- (54)

Here, the a and o are positive roots and can even be the
same, which is why & was used, instead of a different greek
letter. Other than that, the steps to compute the forces in the
root sector are similar to what was done before and we start
again by exhibiting first the result for the lower order forces
and the flavor-singlet ones
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2)—a — -1 —a
F fSTaS™ (532) Pl (4N (0 WTH- ;) ;) +2(8- & )H2 )h ST S~
FO=0 =2(a-H- a)hyST,S™" + N2, hhy,,ST,S™", (55¢)
(55b) Then, we move to the f-adjoint set
FOa = 2@ H - @)hoST,S™ + N yhyhoy STAS™, FO™ = (@-HHT - a+ N2, h2 + |a|*h2)h,ST,S™',  (56a)
(55¢) "
F™ = (2(a-H-a)* + 2(a- a)*h2 ) hoST,S™!
F§4)—a = (Tr(H"H) + 2h2)h,ST,S™", (55d) + N2 (a-H-a)h,hy,ST,S™
_ + (}’ “H- y)N(%t h ha STaS_l
FO™ = n3sT,s7, (55¢) e
+ N2, N2, hyh, g STS™L (56b)
4)—a -
Fy7 = (a-H'H- a“‘Nr%wh% +la?hg)haST,S™", (55f) while the d-adjoint forces read
|
FS™ = (4N(a- o) (w; - HHT - ;) + 2(@ - & )h2 ) hoST,S™, (57a)
FO™ = 2(a- H- @)?h,ST,S™" + (4N (@ 0;)(@- ;) (@; - H - ©;)*h,SToS™!
+ M3 (@ - H-a)h,hy, ST,S™ +2(7-H-7)M3, hyy h,ST,S™
+2(a &)2hyh% ST, S~ + M2, M2, hyy hyh, ST ,S™" (57b)
Finally, the mixed-adjoint force reads
a ) . 1 1_ .
F ™ =2(a-H-a)(@-H-a)h,ST,S" + (5(1- H-a+a H- (x) M2 1y ST S
+ 8N (a- w;)(a-w;)(w; - H-®;)*h, ST, ST + ((a- &) + (& - @)*)h2, hy ST, S™!
+(-H-y+7-H-7)Ng,hhy ,ST,S™ + N;, NG hyhy .y, ST,S™". (58)

The summations are over i, j = 1, ..., N, & > 0, including
a = a, positive and negative y, 7, excluding y = +a #
n # y. The expression for the forces with index & are the
same after replacing barred roots indices with unbarred
ones and vice versa.

Since we showed that both sides of Eq. (40) point in the
same direction in the Lie algebra, then our ansatz closes and
we are left with scalar equations for the profiles a, h,,,
and h,.

V. ABELIANIZATION AND THE ASYMPTOTIC
CASIMIR LAW

Here, we shall discuss the energy scaling of the solution
with N—ality k. A good starting point is to review some
facts regarding the particular case of the model given by
Eq. (3), which was studied in Ref. [30]. It has a special
point in parameter space, m> = 0, where all the profiles /4,
with a - f = 0 freeze at their vacuum value v. As for the
other profiles, a collective behavior was shown to take
place, i.e., h, = h for all @ with a - # # 0. In this case, the
model can be said to be Abelianized as the equations

I

satisfied by the profiles a, i are those of the Ginzburg-
Landau model, which gives rise to the well-known Nielsen-
Olesen vortex. The string tension (energy per unit length) in
this particular case is

\Val*>  h*(1-a)?
O arii r:k(N—k)/d2x< + + |Vh|?
particula ngz pz

(59)

Here, we can use Derricks’s theorem in two dimensions,
which states that the kinetic energy of the gauge field is equal
to the potential energy of the Higgs fields, thus implying

+ Vparticular .

Oparticular — k(N - k)

2 1201 _ 2
x/d2x<2|va| +h (1p2 ) +|Vh|2>.

,0292

(60)

This string tension scales with the quadratic Casimir of
the k-antisymmetric representation, in accordance with the
Casimir law
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ok _ k(N —k) (61)
o1 N-1

approximately observed in the lattice. The above derivation
makes it clear that a set of ingredients for such a law is the
existence of a region in parameter space for which the
following conditions are met

(1) hy=wv, ¥V ala-p=0,

2) hy=h, ¥ ala-p=1,

(3) h must be independent of k.
Keep in mind that only two values for «-f are being
considered since the weight in Eq. (34e) are those of the
k-antisymmetric representations.

