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We study the nature of the chiral symmetry restoration within the Yukawa model with spontaneous
symmetry breaking. We work with scalar and fermion fields which are subject to the effects of a rotating
system. In this work, we show the derivation of the scalar field propagator in a rotating medium using
the Fock-Schwinger proper-time method. We compute analytically the effective potential in the high-
temperature approximations, including the contribution of the ring diagrams to account for the plasma
screening properties. We study the chiral transition as we vary the angular velocity €, the boson self-
coupling 4 and the fermion-boson coupling g. We show that the critical temperature for the restoration of
chiral symmetry always starts with decreasing behavior, until it reaches a minimum and from there when
increasing Q, we observe T, increases monotonically. In all the phase transition lines in the 7 — Q plane
reported, we obtain that the rotating effects are able to change the order of the phase transition.
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I. INTRODUCTION

In the last decades the study of the strongly interacting
matter in extreme conditions has drawn a lot of attention
from the high energy physics community. One of the
most relevant topics to study is the phase transition that
occurs in this kind of system and condition which is
encoded in the quantum chromodynamics (QCD) phase
diagram [1-3]. This phase diagram typically is depicted in
the temperature-baryon chemical potential plane (T — up
plane). However, there are some other physical variables
relevant when the strong phase transition happens, among
which are the isospin chemical potential y; and the
magnetic field strength, to mention a few. The reason
behind all of the thermodynamical and macroscopic
variables that are used to build the QCD phase diagram
is the compelling need to link the theoretical results with
the experimental data from different systems, such as
relativistic heavy-ion collisions [4—7], dense astronomical
objects [8—10] and the early Universe [11]. Specifically, in
neutron stars the relevant variables are up, p; and T.
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Therefore, there are works based on effective theories,
Dyson-Schwinger equations, sum rules, chiral perturbation
theory and the holographic method, which have reported
results at high baryon and/or isospin densities and finite
temperatures [ 12-49]. In a similar way, lattice QCD (LQCD)
has reported important results in both at finite baryon and
isospin chemical potentials [S0-59], even when the former
one is technically difficult to perform as a consequence of
the severe sign problem [60]. Another important physical
variable in the QCD phase transition is the magnetic field
strength which is relevant when the reaction of a relativistic
heavy-ion collision is studied. It is well known that the most
intense magnetic fields in the Universe are produced in these
kinds of collisions [61,62], catalysing the deconfinement/
chiral symmetry restoration. Such phenomenon is called
inverse magnetic catalysis [63-65]. Therefore, LQCD and
effective models have reported in recent times important
results including magnetic field effects in the QCD phase
transition [63,66-80]. Another interesting feature of the
reaction in relativistic heavy-ion collisions happens when the
collisions are not central. Then, the asymmetry of the matter
distribution in the transverse plane causes the colliding
region to develop an orbital angular velocity € directed
along the normal to the reaction plane [81,82], with angular
velocity of Q~ 10?2s~! [83,84]. One way to observe
the effect of the high vorticity in the reaction is to analyze
the global hadron polarization. Recent measurements of the
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global A and A polarization as functions of collision
energy [83,85,86] show that the A polarization rises more
steeply than the A polarization when the collision energy
decreases; theoretical determinations have reported comple-
mentary results in agreement [87-90]. Nevertheless, another
consequence of this rotating system could be changes
observed in the pseudocritical temperature when the system
shows a phase transition. This effect has been studied
recently in Refs. [91-97] and also when magnetic fields
are included [98,99].

In this work, we study the phase transition of a hot and
rotating system within the Yukawa model, as an application
of the scalar propagator reported in this work, where we
include both boson and fermion fields. The rotating effect is
included in the propagators of the field and we consider a
thermal bath through the imaginary time formalism. The
Yukawa model implements the idea of the chiral symmetry
spontaneously broken, where the order parameter is the
vacuum expectation value (VEV). It allows to follow the
behavior of the VEV as a function of the temperature 7" and
angular velocity Q once the effective potential beyond the
mean field theory is computed, and thus it is employed to
identify the chiral symmetry restoration.

The work is organized as follows: In Sec. I, we present
the computation of the scalar field propagator in a rotating
system. We use the Fock-Schwinger proper-time formalism,
following the method introduced in Refs. [100,101] that
requires knowledge of the explicit solution of the Klein-
Gordon equation. We find the solutions to the Klein-Gordon
equation for bosons rigidly rotating inside a cylinder. In
order to satisfy the causality condition for a given Q, the
solutions are taken as not existent for » > R, with R the
cylinder radius R, thus RQ < 1. This ideas is completely
analogous to the fermionic case, where the corresponding
solutions to the Dirac equation have been studied by several
authors imposing different types of boundary solutions. The
known MIT boundary conditions where introducing in the
pioneering work [102] using the MIT bag model. Modified
conditions, known as the chiral MIT conditions, can also be
imposed on the fermion modes in Ref. [91]. Bound and
unbound solutions have also been studied in Ref. [103].
Also, it is studied in Ref. [104] the case when the temper-
ature is also included. Lattice QCD has also been formu-
lated in rotating frames to study the angular momenta of
gluons and quarks in a rotating QCD vacuum [105], and
also studying the thermodynamics at finite rotation of a
system with gluons in Ref. [106] and the QCD phase
diagram for a rotating system in Ref. [107], where the
boundary conditions are extensively studied and the rel-
evance of them is shown. At the end of this section with the
wave function at hand, we write the expression for a real
scalar field propagator in momentum space. In Sec. III,
we describe the features of the Yukawa model and then we
compute the effective potential up to ring diagrams con-
tributions, we stabilize the vacuum of our theory by

