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In this work, we analyze a large class of effective Yang-Mills-Higgs models constructed in terms of
adjoint scalars. In particular, we reproduce asymptotic properties of the confining string, suggested by
lattice simulations of SUðNÞ pure Yang-Mills theory, in models that are stable in the whole range of Higgs-
field mass parameters. These properties include N-ality, Abelian-like flux-tube profiles, independence of
the profiles with the N-ality of the quark representation, and Casimir scaling. We find that although these
models are formulated in terms of many fields and possible Higgs potentials, a collective behavior can be
established in a large region of parameter space, where the desired asymptotic behavior is realized.
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I. INTRODUCTION

The dual superconductivity scenario to describe confine-
ment in pure Yang-Mills (YM) theory has been a subject of
intense research for several decades [1–6]. According to
this mechanism, the Yang-Mills vacuum behaves as a
condensate of chromomagnetic objects that gives rise to
a confining flux tube between quark probes. This idea has
been explored extensively using lattice simulations. For
example, along the transverse direction to the flux tube, the
profile for the longitudinal component of the chromo-
electric field has been fitted with the solitonic Abelian
Nielsen-Olesen vortex [7]. The underlying objects that
could condense in four-dimensional spacetime have also
been studied [8–18]. Ensembles formed by monopoles that
propagate along worldlines and thin center-vortices, which
are gauge field configurations characterized by loops that
propagate along worldsurfaces, have been identified in the
YM vacuum [13]. In particular, the N-ality property
observed in large Wilson loops was reproduced when
the average over Monte Carlo configurations is replaced
by one over simpler thin center-vortex configurations,
extracted from the complete link variables, which happen
to percolate in the continuum limit. Then, one important
question is how to conciliate the Abelian-like behavior of
the flux tube and N-ality. These features can be accom-
modated in effective Yang-Mills-Higgs (YMH) field mod-
els with SUðNÞ → ZðNÞ spontaneous symmetry breaking

(SSB) [19–26], with or without SUðNÞ flavor symmetry.
Moreover, SUðNÞ gauge field models constructed with
adjoint Higgs fields effectively describe the asymptotic
behavior of the different condensates observed in the lattice
[27] (see also [28]). In these models, the effective SUðNÞ
gauge field Λμ represents the Goldstone modes for
the percolating thin center vortices, with the natural
N-matching rule among center-vortex worldsurfaces. The
adjoint Higgs fields, minimally coupled to Λμ, effectively
describe monopole worldlines attached to worldsurfaces,
thus including the nonoriented (in the Lie algebra) center-
vortex component. The Higgs potential contains a mass
term m2ðψ I;ψ IÞ and the natural matching rules among
monopole worldlines. On this direction, an SUðNÞ color
and flavor symmetric model based on adjoint fields
ψ I ∈ suðNÞ with N2 − 1 flavors, I ¼ 1;…; N2 − 1, was
analyzed in Refs. [29–31]. Within this framework, when
m2 ¼ 0, the flux tube between external probes coincides
with the Abelian Nielsen-Olesen (finite) vortex. In addi-
tion, at asymptotic distances, as the group representation of
the external probes is varied, the string tension satisfies a
Casimir scaling law.
From a phenomenological point of view, studies in the

lattice cast some doubts about whether field models with
Nielsen-Olesen profiles are suitable to describe the con-
fining string. The analysis of the energy-momentum tensor
showed deviations from the Abelian counterparts at inter-
mediate distances [32]. A possible way out could be the
consideration of non-Abelian models away from the
Abelianization point. However, it could also happen that
the intermediate confining regime lies outside the domain
of applicability of the effective field model. Being origi-
nated from thin objects, it could only be used at asymptotic
distances. In this case, there is still an issue with the model
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studied in Ref. [30]; when moving from the Abelianization
point at m2 ¼ 0, there is a neighboring region (m2 < 0)
where the model becomes unstable. In fact, it would be
interesting if stability could be realized with negative m2,
which is naturally obtained in ensembles where monopole
worldlines have negative tension (monopole proliferation)
and positive stiffness [33,34]. On this direction, this state
could be stabilized by additional quartic terms not consid-
ered in the original formulation. Indeed, the model
described in Ref. [30] does not contain all possible terms
compatible with color and flavor symmetry. In this work,
we present a thorough investigation of the most general
flavor-symmetric SUðNÞ model with N2 − 1 adjoint Higgs
flavors, studying the possibility of coexistence of asymp-
totic N-ality, Abelian-like profiles, Casimir scaling, and
stable regions in parameter space. These are important
properties compatible with present lattice simulations of
pure YM theory. The observed independence of the flux-
tube cross section with respect to the N-ality of the quark
representation [35] will also be discussed.

II. SUðNÞ EFFECTIVE MODELS
WITH ADJOINT SCALARS

Lattice simulations showed that oriented (in the Lie
algebra) and nonoriented center vortices are relevant
variables to describe the various aspects of the infrared
behavior of SUðNÞ Yang-Mills theory (for a recent review,
see Ref. [36]). In Ref. [27], it was shown that the effective
description of a 4d mixed ensemble of percolating oriented
and nonoriented center-vortex worldsurfaces is given by a
Yang-Mills-Higgs model with a Higgs content based on a
set of adjoint scalars. The ensemble was initially defined on
the lattice, with the oriented component generated by
means of a Wilson action for dual SUðNÞ link variables Vμ,

Seff ¼ ζRetr½I − VμðxÞVνðxþ μ̂ÞV†
μðxþ ν̂ÞV†

νðxÞe−iαμνðxÞ�;
ð1Þ

with frustration e−iαμνðxÞ. The latter is nontrivial on pla-
quettes that intersect a surface SðCÞ whose border is the
Wilson loop C and is trivial otherwise. The nontrivial value
is given by

e−iαμν ¼ e−i2πβejqTq ;

which is the center-element generated when an elementary
center-vortex world surface links the Wilson loop for
quarks in representation Dð·Þ. Here, Tq, q¼ 1;…;N − 1,
are the Cartan generators and the (N − 1)-tuple βe is a
magnetic weight of the quark representation. Indeed, when
an expansion in powers of ζ is performed, because of the
properties of the Haar measure, a nonvanishing contribu-
tion arises from links on plaquettes that form closed
surfaces. Because of the frustration, these contributions

are accompanied by a center element when the vortex
surfaces link the Wilson loop. Moreover, as the group is
SUðNÞ, plaquette configurations where N vortex surfaces
are attached to a curve also contribute. These are the
fingerprints of center-vortices. In that reference, nonor-
iented configurations where pairs of world surfaces are
attached to closed monopole worldlines, as well as the
natural three and four-line rules to match open monopole
worldlines at a common endpoint, were also introduced.
This was done by including a diluted gas of adjoint loop
hololomies together with structures formed by holonomies
along open lines with various natural matching rules among
the possible adjoint charges of monopoles [the roots of
suðNÞ]. In the naif continuum limit, Eq. (1) gives rise to a
dual SUðNÞ gauge field Λμ governed by a Yang-Mills
action ðFμνðΛÞ − JμνÞ2 with frustration Jμν proportional to
βe and localized on SðCÞ. In the gas of adjoint monopole
loops and structures formed by three and four matched
lines, each holonomy gets replaced by the continuum
version

Γγ½Λ� ¼ Ad

�
exp

�Z
γ
Λμdxμ

��
; ð2Þ

where γ is a monopole worldline. These lines were
equipped with tension μ and positive stiffness 1=κ.
Using polymer techniques, it was shown that the gas of
adjoint loop holonomies lead to an effective description
in terms of adjoint scalars ψ I (I is a flavor label) with
squared mass m2 ∝ μκ, which are minimally coupled to the
dual gauge field Λμ. In addition, the three and four-line
structures correspond to cubic and quartic interaction
terms for these scalars. In this setting, the emergence of
NðN − 1Þ flavors is immediate, as this is the number of
adjoint monopole charges (roots) in the Lie algebra suðNÞ.
The consideration of additional adjoint scalars ψq,
q ¼ 1;…; N − 1, could also be useful to implement other
matching rules as well as a color and flavor symmetry in an
effective model with N2 − 1 flavors. As lattice simulations
have not yet constrained the possible correlations between
the monopoles, we will study a large class of models with
or without color and flavor symmetry. In the former case,
all cubic and quartic terms compatible with color and flavor
symmetry shall be considered. Among the possibilities, the
model studied in Refs. [29–31] is an interesting particular
case that is characterized by just one cubic and one quartic
term. At m2 ¼ 0 and asymptotic distances, it displays
N-ality, exact Casimir scaling, and Abelian-like profiles
independent of the quark representation, properties which
are compatible with those observed in the lattice for the
confining flux tube. Nonetheless, it could well happen that
future simulations regarding the properties of nonoriented
center vortices favor a mass parameterm2 < 0. In this case,
the model studied in Refs. [29–31] could not be applicable
because, in that region, the potential energy is not bounded
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from below. Note that a negative squared mass is a common
feature in monopole-only lattice scenarios based on the
Abelian projection, as it effectively describes the observed
monopole proliferation (monopole condensate) [33,34,37].
For these reasons, we will look for the possibility of stable
generalized models, which are consistent whenm2 < 0 and
that keep the above mentioned interesting asymptotic
properties of the confining flux tubes.