In the following, we will analyze the existence of such a
region for the model of Eq. (31). Then, let us assume

hyp = 064,

ifa-f=0
haz{”. ’ (62)

hoifa-f=1

and evaluate the force expressions (43), (50)—(52), and
(55)—(58).

Once again, we will illustrate the calculations using F¢ as
an example. In the Cartan sector,

Fl=4hia| (a-H-a)a-T+2Ng hohho ol a-T. (63)

To evaluate these terms, we first need to write down
explicitly, for each k, which positive root yields the
value 0 or 1 for the product a - 5. If we express the roots
as differences of weights of the fundamental representation,
i.e. a=aq;; = w; — w;, we have

0,ifi,j=1,...,kori,j=k—+1,...,N,
b={ ! (64)

1,ifi=1,....,kand j=k+1,...,N,

and the positivity of the root is guaranteed by i < j. Now,
we can define the matrices

LA
Aylgp = Z Z aijl il s

(65a)
i=1 j=k+1
“ N N
Aglgp = Z Z aijlqaij|pv (65b)
=kt j=it1
W ko k
Aolgp = Z Z aijlijl s (65¢)
i=1 j=itl

which sum up to half the identity matrix. Then, noticing

every root has length equal to 1/4/N, the first term in
Eq. (63) is

4
4h,2,a|q(a- H-a)a-T= NﬁZa\qa‘ T
a>0
apk=0

4
+ vh22a|qa T,

a>0
apk£0

2 4
=y v3Tq + N v(h? — vZ)A"jpr.

(66)

To evaluate the second term in Eq. (63), we need to split
the sum over a and y into different cases to take into
account all the possibilities for the profiles h,h,hg.,,.
However, the matrix part of the term depends only on «
and not y. This means that in each case the sum over y
only contributes with a numerical factor. The following
table summarizes the different cases. The first column
shows how the roots @ and y must match to ensure a + y
is a valid root. The second column shows the range of the
indices i, j, k that label the roots. The third one show the
associated profiles and the last one shows the multiplicity
for each case, i.e., how many y possibilities are there for
each a.

Root type  Indices range Profiles (k. h,, h,,,) Multiplicity

) (k1)
h (N—k-1)

i<k, j>kl<k
a,-j,}/l,- lsk,]>k,l>k

Qijs Vi (h
(h
aij,yli lSk,J>k,lSk (h
(h
(h

0)

h) (k=1)
N i<k, j>kIl>k 0. h) (N—k-1)
@ij Y O Yy i<k, j<k,I>k h)
@ij Y O v 1<k, j<k, <k
@ij Y OF Yy i>k, j>k,[<k
@jj, vii O ¥y i>k, j>k, 1>k

2(N = k)
2(k - 2)
(ho. h. h) 2k

2N —k-2)

Then, the second term reads

2(h? -

N

+ (N = DA T, + kAol T,)

20°(N = 2)

N
k k

+ANNT, + AT, (67)

v?)v

k
N2 hohyhg o T = (N=2)A|WT,

~ k
(AoliiT,

(k)

We can eliminate A’ and Zlék> by using the identities

(k)
o 2N —k N Al
Aol =35 0up = 5 Plabl =55 (68)
(k)
< m Kk N Al
Aolap = 10 + 5 Pl == (69)

which leads to
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(N =2) k(3N — 2k)
2N§,yhahyha+ya|qa -T = N Tq + N2 U(h2 - 1]2)Tq
N -4
+ vk - AT, + (N = 2k)u(h? = 0?)B| B T. (70)

A similar analysis can be carried out for all of the other forces. Just as before, we start by showing the result for the lower
order and flavor-singlet interactions

F@~1 =T, (71a)
FO~f~0 = 22T, 4+ 2(h? = ?)A|N)T,, (71b)
FR)-d—q — N;ﬂ 4 v*T, + i’f (h* = v*)T, —2(h* - v2)A|g",)Tp +4(h* = v?)(N = 2k)p| B - T, (71c¢)

F\7 = (N = 1)0°T,, 4 2k(N — k)o(h? = ))T,, (71d)

F$™1 = 37, (71e)

F{70 = 3T, + 20(12 — v?)AINT,, (71f)

Ff)"’:—wmhz—v )T, +4(N = 2k)o(h* = v*)B| - T. (71g)

