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We determine masses of light quarks (m,, m,, m,) using Borel-Laplace sum rules and renormalization
group summed perturbation theory (RGSPT) from the divergence of the axial vector current. The RGSPT
significantly reduces the scale dependence of the finite-order perturbative series for the renormalization
group invariant quantities such as spectral function, the second derivative of the polarization function of the
pseudoscalar current correlator, and its Borel transformation. In addition, the convergence of the spectral
function is significantly improved by summing all running logarithms and kinematical z’-terms.
Using RGSPT, we find m(2 GeV) = 104.347}3} MeV and m,(2 GeV) = 421704 MeV leading to

m, (2 GeV) = 2.007033 MeV.
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I. INTRODUCTION

The light quark masses are important parameters for
quantum chromodynamics (QCD) and electroweak phys-
ics. Because of confinement, they are not freely observed,
and their values depend on the scheme used. They are taken
as input in various quantities related to flavor physics and
play a key role in the proton-neutron mass difference and
the strong CP violating observable ¢'/e, etc. Precise
determination of their values has been of constant interest
in the past three decades. These masses can be precisely
obtained using the lattice QCD simulations, and for recent
development, we refer to Ref. [1].

Theoretical tools such as the QCD sum rules [2,3] have
played a key role in their precise determination. These sum
rules use both theoretical and experimental input on the
spectral function and are based on the assumption of the
quark-hadron duality [4]. On the hadronic side, the spectral
functions for the pseudoscalar channel in the case of the
strange and nonstrange channels do not have experimental
data, and therefore, inputs from chiral perturbation theory
(ChPT) [5-7] become very important. For reviews, we refer
to [8—10] and references therein.

On the theoretical side, operator product expansion (OPE)
[11] is used, which has perturbative and nonperturbative
contributions. The perturbative corrections are calculated by
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evaluating the Feynman diagrams, and nonperturbative
corrections are the condensates of higher-dimensional
operators of quarks and gluons fields. The condensates
can be determined from lattice QCD, ChPT, or using QCD
sum rules [12].

Fixed-order perturbation theory (FOPT) is the most
commonly used prescription in the literature. In this
prescription, the perturbative series is a polynomial in
the strong coupling constant [a(u)], quark masses [, (u)],
and the running renormalization group (RG) logarithms
[log(u?/Q?)]. The RG invariance of an observable (O),
known to a finite order in perturbation theory, is enforced
using the RG equation (RGE),

pw——0=0, (1)

which results in a cancellation among the coefficients of
different orders in . The solution to Eq. (1) can be used to
generate the RG logarithms.

Renormalization group summed perturbation theory
(RGSPT) is a perturbative prescription in which the running
RG logarithms arising from a given order of the perturbation
theory are summed in a closed form to all orders using
RGE. As a result, we get an analytical expression for the
perturbative series in which o, (u) log(u?/ Q%) ~ O(1). This
scheme is useful in reducing the theoretical uncertainties
arising from renormalization scale dependence. The pro-
cedure is described in Sec. III and some of the applications
can be found in Refs. [13-26].

The Borel-Laplace sum rule is one of the important
methods widely used in the literature, especially for the
determinations of quark mass [27-35] and in the extraction
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of hadronic parameters [36—-39], etc. However, the depend-
ence of an unphysical Borel parameter (x#) and free
continuum threshold s, parameter is present in these
determinations. In principle, any determination using this
sum rule should be independent of the choice of these
parameters, but they are tuned to get reliable results. In
addition, the determination of the light quark masses from
these sum rules is found to be very sensitive to the
renormalization scale, and a linear behavior has been
reported in Refs. [28,40]. Also, suppression to the hadronic
spectral function using pinched kernels [27,41], mainly
used in the finite energy sum rules (FESR), cannot be
implemented in these sum rules.

With the limitations in hand, our interest in this sum rule
is because of two reasons:

(1) The formalism developed in Ref. [23] can be used to
improve the convergence and reduced renormaliza-
tion scale dependence for the spectral function by
summing kinematical z2-terms using RGSPT.

(2) All-order summation of the Euler’s constant (y5) and
¢ functions arising as a result of the Borel trans-
formation of the RG invariant second derivative of
the polarization function using RGSPT.

It should be noted that these improvements are very crucial
and can be used in any Borel-Laplace sum-rule-based
studies. On the theoretical side, the leading perturbative
O(a?) corrections to the pseudoscalar two-point function
are now available in Refs. [42—44] and other OPE correc-
tions from Refs. [28,35,45-47]. For the low-energy region,
there is no experimental information for the pseudoscalar
spectral density in the resonance region, but it can be
modeled using the experimental values of the resonances
[48-50]. We have used the results of previous studies on the
hadronic spectral function from Refs. [29,48-51] for the
strange and nonstrange channel.

Hadronic 7 decays are also found to be very useful in the
determination of strange quark mass, Cabibbo-Kobayashi-
Maskawa element |V |, and strong coupling constant, and
more details can be found in Refs. [15,52-57]. These
studies use experimental data on the spectral function.
Commonly used prescriptions for the perturbative series in
these FESR-based studies use FOPT and contour improved
perturbation theory (CIPT). Recently, CIPT has been
found to be in conflict with the OPE expectations, and
for more details, we refer to Refs. [58—64]. For other light
quark mass determinations using sum rules, we refer to
Refs. [34,40,48,65].

It should be noted that only the MS definition of a, and
m, is used in this article. The value of a, (M) = 0.1179 £
0.0009 has been taken from the PDG [66] and evolved to
different scales using the five-loop f function for three
flavors using packages REvolver [67] and RunDec [68,69]. Its
value at 7z lepton mass (M,) scale is a,(M,) = 0.3139 +
0.0083 and has been used in this article. Also, we have used

couplant x(u) E@ as an expansion parameter in the

perturbation series and if explicit energy scale is not shown,
then x are assumed to be evaluated at renormalization
scale u.

In Sec. II, we briefly introduce the quantities needed for
the Borel-Laplace sum rule. In Sec. III, we give a short
review of RGSPT. In Sec. IV, hadronic parametrization of
the spectral function for the strange and nonstrange channel
1s discussed. In Sec. V, OPE contribution and its results in
FOPT and RGSPT prescription are discussed. In Sec. VI,
results from the previous sections are used for the light
quark mass determinations. In Sec. VII, we give the
summary and conclusion of this article, and supplementary
information is provided in Appendixes A and B.

II. FORMALISM

The current correlator for the divergence of the axial
currents is defined as

W) =i / e (O[T {js(x)jL(0)}[0).  (2)
where j5 is given by

Js = 0(q17,r592) = i(my + my)(q1759>)
= i(my + my) jo, (3)

and quark masses m; as well as quark fields g; = ¢;(x) are
bare quantities.

Using Eq. (3), the correlation function in Eq. (2)
after renormalization in the MS scheme is related to the
pseudoscalar polarization function [I1,(g?, u?)] by relation

¥Ys(g?) = (my + my) p(q? u?), (4)

where m; = m;(u). The polarization function ITp(g?, 4?) is
given by

Mp(q2 ) = i / e (O[T {jo(x)j5(0)}[0).  (5)

where j, is a renormalized current in the MS scheme.
Because of the above relation, the sum rule determinations
from the correlator in Eq. (2) are sometimes known as
pseudoscalar determinations.

