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Heavy vector mesons provide important information about the quark gluon plasma (QGP) formed in
heavy ion collisions. This happens because the fraction of quarkonium states that are produced depends on
the properties of the medium. The intensity of the dissociation process in a plasma is affected by the
temperature, the chemical potential and the presence of magnetic fields. These effects have been studied by
many authors in the recent years. Another important factor that can affect the dissociation of heavy mesons,
and still lacks of a better understanding, is the rotation of the plasma. Noncentral collisions form a plasma
with angular momentum. Here we use a holographic model to investigate the thermal spectrum of
bottomonium quasistates in a rotating medium in order to describe how a nonvanishing angular velocity
affects the dissociation process.
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I. INTRODUCTION

Heavy ion collisions, produced in particle accelerators,
lead to the formation of a new state of matter, a plasma
where quarks and gluons are deconfined. This so-called
QGP behaves like a perfect fluid and lives for a very short
time [1–4]. The study of this peculiar state of matter is based
on the analysis of the particles that are observed after the
hadronization process occur and the plasma disappears. For
this to be possible, it is necessary to understand how the
properties of the QGP, like temperature (T) and density (μ),
affect the spectra that reach the detectors. In particular,
quarkonium states, like bottomonium, are very interesting
since they survive the deconfinement process that occur
when the QGP is formed. They undergo a partial dissoci-
ation, with an intensity that depends on the characteristics of
the medium, like T and μ. So, it is important to find it out
how the properties of the plasma affect the dissociation.
Bottomonium quasistates in a thermal medium can

be described using holographic models [5–11] see
also [12–14]. In particular, the improved holographic
model proposed in [8], which will be considered here,
involves three energy parameters; one representing the
heavy quark mass, another associated with the intensity of
the strong interaction (string tension) and another with the

nonhadronic decay of quarkonium. This model provides
good estimates for masses and decay constants.
Besides temperature, density and magnetic fields,

another, less studied, property that affects the thermal
behavior is the rotation of the QGP, that occurs in noncentral
collisions. For previous works about the rotation effects in
the QGP, see for example [15–32]. In particular, a holo-
graphic description of the QGP in rotation can be found in
Refs. [22,28]. A rotating plasma with uniform rotational
speed is described holographically in these works by a
rotating black hole with cylindrical symmetry. Rotation is
obtained by a coordinate transformation and the holographic
model obtained predicts that plasma rotation decreases the
critical temperature of confinement/deconfinement transi-
tion [28]. For a very recent study of charmonium in a
rotating plasma see [33].
The purpose of this work is to study how rotation of the

plasma affects the thermal spectrum of bottomonium
quasistates. In other words, we want to understand what
is the effect of rotation in the dissociation process of bb̄. We
will follow two complementary approaches. One is to
calculate the thermal spectral functions and the other is to
find the quasinormal models associated with bottomonium
in rotation.
The organization is the following. In Sec. II we present a

holographic model for bottomonium in a rotating plasma. In
Sec. III we work out the equations of motion for the fields
that describe the quasistates. In Sec. IV we discuss the
solutions, taking into account the incoming wave boundary
conditions on the black hole horizon. In Sec. V we calculate
the spectral functions for bottomonium and in Sec. VI we
present the complex frequencies of the quasinormal modes.
Finally, Sec. VII contains our conclusions and discussions
about the results obtained.
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II. HOLOGRAPHIC MODEL FOR QUARKONIUM
IN THE PLASMA

Vector mesons are represented holographically by a
vector field Vm ¼ ðVt; V1; V2; V3; VzÞ, that lives, in the
case of a nonrotating plasma, in a five-dimensional anti–de
Sitter (AdS5) black hole space with metric

ds2¼R2

z2

�
−fðzÞdt2þðdx1Þ2þðdx2Þ2þðdx3Þ2þ 1

fðzÞdz
2

�
;

ð1Þ

with

fðzÞ ¼ 1 −
z4

z4h
: ð2Þ

The constant R is the AdS radius and the Hawking
temperature of the black hole, given by

T ¼ 1

πzh
; ð3Þ

is identified with the temperature of the plasma.
The action integral for the field has the form

I ¼
Z

d4x
Z

zh

0

dz
ffiffiffiffiffiffi
−g

p
L; ð4Þ

with the Lagrangian density

L ¼ −
1

4g25
e−ϕðzÞgmpgnqFmnFpq; ð5Þ

where Fmn ¼ ∇mVn −∇nVm ¼ ∂mVn − ∂nVm, with ∇m
being the covariant derivative. The dilatonlike background
field ϕðzÞ is [7,8]