introducing counterterms to enforce that the tree-level
structure of the effective potential is preserved by vacuum
loop corrections. As a consequence of including ring
diagrams, we compute the boson’s self-energy up to one-
loop order. We work in the scenario where the medium is
certainly hot, the high temperature approximation, which
means the temperature is the highest energy scale in the
analysis. This approximation allows us to get an analytic
expression for both effective potential and self-energy. In
Sec. IV, we explore the parameter space looking for the
critical temperature as a function of angular velocity. Since
the model has three free parameters, the couplings and the
squared mass parameter, we explore different possible
combinations among these parameters in order to show
all the possible scenarios when the chiral symmetry is
restored in presence of a rotating system. In Sec. V, we
summarize and conclude. Finally, the explicit computation
of the one-loop boson and fermion contributions to the
effective potential as well as the boson’s self-energy are
reported in the Appendix.

II. SCALAR PROPAGATOR
IN A ROTATING MEDIUM

In order to explore the phase transition associated to the
chiral symmetry restoration in a system at finite temper-
ature and rotating, we start this work by computing the
corresponding scalar field propagator. The method we are
going to use is known as the Fock-Schwinger proper-time
method and it tells us that the two-point Green’s function
D(x,x) is the solution of the equation

H(0,,x)D(x,x') = &*(x — x'), (1)

where H(d,,x) is the Hamiltonian operator, which typi-
cally is a polynomial in d,. The two-point Green’s function
can be represented as

D(x.x') = —i /_ " 4 U(x ¥ 7). 2)

(5]

where 7 is known as a proper-time parameter and U (x, x; 7)
is an evolution operator in this proper time. This operator
satisfies

i0,U(x,x';7) = I:I(ax,x)U(x,x’;T), (3)

together with the boundary conditions

U(x,x';—00) =0,
U(x,x';0) = 6*(x — x'), (4)

where the solution is readily found as

U(x,x';7) = exp[—itH(d,, x)|6* (x — x'). (5)
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In order to find the explicit form of the proper-time
evolution operator, we can use that, when the eigenfunc-
tions @, (x) of the operator H(d,, x) are known, the Dirac
delta-function can be expressed in terms of the closure
relation obeyed by the eigenfunctions ®,(x), namely,

Z(D,{(x )@ (x

where the sum over A represents the sum over all the
quantum numbers. Consequently, an exact expression for
the proper-time evolution operator can be written as

= Z exp[—izA]®, (x) D] (x'), (7)
A

&*(x = x), (6)

U(x,x';7)

where we have used the eigenvalue equation

H(0,. x)®; (x) = 20;(x). (8)

Using Egs. (2) and (7), the propagator D(x,x’) can be
written as

D(x,¥') = —i / " ey expl-izi]d,(0)@l(x). (9)
- A

At this point, it is easy to see that we need to know the
expression of the eigenfunctions ¢;(x) which can be
obtained from the corresponding Klein-Gordon equation.
Following the path described in Ref. [108], we find the
equation which takes into account a relativistic rotating
frame, where the system can be thought of as a rigid
cylinder rotating around the Z-axis with constant angular

# 1o 10

velocity Q. It is given by
0 2 ?
i~ —Qi— | +— )
Klaz ’a¢> MR PR Vol ] (x)
= m*®(x), (10)

where m is the mass of the scalar field and —id/d¢ = L.
Thus, Eq. (10) becomes
10 &

17) ~\2 & 10

2 Lol v 9,9
Klaﬁ Z) +6r2+r6r+r20(/)2
= m*®(x). (11)

Assuming that Eq. (11) allows separation of variables, we
propose the following solution:

Ot r, .2 = e—iEz+ikZz¢(r, b). (12)

We notice that angular momentum conservation implies
to get the quantum number [ Therefore, the radial
Klein-Gordon equation can be written as

? 1o P2 ) )
In order to solve the radial equation, we first define
the transverse momentum k3 = E? — k2 — m? with E? =

(E + 1Q)?, and we get
? 10 P
|:W ;5—ﬁ+ki:| U(r) =0. (14)

We can multiply Eq. (14) by r*> and the corresponding
equation is

,* 0
rP—+r—+

3 5 (r’k3 — lz)} U(r) =0, (15)

where it takes,
following form:

after simple rescaling p =rk,, the

IR LG R

Equation (16) is the well-known Bessel equation,
which solution is given by the Bessel function of the first
kind J,(p) = J,(rk, ). Therefore, the full solution to the
Klein-Gordon is
(I)(X) — e_iEt+ik5z+i(/)[Jl(rkJ_). (17)
The expression in Eq. (17) comes from a pragmatic
approach. We find the solutions to the Klein-Gordon
equation for scalars rigidly rotating inside a cylinder. In
order to satisfy the causality condition for a given €, the
solutions are taken as not existent for » > R, but otherwise
do not need to satisfy a given boundary condition. Once we
have Eq. (17) at hand, we are now able to write the Green’s
two-point function by substituting Eq. (17) and its corre-
sponding complex conjugate function in Eq. (9), such that
we write D(x,x’) as follows:

/ /dEdk dkLkL _ (Ez—ki—kg—mz‘Fif)