Using OPE, a theoretical expression for Ws(g?) is
calculated in the deep Euclidean spacelike regions in the
limit mé < ¢?, and the resulting expansion can be arranged
as expansion in 1/(g?). At low energies ~1 GeV?, instan-
ton effects become relevant, and their contribution is
not captured by OPE and therefore are added to it.
Further details on the OPE contributions are presented
in Sec. V.
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The Borel-Laplace sum rules are based on the double-
subtracted dispersion relation for the correlation function.
Therefore, it involves the double derivative of Ws(g?) and
the dispersion relation is given by

W) = o) =2 [

The Borel transformation,’ with parameter “u

Im¥5(—s — ie)
(s—q* —ie)

(6)

“ 2

is obtained
using the Borel operator B”, defined as

po_ o (200"
Bu - ergloc F[}’l] an’ (7)
0“/n=u

where we have used variables Q? = —g*> > 0 for the
spacelike and s = g*> > 0 for timelike regions.

Borel parameter u has the dimension of GeV? and the
Borel transform of Eq. (6) is obtained as

W4 (u) = B,[¥(q?)] = B «¥s5(q%)] (u)

1
— [T dse S/“Im‘PS( —s — i€)
——/ dse™/"ps(s) (8)
where the spectral density is given by
L. .
ps(s) = —limIm¥s(=s — ie)]. 9)
T e~

It should be noted that the value of the u > Ay, in Ws” (u)
is chosen such that higher-order terms of the OPE remain
suppressed in the Borel transformed OPE.

The Borel-Laplace sum rules on the rhs of Eq. (8)
involve an integration ranging from the low-energy regime
of the strong interactions to the high-energy regime. The
spectral density is approximated with the quark-hadron
duality. For the low-energy regime, the spectral function is
parametrized in terms of pion/kaon poles and resonances
present in the channel, and for the high-energy region,
results from perturbative QCD (pQCD) are used. The
spectral density from these two regimes can be written as

ps(s) = O(so — 5)p8(s) + O(s — 50)pS""(s), ~ (10)
where scale s separates the two contributions, and its value
should be chosen such that the perturbative treatment is
justified.

Using Eq. (10), the Borel sum rule in Eq. (8) can be
written as

'We use normalization given in Ref. [35], i

1 —x/u
u”F[a]e .

1 K
i) = [ dse o)
—/ dse=*/1pdPE (s), (11)
S0

which is used in this article for the light quark mass
determination.

For clarification, various inputs used in Eq. (11) are as

follows:

(1) The W7 (u) is obtained from the Borel transformation
of ¥(g?), which involves OPE corrections and
addition to the instanton contributions. The instan-
ton contributions are small for the choice of the
parameters used in this article, but relevant as
pointed out in Ref. [48]. These contributions are
thus obtained using Eqs. (43) and (68).

(2) The hadronic spectral density pid(s) is obtained by
the parametrization of the experimental information
on the hadrons appearing in the strange and non-
strange channels. These constitutions are discussed
in Sec. IV for nonstrange and strange channels, and
we use Eq. (22) or (25).

(3) p9FE(s) on the rhs of Eq. (11) is obtained from the
discontinuity of the theoretical expression of the
W¥s(g?) which is calculated using the OPE and
instanton contributions are also added to it. It has
contributions from Egs. (44) and (67).

(4) Quark mass appears on both sides of Eq. (11) except
for the integral term containing p2d(s).

It should be noted that the main focus of this article is the
RG improvement for the theoretical quantities relevant for
points 1 and 3 and its impact in the light quark mass
determination.

III. REVIEW OF THE RGSPT

In FOPT prescription, a perturbative series S(Q?, 4?) in
pQCD can be written as

where x = a,(u)/x and L = log(u?/Q?). The RG evolu-
tion of the perturbative series in Eq. (12) is obtained using
its anomalous dimension yg(x) by solving

W S(0% ) = 1S ). (1)
u
d
235l = L) (130)

where anomalous dimension ys(x) and B(x) are given by

= Zyix"“, = Zﬂixiﬂ- (14)
i=0 i=0
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The perturbative series in Eq. (12) has no large logarithms
if we set u> = Q7 and various parameters, such as quark
masses and couplings, are evolved to different scales
using their RG equations. To account for renormalization
scale dependence for a series with vanishing anomalous
dimension, we set > = £Q? and the parameter £ is often
varied in the range £€[1/2,2]. The RG logarithms in
Eq. (12) still play a key role in canceling the scale
dependence arising from other parameters, such as from
ag and my,.

In RGSPT, perturbative series in Eq. (12) is arranged as
follows:

= xiS;(xL). (15)
i=0

where the goal is to obtain a closed-form expression for
coefficients

So(z) = Toow ™,
S1(z) =Ty ow o7l + Ty ow 71[(1
8y(2) = Ty ow 7072 = Ty w7072 (w —

where w=1 - fyz, and for anomalous dimension and
higher-order beta function coefficients, we have used
X = X/p,. The important feature of the above procedure
is that the most general term of RGSPT is given by

_log"(w) _log"(1 = fyx(s) g4/ 0?)
e = = T o logter@d

where n is a positive integer and a « y,/f, appearing in
Eq. (14). It should be noted that, for u> = Q?, both RG
summed series in Egs. (15) and (12) agree with each other.
The analytic continuation for them is obtained by taking
discontinuity of log(u?/Q?) = log(u?/|Q|?) £ ix. This
procedure results in large “iz” corrections for FOPT, but
for RGSPT, such corrections are summed to all orders in
the terms like in Eq. (19). For numerical prescriptions such
as CIPT, the analytic continuation is obtained by using
Eq. (46). One important point to note here is that results
from different prescriptions, such as RGSPT and FOPT, are
not the same when u?> = Q2 is set after operations like
analytic continuation or Borel transformation are per-
formed. The differences arise due to different treatments
of the RG logarithms for finite-order series for which only
a few terms are known. For more details on analytic
continuation using FOPT and RGSPT, we refer to Ref. [23].

— w71 + Bivo(w —

D71+ Bi(7o(—w + log(w) +
1 _ -

+ ETO,OW_}/O_Z{_:BIT/I [1—w? 4+ 2log(w) +2(w — 1)7o(w —

+ (w=1)[(w=1)B7o + (w=1)73 = (w+ D7a] + B0 (70

)= Tipyd, (16)
=0

where z = xL. S;(z) are functions of one variable where
7~ O(1). The closed-form solution for them is obtained
using RGE.

The RGE in Eq. (13a) results in a set of coupled
differential equations for S;(z), which in compact form
can be written as

(Z "’ldz

2718,4(2)) +y,-s,,_,-<z>) () =0,
(7

The first three coefficients can be obtained by solving the
above differential equation and are given by

log(w) = 1)},
1) +log(w))]

log(w) —1)]
= 1)(w —log(w) = 1)*}, (18)

The reduced sensitivity on the renormalization scale in
RGSPT prescription is due to the cancellation between
running parameters [coupling and masses by numerically
solving Egs. (13a) and (13b)] and coefficients S;(z) at
different orders. For a simpler case, in which series Eq. (12)
with vanishing anomalous dimension [y; = 0 in Eq. (18)],
there is a perfect cancellation between S, (z) in Eq. (18) and
exact one-loop running of the strong coupling constant

[x(vVEu) = /}Oif)g()Qz TIRRL 2)]. It is not easier to
such perfect cancellatlon for higher orders, as the exact
analytical solution to x, using Eq. (13b), is not known.