ϕðzÞ ¼ κ2z2 þMzþ tanh

�
1

Mz
−

κffiffiffi
Γ

p
�
: ð6Þ

The backreaction of ϕðzÞ on the metric is not taken into
account. This modified dilaton is introduced in order to

obtain an approximation for the values of masses and decay
constants of heavy vector mesons. The three parameters of
the model are fixed at zero temperature to give the best
values for these quantities, specially the decay constants,
compared with the experimental values for bottomonium
found in the particle data group table [34]; κb ¼ 2.45 GeV,ffiffiffiffiffi
Γb

p ¼ 1.55 GeV and Mb ¼ 6.2 GeV. The results are
presented in Table I.
In order to have some characterization of the quality of

the fit, one can define the root mean square percentage error
(RMSPE) as

RMSPE¼ 100%×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N −Np

XN
i¼1

�
yi − ŷi
ŷi

�
2

vuut ; ð7Þ

where N ¼ 8 is the number of experimental points
(4 masses and 4 decay constants), Np ¼ 3 is the number
of parameters of the model, the yi’s are the values of
masses and decay constants predicted by the model and
the ŷi’s are the experimental values of masses and decay
constants. With this definition, we have RMSPE ¼ 14.8%
for bottomonium.
Now, in order to analyze the case of a rotating plasma,

with homogeneous angular velocity, we consider an AdS5
space with cylindrical symmetry by writing the metric as

ds2¼R2

z2

�
−fðzÞdt2þl2dφ2þðdx1Þ2þðdx2Þ2þ 1

fðzÞdz
2

�
;

ð8Þ

where R is again the AdS radius and l is the hypercylinder
radius.
As in Refs. [22,23,28], we introduce rotation via the

Lorentz-like coordinate transformation

t → γðtþ Ωl2φÞ;
φ → γðΩtþ φÞ; ð9Þ

with

TABLE I. Comparison of bottomonium masses and decay constants obtained experimentally [34] and from the
tangent model.

Bottomonium masses and decay constants

State
Experimental
masses (MeV)

Masses on the
tangent model (MeV)

Experimental
decay constants (MeV)

Decay constants on the
tangent model (MeV)

1S 9460.30� 0.26 6905 715.0� 4.8 719
2S 10023.26� 0.31 8871 497.4� 4.5 521
3S 10355.2� 0.5 10442 430.1� 3.9 427
4S 10579.4� 1.2 11772 341� 18 375
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γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2l2

p ; ð10Þ

where Ω is the angular velocity of the rotation. With this
transformation, the metric (8) becomes

ds2 ¼ R2

z2

�
−γ2ðfðzÞ −Ω2l2Þdt2 þ 2γ2ð1 − fðzÞÞΩl2dtdφ

þ γ2ð1 −Ω2l2fðzÞÞl2dφ2 þ ðdx1Þ2

þ ðdx2Þ2 þ 1

fðzÞ dz
2

�
; ð11Þ

The temperature of the rotating AdS black hole is
[22,23,28]

T ¼ 1

πzh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2l2

p
: ð12Þ

Note that we recover (8) by doing Ω → 0 in (11).
We assume that the rotating black hole metric of Eq. (11)

is dual to a cylindrical slice of the rotating plasma. This
interpretation can be justified by analyzing the angular
momentum J. For the metric (11), J can be calculated [28]
with the result

J ¼ −
∂Φ
∂Ω

¼ 2L3

κ2
Ω

z4hð1 −Ω2l2Þ ; ð13Þ

while for the metric (8) one has J ¼ 0. Thus, the coordinate
transformation is adding angular momentum to the system
and therefore representing a plasma in rotation.