% Z e —iE(t— 1) pik(2=2') pil (= ¢,)Jl(rkl)-]l(r,kl>‘

[=—0
(18)
We integrate the Eq. (18) over 7,
dEdk, dk k
> [ )
[=—0
e iE(t=1) ik (2=2) il ($=¢")
(19)

2=k k2 —m? +ie’
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The next step is to perform the sum over /. In this case, it is
better to rewrite one of the Bessel functions in its integral
representation,

1 [z o
]Z(x) — / dsez(xsms—ls)’ (20)
then we get

dEdk dk, k
D(x,x') —/ (2;[); L

o—iE(=1) ik (c=2)

B —K—mitic

[Se]

1 n L
X d ik, r' sins I (k
0 Y se IZE_OO l( Lr)

% e—ils+il(z/)—(/)’)—ilQ(z—t’)‘ (21)
If we remember the Jacobi-Anger expansion

(s

> Tl = eixsn, (22)

l=—0c0

then we are able to write D(x,x’) as

, dEdk,dk k, e B0 ik (=)
D(x,x')= 3 212 _12_ .2 ;
(27) E* -k —k2—m*+ie
1 T . . , Ny i s
XE/_ dseszrsm((qﬁ—qﬁ)—s—Q(t—t))elkLr sins (23)

T

Since we have constant angular velocity, we observe that
Q= (p—¢')/(t—1), hence we obtain

D(x,x') = /dEdkzdkLkL o~ iE(1=1) pik. (7))

(27)*  E? -3 — k2 —m?+ie
U [m ik rsins ik, 'si
X_ﬂ, dse’ Lrsms =ik rsms (24)

We proceed to make the change of variable ¥ = R — h/2
and r = R+ h/2 and the propagator is

dEdk.dk  k
D(x,x/) :/ (2Z”)3J_ e

e~ E(=1) pik.(z=7')
E>— 1% — k2 —m? +ie

X l/” dseikL(R=h/2)sins o=iky (R+h/2)sin s
27 ),

e—iE(=1) gik:(z=7)

B —R—mltic

B / dEdk,dk  k,
; (27)°

1 n . .
Xﬂ/ dse~tkihsins, (25)

We notice the integral over s, in Eq. (25), is nothing more
than 2zJy(k, r). Besides, if we write the propagator in
terms of the relative coordinates, t — ¢ — fand z — 7/ — z,
then we get the expression in coordinate space

e_iEt+ikzzjo(kJ_ r)
E2— i3 — K2 —m? +ie’

dEdk_ dk | k
D(x,x’):/ U IR (26)

(27)*

Finally, we introduce the Fourier transform in order to
get the expression of the propagator in momentum space,

dEdk dk k .
D(p) = /(;T;l/dtdquﬁrdre’l’o’
—iEr+ik,
X e_iﬁL‘zLe_ipzZ — ¢ o ‘ZJO(kJ'r)
E*> =13 — k2 —m? +ie
B /dEdedklkL
- (2z)°

X e_iz(pz_kz)e_ipircos ¢

/ dt dz dg rdr e""(Po=F)
Jo(kyr)
E2— i} -k —m? +ie

(27)

We perform the integrals over the variables ¢ and z
and obtain

dEdk,dk | k
D(p) = [ T by = E)o(p: ~ )

—iplrcosqﬁj k
x/dgbdr;mze 5 5 o ér) —,
E°— ki —ki—m”+ie

and occupying Eq. (22) with [ = 0, the propagator becomes

(28)

dEdk.dk  k
D(p) = [ FEEEL 5y~ E)3(p. ~ k)

J Jo(k
x /drr - 0(pJ_r) O( J_r) —. (29)
E*— k3 -k —m? + e
We now use the relation
© 1
/ xJ o (ux)J 4 (vx)dx = —8(u — v), (30)
0 u
in Eq. (29) and we get
6(po—E)S(p. — k:)6(pL — k1)
D(p) = | dEdk_ dk = S .
(P) / TR R R mi e
(31)

As the last step, in order to get finally the expression of the
scalar field propagator in a rotating medium, we integrate
over all the remaining variables and get the expression

1

D(p) = ,
P v P = —pi =it ic

(32)

where we substitute E> = (p, + Q).
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III. EFFECTIVE POTENTIAL OF A HOT
AND ROTATING SYSTEM

One application that the scalar propagator, computed in
the previous section, can have is to study how a symmetry
spontaneously broken can be restored when a physical
system is rotating and in a thermal bath. Therefore, in this
section we want to show a general analysis to understand
the rotating effects in a system in thermodynamics equi-
librium when it exhibits a phase transition related with the
chiral symmetry. However, the model studied here is far
from the ones that can be used in order to describe physical
systems like the ones we mentioned in the Introduction, and
this is a mere exercise to understand from the analytic result
possible consequences once a finite rotation is included in
the analysis. Then, with the expression for a scalar field
propagator in a rotating medium in Eq. (32) at hand, and
using the expression for a fermion field propagator reported
in Ref. [108],

(Po+Q/2—p.+ip)(ro+rs) +m(1+7ys)
(Po+Q/2)* = p* —m* + ie

(Po—Q/2+p,—ip,)(ro—v3) +m(1+ys)
(po—Q/2)* = p? —m* +ie

S(p) = or

+ o

(33)

we are in the position to study the restoration of the chiral
symmetry. For this purpose, we use a simple model called
Yukawa model and then we calculate the effective potential
at finite temperature and angular velocity, within this model
we take into account the one-loop corrections for both
boson and fermion degrees of freedom, ring diagrams
correction for boson fields, and finally we build a phase
diagram in the temperature-angular velocity plane.