Next, we present the result for the f-adjoint set of interactions

FO™ = 3T, 4+ 20(h2 - v)AINT,, (72a)

- k(3N — 2k
Fé4) T =T —5—7( )

o+ 0 = )Ty o = AT, + (N = 2K)007 = 2)pl,p- T, (72b)

then the d-adjoint forces

_ 2k(N — 2k
Fi=1 = —%v(hz—v )T, + 4(N = 2k)v(h* = v*)B| f - T, (73a)
_ N2 —4\?2 k(24N — 5N3) + k*(16 + 2N?
F§;4) q _ 5 1)3Tq ( )+4 ( + ) (h2 _ UZ)Tq
N 2N
N2 -12 3N2 — 40)(N — 2k
— vl = VAT, + ( N>2< >v(h2 — )l p-T, (73b)
and the mixed-adjoint one
_, N*-4 k(2N — k) 6
4 k
F{I1 = g Ty =g o = )T = (i~ VAT, +2(N = 2k)v(h? = 0?)p| f-T.  (74)

Notice that these forces are combinations of the following five expressions: T,, k(h*—v*)T,, k*(h* —v*)T,,

(h? = v1)A|Y) T, and (N — 2k)(h* — v*)p|,f - T. As discussed before, if the profiles h,, were to freeze at their vacuum

values, a Casimir scaling can be found. Because of Eq. (41), this means that the total force on the fields y, must vanish,
which implies equating the total coefficients of each piece to 0. Doing so for the coefficient of T, leads to
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2

0=m?~+krv+ e kv + (N? = 1) 0> + A0 + A30?

N2 —4\? N?*—4
+/15112+/161)2+< Y2 >18112+ N Aov?,  (75)

which is actually what defines the value of v # 0 that
minimizes the potential. As for the other pieces, they
yield a set of four conditions, out of which only three
are independent:

3 5N? —24

2Kd + 2N2ﬂ,1’l) — 214U +516U - 2&71] + Tlgv

+ 290 =0, (76a)

N?+38
IN2Ay = By + A — 407 + N—Jg,lg t=0,  (76b)
N?-12
2kp =24 + 2430 + 2450 + Ag¥ — 2 Agv
6
—Flgv =0. (76C)

In the root sector, F,, was shown to be proportional to
ST,S~! in Egs. (55)—(58), but the expression for the forces
changes depending on the type of root as defined in
Eq. (64). If the roots a = w; — w; are perpendicular to
the magnetic weight and i, j > k, the lower order and

flavor-singlet forces are’

(F@=a §T,571) = p, (77a)
| k
(FOI/= ST,$71) = 02 4 (W = 02), (77b)
N> -4 k
(FO)~d=a ST 71y = v (P07, (T7¢)

N? N

(F&,ST,S™') = (N? = 1)13 + 2k(N — k)v(h? — v?),

(77d)
(F$,ST,S7!) =3 (77e)
2.2
(F§.8T,S™") = v’ + th\, ), (77f)

k(N = 2k
(F2, ST, 1) = -2% o(R2 = 1?). (77g)

SThese expressions are the same for all values of i and j,
provided i, j > k. Additionally, when i, j < k, the forces can be
obtained from the former case by a simple change k - N — k. As
these properties are true for all of the forces acting on y,/5, we
will omit the case i, j < k.

The forces in the f-adjoint set are

k
(F¢,ST,S™') = v? —l—ﬁv(h2 — %), (78a)
k(2N -k
(F&,ST,S™") =v* + %v(hz —v%),  (78b)
while those in the d-adjoint set are
k(N =2k
(F2, ST,$°) = —2%1)(/& —?), (79
N ~ (N2 _ 4)2
<F81STaS 1> = N4 1)3
k(2N? — 8k — N*k — 6N
+ ( N ) v(h? —v?).
(79b)
The force in the mixed-adjoint set is
N? -4 k(2N* — Nk -3
(F§,8T,S7") = 72 v} + ( e ) v(h* — v?).
(80)

Now, for a Casimir scaling, we should also equate to O the
total force on y, with a-f = 0. It turns out that this is
automatically satisfied after imposing the h,,-freezing
conditions in Eq. (76). Finally, for roots a such that
a-p =1, we show the expressions for the lower order
and flavor-singlet forces

(F?)- ST, S7') = h, (81a)

(FO)=I=« ST, S~ = ho, (81b)
3)-d— -1 N> -4

(FO)=d-a §T 5§~} = —z (81c)