III. GENERAL SUðNÞ MODEL
WITH N2 − 1 FLAVORS

In this section, we shall initially review the effective
SUðNÞ YMH model with N2 − 1 adjoint scalar fields
proposed in Ref. [38]. Its action reads

S¼
Z

d4x

�
1

4
hFμν;Fμνiþ

1

2
hDμψ I;Dμψ IiþVHðψÞ

�
;

ψ I∈suðNÞ;

Fμν ¼
i
g
½Dμ;Dν�; Dμ ¼ ∂μþgΛμ ∧;

VHðψÞ¼ cþμ2

2
hψA;ψAiþ

κ

3
fABChψA ∧ψB;ψCi

þ λ

4
hψA ∧ψB;ψA∧ψBi: ð3Þ

Here, we used the notation X ∧ Y ¼ −i½X; Y�, while the
brackets denote the Killing product between two Lie
algebra elements, defined by

hX; Yi ¼ TrðAdðXÞAdðYÞÞ; X; Y ∈ suðNÞ; ð4Þ

where AdðXÞ refers to the adjoint representation. In our
conventions, the basis TA satisfies hTA; TBi ¼ δAB. This
model is invariant under color transformations

ψ I → Uψ IU−1; U∈ SUðNÞ ð5Þ

and under flavor transformations

ψ I → AdðUÞIJψJ: ð6Þ

For an appropriate choice of the parameters, an SUðNÞ →
ZðNÞ spontaneous symmetry breaking (SSB) pattern is
triggered. Then, as the first homotopy group of the vacuum
manifold M ¼ SUðNÞ=ZðNÞ is ZðNÞ, the topologically
stable vortex solutions display N-ality. At m2 ¼ 0, they are
Abelian-like and have an exact Casimir law at asymptotic
distances for the k-antisymmetric representations [30].
Furthermore, at λ ¼ g2, this scaling law was shown to
be stable as the energy of the k-antisymmetric irrep is
the smallest among the irreps with N-ality k [31]. These
properties are compatible with those of the confining string
observed in lattice simulations [35,39]. Note that the

SUðNÞ → ZðNÞ SSB becomes unstable for m2 < 0, as
the energy of aligned configurations (ψA ¼ ψB for all A, B)
is arbitrarily negative for large hψA;ψAi. This happens
because both the cubic and the quartic terms are zero in this
case. Thus, we are led to look for new models with
additional relevant terms to stabilize the desired phase.
Initially, it is interesting to consider a potential that depends
on ψA through the real variable

ϕðx; gÞ ¼ hψA; gTAg−1i; g∈ SUðNÞ; ð7Þ

as follows:

VðψÞ ¼ c0 þ
Z

dμðgÞ
�
a
2
ϕ2 þ b

3
ϕ3 þ c

4
ϕ4

�
: ð8Þ

This potential can be shown to be invariant under both color
and flavor transformations [cf. Eqs. (5), (6)] after using the
invariance of the Haar measure

R
dμðgÞ ¼ R

dμðgUÞ,
U∈ SUðNÞ. Here, it is also clear that the quartic term is
non-negative and the potential is bounded from below. In
particular, that term would vanish only if ϕðgÞ itself
vanished for every U, in which case the quadratic term
would also be zero. Therefore, the above-mentioned
stability issue does not exist in this case. Indeed, when
compared with Eq. (3), this model generates additional
terms, which happen to be all possible terms that are
compatible with color and flavor symmetry up to quartic
order, given in a specific combination. In what follows, we
will show this statement while, in the next section, we will
study the most general model with this symmetry, obtained
by assigning arbitrary coefficients to all generated terms.
Since ψðgÞ ¼ RAA0 ðgÞψAA0 , where RðgÞ stands for the

adjoint representation matrix of g, the integrand contains
two, three and four tensor products of adjoint representa-
tions of SUðNÞ. Only the singlet part of these tensor
products yields a nonvanishing contribution for the integral.
According to Refs. [40,41], the tensor product of two
adjoint representations RðgÞabRðgÞcd can be decomposed
into 7 different irreps1 (the Young tableaux are shown in
Fig. 1). The associated Hermitian projectors are

PSjABCD ¼ 1

N2 − 1
δABδCD; ð9aÞ

PFjABCD ¼ fABEfCDE; ð9bÞ

PDjABCD ¼ N2

N2 − 4
dABEdCDE; ð9cÞ

1This is for N > 3. For N ¼ 2, only the representations S, F
and X exist and are associated with spins 0, 1, and 2 respectively.
For N ¼ 3, the representation Y does not exist. Notice that this
does not mean that the corresponding projectors vanish if one
naively sets N ¼ 2 or N ¼ 3. Simply, they should not be
considered in these particular cases.
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PXjABCD ¼ 1

4
δACδBD þ N þ 2

4N
δADδBC −

1

2NðN þ 1Þ δABδCD

−
N
4
fADEfBCE þ N

4
dADEdBCE

−
N

2ðN þ 2Þ dABEdCDE; ð9dÞ

PY jABCD ¼ N − 2

4N
ðδACδBD þ δADδBCÞ þ

N − 2

2NðN − 1Þ δABδCD

−
N
4
ðdACEdBDE þ dADEdBCEÞ

þ NðN − 4Þ
4ðN − 2Þ dABEdCDE; ð9eÞ

PT jABCD ¼ 1

4
ðδACδBD − δADδBCÞ −

1

2
fABEfCDE

þ i
N
4
ðfADEdBCE þ dADEfBCEÞ; ð9fÞ

PT̄ jABCD ¼ P�
T jABCD; ð9gÞ

where the symmetryc and antisymmetryc structure con-
stants dABC and fABC are defined as

TA ∧ TB ¼ fABCTC; ð10aÞ

fTA; TBg ¼ δAB
N2

I þ dABCTC: ð10bÞ

These projectors allow us to obtain explicit expressions
for the different integrals by decreasing the number of
matrices in the integrand up to a point where the ortho-
gonality relations [42],

Z
dμðgÞDðiÞðgÞjξξ0DðjÞðg−1Þjζ0ζ ¼

δijδξζδξ0ζ0

di
; ð11Þ

can be used. The indices i, j label irreducible representa-
tions, while di is the dimension of DðiÞ. Since these
representations are unitary, their components satisfy
Dðg−1ÞB0B ¼ DðgÞ†B0B ¼ D�ðgÞBB0 . For the quadratic term,
we can directly use Eq. (11) to obtain

Z
dμðgÞϕ2 ¼ hψA; TA0 ihψB; TB0 i

Z
dμðgÞRðgÞAA0RðgÞBB0

¼ hψA;ψAi
N2 − 1

: ð12Þ

To evaluate the cubic term, the completeness property

δAA0δBB0 ¼ PSjABA0B0 þ PFjABA0B0 þ… ð13Þ

leads to

I3jABCA0B0C0 ¼
Z

dμðgÞRðgÞAA0RðgÞBB0RðgÞCC0

¼
Z

dμðgÞRðgÞAA00RðgÞBB00 ðPSjA00B00
A0B0

þ PFjA00B00
A0B0 þ PDjA00B00

A0B0 þ � � �ÞRðgÞCC0 ð14Þ

¼ fABCfA0B0C0 þ N2

N2 − 4
dABCdA0B0C0 : ð15Þ

Here, we used that Pi selects the subspace carrying the
irreducible representation i so that, in each term, the
product RAA0RBB0PðiÞjA00B00

A0B0 can be thought of as components

of a single DðiÞ, which allows us to use the orthogonality
relations to evaluate the group integral. As the last factor in
Eq. (14) is in the adjoint, the only contribution is originated

FIG. 1. Young tableaux of all irreps. contained in the tensor product of two AdðSUðNÞÞ representations.
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from the two independent subspaces that carry an adjoint
representation in Ad ⊗ Ad. In this manner, we get

Z
dμðgÞϕ3¼fABChψA∧ψB;ψCi

N2−1
þN2dABChψA∨ψB;ψCi

ðN2−1ÞðN2−4Þ ;

ð16Þ

where we defined

X ∨ Y ¼ fX; Yg − hX; Yi
N2

: ð17Þ

Similarly, We can proceed with the quartic term when
computing

I4jABCDA0B0C0D0 ¼
Z

dμðgÞRðgÞAA0RðgÞBB0RðgÞCC0RðgÞDD0 :

ð18Þ

This time we can introduce a pair of completeness relations
to reduce the components of RðgÞ in terms of components
of DðiÞ and then use the orthogonality relation in Eq. (11).
Most of the contributions will be originated from products
reduced by the same projectors. Two notable exceptions are
the products between the representations T and T̄ and the
two different adjoints, one associated with fABC and the
other with dABC. The result for the quartic term is

Z
dμðgÞϕ4 ¼ hψA; TA0 ihψB; TB0 ihψC; TC0 ihψD; TD0 i

× I4jABCDA0B0C0D0 ; ð19aÞ

I4jABCDA0B0C0D0

¼ N2fABEdCDEfA0B0E0dC0D0E0 þ N2dABEfCDEdA0B0E0fC0D0E0

ðN2 − 1ÞðN2 − 4Þ

þ 4PT jABCDPT̄ jA0B0
C0D0 þ 4PT̄ jABCDPT jA0B0

C0D0

ðN2 − 1ÞðN2 − 4Þ
þ

X
i¼S;F;D;X;Y

1

di
PijABCDPijA0B0

C0D0 : ð19bÞ

Now, let us see that the terms generated by the model in
Eq. (8) are all possible terms invariant under the desired
symmetry. It is clear that the quadratic term on the right-
hand side of Eq. (12) is the only possibility. As for the cubic
term, the most general combination is given by