III. EQUATIONS OF MOTION

By extremizing the action (4), we find the equations
of motion

∂nð
ffiffiffiffiffiffi
−g

p
e−ϕFmnÞ ¼ 0: ð14Þ

We now choose a Fourier component of the field and, for
simplicity, consider zero momentum (meson at rest),
Vmðt; x; zÞ ¼ vmðω; zÞe−iωt. We also choose the gauge
Vz ¼ 0. The equations of motion (14) become

1 − Ω2l2f
1 − Ω2l2

ω2

f2
vi þ

�
f0

f
−
1

z
− ϕ0

�
v0i þ v00i ¼ 0 ði ¼ 1; 2Þ;

ð15Þ
−
�

1

1 −Ω2l2f−1
f0

f
þ 1 − f
f −Ω2l2

�
1

z
þ ϕ0

��
Ωl2v0t

þ 1 − f
f −Ω2l2

Ωl2v00t þ
1 −Ω2l2

1 −Ω2l2f−1
ω2

f2
vφ

þ
�

1

1 −Ω2l2f−1
f0

f
−
1

z
− ϕ0

�
v0φ þ v00φ ¼ 0; ð16Þ

�
1

f−1−Ω2l2

f0

f
þ 1−f
1−Ω2l2f

�
1

z
þϕ0

��
Ωv0φ

−
1−f

1−Ω2l2f
Ωv00φ−

�
1

ðΩ2l2fÞ−1−1

f0

f
þ1

z
þϕ0

�
v0tþv00t ¼0

ð17Þ

and

v0t −
1 − f

1 −Ω2l2f
Ωv0φ ¼ 0; ð18Þ

where the prime stands for the derivative with respect to z,
f−1 ¼ 1=f, and, for simplicity, we omit the dependence on
z of f and ϕ and the dependence on ðω; zÞ of the fields vμ.
These equations are not all independent, if we substitute
(18) into (17) we obtain an identity, and substituting the
same equation into (16), we obtain an equation for vφ only.
With this, the system of equations of motion simplifies to

1 − Ω2l2f
1 − Ω2l2

ω2

f2
vi þ

�
f0

f
−
1

z
− ϕ0

�
v0i þ v00i ¼ 0 ði ¼ 1; 2Þ;

ð19Þ

1 − Ω2l2f
1 − Ω2l2

ω2

f2
vφ þ

�
1

1 −Ω2l2f
f0

f
−
1

z
− ϕ0

�
v0φ þ v00φ ¼ 0;

ð20Þ

v0t −
1 − f

1 −Ω2l2f
Ωv0φ ¼ 0: ð21Þ

Note that when Ωl ¼ 0, Eqs. (19) and (20) are the same
and the two states are degenerate. Rotation breaks this
degeneracy.
From this point on, we will divide our analysis in

two cases, according to three possible polarizations. The
first case is for polarizations in directions x1 and x2, for
which ðvmÞ ¼ ð0; v; 0; 0; 0Þ or ðvmÞ ¼ ð0; 0; v; 0; 0Þ. The
second case is for the polarization in direction φ, for
which ðvmÞ ¼ ð0; 0; 0; v; 0Þ.

IV. SOLVING THE EQUATIONS OF MOTION

A. Near the horizon behavior of the solution

By approximating the function f as the first term of its
power series at z ¼ zh, we write

fðzÞ ≃ f0ðzhÞðz − zhÞ ðfor z ≃ zhÞ ð22Þ

and we see that, in this region, Eqs. (19) and (20) both take
the form
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γ2ω2

f0ðzhÞ2ðz− zhÞ2
vhorðzÞþ

1

z− zh
v0horðzÞþv00horðzÞ¼ 0; ð23Þ

which, in terms of the temperature, can be written as

ω2

ð4πTÞ2 vhorðzÞ þ ðz − zhÞv0horðzÞ þ ðz − zhÞ2v00horðzÞ ¼ 0:

ð24Þ

The two solutions of this equation are

�
1 −

z
zh

�
−iω=4πT

and

�
1 −

z
zh

�þiω=4πT
: ð25Þ

The solution with the minus sign in the exponent corre-
sponds to an infalling wave at the horizon, while the other,
with positive sign, corresponds to an outgoing wave. This
becomes clear if one change to the Regge-Wheeler tortoise
coordinate, as explained in Refs. [35,36].
The black hole allows only infalling waves at the

horizon. Therefore, the field that solves the complete
equations of motion has to obey the condition

vðzÞ ≃ A

�
1 −

z
zh

�
−iω=4πT

ðfor z ≃ zhÞ; ð26Þ

where A is a normalization constant. The norm of the field
will have no importance for us, then we can set A ¼ 1.