(F$,ST,S71) = (N? = 1)v*h + 2k(N — k)h(h* — v?),

(81d)
(F$,ST,S7Y) = h’, (81e)
h h2 2
(Fe,ST,S™") = % (81f)
N —2k)?
(F§,STS™") = (Niz)h(h2 - v%), (81g)
the f-adjoint forces
1
(Fg,ST,S7") = 5h(h2 +v?), (82a)
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1 + Nk — k?
(F&,ST,S™") = v?h ++Th(h2 — %), (82b)
the d-adjoint forces
N 5 (N — 2k)?
(F%,ST,S7!) = Th(h2 — %), (83a)
_ —8N? + 16
(F§,ST,S™!) = e v*h
N’k — N?k* —3N* 4+ 8Nk — 8k*
+ N4 h bl
(83b)
and the mixed-adjoint force
Nk—k*—1 N> -4
<F(91, ST(IS > Th(h - 112) + 7]2]’1.
(84)

Since the profile /& is nontrivial, there is no condition
associated with the total force vanishing. However, it is
important that /2 does not depend on k so as to guarantee a
Casimir law. This would entail equating to O the coef-
ficients of kh, k2h, kh3, and k2h3 in the total force. Just like
before, the resulting conditions are not independent of
Egs. (76). That is, after freezing h,,, the equation satisfied
by & is automatically k-independent and reads

N2—4

V2h=<m + KV + Kg——5— v + A (N? = 1)0?
A3v 2 N2
+ST—/14U -|-/15v2+/16 v? — p0?
N*—=5N? + 16 N?-3
++/18TU2 ‘I’lg ’Uz>h

N2
(85)

2 2 N? N?

P As A 3 A
(/12+ T e /13——9>h3.

For completeness, we show also the resulting equation for

the gauge field
lda d*a
————— = g*h*(1 —a). 86
Sdp dpr Y (1-a) (80)

These equations are those of an ANO model after an
appropriate redefinition of the parameters.

VI. STABILITY

In the simple model given by Eq. (3), when moving from
the Abelianization point at m> = 0, there is a neighboring
region (m> < 0) where it becomes unstable (see Sec. I). In
this region, the fields prefer to align along a common
direction in the Lie algebra and arbitrarily increase their

norm. This way, the cubic and quartic terms are nullified
and the energy due to the mass term becomes arbitrarily
negative. Although we shall not analyze the parameter
space in detail, we would like to note that this issue can be
easily fixed in the general color and flavor symmetric
setting, and even in a class of models where the field-
content is reduced by disregarding the y, Higgs-sector.
Moreover, this can be done while keeping the Abelian-like
profiles as well as the Casimir scaling law.

A. Models with color and flavor symmetry

For example, let us consider the model in Egs. (31) and
(32), with m?2, K, A, >0, and 43 > 0 being the only
nonvanishing parameters. In the new quartic contribution

W(lwrw)? + Wawa)? + -+ 2w, ya)?
+2(yp.w3)? + ..., (87)

the terms with a single flavor index prevent the energy
minimization with an arbitrarily large norm, thus leading to
a stable model. Now, in order for the SU(N) — Z(N) SSB
vacua y, = vST,S™! to be preferred with respect to the
trivial vacuum, the condition

2K
2 = N

88
97 + I (88)

must be satisfied. In addition, it can be easily seen that for

43

>3
27N =2

(89)
the SU(N) — Z(N) SSB vacua are favored when com-
pared with the aligned vacua. In this respect, note that the
mixed terms in Eq. (87) tend to favor the orthogonality
between different fields. Moreover, the freezing conditions
for y, in Egs. (76a)—(76c¢) are satisfied at

)

which corresponds to v = — % According to the analysis in

Sec. V, this freezing automatically implies Nielsen-Olesen
profiles and asymptotic Casimir scaling.