CABC
A0B0C0ψAA0ψBB0ψCC0 ; ð20Þ

with ψAA0 ¼ hψA; TA0 i, i.e., primed indices refer to color
and unprimed refer to flavor. To ensure that color and flavor
symmetries

ψAA0 → RA0B0ψAB0 ; ψAA0 → RABψBA0 ; ð21Þ

are independently present, CABC
A0B0C0 must be a linear combi-

nation of the antisymmetric and symmetric structure con-
stants of suðNÞ in both sets of prime and unprimed indices.
Indeed, these structure constants are the only invariant
tensors with three indices, that is, the only singlets in
Ad⊗3 ≡ Ad ⊗ Ad ⊗ Ad. Therefore, the most general
cubic term can be parametrized by

κf
3
fABChψA ∧ ψB;ψCi þ

κd
3
dABChψA ∨ ψB;ψCi; ð22Þ

which corresponds to assigning arbitrary coefficients to the
terms obtained in Eq. (16). Regarding the quartic term, the
most general possibility is

CABCD
A0B0C0D0ψAA0ψBB0ψCC0ψDD0 : ð23Þ

This time, CABCD
A0B0C0D0 must be a linear combination of terms

of the form

TABCD
f TA0B0C0D0

c ; ð24Þ

with both tensors Tf and Tc being invariant under
the adjoint action of SUðNÞ. The space of invariants with
four adjoint indices (singlets in Ad⊗4) has basis2 δABδCD,
δACδBD, δADδBC, dABEdCDE, dACEdBDE, dADEdBCE,
fABEfCDE, fACEfBDE, and fADEfBCE [40]. In principle,
with 9 invariants, the most general CABCD

A0B0C0D0 is written as a
linear combination of 81 interactions. However, at most 9
of these 81 interactions3 are nonvanishing and linearly
independent. The key equations to eliminate these redun-
dancies are

fABEfCDE ¼ dACEdBDE − dADEdBCE

þ 2

N2
ðδACδBD − δADδBCÞ; ð25Þ

fABEdCDE ¼ dADEfBCE þ dACEfBDE: ð26Þ

For organizational purposes, these 9 interactions can be
subdivided into four sets, depending on how the flavor
indices of the Higgs fields are matched. In the flavor-singlet
set, the flavor indices are contracted with each other:

2In fact, for SUð2Þ and SUð3Þ this basis is overcomplete and
should include only 3 and 8 elements, respectively. For SUð2Þ,
dABC ¼ 0 and fABEfCDE ¼ δACδBD − δADδBC. For SUð3Þ, Bur-
goyne’s identity 3ðdABEdCDE þ dACEdBDE þ dADEdBCEÞ ¼
δABδCD þ δACδBD þ δADδBC can be used.

3The number drops to 3 and 8 for SUð2Þ and SUð3Þ
respectively.
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Vð4Þ
1 ¼ ðhψA;ψAiÞ2; Vð4Þ

2 ¼ hψA;ψBihψA;ψBi; ð27aÞ

Vð4Þ
3 ¼ hψA ∧ ψB;ψA ∧ ψBi; Vð4Þ

4 ¼ hψA ∨ ψA;ψB ∨ ψBi:
ð27bÞ

Notice V3 is the interaction that was analyzed in previous
papers [30,31,38]. In the f-adjoint set, the flavor indices are
matched with two copies of the antisymmetric structure
constants fABC:

Vð4Þ
5 ¼ fABEfCDEhψA;ψCihψB;ψDi; ð28aÞ

Vð4Þ
6 ¼ fABEfCDEhψA ∧ ψB;ψC ∧ ψDi: ð28bÞ

The d-adjoint set is analogous to the f-adjoint one, but
with symmetric structure constants dABC instead:

Vð4Þ
7 ¼ dABEdCDEhψA;ψBihψC;ψDi; ð29aÞ

Vð4Þ
8 ¼ dABEdCDEhψA ∨ ψB;ψC ∨ ψDi; ð29bÞ

Finally, there is the mixed adjoint set, where the flavor
indices are matched with both fABC and dABC:

Vð4Þ
9 ¼ fABEdCDEhψA ∧ ψB;ψC ∨ ψDi; ð30Þ

These terms are all generated in Eq. (19a).

IV. ANSATZ FOR THE VORTEX SOLUTIONS

In this section, we shall study the most general color and
flavor symmetric model for a set of N2 − 1 SU(N) adjoint
Higgs fields. The total energy in the presence of static
Λ0 ¼ 0 gauge fields is

E¼
Z

d4x

�
1

2
hBi;Biiþ hDμðΛÞψ I;DμðΛÞψ IiþVgenðψÞ

�
:

ð31Þ

The most general potential, as discussed in the previous
section, is given by

VgenðψÞ ¼ c0 þ
1

2
m2Vð2Þ þ 1

3
κfVð3Þ−f þ 1

3
κdVð3Þ−d

þ 1

4

X9
i¼1

λiV
ð4Þ
i ðψÞ: ð32Þ

Here, we defined

Vð2Þ ¼ hψA;ψAi;
Vð3Þ−f ¼ fABChψA ∧ ψB;ψCi;
Vð3Þ−d ¼ dABChψA ∨ ψB;ψCi: ð33Þ

Regarding the stability of the potential in Eq. (32), all of
the interactions Vð4Þ

i are positive, except for Vð4Þ
9 , which was

verified numerically to have an indefinite sign. However, it
is clear that this term can be present in a stable model
as it occurs in the one defined in Eq. (8). Moreover, the
instability problem pointed out in Sec. I when m2 < 0 can
be easily overcome in a large region of parameter space
while keeping Abelian-like behavior and Casimir Scaling.
This will be revisited at the end of Secs. V and VI B.
In Ref. [30] an ansatz for a vortex with charge k was

proposed for the model defined by Eq. (3). In this
subsection, we will show that the same ansatz closes the
equations of motion for the general model of Eq. (31).
The ansatz is proposed in the Cartan-Weyl basis of the Lie
algebra, which consists of N − 1 diagonal generators
Tq; q ¼ 1;…; N − 1, and NðN−1Þ

2
pairs of off-diagonal gen-

erator Tα; T ᾱ, which are labeled by the positive roots α of
SUðNÞ.4 The ansatz reads

Λi ¼ SAiS−1 þ
i
g
S∂iS−1; ð34aÞ

Ai ¼ ða − 1Þ k
g
∂iϕβ · T; ð34bÞ

ψq ¼ hqpSTqS−1; ð34cÞ

ψα=ᾱ ¼ hαSTα=ᾱS−1; ð34dÞ

S ¼ eiϕβ·T; β ¼ 2NΩ: ð34eÞ

Here, β is the magnetic weight, and Ω is the highest
weight of the representation of the static quarks. We used
the notation β · T ¼ βqTq and, for later convenience, we
will assume h−α ¼ hα even though the profiles hα were
initially defined only for positive roots.
These profile functions depend only on the cylindrical

coordinate distance ρ and must obey boundary conditions
to reproduce smooth vortex configurations centered on the
z-axis. At infinity, they must be such that the fields are in
the vacuum manifold, that is

When ρ → ∞; a → 1; hqp → vδqp; hα → v: ð35Þ

Moreover, some of them must also obey regularity con-
ditions in the vortex center ρ ¼ 0. The gauge profile
aðρÞ must vanish there to avoid a divergent magnetic field.

4See Appendixes A and B for a review of some aspects of the
Lie algebra of SUðNÞ which are relevant for this work.
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As for the Higgs profiles, one must consider the behavior of
the local frame

STqS−1 ¼ Tq; ð36aÞ

STαS−1 ¼ cos ðβ · αφÞTα − sin ðβ · αφÞT ᾱ; ð36bÞ

ST ᾱS−1 ¼ sin ðβ · αφÞTα þ cos ðβ · αφÞT ᾱ: ð36cÞ

This implies that if β · α ≠ 0, the field ψα is ill defined at
ρ ¼ 0. This leads to the regularity condition at ρ ¼ 0,

a ¼ 0 and hα ¼ 0 if β · α ≠ 0: ð37Þ
We will restrict the analysis to the k-antisymmetric

representations, as these are expected to give rise to the
most stable confining strings in the asymptotic regime.
Their highest weights are given by [see Appendix A for a
very brief review of the weights of SUðNÞ]

Ω ¼ ΩðkÞ ¼
Xk
i¼1

ωi; ð38Þ

where ωi, i ¼ 1;…; N are the weights of the fundamental
representation. We must now show that the full equations of
motion of the model can be reduced to a set of scalar ones
for the profiles a; hqp; hα. In this respect, let us initially
investigate the implications for the gauge field equation

DjFij ¼ ig½ψA;DiψA�: ð39Þ

In Ref. [30], this ansatz was shown to work for a potential
that corresponds to the particular choice m2 ≥ 0;
κd ¼ 0; λi≠3 ¼ 0 in the notation of the present paper.