Let us start with a description of the model we use.
It is called the Yukawa model, which Lagrangian is the
following:

1

a? A o _
L==(0,0)7+ 7(152 - Z¢4 + iprhow — gy,  (34)

N |

where ¢ is a real scalar field, y is a fermion field with
s = 1/2, the squared mass parameter a2, the self-coupling 1
and the fermion-boson coupling ¢ are taken to be positive.
In order to allow for spontaneous symmetry breaking in this
model, we let the ¢ field to develop a vacuum expectation
value v,

b=+ (35)

We understand the vacuum expectation value as the order
parameter of the theory. After the shift, we rewrite the
Lagrangian as follows:

a2

1 my A A
— (0,2 +—=Lp2 L 2 _ L4 e’
L= 0P+ 5L =50 + 502 =10t =g
— A + iy o — iy — gy, (36)

where mj = 30> —a® and m; = gv are the dynamical

boson and fermion masses, respectively. From Eq. (36), the
tree-level potential can be identified as

a’ A
Viee = _?’02 + Z U4, (37)
where the tree-level potential develops a minimum,
which is called the vacuum expectation value of the ¢
field, namely,

a2

vo =1/ (38)

Our strategy to study the restoration of the chiral
symmetry consists of computing the loop corrections to
the tree-level potential within the Matsubara formalism in a
thermal field theory. The first corrections correspond to the
one-loop order contribution. This contains two pieces,
vacuum and matter. The former is v-dependent, therefore
when it is added to the three-level potential, the vacuum
expectation value changes. In order to avoid such change
and to maintain the tree-level vacuum properties, we add
counterterms da> and 81 requiring that v, does not change.
The one-loop matter contains 7" and € contributions and
corresponds to the mean field approximation for the
system’s energy. However, in order to go beyond the mean
field approximation we include corrections that account for
the plasma screening effects [109]. Such contributions can
be incorporated into the treatment by including the resum-
mation of the ring diagrams [110,111].

The effective potential up to ring diagrams order has
three contributions, namely,

Vel = Vi + Vi + vrine, (39)

The general expression for the one-loop boson contribution
can be written as

ad Pk >
V=13 [ GainPlone R 0
where

1

D(w,.Q.k) = -
(@, 2.4) (, — iQ)* + K + k2 +m},

(41)

is the boson propagator in a rotating system and w,, = 2anT
are the Matsubara frequencies for boson fields. For a
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fermion field, the general expression for the one-loop
correction is

——TZ/ Trln S(@,. Q. k)~1], (42)
where
S(@,.Q.k)
_ (i, + 9=k +ik,)(y 0+7’3)+mf(]+}’5)0+
(@ — 192 K7 +m2
(i@, =5+ k. —iki)(ro 73)+mf(1+75)0_ (43)

(@, +i%)*+ +k2 +m3

is the fermion propagator in a rotating system and @, =
(2n + 1)zT are the Matsubara frequencies for fermion
fields. The ring diagrams term is given by

d3k
Vrmg 2 Z /

n=—00

1+ 1D (w,, Q, k)) (44)

where IT is the boson’s self-energy.

The effective potential up to ring diagrams contribution,
Eq. (39), as well as the self-energy are computed analyti-
cally in the high temperature approximation. This means
that we are considering 7' > m, where m can be either the
boson or fermion masses, regardless of the relation between
T and Q. The explicit expression for the effective potential
is given by

Veff:_a2+5a2 2 At0

where the self-energy II, at leading order in the high-T
expansion, is given by

QZ

16ﬂ2)'

The computation of Egs. (40), (42), and (44) and the self-
energy are performed in detail in the Appendix. The result
of the calculation can be read in Eq. (45), where we work
in the MS renormalization scheme, understanding that y is
the renormalization scale and, as we mentioned before,
when the tree-level effective potential is modified by one-
loop corrections, the curvature and the position of the
minimum are bound to change. The changes are driven
from both purely vacuum contributions and matter effects.
The vacuum changes need to be absorbed with a redefi-
nition of the vacuum terms, so as to make sure that any
change in the position of the minimum truly comes from
the matter piece. To achieve this goal, we implement
vacuum stability conditions by introducing two counter-
terms da® and &1, which are fixed from the conditions

T? T’
H—/l—+gz<— (46)

4 12

1 avve
— =0,
2v dv |,_,
d2vvac
W = 2612. (47)
V=1

The vacuum effective potential VY% comes from the
limit when 7 and Q go to zero in Eq. (45). After the

v
2 4 implementation of this procedure, we get
m 167212 27
¢ T /2
I P
) ) o
2 _ 0232 2= 32In| = | =2 64?
+T_2(m2_292)_T(H+m¢—Q)/ a 16712/1[ n<M2> g + ]
24279 127 1 22 2a?
2 . . m 2T2 o = 62 {29 In (/1—2) -921n <—2>} (48)
_487r2(3m‘/’_9 )_32;;2 In —” —2yg H )z
274 212 2 202 4
_I=T +me ( % 2+l> _reo _Q_’ (45) Finally, when we substitute Eq. (48) into Eq. (45), the
360 8 \4r°T= 3 48 384 effective potential up to ring diagrams is given by
|
- 2 yi 2 2 2612 4 a292 261
et — _ 2,2 3221 2g* + 622 + —— |24 In( L) —92In
P %[ <u) g+ %64 {g “(W) 2
m? 162272 274 T2 T (T + m - Q)32
V4 ” r 2
1 -2 - —-2Q
4 [n< 02 > 75] 50 +2a " )= o
2 m} 2T? 12T miT? 1\ TP Q
- 3m2 — ) ——L |1 — 2| - ! o)== 49
282 O =¥ — 3 {“( 02 > yE] 360 T8 \aer 73) " Tz WY
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FIG. 1. Tree-level potential V"¢ and vacuum effective potential
V¥4 are shown, in order to compare the position and curvature of
minimum in both cases. We use 4 = 0.5 and g = 0.4 and for V"%,
two different values of the renormalization scale are used, y = 1
and 10 GeV.