FIG. 1. Real (left) and Imaginary (right) parts of the field vðω; zÞ (blue) and its approximations near the horizon vhor;pðω; zÞ with 20
(orange) and 10 (green) coefficients for the representative value of ω ¼ 10 GeV for the nonrotating plasma at temperature
T ¼ 150 MeV. In the first line we plot the field in all its domain. In the second line we zoom in the region from z ¼ 0.7zh to
z ¼ zh. The vertical lines highlight the values z ¼ 0.9zh and z ¼ 0.99zh.
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In order to solve the complete equations of motion (19)
and (20) numerically, we translate the infalling wave
condition at the horizon in two boundary conditions to
be imposed at a point z ¼ z0 close to the horizon,

vðz0Þ ¼ vhor;pðz0Þ and v0ðz0Þ ¼ v0hor;pðz0Þ; ð27Þ

with

vhor;pðzÞ ¼
�
1 −

z
zh

�
−iω=4πT Xp

n¼0

an

�
1 −

z
zh

�
n
: ð28Þ

The function vhor;pðzÞ is just the infalling wave expression
(26) (with A set to 1) times a polynomial correction of
order p introduced for purposes of the numerical calcu-
lations. The coefficient a0 is, of course, 1 and the other
coefficients an are determined by imposing the equation of
motion (19) or (20) with v ¼ vhor;p to be valid up to the
order p. The coefficients an are, therefore, the same for
polarization in directions x1 and x2 but are different from
the ones for polarization in the direction φ. The point z0 is
a chosen value of z, close to zh, where the approximation
vðzÞ ≃ vhor;pðzÞ is valid. Using Eq. (26), the leading term
of the field, for z close to zh, can be written as

cos

�
ω

4πT
ln

�
1 −

z
zh

��
− i sin

�
ω

4πT
ln

�
1 −

z
zh

��
: ð29Þ

In the region of values of z close to the horizon, very
small changes in z produce significant changes in vðzÞ, a
problem for the numerical calculation. For this reason, the
point z0 cannot be chosen too close to zh. This is the reason
why we introduce the polynomial perturbation from (28) in
the infalling condition. In this work, the value z0 ¼ 0.9zh
with 20 coefficients an was sufficient.
Figure 1 shows the solution of the equation of motion

for the nonrotating plasma at a specific temperature and for
some representative value of ω as well as two approx-
imations for this solution near the horizon. From this
figure, one can see that if we had chosen z0 ¼ 0.99zh, for
example, instead of z0 ¼ 0.9zh, we would be in the
unstable region and any small numerical error would be
significantly propagated. Also, if we had used 10 coef-
ficients, for example, instead of 20, we would not have a
good approximation for the field at z0 ¼ 0.9zh. For more
discussion on this method, see, for example, [37].
This method produces a numerical solution of Eqs. (19)

or (20) with the infalling wave condition at zh for any value
of ω. We will use these solutions to calculate spectral
functions and quasinormal modes in the following sections.

V. SPECTRAL FUNCTIONS

Spectral functions are defined in terms of the retarded
Green’s functions as

ϱμνðωÞ ¼ −2ImGR
μνðωÞ: ð30Þ

They provide an important way of analyzing the dissoci-
ation of quarkonia in a thermal medium. At zero temper-
ature, the spectral function of a quarkonium, considering
just one particle states, is a set of delta peaks at the values of
the holographic masses of Table I. At finite temperature,
these peaks acquire a finite height and a nonzero width. As
the temperature increases the height of each peak decreases
and its width increases. This broadening effect of the peaks
indicates dissociation in the medium. In this section we
calculate the spectral function for bottomonium in a
rotating plasma at three fixed temperatures in order to
analyze the effect of the rotational speed in the dissociation
process.

A. Retarded Green’s function

In the four-dimensional vector gauge theory we define a
retarded Green’s functions of the currents Jν, that represent
the heavy vector mesons, as

GR
μν ¼ −i

Z
d4xe−ip·xΘðtÞh½JμðxÞ; Jνð0Þ�i: ð31Þ

The Son-Starinets prescription [38] provide a way of
extracting the retarded Green’s function from the on shell
action of the dual vector fields in AdS space