Since the equation for the gauge field is the same regardless
of the potential, the same must hold for the general case. A
nontrivial question is whether the equations for the Higgs
fields close or not. These are

D2ψA ¼ δVgen

δψA
: ð40Þ

Using the commutation relations (B5), the left-hand side
can be evaluated as

D2ψq ¼ ∇2hqpTp;

D2ψα=ᾱ ¼ ð∇2hα þ ð1 − aÞ2ðα · β=ρÞ2ÞSTα=ᾱS−1: ð41Þ

To present the results obtained for the right-hand side of
(40) (i.e., the forces), we define the following quantities

Fð2Þ−A ¼ 1

2

δVð2Þ

δψA ; Fð4Þ−A
i ¼ 1

4

δVð4Þ
i

δψA
; i ¼ 1;…; 9

ð42aÞ

Fð3Þ−f−A ¼ 1

3

δVð3Þ−f

δψA ; Fð3Þ−d−A ¼ 1

3

δVð3Þ−d

δψA : ð42bÞ

We shall start by analyzing the Cartan sector, i.e., when
A ¼ q. In light of Eq. (41), the ansatz closes if the right-
hand side is proportional to a combination of the Cartan
generators.
In the ansatz, the expressions for the lower-order forces,

as well as those in the flavor-singlet category, are easier to
obtain than the ones in the other categories. For this reason,
we simply present them below

Fð2Þ−q ¼ hqpTp; Fð3Þ−f−q ¼ h2ααjqα · T; Fð3Þ−d−q ¼ 0; ð43aÞ
Fð4Þ−q
1 ¼ ðTrðHTHÞ þ 2h2αÞhqpTp; Fð4Þ−q

2 ¼ hqlhplhpmTm; Fð4Þ−q
3 ¼ 2h2αhqpαjpα · T; ð43bÞ

Fð4Þ−q
4 ¼ ð4NÞ2hqpωjjpðωi · HTH:ωiÞðωi · ωjÞωj · T þ 8Nh2αðα̃ · ωiÞhqpωijpωi · T; ð43cÞ

whereHjqp ¼ hqp, i and j are summed from 1 to N and α is
summed over the positive roots.

When it comes to Fð4Þ−q
i≥5 , the calculations are more

subtle. For illustrative purposes, we will show the main

steps to compute Fð4Þ
6 since it represents well the overall

complexity. Recalling Eq. (28b), we have

Fð4Þ−A
6 ¼ fABEfCDEψB ∧ ðψC ∧ ψDÞ: ð44Þ

The first step is to consider all the nonvanishing
possibilities for the indices B, C, and D given that
A ¼ q, i.e.,

Fð4Þ−q
6 ¼ 2fqαᾱfpαᾱψα ∧ ðψp ∧ ψαÞ þ 2fqᾱαfpᾱαψᾱ

∧ ðψp ∧ ψᾱÞ þ fqαᾱfγηᾱψα ∧ ðψγ ∧ ψηÞ
þ fqαᾱfγ̄ η̄ ᾱψα ∧ ðψγ̄ ∧ ψη̄Þ þ 2fqᾱαfγη̄αψᾱ

∧ ðψγ ∧ ψη̄Þ; ð45Þ

where the sum in α is to be performed over all positive
roots and in γ and η over all positive roots as long as
α ≠ η ≠ γ ≠ α. Using the properties of the structure
constants, we can reduce Eq. (45) to a sum of two terms.
The first one can be readily evaluated using Eqs. (B5)
and (B8a),
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4fqαᾱfpαᾱψα ∧ ðψp ∧ ψαÞ ¼ 4αjqαjphplh2ααlαrTr

¼ 4h2αðα · H · αÞαjqα · T: ð46Þ

The second one reads

4fqαᾱfγηᾱψα ∧ ðψγ ∧ ψηÞ
¼ 4hαhγhηαjqfγηᾱfγηδ̄SðTα ∧ T δ̄ÞS−1; ð47Þ

where α, γ, η and δ are summed over the positive roots. To
simplify this expression further, Eq. (B8c) plays a crucial
role. First, notice that the above expression vanishes unless
α ¼ δ since both δ and α are positive roots. The positivity is
important here because, otherwise, Eq. (B8c) would allow
other possibilities like, for example, α ¼ γ − η ¼ −δ. Also,
using Eq. (B10), we find

f2γηᾱ ¼
1

2
N2

γ;ηðδα;γþη þ δα;−γ−ηÞ þ
1

2
N2

γ;−ηðδα;γ−η þ δα;η−γÞ

¼ 1

2
N2

γ;ηδα;γþη; ð48Þ

where we changed the sum on γ and η in the last equality
to be overall roots, positive and negative, as long as
γ ≠ η ≠ α ≠ γ. This implies

4fqαᾱfγηᾱψα ∧ ðψγ ∧ ψηÞ ¼ 2N2
α;γhαhγhαþγαjqαjpTp:

ð49Þ
Additionally, provided one keeps in mind the properties

of the symmetric constants [see Eqs. (B26) and (B27)], the
previous remarks can be readily applied to all of the other
forces over the field ψq. After doing so, the expressions for
f-adjoint forces are

Fð4Þ−q
5 ¼ 2h2ααjqα · H · T; ð50aÞ

Fð4Þ−q
6 ¼ 4h2ααjqðα · H · αÞα · T þ 2N2

α;γhαhγhαþγαjqα · T:

ð50bÞ

In the d-adjoint case, the forces after applying the ansatz
become

Fð4Þ−q
7 ¼ ð4NÞ2ωijqðωi · ωjÞðωj:HHT · ωjÞðωi · H · TÞ þ 8Nh2αωijqðωi · α̃Þðωi · H · TÞ; ð51aÞ

Fð4Þ−q
8 ¼ ð4NÞ4ðωi · H · ωbÞðωi · ωjÞðωj · H · ωaÞ2ðωa · ωbÞωijqωb · T þ 4h2αα̃jqðα̃ · H · α̃Þα̃ · T

þ 2ð4NÞ2h2αðωi · H · ωjÞðα̃ · ωiÞðα̃ · ωjÞωijqωj · T þ 2M2
α;γhαhγhαþγα̃qα̃ · T; ð51bÞ

while the mixed adjoint one turns out to be

Fð4Þ−q
9 ¼ 2αjqðα̃ · H · α̃Þh2αα · T þ N2

αγhαhγhαþγðαjqαjp þ α̃qα̃pÞTp

þ ð4NÞ2ðωi · H · ωjÞðωi · αÞðωj · αÞh2αωijqωj · T þ 2ðα · H · αÞh2αα̃jqα̃ · T: ð52Þ

Again, in the above expressions, α must be summed over the positive roots while γ must be summed over all of the roots,
provided γ ≠ �α. The indices i, j, a, and b label the weights of the fundamental representation, thus ranging from 1 to N.
Because of the terms involving the symmetric constants dABC, we defined a vector α̃ ¼ ωa þ ωb for each root α ¼ ωa − ωb
(for details, see Appendix B).
In the root sector, i.e., setting A ¼ α, we have

Fð4Þ−α
6 ¼ 2fαqᾱfpαᾱψq ∧ ðψp ∧ ψαÞ þ fαqᾱfγηᾱψq ∧ ðψγ ∧ ψηÞ þ fαqᾱfγ̄ η̄ ᾱψq ∧ ðψγ̄ ∧ ψη̄Þ

þ 2fαᾱqfα0ᾱ0qψᾱ ∧ ðψα0 ∧ ψᾱ0 Þ þ fαγδ̄fεξδ̄ψγ ∧ ðψε ∧ ψξÞ þ fαγδ̄fε̄ ξ̄ δ̄ψγ ∧ ðψε̄ ∧ ψξ̄Þ
þ 2fαγ̄δfεξ̄δψγ ∧ ðψε ∧ ψξ̄Þ: ð53Þ

Here, there is no sum over α and there are sums over all
α0 > 0 and all roots γ, η, ε, ξ, both positive and negative.
The above expression brings two notable differences when
compared to its Cartan sector counterpart. First, there are
terms with summations over 5 positive roots, instead of just
3. These terms can be treated just like before but with the
use of Eq. (B8) twice. Second, a completely new kind of
term shows up, namely

2fαᾱqfα0ᾱ0qψᾱ ∧ ðψα0 ∧ ψᾱ0 Þ ¼ ðα ·α0Þ2h2α0hαSTαS−1: ð54Þ

Here, the α and α0 are positive roots and can even be the
same, which is why α0 was used, instead of a different greek
letter. Other than that, the steps to compute the forces in the
root sector are similar to what was done before and we start
again by exhibiting first the result for the lower order forces
and the flavor-singlet ones
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Fð2Þ−α ¼ hαSTαS−1; ð55aÞ

Fð3Þ−f−α ¼ 2ðα · H · αÞhαSTαS−1 þ N2
α;γhγhαþγSTαS−1;

ð55bÞ

Fð3Þ−d−α ¼ 2ðα̃ · H · α̃ÞhαSTαS−1 þ N2
α;γhγhαþγSTαS−1;

ð55cÞ

Fð4Þ−α
1 ¼ ðTrðHTHÞ þ 2h2α0 ÞhαSTαS−1; ð55dÞ

Fð4Þ−α
2 ¼ h3αSTαS−1; ð55eÞ

Fð4Þ−α
3 ¼ ðα ·HTH ·αþN2

α;γh2γ þjαj2h2αÞhαSTαS−1; ð55fÞ

Fð4Þ−α
4 ¼ð4Nðωi ·HTH ·ωiÞðωi · α̃Þþ2ðα̃ · α̃0Þh2α0 ÞhαSTαS−1:

ð55gÞ

Then, we move to the f-adjoint set

Fð4Þ−α
5 ¼ ðα ·HHT ·αþN2

α;γh2γ þjαj2h2αÞhαSTαS−1; ð56aÞ

Fð4Þ−α
6 ¼ ð2ðα · H · αÞ2 þ 2ðα · α0Þ2h2α0 ÞhαSTαS−1

þ N2
α;γðα · H · αÞhγhαþγSTαS−1

þ ðγ · H · γÞN2
α;γhγhαþγSTαS−1

þ N2
α;γN2

γ;ηhηhγþηhαþγSTαS−1; ð56bÞ

while the d-adjoint forces read

Fð4Þ−α
7 ¼ ð4Nðα̃ · ωiÞðωi · HHT · ωiÞ þ 2ðα̃ · α̃0Þh2α0 ÞhαSTαS−1; ð57aÞ

Fð4Þ−α
8 ¼ 2ðα̃ · H · α̃Þ2hαSTαS−1 þ ð4NÞ2ðα̃ · ωiÞðα̃ · ωjÞðωi · H · ωjÞ2hαSTαS−1

þM2
α;γðα̃ · H · α̃ÞhγhαþγSTαS−1 þ 2ðγ̃ · H · γ̃ÞM2

α;γhαþγhγSTαS−1

þ 2ðα̃ · α̃0Þ2hαh2α0STαS−1 þM2
α;γM2

γ;ηhαþγhηhγþηSTαS−1: ð57bÞ

Finally, the mixed-adjoint force reads

Fð4Þ−α
9 ¼ 2ðα · H · αÞðα̃ · H · α̃ÞhαSTαS−1 þ

�
1

2
α · H · αþ 1

2
α̃ · H · α̃

�
M2

α;γhγhαþγSTαS−1

þ 8N2ðα · ωiÞðα · ωjÞðωi · H · ωjÞ2hαSTαS−1 þ ððα · α̃0Þ2 þ ðα0 · α̃Þ2Þh2α0hαSTαS−1

þ ðγ · H · γ þ γ̃ · H · γ̃ÞN2
α;γhγhαþγSTαS−1 þ N2

γ;ηN2
α;γhηhγþηhαþγSTαS−1: ð58Þ

The summations are over i; j ¼ 1;…; N, α0 > 0, including
α0 ¼ α, positive and negative γ, η, excluding γ ¼ �α ≠
η ≠ γ. The expression for the forces with index ᾱ are the
same after replacing barred roots indices with unbarred
ones and vice versa.
Since we showed that both sides of Eq. (40) point in the

same direction in the Lie algebra, then our ansatz closes and
we are left with scalar equations for the profiles a, hqp,
and hα.

V. ABELIANIZATION AND THE ASYMPTOTIC
CASIMIR LAW

Here, we shall discuss the energy scaling of the solution
with N—ality k. A good starting point is to review some
facts regarding the particular case of the model given by
Eq. (3), which was studied in Ref. [30]. It has a special
point in parameter space, m2 ¼ 0, where all the profiles hα
with α · β ¼ 0 freeze at their vacuum value v. As for the
other profiles, a collective behavior was shown to take
place, i.e., hα ¼ h for all α with α · β ≠ 0. In this case, the
model can be said to be Abelianized as the equations

satisfied by the profiles a, h are those of the Ginzburg-
Landau model, which gives rise to the well-known Nielsen-
Olesen vortex. The string tension (energy per unit length) in
this particular case is

σparticular ¼ kðN − kÞ
Z

d2x

�j∇aj2
ρ2g2

þ h2ð1− aÞ2
ρ2

þ j∇hj2
�

þVparticular: ð59Þ
Here, we can use Derricks’s theorem in two dimensions,
which states that the kinetic energy of the gauge field is equal
to the potential energy of the Higgs fields, thus implying

σparticular ¼ kðN − kÞ

×
Z

d2x

�
2
j∇aj2
ρ2g2

þ h2ð1 − aÞ2
ρ2

þ j∇hj2
�
:

ð60Þ
This string tension scales with the quadratic Casimir of
the k-antisymmetric representation, in accordance with the
Casimir law
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σk
σ1

¼ kðN − kÞ
N − 1

ð61Þ

approximately observed in the lattice. The above derivation
makes it clear that a set of ingredients for such a law is the
existence of a region in parameter space for which the
following conditions are met
(1) hα ¼ v; ∀ αjα · β ¼ 0,
(2) hα ¼ h; ∀ αjα · β ¼ 1,
(3) h must be independent of k.

Keep in mind that only two values for α · β are being
considered since the weight in Eq. (34e) are those of the
k-antisymmetric representations.
In the following, we will analyze the existence of such a

region for the model of Eq. (31). Then, let us assume

hqp ¼ vδqp;

hα ¼
�
v if α · β ¼ 0

h if α · β ¼ 1
ð62Þ

and evaluate the force expressions (43), (50)–(52), and
(55)–(58).
Once again, wewill illustrate the calculations usingF6 as

an example. In the Cartan sector,

Fq
6 ¼ 4h2ααjqðα ·H ·αÞα ·Tþ 2N2

α;γhαhγhαþγαjqα ·T: ð63Þ

To evaluate these terms, we first need to write down
explicitly, for each k, which positive root yields the
value 0 or 1 for the product α · β. If we express the roots
as differences of weights of the fundamental representation,
i. e. α ¼ αij ¼ ωi − ωj, we have

αij · β¼
�
0; if i; j¼ 1;…; k or i; j¼ kþ 1;…;N;

1; if i¼ 1;…; k and j¼ kþ 1;…;N;
ð64Þ

and the positivity of the root is guaranteed by i < j. Now,
we can define the matrices

A1jðkÞqp ¼
Xk
i¼1

XN
j¼kþ1

αijjqαijjp; ð65aÞ

A0jðkÞqp ¼
XN
i¼kþ1

XN
j¼iþ1

αijjqαijjp; ð65bÞ

Ã0jðkÞqp ¼
Xk
i¼1

Xk
j¼iþ1

αijjqαijjp; ð65cÞ

which sum up to half the identity matrix. Then, noticing
every root has length equal to 1=

ffiffiffiffi
N

p
, the first term in

Eq. (63) is

4h2ααjqðα · H · αÞα · T ¼ 4

N
v3
X
α>0

α·βk¼0

αjqα · T

þ 4

N
vh2

X
α>0

α·βk≠0

αjqα · T;

¼ 2

N
v3Tq þ

4

N
vðh2 − v2ÞAk

qpTp:

ð66Þ

To evaluate the second term in Eq. (63), we need to split
the sum over α and γ into different cases to take into
account all the possibilities for the profiles hαhγhαþγ .
However, the matrix part of the term depends only on α
and not γ. This means that in each case the sum over γ
only contributes with a numerical factor. The following
table summarizes the different cases. The first column
shows how the roots α and γ must match to ensure αþ γ
is a valid root. The second column shows the range of the
indices i, j, k that label the roots. The third one show the
associated profiles and the last one shows the multiplicity
for each case, i.e., how many γ possibilities are there for
each α.

Root type Indices range Profiles ðhα; hγ; hαþγÞ Multiplicity

αij; γjl i≤k;j>k;l≤k ðh; h; h̃0Þ ðk − 1Þ
αij; γli i≤k;j>k;l>k ðh; h; h0Þ ðN − k − 1Þ
αij; γli i≤k;j>k;l≤k ðh; h̃0; hÞ ðk − 1Þ
αij; γjl i≤k;j>k;l>k ðh; h0; hÞ ðN − k − 1Þ
αij; γli or γjl i≤k;j≤k;l>k ðh̃0; h; hÞ 2ðN − kÞ
αij; γli or γjl i≤k;j≤k;l≤k ðh̃0; h̃0; h̃0Þ 2ðk − 2Þ
αij; γli or γjl i>k;j>k;l≤k ðh0; h; hÞ 2k
αij; γli or γjl i>k;j>k;l>k ðh0; h0; h0Þ 2ðN − k − 2Þ

Then, the second term reads

2N2
α;γhαhγhαþγαjqα · T ¼ 2ðh2 − v2Þv

N
ððN − 2ÞAjðkÞqpTp

þ ðN − kÞÃ0jðkÞqpTp þ kA0jðkÞqpTpÞ

þ 2v3ðN − 2Þ
N

ðÃ0jðkÞqpTp

þ A0jðkÞqpTp þ AjðkÞqpTpÞ: ð67Þ

We can eliminate AðkÞ
0 and ÃðkÞ

0 by using the identities

A0jðkÞqp ¼ 2N − k
4N

δqp −
N
2
βjqβjp −

AjðkÞqp

2
; ð68Þ

Ã0jðkÞqp ¼ k
4N

δqp þ
N
2
βjqβjp −

AjðkÞqp

2
; ð69Þ

which leads to
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2N2
α;γhαhγhαþγαjqα · T ¼ v3ðN − 2Þ

N
Tq þ

kð3N − 2kÞ
2N2

vðh2 − v2ÞTq

þ N − 4

N
vðh2 − v2ÞAjðkÞqpTp þ ðN − 2kÞvðh2 − v2Þβjqβ · T: ð70Þ

A similar analysis can be carried out for all of the other forces. Just as before, we start by showing the result for the lower
order and flavor-singlet interactions