In order to show that the vacuum contribution to the
effective potential does not change the vacuum features, we
write the vacuum effective potential taking the limit 7 — 0
in Eq. (49). Hence, we get

2 4 2
vac__a_ 2 % 4 my % _§
yvae — 21} —|—41J +—64ﬂ'2 [In(ﬂ2 >

4 2
R A
2| \u2) 2

a’v? 2a®
+ 3577 [312 In (;ﬂ) 24"+ 6/12]

v a’g? 2a®
2¢*In(—3-) —=922In( —-)|. (50
64 [ ! n</1/42) ’ n<ﬂ2>] 30

In Fig. 1, we show the tree-level potential V" and the
vacuum effective potential V¥* computed for y = 1 and
10 GeV. Notice that, after the vacuum stability conditions
are implemented, the vacuum position and curvature
remain at their tree-level values and they are independent
of the choice of the renormalization scale p.

We are now in position to explore the restoration of the
chiral symmetry, where the temperature is the largest
energy scale in the analysis and a rotating system with
constant angular velocity Q is considered. In the following
section, we proceed in this direction.

IV. CHIRAL SYMMETRY RESTORATION

The way in which chiral symmetry restoration is
observed occurs when the vacuum expectation value is
equal to zero. This analysis is carried out through the study
of the effective potential Eq. (49). We fix the free parameters
in the theory, in this case they are 1 and g, then we choose
the value of Q and vary T until the critical temperature 7. is

0.010 -

'Ol l'
3 < 0.005 \vac . S

0.000 - =et

s
> g
2 -0.005}

-0.010—=
1 0.00 0.02 0.04 0.06 0.08 0.10

-1

FIG. 2. Effective potential (red dashed line) at the phase
transition and tree-level potential (blue dotted line). Notice the
chiral symmetry restoration occurs when v = 0 and the potential
is flat near the minimum. This is tantamount of a second-order
phase transition. We use the set of parameters 4 = 1.5 and g = 0.4
for both potentials. The critical temperature 7. = 0.498 GeV and
angular velocity Q = 0.01 GeV for the effective potential.

found; it is determined when the minimum of the effective
potential is equal to zero. However, there are two different
situations where the chiral symmetry is restored. The first
one corresponds to the case when the VEV is equal to zero,
the curvature at this point is equal to zero, so the shape of the
potential near the minimum is flat. This is depicted in Fig. 2.
The second case is when there are two degenerate minima,
one at zero and the other at some finite value of the VEV,
thus the shape of the potential shows a hump between the
minima. This is depicted in Fig. 3.

b 7
0.010
_____ Veff
3 . 0.005p yvac K
S 0.000[-——m===tTTTmmm !
S
2 -0.005
NS -0.010b—
§ 1 0.00 0.02 0.04 0.06 0.08 0.10
v [GeV] .
0ot
U Veff
........ Vvac
-2 ]
0.00 0.05 0.10 0.15 0.20 0.25 0.30
v [GeV]
FIG. 3. Effective potential (red dashed line) at the phase

transition and tree-level potential (blue dotted line). Notice
the chiral symmetry restoration occurs when the potential
develops a hump and two degenerate minima. This is tantamount
of a first-order phase transition. We use the set of parameters
A= 1.5 and g = 0.4 for both potentials. The critical temperature
T, =0.465 GeV and angular velocity Q = 0.1 GeV for the
effective potential.
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1.02~
-
1.00 = b
3 | ]
L
So -
& o8 . 1
~ .
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0.96 . M . e g=0.2 1
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L)
t 8 +g=0.6
0.94 L n 1 n n n 1 " " " 1 . . . 1
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0 [GeV]

FIG. 4. Critical temperature 7. as a function of Q, using
A=04, g=0.2, 0.4 and 0.6. The vertical grey band highlights
the region where first-order phase transition is found. Outside of
the highlighted region the phase transition is of second order.

Since we know how to identify the phase transition and
the kind of it as well, we now proceed to analyze the
behavior of T, as a function of Q. For this purpose, we
choose a pair of sets of values for the free parameters, the
coupling constants, 4 = 0.4, 1 and 1.5, and g = 0.2, 0.4, 0.6
and 0.8. In order to present the results, we show them in
three phase diagrams depicted in Figs. 4-6. Each of these
figures have one value of 1 and three different values of g.

Figure 4 shows the phase diagram obtained for the case
A=10.4and g = 0.2, 0.4 and 0.6, that is, the temperature as
a function of Q, normalized to the critical temperature at
Q = 0 GeV. We can notice that the critical temperature 7.
decreases abruptly once the angular velocity Q is finite.
However, in a very fast way T'. reaches its minimum and
then it increases monotonically. Furthermore, it is important
to notice that from Q =0 GeV to Q =0.01 GeV, we
observe a first-order phase transition; this is highlighted
with the shaded vertical band in such regions. Outside of the
highlighted region, for values of Q > 0.01 GeV, we always
find a second-order phase transition.