B. Reduced models without y,

From the ensemble point of view [27], the Higgs fields
Ve Wy labeled by roots are naturally associated with
worldlines carrying an adjoint charge a. On the other
hand, the adjoint Higgs fields y, labelled by Cartan indices
were introduced to cope with possible matching rules in the
31(2) subalgebras of 3u(N). If these matching rules were
absent, it would be appropriate to limit the Higgs field-
content of the effective model to v, y,. Let us analyze
what would change in this scenario. This can be achieved
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by setting y, = 0 in the energy functional and the ansatz.
Of course, we do not have to worry about the conditions
derived from the Egs. for y, [cf. (71)~(74)]. In the root
sector, on the other hand, Egs. (55)—(58) with y, = 0 are
still valid and, for that reason, the ansatz still closes.
The main changes are originated from Egs. (77)—(80)
and (81)—(84), since the absence of the fields y, drastically
modify the coefficients therein. Consequently, new con-
ditions emerge when equating the coefficients of the new
total forces on y, to O (a - f = 0). Nevertheless, a similar
analysis can be carried out and, just as before, not all
conditions are independent. The freezing conditions can be
chosen as

Kp +Kg+ 2N?20 + 230 — 2(A4 + A7)v + Asv
2N -3

(16 + Ag + Ag)’U =0 (908.)

N-=-2 N —
Vzh:<m2+lcf N v+ Ky N

2
v+ AN(N = 1)v* + 23

N?+8

—2N2/11 +4()«4 +ﬂ,7) - (/16 +19) —T/lg = 0, (90b)

while the new equation that defines v is

0=m?>+ v(ks 4 kg) + N(N = 1)v?2; + 0?4,
N -1 N -1 N?>—-3N +4
—+ N 7.)2/13 + 1]22,5 +T’U2/16
N3 —-3N?+4 N> —-3N+2
+Tzﬂig +Tz}2/19. (91)

Again, the freezing conditions lead to a collective behavior
where the nontrivial profiles A, (- = 1) are equal to a
single one h, which satisfies a k-independent Nielsen-
Olesen equation

N-2
2N

N-2
2N

2

122 bl /141)2 + /15

N%Z—-3N+3 N3 —3N? 43N +4 N2 —3N+3
+16TU2—177}2+/18 N3 U2+/19T1}2 h
3 As  Ae 3dg Ao

In addition, when m?2, Kf, 4y, and A3 are the only non-
vanishing parameters, the above analysis is expected to
hold for sufficiently large 4,. In that region the favored
vacua would be w, = vST,S™!, y; = vSTzS~'. This
vacuum has a lower energy than the trivial one when

, 2, N*—4N+4

— K. 93
"= ON" I Ni + (N = 1) (93)
Moreover, we checked that in the region
(N —-1)
e R 94
*T N -N—N (54)

these vacua are favored with respect to the aligned
configuration. In this example, the freezing condition for
the fields y, (@ - = 0) occurs at

K2 Ak
m=——L =T 95)
N (
which corresponds to v = —%. At this point, besides

stability, the reduced model diéplays Abelian-like vortex
profiles and Casimir scaling, as the general conditions
given in Sec. V are also realized.

At the freezing point, in the color and flavor symmetric
model and in the reduced model, the energy difference
between the preferred SU(N) — Z(N) SSB configuration,
the aligned, and the trivial one is finite. Thus, we may
conclude that the SU(N) — Z(N) SSB pattern is stable
with respect to small deviations from the freezing point. In
this case, the flux tubes only receive perturbative correc-
tions. Also, because of the additional quartic term consid-
ered, all possible phases obtained when the mass and cubic
parameters are arbitrarily varied become correctly stabi-
lized, as the energy of the global minima will be bounded
from below.