Fð2Þ−q ¼ vTq; ð71aÞ

Fð3Þ−f−q ¼ v2Tq þ 2ðh2 − v2ÞAjðkÞqpTp; ð71bÞ

Fð3Þ−d−q ¼ N2 − 4

N2
v2Tq þ

2k
N

ðh2 − v2ÞTq − 2ðh2 − v2ÞAjðkÞqpTp þ 4ðh2 − v2ÞðN − 2kÞβjqβ · T; ð71cÞ

Fð4Þ−q
1 ¼ ðN2 − 1Þv3Tq þ 2kðN − kÞvðh2 − v2ÞTq; ð71dÞ

Fð4Þ−q
2 ¼ v3Tq; ð71eÞ

Fð4Þ−q
3 ¼ v3Tq þ 2vðh2 − v2ÞAjðkÞqpTp; ð71fÞ

Fð4Þ−q
4 ¼ −

2kðN − 2kÞ
N2

vðh2 − v2ÞTq þ 4ðN − 2kÞvðh2 − v2Þβjqβ · T: ð71gÞ

Next, we present the result for the f-adjoint set of interactions

Fð4Þ−q
5 ¼ v3Tq þ 2vðh2 − v2ÞAjðkÞqpTp; ð72aÞ

Fð4Þ−q
6 ¼ v3Tq þ

kð3N − 2kÞ
2N2

vðh2 − v2ÞTq þ vðh2 − v2ÞAjðkÞqpTp þ ðN − 2kÞvðh2 − v2Þβjqβ · T; ð72bÞ

then the d-adjoint forces

Fð4Þ−q
7 ¼ −

2kðN − 2kÞ
N2

vðh2 − v2ÞTq þ 4ðN − 2kÞvðh2 − v2Þβjqβ · T; ð73aÞ

Fð4Þ−q
8 ¼

�
N2 − 4

N2

�
2

v3Tq −
kð24N − 5N3Þ þ k2ð16þ 2N2Þ

2N4
vðh2 − v2ÞTq

−
N2 − 12

N2
vðh2 − v2ÞAjðkÞqpTp þ

ð3N2 − 40ÞðN − 2kÞ
N2

vðh2 − v2Þβjqβ · T; ð73bÞ

and the mixed-adjoint one

Fð4Þ−q
9 ¼ N2 − 4

N2
v3Tq þ

kð2N − kÞ
N2

vðh2 − v2ÞTq −
6

N2
vðh2 − v2ÞAjðkÞqpTp þ 2ðN − 2kÞvðh2 − v2Þβjqβ · T: ð74Þ

Notice that these forces are combinations of the following five expressions: Tq, kðh2 − v2ÞTq, k2ðh2 − v2ÞTq,

ðh2 − v2ÞAjðkÞqpTp, and ðN − 2kÞðh2 − v2Þβjqβ · T. As discussed before, if the profiles hqp were to freeze at their vacuum
values, a Casimir scaling can be found. Because of Eq. (41), this means that the total force on the fields ψq must vanish,
which implies equating the total coefficients of each piece to 0. Doing so for the coefficient of Tq leads to
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0¼m2þ κfvþ
N2 − 4

N2
κdvþðN2− 1Þλ1v2þ λ2v2þ λ3v2

þ λ5v2þ λ6v2þ
�
N2 − 4

N2

�
2

λ8v2þ
N2− 4

N2
λ9v2; ð75Þ

which is actually what defines the value of v ≠ 0 that
minimizes the potential. As for the other pieces, they
yield a set of four conditions, out of which only three
are independent:

2κd þ 2N2λ1v − 2λ4vþ
3

2
λ6v − 2λ7vþ

5N2 − 24

2N2
λ8v

þ 2λ9v ¼ 0; ð76aÞ

2N2λ1 − 4λ4 þ λ6 − 4λ7 þ
N2 þ 8

N2
λ8 þ λ9 ¼ 0; ð76bÞ

2κf − 2κd þ 2λ3vþ 2λ5vþ λ6v −
N2 − 12

N2
λ8v

−
6

N2
λ9v ¼ 0: ð76cÞ

In the root sector, Fα was shown to be proportional to
STαS−1 in Eqs. (55)–(58), but the expression for the forces
changes depending on the type of root as defined in
Eq. (64). If the roots α ¼ ωi − ωj are perpendicular to
the magnetic weight and i; j > k, the lower order and
flavor-singlet forces are5

hFð2Þ−α; STαS−1i ¼ v; ð77aÞ

hFð3Þ−f−α; STαS−1i ¼ v2 þ k
N
ðh2 − v2Þ; ð77bÞ

hFð3Þ−d−α; STαS−1i ¼
N2 − 4

N2
v2 þ k

N
ðh2 − v2Þ; ð77cÞ

hFα
1; STαS−1i ¼ ðN2 − 1Þv3 þ 2kðN − kÞvðh2 − v2Þ;

ð77dÞ

hFα
2; STαS−1i ¼ v3 ð77eÞ

hFα
3; STαS−1i ¼ v3 þ kvðh2 − v2Þ

N
; ð77fÞ

hFα
4; STαS−1i ¼ −2

kðN − 2kÞ
N2

vðh2 − v2Þ: ð77gÞ

The forces in the f-adjoint set are

hFα
5; STαS−1i ¼ v3 þ k

N
vðh2 − v2Þ; ð78aÞ

hFα
6; STαS−1i ¼ v3 þ kð2N − kÞ

N2
vðh2 − v2Þ; ð78bÞ

while those in the d-adjoint set are

hFα
7; STαS−1i ¼ −2

kðN − 2kÞ
N2

vðh2 − v2Þ; ð79aÞ

hFα
8; STαS−1i ¼

ðN2 − 4Þ2
N4

v3

þ kð2N3 − 8k − N2k − 6NÞ
N4

vðh2 − v2Þ:
ð79bÞ

The force in the mixed-adjoint set is

hFα
9; STαS−1i ¼

N2 − 4

N2
v3 þ kð2N2 − Nk − 3Þ

N3
vðh2 − v2Þ:

ð80Þ

Now, for a Casimir scaling, we should also equate to 0 the
total force on ψα with α · β ¼ 0. It turns out that this is
automatically satisfied after imposing the hqp-freezing
conditions in Eq. (76). Finally, for roots α such that
α · β ¼ 1, we show the expressions for the lower order
and flavor-singlet forces

hFð2Þ−α; STαS−1i ¼ h; ð81aÞ

hFð3Þ−f−α; STαS−1i ¼ hv; ð81bÞ

hFð3Þ−d−α; STαS−1i ¼
N2 − 4

N2
hv; ð81cÞ

hFα
1; STαS−1i ¼ ðN2 − 1Þv2hþ 2kðN − kÞhðh2 − v2Þ;

ð81dÞ

hFα
2; STαS−1i ¼ h3; ð81eÞ

hFα
3; STαS−1i ¼

hðh2 þ v2Þ
2

; ð81fÞ

hFα
4; STαS−1i ¼

ðN − 2kÞ2
N2

hðh2 − v2Þ; ð81gÞ

the f-adjoint forces

hFα
5; STαS−1i ¼

1

2
hðh2 þ v2Þ; ð82aÞ

5These expressions are the same for all values of i and j,
provided i; j > k. Additionally, when i; j < k, the forces can be
obtained from the former case by a simple change k → N − k. As
these properties are true for all of the forces acting on ψα=ᾱ, we
will omit the case i; j < k.
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hFα
6; STαS−1i ¼ v2hþ 1þ Nk − k2

N2
hðh2 − v2Þ; ð82bÞ

the d-adjoint forces

hFα
7; STαS−1i ¼

ðN − 2kÞ2
N2

hðh2 − v2Þ; ð83aÞ

hFα
8; STαS−1i ¼

N4 − 8N2 þ 16

N4
v2h

þ N3k − N2k2 − 3N2 þ 8Nk − 8k2

N4
h3;

ð83bÞ

and the mixed-adjoint force

hFα
9; STαS−1i ¼

Nk − k2 − 1

N2
hðh2 − v2Þ þ N2 − 4

N2
v2h:

ð84Þ
Since the profile h is nontrivial, there is no condition
associated with the total force vanishing. However, it is
important that h does not depend on k so as to guarantee a
Casimir law. This would entail equating to 0 the coef-
ficients of kh, k2h, kh3, and k2h3 in the total force. Just like
before, the resulting conditions are not independent of
Eqs. (76). That is, after freezing hqp, the equation satisfied
by h is automatically k-independent and reads

∇2h ¼
�
m2 þ κfvþ κd

N2 − 4

N2
vþ λ1ðN2 − 1Þv2

þ λ3v2

2
− λ4v2 þ λ5

v2

2
þ λ6

N2 − 1

N2
v2 − λ7v2

þþλ8
N4 − 5N2 þ 16

N4
v2 þ λ9

N2 − 3

N2
v2
�
h

þ
�
λ2 þ

λ3
2
þ λ4 þ

λ5
2
þ λ6
N2

þ λ7 −
3

N2
λ8 −

λ9
N2

�
h3:

ð85Þ
For completeness, we show also the resulting equation for
the gauge field

1

ρ

da
dρ

−
d2a
dρ2

¼ g2h2ð1 − aÞ: ð86Þ

These equations are those of an ANO model after an
appropriate redefinition of the parameters.