Figure 5 shows the phase diagram obtained when we
analyze the temperature as a function of €, normalized to
the critical temperature at Q =0 GeV, using A =1 and
g=0.4, 0.6 and 0.8. The behavior for this case is quite
similar to that shown in Fig. 4. We observe that 7. has a
decreasing behavior from Q = 0 GeV up to Q = 0.1 GeV,
where we observe a minimum, from this point onwards the
T. shows an increasing behavior. We highlight with a
shaded vertical band the region where the first-order phase
transition is found. It coincides with the region where 7', is
decreasing. Compared to Fig. 4, Fig. 5 shows an increase in
the region where the first-order phase transition is located.

Figure 6 is the last phase diagram reported in this work.
Here, we show the behavior of the normalized temperature
as a function of Q, for A = 1.5 and ¢ = 0.4, 0.6 and 0.8. The
qualitative behavior of the 7. is the same as in the other two

. g=04 1

1000 ., . g=06 ]
. . +9=0.8 |
L * 4
° 0.95- b
=t .
=
L ]
0.90- o
o ®
Poesstiirnt]
=il
0.85 ‘ !
0.00 0.05 0.10 0.15 0.20
Q [GeV]
FIG. 5. Critical temperature 7', as a function of Q, using A = 1,

g=0.4,0.6 and 0.8. The vertical grey band highlights the region
where first-order phase transition is found. Outside of the
highlighted region the phase transition is of second order.

cases, except that now the region where 7. decreases
is larger, it is up to the value Q = 0.15 GeV and the most
relevant difference is related to the region where the
first-order phase transition is located. We notice that the
first-order phase transition is still contained in the region
where the temperature decreases, but for the first time they
do not fully coincide. We observe two disconnect second-
order phase transition regions, the first one at low values of
angular velocity, from Q = 0 Gev to Q = 0.05 GeV, and
the second region starts at € > 0.15 GeV, this region at
high values of angular velocity shows a gentle monotonic
rise in 7',.. Also, it is important to mention that in Figs. 4-6
the corresponding range in the horizontal axis obeys the
high-temperature approximation, in other words, the maxi-
mum value of Q is not arbitrary, it guarantees 7 is the
highest energy scale.

T T
1.00Fs » o e g=04]
t [
* . = g=0.6
-
L . * g=0.8
0.95- - B
[ .
s "
= 0.00f N 1
[
r [ ]
0.851 B
' o o & & °
[ i m = m = ®
0.80 T e e o]
L 1 n n n n L L n n n n 1
0.00 0.05 0.10 0.15 0.20
Q [GeV]

FIG. 6. Critical temperature 7. as a function of Q, using
A=1.5, g=0.4, 0.6 and 0.8. The vertical grey band highlights
the region where first-order phase transition is found. Outside of
the highlighted region the phase transition is of second order.
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V. SUMMARY

In this work we have studied the chiral phase transition at
finite temperature for a system consisting of fermions and
scalars with spontaneous breaking of symmetry and subject
to the effects of a rotating system. For the analysis, in Sec. II,
we have computed the expression corresponding to the
scalar field propagator in a rotating medium. We have used
the Fock-Schwinger proper-time method and assumed the
relativistic system can be described as a rigid cylinder
rotating around the Z-axis with constant angular velocity
Q, with the expressions for a scalar and fermion field
propagators in a rotating medium at hand. The latter reported
in Ref. [108]. In Sec. III, we have applied the propagator
obtained in Sec. II to the analysis of the phase transition
related to the chiral symmetry. Thus, we have proceeded to
compute all the elements necessary to analyze the restoration
of the chiral symmetry. As a first step, we have described the
model that we use, which is the Yukawa model, where we
have available one scalar field and the fermion and anti-
fermion fields. Our next step was to calculate the effective
potential beyond the mean field approximation, where we
have considered the boson ring diagrams contributions. We
have implemented the vacuum stability conditions which
allows to ensure that the modifications to the shape of the
effective potential come only from the matter terms and not
from the vacuum contribution. Finally, in Sec. IV we showed
the results. We identified the second- and first-order first
transitions that tell us the chiral symmetry is restored, which
is depicted in Figs. 2 and 3, respectively. Second-order phase
transition occurs when the minimum of the potential is equal
to zero and the potential is flat near the minimum. On the
other hand, first-order phase transition occurs when the
potential develops a hump between two degenerate minima.
The last part of this work was devoted to show the change
that 7. has when we vary the angular velocity €, in other
words we built a phase diagram. We show the phase
transition lines in the 7' — Q plane. We have fixed values
for the couplings 4 and g, which are the free parameters in
this theory. For this purpose, we have explored a represen-
tative region that gives the different possibilities that exist of
values for 4 and ¢g. It means we have considered the cases
when 1 < g, A~ g and 1 > ¢. The phase diagrams with all
the combinations between the couplings are depicted in
Figs. 4-6. All the cases have shown that T, begins with a
decreasing behavior, as a function of Q, until it reaches a
minimum and from there, when increasing 2, a monoton-
ically increasing behavior of T, is obtained. However, we
noticed that the region where 7', decreases is greater as A
increases its value, in other words when the bosonic
contribution is dominant over the fermion one, we observe
that the decreasing behavior is much smoother. From Figs. 4
and 5, we observed that when the phase transition is first
order for zero angular velocity, the latter makes the
transition turn into second order, which corresponds to
the case when A < g and 1= g. However, for the cases

where A > g, depicted in Fig. 6, we noticed that the phase
transition is second order for zero angular momentum,
eventually changing to a first-order phase transition when
the angular velocity increases, but if we further increase the
angular velocity, we again got a second-order phase
transition.