Ion shell ¼−
1

4g25

Z
d4x

Z
zh

0

dz
ffiffiffiffiffiffi
−g

p
e−ϕðzÞFmnFmn

¼−
1

2g25

Z
d4x

Z
zh

0

dz∂mð
ffiffiffiffiffiffi
−g

p
e−ϕðzÞVnFmnÞ; ð32Þ

where we have used the equations of motion, (14), to go
from the first line to the second.
In the gauge Vz ¼ 0, we have VnFmn ¼ VνFmν and,

therefore,

Ion shell ¼ −
1

2g25

�Z
dx1dx2dφdz

ffiffiffiffiffiffi
−g

p
e−ϕðzÞVνFtν

����t¼þ∞

t¼−∞

þ
Z

dtdx2dφdz
ffiffiffiffiffiffi
−g

p
e−ϕðzÞVνF1ν

����x
1¼þ∞

x1¼−∞

þ
Z

dtdx1dφdz
ffiffiffiffiffiffi
−g

p
e−ϕðzÞVνF2ν

����x
2¼þ∞

x2¼−∞

þ
Z

dtdx1dx2dz
ffiffiffiffiffiffi
−g

p
e−ϕðzÞVνFφν

����φ¼2π

φ¼0

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
e−ϕðzÞVνFzν

����z¼zh

z¼0

�
: ð33Þ

Since any physical field has to go to zero as t, x1 or x2 goes
to�∞, the first three terms vanish. The point with φ ¼ 0 is
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equivalent to the point φ ¼ 2π, therefore, the fourth term
vanishes too. This leaves us just with the surface term

Ion shell ¼ −
1

2g25

Z
d4x

ffiffiffiffiffiffi
−g

p
e−ϕðzÞVνFzν

����z¼zh

z¼0

: ð34Þ

In momentum space and considering the meson at rest,
we find

Ionshell¼−
1

2g25

Z
dω

ffiffiffiffiffiffi
−g

p
e−ϕðzÞ gzz gμνvμð−ω;zÞv0νðω;zÞ

����z¼zh

z¼0

:

ð35Þ

Using the equation of motion (18) to substitute v0t in terms
of v0φ, one eliminates vt ending up with

Ionshell¼−
1

2g25

Z
dω

ffiffiffiffiffiffi
−g

p
e−ϕðzÞ gzz

×

(X
j¼1;2

gjjvjð−ω;zÞv0jðω;zÞ

þ
�ðgtφ Þ2
−gtt

þ gφφ
�
vφð−ω;zÞv0φðω;zÞ

)�����
z¼zh

z¼0

: ð36Þ

Now we separate the value of the field at the boundary
z ¼ 0 by defining the bulk to boundary propagator Eμðω; zÞ
such that

vμðω; zÞ ¼ Eμðω; zÞv0μðωÞ ðno summation; μ ¼ 1; 2;φÞ;
ð37Þ

with v0μðωÞ ¼ vμðω; 0Þ. This implies the bulk to boundary
condition Eμðω; 0Þ ¼ 1. Using the definition (37) in
Eq. (36), the on shell action becomes

Ion shell ¼ −
1

2g25

Z
dω

ffiffiffiffiffiffi
−g

p
e−ϕðzÞ gzz

×

(X
j¼1;2

gjjEjð−ω; zÞv0jð−ωÞE0
jðω; zÞv0jðωÞ

þ
�ð gtφ Þ2

− gtt
þ gφφ

�
Eφð−ω; zÞv0φð−ωÞ

× E0
φðω; zÞv0φðωÞ

)�����
z¼zh

z¼0

: ð38Þ

Then, applying the Son-Starinets prescription, we deter-
mine the retarded Green’s functions

GR
jjðωÞ¼−

lR
g25

e−ϕð0Þlim
z→0

1

z
E0
jðω;zÞ ðno summation; j¼1;2Þ

ð39Þ

and

GR
φφðωÞ ¼ −

R
lg25

e−ϕð0Þlim
z→0

1

z
E0
φðω; zÞ: ð40Þ

The other GR
μν vanish.

In vacuum (T ¼ 0), the Green’s function is just

Πðp2Þ ¼
X∞
n¼1

f2n
−p2 −m2

n þ iε
; ð41Þ

where mn and fn are the mass and decay constant of
the radial states of excitation level n of bottomonium. The
imaginary part of this Green’s function and, hence, the
spectral function at zero temperature is proportional to

X∞
n¼1

fnδðp2 þm2
nÞ; ð42Þ

a set of delta peaks, each one located at the mass mn
of a state.
When the meson is inside a thermal medium, at a nonzero

temperature, the change in the spectral function is a
broadening of the peaks. These peaks acquire a finite height
and a nonzero width. This broadening effect rises with the
temperature and with the excitation level n and is interpreted
as dissociation in the thermal medium. Variations of the
spectral function of quarkonia in a thermal medium without
rotation can be found on [8–11]. The same holographic
model considered here was used in these references.