An alternate way to achieve RG improvement and access
would be to rearrange the original series in Eq. (12) by
replacing running logarithms as

W w
log <@> = —log (&) +log <§@> =—log(¢) +Ls,  (20)

and get a closed-form summation, similar to Eq. (15), that
has the form

% = Zx (H)Le). (21)
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Im[ys(s)]res for strange channel using x;=1

Im[@s(S)Ires. for nonstrange channel using k4=0.1
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FIG. 1. Hadronic spectral function in the resonance region for strange and nonstrange channels using Dominguez and de Rafael’s

parametrization [49].

Such a summation is not performed for RGSPT in the
literature and is left for future studies.

IV. HADRONIC SPECTRAL FUNCTION

The hadronic spectral functions are constructed using the
contributions from the pion/kaon pole and the data from the
experiments on the resonances in a given channel. At low
energies, they are dominated by the pion/kaon pole con-
tributions. This section discusses the parametrization of the
unknown pseudoscalar spectral function for the nonstrange
and strange channels.

A. Nonstrange channel

For the nonstrange pseudoscalar channel, two phenom-
enological parametrizations are often used in the literature.
In Ref. [49], Dominguez and de Rafael provided a ChPT-
based parametrization that is normalized to unity at the
threshold. Later, some corrections are reported for this
parametrization in Ref. [50]. Another parametrization often
used is by Maltman and Kambor [48], which requires
masses and decay constants for the higher resonances. In
this article, we have used Dominguez and de Rafael’s
parametrization, which was recently used in Ref. [65] for
the up/down-quark mass determination. We have used their
results for the nonstrange spectral function (pyg) and the
hadronic parametrization is given by:

BW](S) + K]BWZ(S)
1 + K1

where f, and M, are the decay constant and mass of the pion.
The value of k; ~ 0.1 is used in the Ref. [65] and it controls
the relative importance of the resonances. The 3z resonance
contributions are received from the z(1300) and 7(1800)
states. Their contributions are encoded in the ps,, which is
given by

, (22)

pns = faM38(s — M3) + p3,

*We thank the referee for pointing out this alternate method to
explore the scale dependence in RGSPT.

1 1M2 1

mW¥s(s) N §?W‘9(S —IMZ)I,(s), (23)

where I,(s) is the phase space integral given in Eq. (29).
In the chiral limit, the phase integral reduces to I,(s) =
3s that confirms the prediction for p;, in Ref. [70]. The
BW,,(s) is the Breit-Wigner distribution given by

(M;z - Sth)z + Mzzrzz

, 24
(5= M7+ 0T 2y

BW;(s) =

which is normalized to unity at the threshold, i.e.,
BW,,(sy) = 1. For the nonstrange spectral function,
we use the following data from the PDG [66] as input:

fr=130.2(1.2) MeV,

I, = 260(36) MeV,
[, =215 MeV.

M, = 134.9768(5),
M, = 1300(100),
M., = 18107,

Using the above values as input, the nonstrange spectral
function in the two parametrizations discussed above is
plotted in Fig. 1.

B. The strange channel

We use the hadronic parametrization presented in
Ref. [29] for the strange channel. This parametrization is
equivalent to the one we have used in the nonstrange
channel. The hadronic spectral function is given by

1

ps(s) = —tm¥s(s)|

1
= fxkM§d(s — M) +—Im(¥s(s))| . (25)
T Res.
where the spectral function for the resonance region is

given by
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P BW, (s) + k,BW,(s) .

1
—Im(¥
V3 m( 5(9)) Res. 1 +x,

(26)

The Breit-Wigner profile is constructed from K(1460) and
K(1830) resonances. The value x, ~ 1 is found to be a
reasonable choice in Ref. [29] to control the contributions
from the resonances. In addition, due to its narrow width,
there is a significant contribution from the resonant sub-
channel K*(892) — z. Its contributions are also included in
the pg,.(s) and has the form:

_ M% 3
C2f227x*

I (s)
s(M% —s)’

Prax(s) 0(s — M) (27)

and the integral /¢ (s) is defined in Eq. (31). For the strange
channel, precise values of the resonance masses and the
|

decay width do not exist. We are using the values used in
Ref. [51] with additional uncertainties of 50 MeV to
resonance masses and 10% to the decay widths. For kaons,
we use PDG [66] values, and the following values for the
parameters for the strange channel are used as input:

My = 497.611(13),
My, = 1460(50), T =260(26) MeV,
My, = 1830(50), Ty =250(25) MeV,

My =895.55(2), Ty =47.3(5) MeV. (28)

fx = 155.7(3) MeV,

Using the above inputs, the strange spectral function in the
resonance region is plotted in Fig. 1,

(V5=M,)? 4M2 V2 (s, u, M2) 1
L(s) = duy/1 ——= . 3(u—M2%) — s+ 9M?
(o) = [ 1 LMD s s ) s o0

1
o —amy

where A(s,u, M2) is given by

M2
{@ —Bu M2+ 3A(s, u, M2) (1 - 4—”) n ZOMi] } (29)
u

A(s.u, Mz) = (s = (Ve = M)*)(s = (Vu+ M,)?), (30)

1606 = [ 2 = w365 - 0t - [ = )

2

2
M: U

and

(M%. = M%)* + M%.T'%.
(M%. —u)* + M2.T%.

P ()]? = (32)
V. THE OPE CORRECTIONS

The OPE corrections are calculated in large Q2 limit and
organized as expansion in 1/Q?,

2
Ws(0%) = 02(m, +my)?3 L) (3
= (09
and W,,(Q?%) are termed as the contributions from 2n-
dimensional operators for n =20,1,2,3,.... Quantities
¥,(Q?) and ¥,(Q?) are purely perturbative, while addi-
tional nonperturbative condensate corrections start from
W¥,(Q?). The leading term in the OPE, ¥,,(Q?), is known to
O(a?) [42-44], which has an expansion in terms of @, and
log(u?/Q?). The dimension-two term of OPE, W¥,(Q?),

receives massive corrections (o m?) and it is known

to O(al) [35,45-47]. Additional strange quark mass

" 8u

a0 =M =)+ 5 = MEPIFe P o 1)

corrections [ O(m2a2)] to it are included from
Ref. [28]. The nonlogarithmic terms appearing in ¥, (Q?)
and W, (Q?) are irrelevant for the sumrule in Eq. (11). This is
due to the fact that the contributions calculated from the
Borel operator, in Eq. (7), vanish for any non-negative
integer powers of Q2. For the spectral function case, non-
logarithmic terms vanish when analytic continuation is
performed using Eq. (9). The relevant expressions for these
quantities for FOPT and RGSPT can be found in Appendix B
and Sec. B 2.

The OPE contributions from the dimension-four term,
¥,(0Q?), contain both massive corrections (< m7) as well as
nonperturbative condensates of quarks and gluon fields.
These corrections are known to O(a!) [35,47,71]. Their
RG running should also be taken into account when
coupling and masses are evolved with the scale.
However, we use the results provided in Refs. [72,73] to
form an RG invariant combination of these condensates.
For the quark condensates, this relation is given by

_ _ 3 53
(miq;q;)iny = (Mig;q;) + mi’"? <7zz2x - @) (34)
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The RG invariant combinations of the condensates [72]
also introduce inverse powers of the «a, [35,74]. For the
gluon condensate, we use the following relation:

/’L’;)<%Gz> Eﬁ(f) <%G2> —4yu(x) > (midiq;)

X r i X k=u.d,s

3
_4—ﬂ27/vac Z mi» (35)
k=u.,d,s

where 7y, = —1 — (4x)/3 + x*(=223/72 +2/3¢£(3)) is
the vacuum anomalous dimension [73]. The expression
for ¥, in RGSPT and FOPT are provided in Appendix B
and Sec. B 3.