It is quite relevant how the effects coming from a system
that is rotating generate changes in the critical temperature
and in the type of transition that occurs. Therefore, this work
serves as a basis for future work where the effects of a
rotating system applied to systems such as relativistic heavy
ion collisions are studied, in order to describe the QCD
phase diagram through the study of chiral symmetry
restoration. This is work for the future and will be reported
elsewhere.
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APPENDIX: EFFECTIVE POTENTIAL IN THE
HIGH TEMPERATURE APPROXIMATION

We compute explicitly all the corrections up to ring
diagrams of the effective potential in the high temperature
approximation when the system is rotating. Firstly, we will
get the one-loop boson contribution in the high temperature
approximation by rewriting the expression in Eq. (40) as
follows:

(A1)

Z/( s D(w,, Q. k)~

}1700

Substituting the boson propagator in Eq. (41), and imple-
menting the derivative and integral respect to mé we get

3
Vi = dk dm? Z— (A2)
b ¢ (w, —iQ)* + E*’

n=—oo

where E = |/ p? + mé and w, = 2znT. Now, we perform

the sum over the Matsubara frequencies and the one-loop
boson contribution becomes

p_ L[k 1 1
74 ) (22) g +eﬂ(E‘9>—1+eﬂ(E+Q)—1’

(A3)

where f = 1/T. In Eq. (A3), we observe that the one-loop
boson potential can be split into two contributions, the
vacuum and the matter one. Hence, V,l3 1S rewritten as

094020-9



I.1. GASPAR, L. A. HERNANDEZ, and R. ZAMORA

PHYS. REV. D 108, 094020 (2023)

Vll) = Vli,vac + Vllj.mat’ (A4)
where
&Pk
thy,vac - _/ / (AS)
\ /k2 + m
and
yi o=t / @k / e
b.mat ¢ \/m
X ! + ! (A6)
eﬂ(1 /Ie4mi-Q) 1 eﬂ(, /R +mi+Q) 1

Integrating each contribution respect to mé we obtain the
expressions for vacuum and matter contributions

d3
1 _ 2
Vb vac 2/ (27[) \/ k*+ m¢’ (A7)
and
&k R
Vll) mat 2 / (271_)3 {ln[l —e IPLZ]

+In[l —e™V k2+m‘7’_z]}, (A8)

respectively. The vacuum contribution needs to be regu-
larized and renormalized after the integration over the three

momentum. For this purpose, we use the MS scheme and
then we obtain

m* 2 3
1 ¢ H
Vb,vac - _647Z2 |:1n (mg)) +§:| :

Regarding the matter contribution, first we set the follow-
ing change of variables:

(A9)

XI?, y=7, Z:—(/ (A]O)

|

Hy (3.2) = (—1)/(1 — 2)0- v D
201 2r(2l+ 1) 2[F(l+1)}2

3
+ Iz 3F2<l,1,l ,2 325 z)}

So, the expression in Eq. (A8) becomes

4

d /w xzdx{ln[l — eV ]

1 _
Vb,mat - 277,'2 0

+In[l - VIR (A11)

It was shown in Ref. [112] that the expression in Eq. (A11)
is a particular way of

2T"+1 00 .
— n—14
(47r)”/2F(n/2) A * *
X {ln[l — e VE ]

Vb.mat

[l - e—x/xzﬂz—zy]}, (A12)

which can be written as
n+3]/ T \"!
V =2 —
()

X {2 (y.2) + hya(v,=2)}, (A13)
where
hye) = [T ! (A14)

a\Y.2) =
Y r \/x2 +y? eV _ ]

The high temperature approximation of Eq. (All) takes
into account the calculation of y < 1 at fixed z on the
integrals depicted in Eq. (A12), assuming z is real and
|z| < 1. Such considerations allows to break up the integral
h, in two pieces, for even- and odd-z terms, where the even
case is of our interest, since

by (v, 2) = 5 [ha(y, 2) + hu(y, —=2)]. (A15)

N =

Focusing in the case of n = 2/ + 1, that is, when n is odd,
the high temperature expansion is found as

;)z{m(%)%v-w““”

A R 1)

+2r( l+l @)2[2 <471'> I;(zk +)1“)(§<(ikltr 1)) F <_k’_l_k;%;zz>‘

(A16)
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We take the case [ = 2 and consider the leading order in the
high temperature, T > m,, and the matter contribution
becomes

T T?
Vi = — —-20?
b,mat 90 +24( )
T 2 2\3/2 QZ 2 2
i " OV g By - )

48
mj}) 1 m2 2 3 Al7
~aar "\ Tepr) T 73] (AL7)
Now, we add the Egs. (A9) and (Al17) and the total

one-loop boson contribution in the high temperature
approximation is

2T4 T2
V’I’Z_W+24( -2
(m¢ _ Q2)3/2 Q2
- 3m2 — Q2
127 g2 3 <)

mj; 167°T?
+ e {m( e ) —24. (A18)

Secondly, the one-loop fermion contribution is calcu-
lated by substituting the propagator depicted in Eq. (43)
into Eq. (42), and implementing the derivative and integral
respect to m, contribution one gets

- Ak 1
V= _Tn;w / dmy / (27)? {(a)n —-iQ/2)* + E?