VII. DISCUSSION

In this work, we analyzed two classes of YMH models
with a set of adjoint Higgs flavors. Initially, we considered
the most general case with SU(N) color and flavor
symmetry constructed in terms of N?—1 adjoint real
scalars. Next, we also analyzed models derived from the
former by disregarding Higgs flavor labels in the Cartan
sector, only keeping Higgs fields labeled by the adjoint
weights of SU(N), which can be readily associated with the
different monopole charges. In this case, the cubic and
quartic interactions effectively describe the matching rules
for these charges when three and four monopole worldlines
meet at a point. This, together with the minimal coupling to
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the SU(N) gauge field Goldstone modes A,, describe
a mixed ensemble of oriented and nonoriented center
vortices [27]. In both cases, the SU(N) — Z(N) SSB
pattern, essential to reproduce the observed N-ality proper-
ties of the confining states at asymptotic distances, can be
realized. Here, we showed that the different properties
suggested by the lattice can be accommodated in a class of
models that remain stable under variations of the Higgs-
field mass parameter. These properties include asymptotic
Abelian profiles [32], the Casimir scaling law [39], and the
independence of the flux-tube cross-section from the
N-ality of the quark representation [35]. For each class,
the generation of Abelian profiles was traced back to the
possibility of freezing the Higgs fields having labels that
are trivially transformed by Cartan transformations along
the k-antisymmetric weights. This freezing automatically
implies that the profiles h, associated to Higgs fields
that do rotate under this type of transformation (there
are k(N — k) such fields) can be equated to a single profile
h. The latter satisfies a Nielsen-Olesen equation that turns
out to be k-independent. As the regularity conditions are
also k-independent, the above mentioned cross-section
property is then implied. Therefore, although the models
are formulated in terms of many fields, a collective
behavior arises where the k-vortex energy is proportional
to k(N — k), which coincides with the quadratic Casimir of
the k-antisymmetric representation. In both classes of
models there are relatively few freezing conditions on
the parameters. In addition, for small deviations from the
freezing point, the vortex properties are only perturbatively
modified. Then, it is satisfying to see that properties
observed or suggested in lattice simulations of SU(N)
YM lattice theory are ubiquitous in YMH models with
adjoint flavors, which in turn provide an effective descrip-
tion of mixed ensembles of oriented and nonoriented center
vortices also observed in the lattice.
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APPENDIX A: WEIGHTS OF SU(N)

The weights 4 of a given representation D of SU(N) are
N — 1 tuples defined in terms of the eigenvectors of the
Cartan generators, as follows:

D(T)IA) = Al,13). (A1)
When D is the fundamental(defining) representation, these
weights are denoted by w;, i = 1, ..., N. It is convenient to
define an ordering relation for these tuples, where a given
weight is said to be positive if its last nonzero component is
positive. It is also convenient to define the magnetic

weights f; = 2Nw;. Then, the magnetic weights of the
defining representation are defined such that f; > f, >
...>fn. They all have the same length, i.e.,
|B:|*> = 2(N — 1), and different weights have the following
scalar product
Bi By =—2.i%]. (A2)

Another important particular case is when D is the adjoint
representation, defined by

Ad(T4) pe = ~if anc- (A3)
The corresponding weights are known as the roots of
SU(N). They are given by differences of fundamental
weights, i.e., all roots can be written as

Notice that a;; is positive if and only if i > j.

APPENDIX B: THE STRUCTURE CONSTANTS
OF SU(N)

This section is dedicated to recalling the definition and
properties of the symmetric and antisymmetric struc-
ture constants dypc and fupc of SU(N). We define the
antisymmetric constants in terms of the commutators

[Ta,Ts] = ifapcTc- (B1)
It is more elegant to define these constants in terms of an
operation, which we will denote by the symbol A, that is
entirely closed in the algebra
Ty NTg=~i[Ty,Tg] = fapcTec- (B2)
The actual values of the constants f4- depend on a choice
of basis and throughout this work we will always use the
Weyl-Cartan basis which consists of N — 1 diagonal gen-
erators Tq, g=1,...,N—1, known as the Cartan gener-
ators, and the off-diagonal generators T, T, which are
labeled by the positive roots @ of SU(N). The off-diagonal

generators are defined in terms of the root vectors E,,
which satisfy

[Tqv Ea] = a’an’ [Ew E—a] = aquq’

[Ey. E,] = Ny E,y,, for a+y #0. (B3)
The constant N 5 being zero if a + J is not a root. Then, the
Hermitian off-diagonal generators are defined by

_E,tE,

N

_E,-E,

V2i

Ta Td (B4)
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The nontrivial commutation relations in the Cartan-Weyl
basis are

T, AT, =al,Ta (BSa)

Ty ATy =—al T (B5b)

Ty ATs=a|,T,, (B5c)
1

Ty N T[} = ﬁ (Na,ﬁTm + N{l,—//’Tﬁ)7 (BSd)
1

TonTy= 7§ (_Na,/iTaJrﬁ + er,—ﬁTa—/})7 (BSC)
1

Tﬁt AN T[} = — (_Na,ﬁTm + Na,—/ij)- (BSf)

V2

To evaluate the constants f,pc, we use the identity

Japc = (Ta NTp.Tc), (B6)
although one caveat is worth mentioning: because of the
property T_, =T, T— =-T, the Killing products
between generators associated with roots are

<Ta, Tﬁ> = 505’/; =+ 5&,—/1’ (B7a)

<T5w TB> = 50:./3 - 50:,—,5' (B7b)