We also consider the dimension-six contribution to the
OPE, W4(0Q?), for which only condensate terms are known.
These corrections can be written as

w,(0y) =12,

where

(I6);; =—3(mi(q;q,G) +m(g;q;G))
32
_Eﬂz'x(<6iQi>2 +(gq;4;)* —9@:9:)(@,q;))-  (36)
Subscripts i and j stand for the quark flavors in the strange
and nonstrange channels. It should be noted that the
structure of the dimension-six condensate is rather com-
plicated and, in deriving Eq. (36), vacuum saturation
approximation is used to relate dimension-six four-quark
condensate terms to dimension-four quark condensates. For
more details, we refer to [2,35].
The numerical values used for the nonperturbative
quantities are as follows [75,76]:

e
) = iy + ma) G7)
(55) = (0.8 £0.3)(3s) [28], (38)
<% G2> =0.037 £ 0.015 GeV*, (39)
(2:9:G) = M(q:q:)  [12], (40)
M3 =0.8+02GeV? [12]. (41)

We neglect the contributions to OPE beyond this order.
From Eq. (33), we can obtain W7(Q?), which has
following form:

(my +my)? Z‘W(QZ)

Q) =" > oY

(42)

and the Borel transform as

my +my)? =P/ (u
wi(u) = ) Z\Pu( ) (43)

u =0

The spectral function from Eq. (33) is obtained by using
Eq. (9), and it can be organized as

PO (5) = $Ro(s) + Rals) + Ras)
o Re(s) +o (44)

where R, are calculated from ¥, using (46) and analytical
expressions for R can be found in Ref. [28]. It should be
noted that p9¥E(s) and WZ(Q?) are RG invariant perturba-
tive quantities that enter in the Borel-Laplace sum rule
in Eq. (11).

The ¥, (¢?) for the pseudoscalar current appearing in the
OPE of Eq. (33) are not a RG invariant quantity. The Adler
function D, (Q?) is obtained from it using the relation

d

D,(Q%) = _Q2d—Q2 [(my +my)?W,(Q%)].  (45)

which is RG invariant, and m; = m;(Q) as mentioned
before in the text below Eq. (4). Both ¥, (Q?) and D, (Q?)

have a cut Q% = —¢*> < 0 due to the term log(_"—jz). The

spectral density in Eq. (44) is obtained in the timelike
regions (s = ¢g> > 0) from the discontinuity of the polari-
zation function,

1
Ruls) =5 - Mm[¥, (=5 — ie) = ¥, (=s + ie)]
1 —s—ie d

- dg* — ¥, (4>
2mi —stie 1 qu H(Q)

—1 —s—ie dq2
= i > D, (C]2>
7l J-s+ie 4
-1 dx
. Hep (—x,s). 46
i Pl (46)

The contour integral in the above equation has to be
evaluated without crossing the cut for g> > 0. It should
be noted that for FOPT and RGSPT prescriptions, the
imaginary part can be obtained trivially by replacing
the log(u?/Q?%) = log(u*/|Q|*) + in across the cut. For
the numerical evaluation methods, such as in the CIPT
prescriptions, Eq. (46) can be very useful for analytic
continuation in the complex plane. To sum z’-terms in
RGSPT, we first perform the RG improvement of the
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¥,(¢*) or D,(q*). The resulting perturbative has the
most general term given in Eq. (19) for which the imaginary
part can be taken by simply setting log(u?/Q?) =
log(u?/|Q|?) & in. This process results in an analytic
expression for which the renormalization scale can be
set ,u2 = g, but the iz terms are left behind, which results in
improved convergence. For more details about their effects
on the summation of kinematical terms, we refer to [23].

It should be noted that the analytic continuation using
the RGSPT expressions for the R, are rather lengthy.
Therefore, we provide expressions for corresponding Adler
functions in Appendix B.

A. Analytic continuation in FOPT and RGSPT

The R;(s) are obtained from W¥,(g?) by its analytic
continuation from spacelike regions to timelike regions
[using Eq. (46)], which results in the large kinematical 7>
corrections. These corrections, however, can be summed to
all orders using RGSPT, and a good convergence is
obtained for the perturbative series. As a demonstration,
we define R, from R as

(47)

Using a,(2 GeV) = 0.2945 and m (2 GeV) = 93.4 MeV
and setting m,, = 0, the R, at different orders of o, has the
following contributions:

REOPT = 1.0000 + 0.6612 + 0.4909 + 0.2912

We can see that summation of the z°-terms enhances the
convergence of the perturbation series when RGSPT is
employed. The scale dependence of the R, and truncation
uncertainty at different scales are significantly improved,
which can be seen in Fig. 2(a).

We can also test the RG improvement for the ¥ (¢2) by
defining ¥} (¢?), analogous to Eq. (47), as

87?
3(m,(2 GeV))?

¥i(q?) = ¥, (50)

and using quark masses and «, the same as R, and
setting ¢ = 2 GeV, we get the following contributions to
q,//,FOPT( 2\.

0 q )

PP = 1.0000 + 0.4737 + 0.2837 + 0.1917
+0.1405, (51)
Py ROSPT = 1.1508 + 0.5280 + 0.2621 + 0.1670
+0.1244. (52)

In the case of ¥(g?), we get slightly better convergence
than FOPT. The scale dependence of ¥} (¢?) normalized to
unity at 2 GeV is plotted in Fig. 2(b).

B. Borel transform in FOPT and RGSPT

The perturbative series in the FOPT prescripti(gn is a
polynomial form containing as, m;/Q?, and log(£2). For

Borel transforms in FOPT, only terms log(g—zz) and Q? are

+ 0.1105, (48) . : .
relevant, and we get an analytical expression containing
9 . . .. }4_2
RROSPT — 10038 + 0.4175 + 0.1760 + 0.0581 Euler’s constant, { funct.lons in addition to terms log(%),
and powers of u. To obtain the Borel transform, we use the
= 0.0152. (49) relation from Ref. [35] for the operator in Eq. (7),
Scale dependece of R, Scale dependence of ti’o"(qz)
1.4
1.2 i
1.2} .
1.0 7
Ro (W) <
®00ea. 000 T ttreeeeallll. RPN e
Ry (2GeV) ! hiy TTV98 v OB T ooee
0.8 e ““"mm....“ """"""""""
ci-e---FOPT el OIGj —e— FOPT ]
0.6l ——¥-— RGSPT ] 0.4 -~ RGSPT -
22 32 a2 52 0y a2 a2 52
u (in GeV) u (in GeV)

(a)

(b)

FIG. 2. Renormalization scale dependence of (a) Ry(s) and (b) ¥} (¢?) normalized to unity at 2 GeV in RGSPT and FOPT. The bands

represent the truncation uncertainty.
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fgore(s)
_ (;)a kio(—l)k”Cklogk (”;) ot (ﬁ) . (53)

where "Cy :W—’k)' is the binomial coefficient. The

derivative of the I' function results in the appearance of
the Euler’s constant and ¢ functions that can be seen
in Eq. (64).