(A19)

In Eq. (A19), we compute the sum over the Matsubara
frequencies and the integral over my, and we find that the
one-loop fermion contribution can also be split into two
contributions, the vacuum contribution,

1 &k /12 2
Vf vac — W k + mf, (AZO)
and matter contribution,
&k —B(\/Rm-Q/2)
Vio= —T/—(2”)3 {Inf1 4 V)
+In[l + "V kz*’”?m/z)]}. (A21)

The vacuum contribution is straightforward computed
and after regularization and renormalization, by using the
MS scheme, we obtain

(A22)

m* 2 3
[ | H
Vf,vac = —327[2 |:1n <—mj2£) + §:| .

Meanwhile, the Eq. (A21) can be written using the change
of variables in Eq. (A10), but with 7 = Q/2T instead of
z=Q/my, and my — my, thus

4

T -
V) o = —M/xzdx{ln[l +e
(\/x2+y2+2)]}.

(x/x2+y2—z>]

+In[l + e (A23)

In order to obtain the high temperature expansion, we
can rewrite the latest expression as follows:

Vima = 2115, (A24)
where
e — 1 I -
Ip(y.2) = 5 [1p(r.2) +1p(v.=2)l. (A25)
corresponds to the even part of
_ x*dx Y e
Ip(y,2) =1 5 ~In(1 + e~ (V¥R 0 (A26)
77,'

which matches up with the fermion case studied in
Ref. [113]. In the high temperature expansion, the
Eq. (A26) becomes

] Lf oy
Ip(y,2) = - Liy(—¢%) —Zle(—e )
2 © 2n-+2
Yoy 1 y . .
"2 7nz<n+z>z (5) Lian(=¢%)
y S 2n+2
52 mrm G)
e

+0sLl (=€)

+l// n+3)

)

Using the expression above, we find the matter contribution
in terms of the polylogarithm functions is

Ll—Zn(_eZ)

(A27)
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Vi = S Lis(=e9T) o Lig )
+8m_7:]‘2 {111(% B w(l) ‘;‘//(3) —a%Lis(—eQ/ZT) B
X§25023ﬁ;%>MﬂMLMGéWU+LL
o [l//(n +1) ;ll/(n +3) (Li_yy, (—e=22T) 4 Li_y,(

After some simplifications and taking 7' > m, one gets
1Tt QP1r* Qf

T Q2
360 48 384 8 <3 +4_)
m m2 3
f
* o (i) 23]

We add Egs. (A22) and (A29), and we finally obtain the
one-loop fermion contribution

1T QAT QY mi (T Q2
v LT (S
360 48  384x 8 \3 4z

m* 2
f H
+ 327[2 {ln( 2T2> + 2J/E:|

The last term to consider into the effective potential is the
ring diagrams contribution, since we are going beyond the
mean field approximation. This contribution is written in
Eq. (44) and it can be rewritten as follows:

3
yring — Z/ﬁ
2) (2n)?

T e
— W/ dki*{In(Q* + &~ + mg, + 1)

Vf,mat - =

(A29)

(A30)

In (1 + IID(w,. Q. k))

—In(Q? + & +m3)}, (A31)

where we have considered only the zero Matsubara mode,
since it is the dominant contribution in the high temperature
approximation and II is the boson’s self-energy. We
integrate Eq. (A31) over the momentum and we obtain

T
e = - (- Q)32 (A32)

T
Q232 4~ (2 —
127 +10) +127r(m¢

0
-2} + &Lis(—e

o,
— = Liy(—e 9T)

m3T?
)
s=0 2 2T

m2T2 © 1 m 2n+2
_—Q/2T / f
an(=e N+ 2n? ;n’(n—i-Z) <2T>

0
Q/2T> +£Ll.s(—€_g/2T)

s=—2n:|

(A28)

s=-2n

Then, the effective potential is the result to join the
Egs. (A18), (A30), and (A32), giving as a result the Eq. (49).

One piece that we need to know is the expression for the
boson’s self-energy. It is made out of two kinds of terms:
one corresponds to the boson loop and the other one to the
fermion loop. Therefore, the boson’s self-energy can be
written as follows:

=11, +I1,, (A33)

where

:—12TZ/2 7 D(w,.Q.k), (A34)

n=——00

with 4/4 as the vertex term and the factor 12 corresponds to
the combinatorial factors obtained from the interaction
Lagrangian in Eq. (36), and

;= —@Tr[S(@,, Q k) S(@, — @, 2k —P)],  (A35)

with ¢?> the two vertices and the trace refers both to the
Lorentz and momentum spaces. In order to compute
Egs. (A34) and (A35), we notice the relation between
the boson contribution to the effective potential and the
boson loop in the boson’s self-energy,

A dv,
I, =-12(2-—2%,
4 dmy

and the corresponding relation between the fermion con-
tribution to the effective potential and the fermion loop in
the boson’s self-energy,

av!
My =g(2-—2%).

(A36)

(A37)
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It is important to mention that Eq. (A37) is valid only when
the external momentum is equal to zero. We know that in
general the fermion loop depends on the external momen-
tum, however, in the high temperature approximation, we
can neglect the external momentum and keep only the
leading terms which are T and Q. Hence, for this work
Eq. (A37) is valid. Finally, we can substitute Eq. (A18) into

Eq. (A36) and Eq. (A30) into Eq. (A37), and adding up the
corresponding results, we get

7 77
M=2"+ @[t ). A
Ayt <12+16752) (A38)
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