With this in mind, the final result for the nonzero
antisymmetric constants is

fqaa = _fq&a =aly» (B8a)

1
fymi = ﬁ (Ny.n (5a,y+n - 50:.—7—11) + Ny,—n (5a,y—;7 - 50:.17—}'))’

(BSb)
1
fyr‘/a = %(_Ny.n(aa.}”rfl + 5(1.—1/—'1) +N7s—71(5“»7—'7 + 6‘1»’7—7’))’
(B8c)
1
f7;'76( = ﬁ (_Ny,n<5a,y+f7 - 506.—7—17) + NV-—'? (501»3/—'7 - 50@’/—7))'

(B8d)

In our convention, the constants N, 5 are given by

L if a + Bis a root
gl = { 7 g (B9)

0, otherwise.

They also have the useful properties

N—a,—ﬁ = Nﬁ,a = _Na,ﬁ’ (BlOa)

Nop=N,o =Ny, ifa+p+y=0. (B10b)
The roots a and the weights @ have a few properties

worth noticing:

a=w; - wj, (Bll)
N&;: — 1 |
N
1)
Zwi|qa)i|p - Za|qa|p = %' (B13)
i=1 a>0

The symmetric constants are defined in terms of the
anticommutators

{Ta.Tg} = cl+dypcTc. (B14)

The appearance of a component in the direction of the

identity matrix I comes from the fact that the anticommu-

tator 1s not traceless. In fact, the constant ¢ can be found via
the trace of this equation

ZTr(TATB) =cN. (BIS)

The basis T, is normalized in the sense of the Killing
product, which can be realized as

<TA’ TB> = 2NTr(TATB) = 5AB' (B16)
This leads to
(Ta:Tp) _ dap

Once again, it is more elegant to define the constants d4gc
in terms of a product closed in the algebra. We denote this
product by Vv and set

(T Tg)

TyNV Tg={TyTp}~ N2

— dypcTe.  (BIS)

Because the basis T4 is traceless, we can also obtain these
constants by

dape = 2NTr({T4, Tp}Tc). (B19)
This expression makes clear the cyclic property d g = dpca-

The constants d,pc- have fewer interesting properties
which makes it desirable to replace them with f4pc
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whenever possible. To do so, the following relations are
useful [40]

fABEfCDE = dACEdBDE - dADEdBCE

2
+ N2 (6acdpp — 6apdpc),  (B20)
fapedepe = dapefsce + dacefspE (B21)
N -4
dpprdppr = 7@13- (B22)

Fortunately, since we are only interested in SU(N ), more
can be said about the symmetric constants. For that
purpose, we first write the matrix realization of the
Weyl-Cartan basis in terms of roots and weights

Tq|ij = wi|q5ijv (B23)
1

To,lii = m (6140 + 6i6a)s (B24)
i

aglij = m(—@'cﬁjb +0ip0jq)- (B25)

Using the components of the generators, it is possible to
show

N
Tq \Y Tp = Z(Di|qwi|pwi . T,

(B26a)
i=1
T,V Ty =@|,Te (B26b)

T,V Ty=0, (B264)
1

Ta \% T/)’ = 75 (|N(1,/3|Ta+/7’ + |Na,—/i|Tﬁ)v (B26e)
1

T,V TB = 75 (|N(t/}|Ta_+ﬂ - |Na,—ﬁ|Ta__ﬂ)7 (B26f)
1

T& Vv T/_)‘ = ﬁ (_|N(1,/1|Ta+/i + |er,—/)’|Ta—/3)' (B26g)

For each a = w; — w;, we define @ = w; + w;.
We can now use Eq. (B19) and the analogous commu-
tator version to evaluate the constants d,pc

N
dgpr = 4Nzwi|qwi|pa}i|l’

(B27a)
i=1
dqaa = dq&d =a q’ (B27b)
1
dyr](z = 7§ (|Ny,n| (6a,y+n + 5(1.—7—11)
+ |Ny,—r/|(6a,y—n + 5(1.11—}/))’ (B27C)
1
dyi,& = 7§ (|Ny,n|<5a,y+r/ - 5&.—7—17)
- |N7.—f7|(5a,y—n - 50:.11—}/))’ (B27d)
1
d]?i/a = 7§ (_|N]/.,I7|(5a,y+i7 + 6(1,—y—7[)
IN, _y|(8ay—y + San=y))- (B27e)

®All the roots are assumed to be positive.
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