For RGSPT, Borel transform is not a trivial task; it
involves a transcendental function as encountered in
Ref. [77] and is evaluated numerically. The most general
term in RGSPT, from Eq. (19), can be written as

1 n
W) _ (g, . (54)

w

where w = 1 — fyxlog(u?/s) and a is some real number
depending upon the anomalous dimension of the quantity
under consideration.

Using Schwinger parametrization, we can write

1 1 o
- dlt(z—l —tw
w*  Ta] /) ¢

_ / = dtga1 g—t(1=poxlog(u?/s)
0

[la]
[1]/ dtta—l('uZ/s>ﬁ0xte—t
- 1 Y (" et sy, (s5)
r 0

Using the above relation, we can easily perform the Borel
operator as follows:
1 [Se]

B H } TR nzor([; 2

00 ta+n—1
X df——— 2 ﬂoxt—&-z, 56
|7 g e (56)

where we have used the identity

B ] = g 57

Now, we rescale the integral in Eq. (56) by substituting
7 = Poxt and rewrite it as

TS T I (=1)"
B sz] ; (;ﬂ)zr[a];r[wr 1}(Box)"

0 ;aJrn—l g
XA e (58)

We can see that integral in the above relation cannot be
evaluated analytically [78]. We use

_ 0 qurttb
Az b.a) ZA Moritariorn Y
to rewrite Eq. (58) as
A i 1 1 N (=D)"Ta+n—1]
b Lz W“] ?)Ta] £ Z [[n + 1)(Box)"

(u
X (z/ua—l-n—lz) (60)

We have to rely on numerical methods beyond this point.
However, the identity

/O ® e=sti(1, b, a)dt = s~ (log(s)) P!, (61)

allows us to recover the original function using Laplace
transform.

Now, we can demonstrate the impact of the resummation
for the Borel transformation. Consider leading mass cor-
rections at different dimension to ¥/(s) from RGSPT,
which has the following form:

1
RGSPT _
A = U gl Ol (62)

where L = log(u?/s) is used here for the discussion. Its
series expansion to O(a?) in FOPT is given by

1 : -
ATOPT = <1 +270L(j + 1)x + 7oL (j + 1)x(Bo + 2r0(1 + j))

F200L o+ Do+ (14 )r0) (o + 2r0(1+ )

+é70L4(j + 1)x*(Bo + 70(1 + 7)) (Bo + 2701 + ) (30 + 270(1 +j))) + O(axy). (63)
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Now, the Borel transformation of the above series can be
obtained by substituting the following values:

5, F‘ g rog('é)] _ log(®) + 7k |
S_ u S u
5 [l02E)] _log’ () + 27 logt) + 78 —¢(2)
u S | - u )
o Mog® )] (373 —3¢(2)) log(%) + 3yslog (%)
u S ] o u
| log’ () +2¢(3) + 73 = 3reL(2)
; ,
5 rog‘*(ﬂé)] _ 876C(3) + 7k +3/20(4) - 6r3¢(2)
“ s u
. 10g()(8£(3) + 47} — 127x£(2))
u
(672 = 62(2))log’ () + log* ()
u
34
+%g(u)’ (64)

where y is Euler’s constant, and (i) are the ¢ functions.
These induced terms as a propelt%/ of Borel-Laplace sum
rules are first pointed in Ref. [79].” It is interesting to note
that all the yg can be absorbed in the logarithms, i.e.,
log("zzw), but not the ¢ functions. A similar case for the
Fourier transform of the static potential from momentum to
the position space can be found in Ref. [80].

Now, we obtain the Borel transform for A, using Eq. (64)
and by setting y> = u = 2.5 GeV? that resums the loga-
rithms in the case of FOPT. Using x(v/2.5) = a,(V/2.5)/7 =
0.3361/x, the Borel transformation of A, has the following
contributions:

B,[ARGSPT) = 0.4256,
B, [AEOPT] = 0.4000 + 0.0494 — 0.0255 — 0.0011 + 0.0042
=0.4270. (65)

It is clear from these numerical contributions that numerical
contributions from leading logarithms are oscillatory, and the
Borel transformation has poor convergence. These oscilla-
tions are due to the nonlogarithmic terms of Eq. (64) [as we

have set log (%) = 0]. The convergence gets worse for higher

J values, which can be inferred from Eq. (63), and the first
three are plotted in Fig. 4. The RGSPT value is all-order

*We thank Professor Narison for bringing this reference to our
attention.

Scale dependence of ¥,"(2.5 GeV?)
————— —
14
e RGSPT
I FOPT
12} ]
3 _—
o T Plmenn TS
g 1_0j ; ....h_,_.:.::.::_____ _____________________ il
L T
0.8
0.6 ]
71 1 1 1 1 1 l‘
0 1 2 3 4 5 6
u

FIG.3. Scale dependence of the ¥{j(),_5 5 Gey> in RGSPT and
FOPT.

results, but for FOPT, it oscillates and slowly converges to the
RGSPT value.

We can use the above results to study the renormalization
scale dependence of ¥ (u). To compare FOPT and RGSPT
results, we use values of Wj(u)|,_,sgey> in these pre-
scriptions, normalized to unity at # = 2.5 GeV, and present
our results in Fig. 3. Again, results for RGSPT are very
stable for a wide range of renormalization scales.

C. Convergence of Borel transformed OPE
using FOPT and RGSPT

We use the ratio r;z:o,z, defined in Ref. [28], from
Eq. (43) as

The numerator in the above equation is evaluated using the
contributions from O(a¥) from dimension-zero and dimen-
sion-two corrections to W' (u). Using PDG values for the
my(2 GeV) = 93.4, my(2 GeV) = 4.67 MeV and setting

u = 2.5 GeV?2, we get the following contributions to 74— >%:

rd=02| opr = {53.45%,27.46%.,13.30%,3.51%,-0.22%},
rd=02|  Gspr = {59.25%,23.52%,8.34%,4.04%,2.35%} .

From these numerical values, one may suspect that the
FOPT has better convergence than RGSPT. This behavior
can be attributed to the fact that there are large negative
corrections from the Borel transform of the logarithmic
log” (u?/Q?) terms as depicted in Fig. 4. The behavior of r,,
for different values of the Borel parameter can be found
in Fig. 5.

These findings clearly show that RGSPT has the poten-
tial to reduce theoretical uncertainty significantly and has
been the primary goal of this article.
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Borel transformed Af,") at different orders
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FIG. 4. A, calculated at different orders using u> = u =
2.5 GeV2.

D. Instanton contribution

In addition to the OPE correction, the QCD vacuum
structure becomes relevant at low energy, and contributions
from the instantons become relevant at energy range
~1 GeV. Their contributions are estimated using the
instanton liquid model (ILM) [81-83] and are added to
the pseudoscalar current correlator. These contributions are
parametrized in terms of the instanton size p,. and number
density n,. For the spectral density, we use the results from
Refs. [31,48,84],

o
pimst = Elm(qj(s)inst)

Ax Jl(ﬂc\/‘;)yl(pc\/g>7 (67)

where p. = 1/0.6 and 1,,4/,,;, = 1/0.6 [83]. In addition, we
also need the Borel transform of the second derivative of
the polarization function for the instanton, which is given
by [32]

Tlﬁ/,ij(u)mSt = Bu[(‘P/S/(s))inst]
_ 377ijp%(mi + mj)z
872

) sk ()] o

where K, and K are the modified Bessel functions. These
contributions are numerically relevant for low values of the
Borel parameter u ~ 1 GeV>.