VI. STABILITY

In the simple model given by Eq. (3), when moving from
the Abelianization point at m2 ¼ 0, there is a neighboring
region (m2 < 0) where it becomes unstable (see Sec. I). In
this region, the fields prefer to align along a common
direction in the Lie algebra and arbitrarily increase their

norm. This way, the cubic and quartic terms are nullified
and the energy due to the mass term becomes arbitrarily
negative. Although we shall not analyze the parameter
space in detail, we would like to note that this issue can be
easily fixed in the general color and flavor symmetric
setting, and even in a class of models where the field-
content is reduced by disregarding the ψq Higgs-sector.
Moreover, this can be done while keeping the Abelian-like
profiles as well as the Casimir scaling law.

A. Models with color and flavor symmetry

For example, let us consider the model in Eqs. (31) and
(32), with m2, κf, λ2 > 0, and λ3 > 0 being the only
nonvanishing parameters. In the new quartic contribution

λ2ðhψ1;ψ1i2 þ hψ2;ψ2i2 þ � � � þ 2hψ1;ψ2i2
þ 2hψ2;ψ3i2 þ…Þ; ð87Þ

the terms with a single flavor index prevent the energy
minimization with an arbitrarily large norm, thus leading to
a stable model. Now, in order for the SUðNÞ → ZðNÞ SSB
vacua ψA ¼ vSTAS−1 to be preferred with respect to the
trivial vacuum, the condition

m2 <
2

9

κ2f
λ2 þ λ3

ð88Þ

must be satisfied. In addition, it can be easily seen that for

λ2 >
λ3

N2 − 2
ð89Þ

the SUðNÞ → ZðNÞ SSB vacua are favored when com-
pared with the aligned vacua. In this respect, note that the
mixed terms in Eq. (87) tend to favor the orthogonality
between different fields. Moreover, the freezing conditions
for ψq in Eqs. (76a)–(76c) are satisfied at

m2 ¼ −λ2
�
κf
λ3

�
2

;

which corresponds to v ¼ − κf
λ3
. According to the analysis in

Sec. V, this freezing automatically implies Nielsen-Olesen
profiles and asymptotic Casimir scaling.

B. Reduced models without ψq

From the ensemble point of view [27], the Higgs fields
ψα, ψᾱ labeled by roots are naturally associated with
worldlines carrying an adjoint charge α. On the other
hand, the adjoint Higgs fields ψq labelled by Cartan indices
were introduced to cope with possible matching rules in the
suð2Þ subalgebras of suðNÞ. If these matching rules were
absent, it would be appropriate to limit the Higgs field-
content of the effective model to ψα, ψᾱ. Let us analyze
what would change in this scenario. This can be achieved
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by setting ψq ¼ 0 in the energy functional and the ansatz.
Of course, we do not have to worry about the conditions
derived from the Eqs. for ψq [cf. (71)–(74)]. In the root
sector, on the other hand, Eqs. (55)–(58) with ψq ¼ 0 are
still valid and, for that reason, the ansatz still closes.
The main changes are originated from Eqs. (77)–(80)
and (81)–(84), since the absence of the fields ψq drastically
modify the coefficients therein. Consequently, new con-
ditions emerge when equating the coefficients of the new
total forces on ψα to 0 (α · β ¼ 0). Nevertheless, a similar
analysis can be carried out and, just as before, not all
conditions are independent. The freezing conditions can be
chosen as

κf þ κd þ 2N2λ1vþ λ3v − 2ðλ4 þ λ7Þvþ λ5v

þ 2N − 3

N
ðλ6 þ λ8 þ λ9Þv ¼ 0 ð90aÞ

−2N2λ1þ 4ðλ4þ λ7Þ− ðλ6þ λ9Þ−
N2þ 8

N2
λ8 ¼ 0; ð90bÞ

while the new equation that defines v is

0 ¼ m2 þ N − 2

N
vðκf þ κdÞ þ NðN − 1Þv2λ1 þ v2λ2

þ N − 1

N
v2λ3 þ

N − 1

N
v2λ5 þ

N2 − 3N þ 4

N2
v2λ6

þ N3 − 3N2 þ 4

N3
v2λ8 þ

N2 − 3N þ 2

N2
v2λ9: ð91Þ

Again, the freezing conditions lead to a collective behavior
where the nontrivial profiles hα (α · β ¼ 1) are equal to a
single one h, which satisfies a k-independent Nielsen-
Olesen equation

∇2h ¼
�
m2 þ κf

N − 2

N
vþ κd

N − 2

N
vþ λ1NðN − 1Þv2 þ λ3

N − 2

2N
v2 − λ4v2 þ λ5

N − 2

2N
v2

þλ6
N2 − 3N þ 3

N2
v2 − λ7v2 þ λ8

N3 − 3N2 þ 3N þ 4

N3
v2 þ λ9

N2 − 3N þ 3

N2
v2
�
h

þ
�
λ2 þ

λ3
2
þ λ4 þ

λ5
2
þ λ6
N2

þ λ7 −
3λ8
N2

−
λ9
N2

�
h3: ð92Þ

In addition, when m2, κf, λ2, and λ3 are the only non-
vanishing parameters, the above analysis is expected to
hold for sufficiently large λ2. In that region the favored
vacua would be ψα ¼ vSTαS−1, ψᾱ ¼ vST ᾱS−1. This
vacuum has a lower energy than the trivial one when

m2 <
2

9N
κ2f

N2 − 4N þ 4

Nλ2 þ λ3ðN − 1Þ : ð93Þ

Moreover, we checked that in the region

λ2 >
λ3ðN − 1Þ

N3 − N2 − N
ð94Þ

these vacua are favored with respect to the aligned
configuration. In this example, the freezing condition for
the fields ψα (α · β ¼ 0) occurs at

m2 ¼ −
κ2f
Nλ3

−
λ2κ

2
f

λ23
; ð95Þ

which corresponds to v ¼ − κf
λ3
. At this point, besides

stability, the reduced model displays Abelian-like vortex
profiles and Casimir scaling, as the general conditions
given in Sec. V are also realized.

At the freezing point, in the color and flavor symmetric
model and in the reduced model, the energy difference
between the preferred SUðNÞ → ZðNÞ SSB configuration,
the aligned, and the trivial one is finite. Thus, we may
conclude that the SUðNÞ → ZðNÞ SSB pattern is stable
with respect to small deviations from the freezing point. In
this case, the flux tubes only receive perturbative correc-
tions. Also, because of the additional quartic term consid-
ered, all possible phases obtained when the mass and cubic
parameters are arbitrarily varied become correctly stabi-
lized, as the energy of the global minima will be bounded
from below.

VII. DISCUSSION

In this work, we analyzed two classes of YMH models
with a set of adjoint Higgs flavors. Initially, we considered
the most general case with SUðNÞ color and flavor
symmetry constructed in terms of N2 − 1 adjoint real
scalars. Next, we also analyzed models derived from the
former by disregarding Higgs flavor labels in the Cartan
sector, only keeping Higgs fields labeled by the adjoint
weights of SUðNÞ, which can be readily associated with the
different monopole charges. In this case, the cubic and
quartic interactions effectively describe the matching rules
for these charges when three and four monopole worldlines
meet at a point. This, together with the minimal coupling to
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the SUðNÞ gauge field Goldstone modes Λμ, describe
a mixed ensemble of oriented and nonoriented center
vortices [27]. In both cases, the SUðNÞ → ZðNÞ SSB
pattern, essential to reproduce the observed N-ality proper-
ties of the confining states at asymptotic distances, can be
realized. Here, we showed that the different properties
suggested by the lattice can be accommodated in a class of
models that remain stable under variations of the Higgs-
field mass parameter. These properties include asymptotic
Abelian profiles [32], the Casimir scaling law [39], and the
independence of the flux-tube cross-section from the
N-ality of the quark representation [35]. For each class,
the generation of Abelian profiles was traced back to the
possibility of freezing the Higgs fields having labels that
are trivially transformed by Cartan transformations along
the k-antisymmetric weights. This freezing automatically
implies that the profiles hα associated to Higgs fields
that do rotate under this type of transformation (there
are kðN − kÞ such fields) can be equated to a single profile
h. The latter satisfies a Nielsen-Olesen equation that turns
out to be k-independent. As the regularity conditions are
also k-independent, the above mentioned cross-section
property is then implied. Therefore, although the models
are formulated in terms of many fields, a collective
behavior arises where the k-vortex energy is proportional
to kðN − kÞ, which coincides with the quadratic Casimir of
the k-antisymmetric representation. In both classes of
models there are relatively few freezing conditions on
the parameters. In addition, for small deviations from the
freezing point, the vortex properties are only perturbatively
modified. Then, it is satisfying to see that properties
observed or suggested in lattice simulations of SUðNÞ
YM lattice theory are ubiquitous in YMH models with
adjoint flavors, which in turn provide an effective descrip-
tion of mixed ensembles of oriented and nonoriented center
vortices also observed in the lattice.
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APPENDIX A: WEIGHTS OF SUðNÞ
The weights λ of a given representation D of SUðNÞ are

N − 1 tuples defined in terms of the eigenvectors of the
Cartan generators, as follows:

DðTqÞjλi ¼ λjqjλi: ðA1Þ

When D is the fundamental(defining) representation, these
weights are denoted by ωi, i ¼ 1;…; N. It is convenient to
define an ordering relation for these tuples, where a given
weight is said to be positive if its last nonzero component is
positive. It is also convenient to define the magnetic

weights βi ¼ 2Nωi. Then, the magnetic weights of the
defining representation are defined such that β1 > β2 >
… > βN . They all have the same length, i.e.,
jβij2 ¼ 2ðN − 1Þ, and different weights have the following
scalar product

βi · βj ¼ −2; i ≠ j: ðA2Þ

Another important particular case is when D is the adjoint
representation, defined by

AdðTAÞjBC ¼ −ifABC: ðA3Þ

The corresponding weights are known as the roots of
SUðNÞ. They are given by differences of fundamental
weights, i.e., all roots can be written as

αij ¼ ωi − ωj; i ≠ j: ðA4Þ

Notice that αij is positive if and only if i > j.