B. Numerical results of spectral functions

Figure 2 shows how bottomonium’s spectral function
changes with the rotation speed Ωl at temperature
T ¼ 150 MeV. Figures 3 and 4 do the same for temper-
atures fixed at T ¼ 200 MeV and T ¼ 250 MeV, respec-
tively. In these charts we multiplied the spectral functions
by the inverse of the constants that appear in Eqs. (39) and
(40) in order to represent functions with the same dimen-
sion, that can be compared. From these figures one can see
that rotation increases the dissociation effect and also that
fields with polarization v1 and v2 dissociate slightly faster
than the ones with polarization vφ.

VI. QUASINORMAL MODES

In vacuum, the equations of motion simplify to

ω2vþ
�
−
1

z
− ϕ0

�
v0 þ v00 ¼ 0: ð43Þ

In this case, there is no black hole and, therefore, no
infalling wave condition. We determine the normal modes
by solving these equations with the exigence of the field to
satisfy the normalization condition
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Z
∞

0

R
z
e−ϕðzÞjvðzÞj2dz ¼ 1: ð44Þ

It is possible to translate this normalization condition into
the Dirichlet condition

vðω; z ¼ 0Þ ¼ 0: ð45Þ

This equation is solvable only for a discrete set of real
values ωn. These values are the masses of the quarkonium
states in vacuum. They are shown in the third column of
Table I.
At finite temperature, instead of normal modes, we have

the quasinormal modes. They are the solutions of the
equations of motion (19) and (20), that satisfy:

(1) the infalling wave condition at the horizon; and
(2) the Dirichlet condition (45).

The values ωn that satisfy both of this conditions are called
quasinormal frequencies, the fields vμðωn; zÞ are called
quasinormal modes and represent the meson quasistates.
As the value at T ¼ 0 of the normal frequency ωn is

interpreted as the mass of the particle in its state n, the real
part of the quasinormal frequency ReðωnÞ, at finite temper-
ature, is interpreted as the thermal mass of the quasiparticle.
The imaginary part ImðωnÞ is related to its degree of
dissociation. The larger the absolute value of the imaginary
part, the stronger the dissociation. It is interesting to note
that the real and imaginary parts of a nth quasinormal mode
are related to the position and width of the nth peak in the
spectral function. Therefore, we can interpret a growth in

FIG. 2. Spectral functions ϱ11ðωÞ ¼ ϱ22ðωÞ and ϱφφðωÞ for different values of rotation speed Ωl and temperature fixed at
T ¼ 150 MeV.
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the imaginary part of the quasinormal frequency as an
increase in the dissociation effect. Indeed, at T ¼ 0 the
width of the spectral function peaks is zero, as is the
imaginary part of the frequency ωn. Also, the limit for
T → 0 of ReðωnÞ is the mass mn. This discussion for the
nonrotating plasma with temperature only is already
present in the literature. One can find an application of
the tangent model for this case on Refs. [8–11].
The results of quasinormal frequencies for polarizations

xj and φ as function of the rotation speed Ωl and for
temperature fixed at T ¼ 200 MeV are shown in Fig. 5.
From this figure, one sees that the dissociation degree,
measured by −ImðωÞ, rises with the rotation speed Ωl.

VII. CONCLUSIONS

We analyzed in this work how the rotation of a quark
gluon plasma affects the thermal dissociation of heavy
vector mesons that are inside the medium. The motivation
for such a study is the fact that noncentral heavy ion
collisions lead to the formation of a QGP with high angular
momentum. So, a description of quarkonium inside the
plasma should take rotation into account. We considered, as
an initial study, the case of a cylindrical shell of plasma in
rotation about the symmetry axis. The real case of the QGP
should involve a volume rather than a cylindrical hyper-
surface and also possible interaction between different
layers of the plasma, that would have different rotational