Now, we have all the theoretical and phenomenological
quantities needed as input for the Borel sum rule in
Eq. (11). In the next section, light quark mass determination
using FOPT and RGSPT is performed.

1,2
e_ff)(:”

VI. LIGHT QUARK MASS DETERMINATION

In this section, we determine that masses of the strange
quark mass using the Borel-Laplace sum rule in Eq. (11)
from the divergences of the axial vector current. It should
be noted that the m,, is determined using the ratio €,, =
m,/my = 0.474759° [66].

Before moving to mass determination from the Sum rule,
we need to fix the values for the continuum threshold s, and
Borel parameter u. In principle, any determination from the
Borel-Laplace sum rule should be independent of the
choice of these parameters in the limit u > sy,. However,
in practical cases, there is a dependence on the determi-
nations of light quark masses on these parameters. For
practical purposes, these parameters are tuned to get stable
results for a given range. The Borel parameter is chosen
large enough to suppress the contributions from non-
perturbative condensate terms and resonances. However,
the continuum threshold s, is chosen in a region where
contributions from the higher resonances are negligible and
spectral function can be approximated with the continuum
pQCD correction. A proper window for s, and u is crucial
for the stable determination of the Borel-Laplace sum rule,
and we have discussed them for FOPT and RGSPT and in
this section for the individual as well as simultaneous m,
and m, determination.

We can also perform quark mass determination by choos-
ing the value of s for which both hadronic and perturbative
spectral functions are in agreement. However, these deter-
minations are going to be very sensitive to the second
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FIG. 5. rﬁ:ol from FOPT and RGSPT. The lines from top to bottom correspond to n =0, 1,2, 3,4.

resonance present in the hadronic spectral function. Another
issue is the absence of information about higher resonances,
which are already neglected in this study. Various contribu-
tions to the spectral functions are presented in Fig. 6 for
nonstrange and strange channels. For these channels, this
agreement is found in the range s, € [3.38, 3.79], for which
we have taken s, =3.58 £0.20 GeV? in such determinations.
However, such determinations are not taken in our final
average due to the issues discussed above.

Strange Spectral Function
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FIG. 6. Hadronic and theoretical spectral functions in the
strange and nonstrange channel.

A. m; determination

To fix the free s, and u parameters, we first perform
determination at different values. In the FOPT prescription,
there is a crossover around sy, = 4.5 GeV? for different
values of the Borel parameter that can be seen in Fig. 10(a).
Therefore, we choose sy = 4.5 £0.5 GeV? to minimize
variation in the m, determination with respect to the Borel
parameter from FOPT determinations. However, this is
not the case for RGSPT as there is no crossing point
in Fig. 10(b). There is a stability window for the
50 € [3.5,4.2] GeV? region for RGSPT, but we do not
use this value as /s, is close to the mass of the second
resonance. This results in slightly more uncertainty from
the variation of u in the m, determination compared to
FOPT, which can be seen in Fig. 10(c). However, we find
that there is a linear increase in the difference of maximum
and minimum values of strange quark mass [A(m;)]
determination for sy € [3,5] GeV? with u €[2,3], which
can be seen in Fig. 10(d). This linear behavior is milder in
the case of RGSPT compared to FOPT.

Now, we move on to our final determination, for
which we adopt the choice of parameters used in
Ref. [28]. For the Borel parameter, we use u = 2.5 &+
0.5 GeV? and the renormalization scale is varied in the
range u/2 < u> <2u. We take the continuum threshold
value sy = 4.5 + 0.5 GeV? and m,, = 2.167)5¢ MeV [66]
as input in our determination. We obtain the following
value of m(2 GeV), using FOPT:

mg(2 GeV) = 103.647840 MeV, (69)
and for RGSPT, we obtain
mg(2 GeV) = 104.20"}3] MeV. (70)

The details of significant sources of uncertainties can be
found in Table I. The pQCD uncertainties contain uncer-
tainties arising from uncertainties present in the quark and
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TABLE I. m,; and m, determination using FOPT and RGSPT and the sources of uncertainties denoted in the column.
FOPT RGSPT
Quark mass Final value u o u so pQCD Had. Final value u o u so  pQCD Had.
051 +0.18 +0.06 +0.07 +0.08 +0.20 +0.47 toag +0.02 +0.06 +0.10 +0.05 +0.10 +0.47
ma(2GeV) 4185 607 —0.06 —0.05 009 —0.11 -043 +21203 _001 —006 —008 —0.07 —0.10 —038
+4.59 4+1.40 4+0.76 +2.59 +5.14 +3.91 +0.55 4+1.42 +1.40 +1.76 +2.45 +3.61
+6.45 +437
my(2 GeV) 10364555 _ 166 140 —052 —2.66 —2.85 —3.62 1042050 _05) 140 148 —2.13 —243 —3.54
gluon condensates, a;, renormalization scale variation, and my(2 GeV) = 4,21j8_-§‘§ MeV, (75)
truncation uncertainty. The truncation uncertainty is calcu-
lated from the contribution of the last terms present in the
Y P = m, (2 GeV) = 2.00:03 MeV. (76)

expansion of ag in the perturbative series. Uncertainties
from other parameters are included in the hadronic uncer-
tainties (abbreviated as Had. Tables I and II).

It is worth mentioning that the uncertainties coming from
scale variation in RGSPT are significantly smaller than in
FOPT, leading to small pQCD uncertainties compared to
the hadronic uncertainties. It is important to note from
Table I is that the total theoretical uncertainty from pQCD
parameters is smaller than the hadronic uncertainties when
RGSPT is used. We present the scale dependence in our
determinations in Fig. 8(b). Another point to note is that the
exclusion of the instanton term for the RGSPT and FOPT
series leads to a decrease of strange quark mass about 1.26
and 1.24 MeV, respectively.

Now, we also present our results for the value of s, at
which theoretical and hadronic spectral functions are in
agreement. Using s, = 3.58 & 0.20 GeV? and taking the
rest of the parameters discussed above, we get the following
determinations for the FOPT and RGSPT schemes:

my(2 GeV) = 107.291737 MeV  (FOPT), (71)

my(2 GeV) = 106.02733% MeV  (RGSPT). (72)

The dependence of these determinations on the Borel
parameter is presented in Fig. 7.

B. m; determination
Similar to m, determination, there is a crossover point for
m, in FOPT, but near to z(1800) resonance mass as we can
see in Fig. 9. Because of this, we choose s, =4.5 %
0.5 GeV? as in the previous subsection. Using the same
parameters and ¢,; [66] for FOPT, we obtain the following
values:

my(2 GeV) = 418107, MeV, (73)

= m,(2 GeV) = 1.98%03] MeV, (74)

and for RGSPT, we obtain the following value:

We present the scale dependence in our determinations in
Fig. 8(a). The details of the sources of uncertainties can be
found in Table I. Exclusion of the instanton terms leads to a
decrease in the central value of m (2 GeV) by 0.20 and
0.13 MeV in determinations using FOPT and RGSPT
prescriptions, respectively.