APPENDIX B: THE STRUCTURE CONSTANTS
OF SUðNÞ

This section is dedicated to recalling the definition and
properties of the symmetric and antisymmetric struc-
ture constants dABC and fABC of SUðNÞ. We define the
antisymmetric constants in terms of the commutators

½TA; TB� ¼ ifABCTC: ðB1Þ

It is more elegant to define these constants in terms of an
operation, which we will denote by the symbol ∧, that is
entirely closed in the algebra

TA ∧ TB ¼ −i½TA; TB� ¼ fABCTC: ðB2Þ

The actual values of the constants fABC depend on a choice
of basis and throughout this work we will always use the
Weyl-Cartan basis which consists of N − 1 diagonal gen-
erators Tq; q ¼ 1;…; N − 1, known as the Cartan gener-
ators, and the off-diagonal generators Tα; T ᾱ, which are
labeled by the positive roots α of SUðNÞ. The off-diagonal
generators are defined in terms of the root vectors Eα,
which satisfy

½Tq; Eα� ¼ αjqEα; ½Eα; E−α� ¼ αjqTq;

½Eα; Eγ� ¼ NαγEαþγ; for αþ γ ≠ 0: ðB3Þ

The constant Nαδ being zero if αþ δ is not a root. Then, the
Hermitian off-diagonal generators are defined by

Tα ¼
Eα þ E−αffiffiffi

2
p ; T ᾱ ¼

Eα − E−αffiffiffi
2

p
i

: ðB4Þ
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The nontrivial commutation relations in the Cartan-Weyl
basis are

Tq ∧ Tα ¼ αjqT ᾱ; ðB5aÞ

Tq ∧ T ᾱ ¼ −αjqTα; ðB5bÞ

Tα ∧ T ᾱ ¼ αjqTq; ðB5cÞ

Tα ∧ Tβ ¼
1ffiffiffi
2

p ðNα;βTαþβ þ Nα;−βTα−βÞ; ðB5dÞ

Tα ∧ T β̄ ¼
1ffiffiffi
2

p ð−Nα;βTαþβ þ Nα;−βTα−βÞ; ðB5eÞ

T ᾱ ∧ T β̄ ¼
1ffiffiffi
2

p ð−Nα;βTαþβ þ Nα;−βTα−βÞ: ðB5fÞ

To evaluate the constants fABC, we use the identity

fABC ¼ hTA ∧ TB; TCi; ðB6Þ

although one caveat is worth mentioning: because of the
property T−α ¼ Tα, T−α ¼ −T ᾱ, the Killing products
between generators associated with roots are

hTα; Tβi ¼ δα;β þ δα;−β; ðB7aÞ

hT ᾱ; T β̄i ¼ δα;β − δα;−β: ðB7bÞ

With this in mind, the final result for the nonzero
antisymmetric constants is

fqαᾱ ¼ −fqᾱα ¼ αjq; ðB8aÞ

fγηᾱ ¼
1ffiffiffi
2

p ðNγ;ηðδα;γþη− δα;−γ−ηÞþNγ;−ηðδα;γ−η− δα;η−γÞÞ;

ðB8bÞ

fγη̄α¼
1ffiffiffi
2

p ð−Nγ;ηðδα;γþηþδα;−γ−ηÞþNγ;−ηðδα;γ−ηþδα;η−γÞÞ;

ðB8cÞ

fγ̄ η̄ ᾱ ¼
1ffiffiffi
2

p ð−Nγ;ηðδα;γþη−δα;−γ−ηÞþNγ;−ηðδα;γ−η−δα;η−γÞÞ:

ðB8dÞ

In our convention, the constants Nα;β are given by

jNα;βj ¼
� 1ffiffiffiffiffi

2N
p ; if α⃗þ βis a root

0; otherwise:
ðB9Þ

They also have the useful properties

N−α;−β ¼ Nβ;α ¼ −Nα;β; ðB10aÞ

Nα;β ¼ Nγ;α ¼ Nβ;γ if αþ β þ γ ¼ 0: ðB10bÞ

The roots α and the weights ω have a few properties
worth noticing:

α ¼ ωi − ωj; ðB11Þ

ωi · ωj ¼
Nδij − 1

2N2
⇒ jαj2 ¼ 1

N
; ðB12Þ

XN
i¼1

ωijqωijp ¼
X
α>0

αjqαjp ¼ δqp
2

: ðB13Þ

The symmetric constants are defined in terms of the
anticommutators

fTA; TBg ¼ cI þ dABCTC: ðB14Þ

The appearance of a component in the direction of the
identity matrix I comes from the fact that the anticommu-
tator is not traceless. In fact, the constant c can be found via
the trace of this equation

2TrðTATBÞ ¼ cN: ðB15Þ

The basis TA is normalized in the sense of the Killing
product, which can be realized as

hTA; TBi ¼ 2NTrðTATBÞ ¼ δAB: ðB16Þ

This leads to

c ¼ hTA; TBi
N2

¼ δAB
N2

: ðB17Þ

Once again, it is more elegant to define the constants dABC
in terms of a product closed in the algebra. We denote this
product by ∨ and set

TA ∨ TB ¼ fTA; TBg −
hTA; TBi

N2
¼ dABCTC: ðB18Þ

Because the basis TA is traceless, we can also obtain these
constants by

dABC ¼ 2NTrðfTA; TBgTCÞ: ðB19Þ

This expressionmakes clear the cyclic propertydABC ¼ dBCA.
The constants dABC have fewer interesting properties

which makes it desirable to replace them with fABC

JUNIOR, OXMAN, and SIMÕES PHYS. REV. D 108, 094021 (2023)

094021-16



whenever possible. To do so, the following relations are
useful [40]

fABEfCDE ¼ dACEdBDE − dADEdBCE

þ 2

N2
ðδACδBD − δADδBCÞ; ðB20Þ

fABEdCDE ¼ dADEfBCE þ dACEfBDE; ðB21Þ

dAEFdBEF ¼ N2 − 4

N2
δAB: ðB22Þ

Fortunately, since we are only interested in SUðNÞ, more
can be said about the symmetric constants. For that
purpose, we first write the matrix realization of the
Weyl-Cartan basis in terms of roots and weights

Tqjij ¼ ωijqδij; ðB23Þ

Tαab jij ¼
1

2
ffiffiffiffi
N

p ðδiaδjb þ δibδjaÞ; ðB24Þ

T ᾱab jij ¼
i

2
ffiffiffiffi
N

p ð−δiaδjb þ δibδjaÞ: ðB25Þ

Using the components of the generators, it is possible to
show

Tq ∨ Tp ¼
XN
i¼1

ωijqωijpωi · T; ðB26aÞ

Tq ∨ Tα ¼ α̃jqTα; ðB26bÞ

Tq ∨ T ᾱ ¼ α̃jqT ᾱ; ðB26cÞ

Tα ∨ T ᾱ ¼ 0; ðB26dÞ

Tα ∨ Tβ ¼
1ffiffiffi
2

p ðjNα;βjTαþβ þ jNα;−βjTα−βÞ; ðB26eÞ

Tα ∨ T β̄ ¼
1ffiffiffi
2

p ðjNα;βjTαþβ − jNα;−βjTα−βÞ; ðB26fÞ

T ᾱ ∨ T β̄ ¼
1ffiffiffi
2

p ð−jNα;βjTαþβ þ jNα;−βjTα−βÞ: ðB26gÞ

For each α ¼ ωi − ωj, we define α̃ ¼ ωi þ ωj.
We can now use Eq. (B19) and the analogous commu-

tator version to evaluate the constants dABC
6

dqpl ¼ 4N
XN
i¼1

ωijqωijpωijl; ðB27aÞ

dqαα ¼ dqᾱ ᾱ ¼ α̃jq; ðB27bÞ

dγηα ¼
1ffiffiffi
2

p ðjNγ;ηjðδα;γþη þ δα;−γ−ηÞ

þ jNγ;−ηjðδα;γ−η þ δα;η−γÞÞ; ðB27cÞ

dγη̄ ᾱ ¼
1ffiffiffi
2

p ðjNγ;ηjðδα;γþη − δα;−γ−ηÞ

− jNγ;−ηjðδα;γ−η − δα;η−γÞÞ; ðB27dÞ

dγ̄ η̄ α ¼
1ffiffiffi
2

p ð−jNγ;ηjðδα;γþη þ δα;−γ−ηÞ

þ jNγ;−ηjðδα;γ−η þ δα;η−γÞÞ: ðB27eÞ
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