FIG. 3. Spectral functions ϱ11ðωÞ ¼ ϱ22ðωÞ and ϱφφðωÞ for different values of rotation speed Ωl and temperature fixed at
T ¼ 200 MeV.
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speeds. However this simple case considered here already
provides important nontrivial information. It is clear from
the results obtained here that rotation enhances the dis-
sociation process for heavy vector mesons inside a plasma.
It was also found that this effect caused by rotation is more
intense for heavy vector mesons that have polarization
perpendicular to the rotational velocity of the meson.
In the holographic approach used here, the bottomonium

quasistates are represented by classical vector fields. In this
framework the polarization corresponds just to the direction
of the field, that is not affected by the rotation of the
medium. It is important to mention that there is an important

aspect of the actual physical problem of heavy vector
mesons inside a rotating plasma that does not show up in
this holographic approach. Namely, the coupling of the spin
of the mesons to the angular momentum of the medium.
Such a coupling affects the dissociation, in a way that
depends on the relation between the direction of rotation of
the medium and the direction of the spin. Also, in a quantum
process, like the heavy ion collision, the states that are
created can not be described as pure spin states but rather by
density matrices, since they represent mixed states. It would
be an interesting issue to be explored in future work to look
for a holographic description of the interaction (coupling)

FIG. 4. Spectral functions ϱ11ðωÞ ¼ ϱ22ðωÞ and ϱφφðωÞ for different values of rotation speed Ωl and temperature fixed at
T ¼ 250 MeV.
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between the meson spin and the QGP angular momentum
and the effect that such interaction has on spin alignment.
For interesting discussions about this issue, see [39,40]. In
these references the mesons are not described by dual
supergravity classical fields, as happens in the holographic
case presented here, but rather as particles with dynamics
described by some Hamiltonian that includes the coupling
between the angular momentum of the plasma and the spin
of the meson. It would be very nice to find a way to
represent this coupling in the holographic framework since
there are interesting recent works that propose forms of
measuring the density matrix of quarkonium [39–42] and
also a recent measurement of quarkonium polarization in
heavy ion collisions [43].
Finally, it is interesting to discuss the possibility of

describing mixed states using the holographic approach.
Or, in other words, how could one define a density matrix in
the present framework. We are describing vector mesons,
that are spin one particles, in terms of vector fields. In order
to build up a density matrix one needs to define a convenient
basis of spin states. The natural choice is the set of three
states with j ¼ 1 and m ¼ −1; 0;þ1, corresponding, as
usual, to the eigenvalue of total spin and of the spin
projection in some direction, taken in general as x3.
In the case of vectors in Cartesian coordinates, the

transformation from the Cartesian components V1, V2,
V3 to the eigenstates of j and m is simply a transformation
to a spherical tensors of rank 1. Writing the eigenstates of j

and m as VðjÞ
m on can write

Vð1Þ
þ1 ¼ −

1ffiffiffi
2

p ðV1 þ iV2Þ; Vð1Þ
0 ¼ V3;

Vð1Þ
−1 ¼ 1ffiffiffi

2
p ðV1 − iV2Þ: ð46Þ

These relations imply that one can obtain, for example,
the state Vð1Þ

þ1 by simply choosing a solution for the
Cartesian fields satisfying V2 ¼ −iV1 and V3 ¼ 0. The
other states are obtained in a similar way. Once the basis
is defined, the density matrix elements are defined as

hVð1Þ
m jρjVð1Þ

m0 i, where ρ is the usual density operator that
contains the information about the state.
In the present case there is subtlety. We considered a

particular situation of a plasma where all the points rotate
with the same speed; not only the same angular speed but
also the same radius. In order to achieve this we deformed
the original space, compactifying one coordinate, as can be
seen comparing Eq. (1) with Eq. (8). So, our geometry on
the boundary, that is the plasma geometry, is that of a
hypercylinder with two coordinates perpendicular to the
rotation circle, spanned by coordinate φ. We chose this
approach since the coordinate transformation involves the
speed of rotation, and thus the dual black hole depends on
it. So, it is reasonable to start such a holographic calculation
of spectral functions and quasinormal modes with a
simplified model involving just one black hole geometry.
In the recent work [44] the case of a volumetric rotating
plasma was described by superimposing different cylindri-
cal shells, each one with a dual black hole description.

FIG. 5. Quasinormal frequencies of the different excitation levels as functions of the rotation speed Ωl and temperature fixed at
T ¼ 200 MeV.
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Using such a volumetric geometry, where the radius ρ is
not constant but a coordinate and suppressing one of the
coordinates x1 or x2, with the other becoming the
rotational axis, one would deal with standard vector
fields in cylindrical coordinates. These field could than
be related to the spherical tensor of rank 1 that form the
basis that is necessary in order to build up a density
matrix. It would be interesting to investigate this sit-
uation in the future.
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