Now, using s, = 3.58 +0.20 GeV? and taking the rest
of the parameters discussed above, we get the following
determinations for FOPT and RGSPT schemes:

my(2 GeV) = 4307032 MeV  (FOPT),  (77)
= m, (2 GeV) = 2.04753> MeV, (78)
my(2 GeV) = 4267038 MeV  (RGSPT),  (79)
= m, (2 GeV) = 2.02735 MeV. (80)

The dependence of these determinations on the Borel
parameter can be found in Fig. 7.

my(2GeV) vs u (GeVz)
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FIG. 7. Borel parameter dependence of the individual deter-
minations of m,(2 GeV) assuming quark-hadron duality is
obeyed at s; = from FOPT and RGSPT prescriptions.
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FIG. 9. my(2 GeV) calculated at different values of Borel parameter and s, using (a) FOPT and (b) RGSPT prescriptions.

C. Simultaneous m,; and m, determination

We can also perform the simultaneous determination of
the m, and m, using the sum rule in Eq. (11) for strange and

nonstrange channels. Using FOPT, we obtain
my(2 GeV) = 103.807%1} MeV,

my(2 GeV) = 4.187030 MeV,
= m, (2 GeV) = 1.987033 MeV,

and for RGSPT, we obtain the following values:

m(2 GeV) = 104.347$52 MeV,
my(2 GeV) = 4217048 MeV,

(81)
(82)

(83)

(84)

(85)

= m, (2 GeV) = 2.001)33 MeV. (86)

The details of sources of uncertainties in the determination of
quark masses can be found in Table II. In this case,
uncertainty in mg determination is smaller than the one
obtained in Sec. VI A. The values obtained for m and m ; are
very close to the determination from Secs. VI A and VIB.
Using sy = 3.58 + 0.20 GeV? for FOPT, we obtain

094016-14

my(2 GeV) = 107.39720° MeV, (87)
my(2 GeV) = 430707 MeV, (88)
= m, (2 GeV) = 2.04753¢ MeV, (89)
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TABLE II. m, and m determination using FOPT and RGSPT and the sources of uncertainties denoted in the column.

FOPT RGSPT
Quark mass Final value  u o u so pQCD Had. Final value u o u so  pQCD Had.
toso +0.18 +0.06 10.07 +0.08 +0.19 +0.47 cous +0.02 +0.06 10.10 +0.05 +0.10 +0.47
my(2GeV) 418150 007 —0.06 —005 —0.09 -0.09 —043 212035 001 —006 —0.08 —007 —0.10 —0.43
4454 4138 +072 +2.56 +4.77 +3.87 4055 +141 +134 +1.74 4242 +3.57
+6.14 +4.32
my(2 GeV) 10380105 166 _138 —049 —2.62 —224 —358 104341050 050 138 144 —2.11 —240 —3.50

and for RGSPT, we obtain the following values:

my(2 GeV) = 106.147}3; MeV,
my(2 GeV) = 4.26704° MeV,

= m,(2 GeV) = 2.02103 MeV.

mg(2GeV) vs sg in FOPT

VII. SUMMARY AND CONCLUSION

We have used the Borel-Laplace sum rule to determine

(90) the light quark masses from the correlator of the divergence
of the axial vector current. The sum rule uses both hadronic

(o1) 88 well as perturbative contributions. In Sec. III, we briefly
reviewed the procedure of RG summation in RGSPT and its
importance in the RG improvement for the theoretical

(92) quantities used in the Borel-Laplace sum rule.

ms(2GeV) vs sg in RGSPT
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115 E [
s - 12 ~o— FOPT
S Mo - L - T T % { { T :
Q 105 E [ - RGSPT
g 1005 L + = I l I l i ok % 1or ]
95 F : : 1z al
90} = %L )
AN 3 [ 1
o 8 : ]
_ st : : ;E: r d
3 it T T T T T T T 7 4r ]
S 4 e S S S S G (R R G G F ]
£, —o— FOPT 2|
—=— RGSPT [
2b i i i f . ol . : ; i .
2.0 2.2 24 2.6 2.8 3.0 2.0 22 2.4 2.6 2.8 3.0
u (GeV?) u (GeV?)
(c) (d)

FIG. 10. m(2 GeV) calculated at different values of Borel parameter and s, using (a) FOPT and (b) RGSPT schemes. In Fig. (c),
m(2 GeV) and m,(2 GeV) at different values of the Borel parameter in the range u € [2, 3] GeV?. In (d), Am,(2 GeV) obtained by
varying s, € [3,5] GeV? at different values of Borel parameter u.
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In Sec. IV, we discussed the hadronic pseudoscalar
spectral function for which no experimental information
is available. However, these contributions can be para-
metrized in terms of the information available on the
masses and decay width of the spectral function. We use
commonly used hadronic parametrization from Dominguez
and de Rafael [49] in this article for the light quark mass
determination, and it has a good agreement with another
parametrization by Maltman and Kambor [48], which can
be seen in Fig. 1.

In Sec. V, the continuum contributions are discussed in
detail. The most commonly used FOPT prescription results
are already available in the literature. These determinations
have large uncertainties from the variation of the renormal-
ization scale. RGSPT can reduce such uncertainties and is
inspired by the findings of Ref. [23]; we first sum the
kinematical 7>-terms appearing due to analytic continuation
of the spectral functionin Sec. V A. The analytic continuation
using RGSPT also results in better convergence of the
perturbation series for the dimension-zero contribution.
We also find better convergence and improved scale depend-
ence for the ¥”(Q?), which is also an RG invariant quantity.
These improvements can be seen in Fig. 2.

In Sec. V B, we first calculated the Borel transformation
for the W”(Q?) in the RGSPT prescription. The Borel
transformation for RGSPT can only be performed numeri-
cally, and it resums all the Euler’s constant and various ¢
functions that arise due to Borel transformation for RGSPT.
The FOPT results are found to be poorly convergent and
oscillate around the all-order result from the RGSPT.
RGSPT also improves the scale dependence of the Borel
transformed W (Q?) which is used as input in the Borel-
Laplace sum rule in Eq. (11). These improvements can be
seen in Figs. 3 and 4. The result obtained is used in Sec. V
C to test the convergence of W’ (u). The FOPT series is
found to be slightly more convergent than RGSPT, but it is
argued that RGSPT results are more trustworthy as Borel
transformation in FOPT has oscillatory behavior for the
known results. We also include small instanton contribu-
tions using results from ILM in Sec. V D.

We determined the light quark masses in Sec. VI using
the free parameters s, and u used in Ref. [28]. This
particular choice leads to small u dependence in the
FOPT determinations of the m,, which can be seen in
Fig. 10(a). For the RGSPT determination, the stability
region is closer to the second resonance; therefore, we have
used the choices for these free parameters from FOPT. This
leads to slightly large uncertainty in the m, determination
from the variations of u. In addition to the individual
determination of the mg and m,, we have performed
simultaneous determination and found a slightly more
precise value for my, These results are presented in
Tables I and II. In addition to this, we have also presented
our determination by choosing s, = 3.58 & 0.20 GeV? in
the resonance region where there is good agreement

between theoretical and hadronic spectral function.
These values result in higher values of the quark masses
which can be seen in Figs. 10(a) and 10(b). Since this value
choice of s, is sensitive to the parameters of the second
resonance and higher resonances are neglected, we do not
consider them in our final determinations.

Now, we give our final determination for the light quark
masses, which comes from the simultaneous determination
of the mg and m, and their values at 2 GeV are

mg(2 GeV) = 10434732 MeV, (93)
my(2 GeV) = 4217018 MeV, (94)
m, (2 GeV) = 2.007533 MeV. (95)

Corresponding PDG average values [66] are

my(2 GeV) = 93.478¢ MeV, (96)
my(2 GeV) = 4.677018 MeV, (97)
m, (2 GeV) = 2.16103¢ MeV, (98)

which is in agreement with our findings.
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APPENDIX A: RUNNING OF THE STRONG
COUPLING AND THE QUARK MASSES
IN THE pQCD

The running of strong coupling and the quark masses
are computed by solving the following differential
equations:

d .
w53 = Blx) = = xp;
p ;
2 d — i+1
W m(u) = my, =-my yxitl, (A1)

where f3; are the QCD f function coefficients and y; are the
quark mass anomalous dimension.

The QCD p function coefficients are known to five
loops [85-93] and their analytic expression for n -active
flavor are
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PRI 5 _5L_19 2857 5033 325 ,
0T T 1R T 27128 T 1152 T 3456

149753 1078361 50065 , 1093 891 1627 809

2= 536 " a2 " T a1ama T isee2a’ +ea C4) T g r603) + 5505 M 3).

8157455 621885((3) 9801t 144045((5) _ 336460813 _ 1202791¢(3) | 6787  1358995(()
4~ 16384 2048 20480 512 771990656 20736 110592 27648

, (25960913 698531£(3) 3 52637* 3 5965¢(5) ey 630559 24361¢(3) n 8097 n 115¢(5)
1990656 82944 414720 1296 \' 5971968 124416 1244160 = 2304

n4< 1205 195(3)>‘ a2)

12985984 10368

The known five-loop quark mass anomalous dimension coefficients [94—-101] are

2
© a1 (202 =20 o 1 _1605(3) 2216\ _ 140n}
m — 17 m - ) m 1249 - - )
4 4 42< 3 T meg T 3 27 81
o 1 (1356802(3) 4603055 _34192@(3) 4 184005(5) 91723
m= <727 8800:(5)+—1 & \-— + 880¢(4) 5 -
8000(3) 160C(4) 5242 640(3) 332
2 _ 3
g ( 9 3 s ) T\ T T
w 1 (99512327 46402466 (3) , 698126{(4) 231757160¢(5)
y = 45< ey Ty 96800£(3) 5 3 +242000¢(6) + 412720¢(7)
150736283 12538016£(3)  75680¢(3) | 2038742((4) | 498T6180L(5) _ 6380004(6)
" _ _ _
! 1458 81 9 27 243 9
_ 182000027 | +1320742+201O824C(3)+46400{(3)2_166300@(4)_264040(,“(5)+92000C(6)
27 & 729 243 27 27 81 27
01865 12848£(3) 448((4) 5120¢(5) L[ 260 320(3)  64C(4)
- 2 . A3
(1458 1 9 A Y (A3)

APPENDIX B: CONTRIBUTION TO CURRENT CORRELATOR
1. Dimension-zero contributions

The zero-dimensional contribution to OPE is known to five loops (a¥) [42—44]. We are using the following expression for

‘{10:
3 17L 170L% 9512 9631 35¢(3)

2y T 2 T 2 —
TO(‘])_SHZ{L+<L+ 3) x(lz LG +L(144 2 ))

o {L2<4781—4755(3)> 221L4+229L3 L(_91519C(3) 715¢(5) =* 4748953)]

18 8 96 6 216 12 36 5184
s 192155¢(3)? 462175014’(3) +455725{(5) 52255¢(7) 1255 3491ﬂ4+7055935615
216 5184 432 256 9072 10368 497664

11668154,“ 240254,“(5) 3 71'_4 97804997 Iy 3008729 5595¢(3) n 51269L% n 1547L3
96 36 20736 3456 32 576 384 ’

(B1)

where x = a,(¢))/x and L = log(¥5 ) This expression reproduces the results for R, and ¥j(u) in Ref. [28].
For RGSPT, these quantities can be derived using Eqgs. (45) and (46) from the Adler function. The RGSPT expression for
the dimension-zero Adler function is given by
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3(m 7.457 1.5801 60.699  2.653log> 14.514
Do) = 2T [y (g0 4 7457 1S80I0g()) | (g 5 , 60.099, 26053l0g%(w)
872w w w w w w
2.829 27.849 o 129189 599.649 4.542log3(w) (76231 4750\,
+|——=—5—)log(w) )| +x°( - 5 = 3 + T~ |log*(w)
w w w w w- w
53766 361.248 0.536 5.20 15012 66312 1339.755
+( — -+ ) g(w )——+0593> <—12.673+ -
w w w w w
6992.440 _7.851log!(w) | (8.131 183.752 146.509  1384.280 0.901\
+ — + 1 + 3 log*(w) + ( - s+ — ———— |log*(w)
w w w W w w w
18.438 759.073 4787.937 0.938
- ( —t—5—————— > 10g(W)> } (B2)
w w w w

where w = 1 — x(u)f log(_"—;).

2. Dimension-two corrections

The dimension-two contributions with full mass dependence are available to O(a}) in Refs. [35,45-47]. Additional

O(a?) correction is taken from Ref. [28]. For FOPT, we use the following expression for dimension-two contribution to the
current correlator:

3 [, (L 25L% 97L*  [I54Z(3) 5065 , 3L\
Tz—gﬂz{(mi —|—mj)<x ( 3 5 +L 3 36 —4L 3 )" 2L
—m;m; <x (—4L2 - 56TL +8¢(3) - 83—8) -2L - 4) } (B3)

For RGSPT, we derive the spectral function from the dimension-two Adler function,

(mi + m;)*(mi + m}) 2
D, = 139968720479 (8x(729(20w* — 251)x¢(3) + 32log(w) (8w (290x — 81) + 1600x log(w) — 12607x))
4524882 + (5497360 — w(7643w + 1797332))22 + 1296(361 — 145w)wx)
(m; +m;)*m;m;
21672w>/?

L (w(290x — 81) 4 256x log(w) — 1046x). (B4)

3. Dimension-four contributions

The dimension-four contributions can be obtained from Refs. [35,47,71]. For dimension-four contributions, we use an
RG invariant combination of the condensates given in Refs. [72,73]. The constant terms at this order are important for the
Borel-Laplace operator. We give a summed expression for the current correlator,

1 u i
Wy = =1 s (w(145x = 81) + 128xlog(w) — 4421) < > g4, )> o s (@ada + Tuda)ine

i=u,d,s
<ab G2>inv

1296w'7/?
{(mj1 + m})(=324w? — 189wx) + mim3 (x*(=6090(w — 1) — 5376 log(w)) + 1134wx)

(@:9; + @;9;)iny.
Q1?0
1
* 15127°w!3x
+ (mim; + m;m?)(x(=3480w? + 5073w — 3072w log(w)) + 648w?* + x*(—8555w — 7552 log(w) + 1877)))

—8lwx > mz}. (BS)

k=u.,d,s

+ (w(145x — 81) + 128xlog(w) — 523x) — (2w(145x — 81) + 256xlog(w) — 1181x)

The corresponding FOPT expression is given by
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