
Twist-3 contributions in semi-inclusive DIS in the
target fragmentation region

K. B. Chen ,1,* J. P. Ma ,2,3,4,† and X. B. Tong5,6,‡
1School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, China

2CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China

3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4School of Physics and Center for High-Energy Physics, Peking University, Beijing 100871, China

5School of Science and Engineering, The Chinese University of Hong Kong,
Shenzhen, Guangdong, 518172, China

6University of Science and Technology of China, Hefei, Anhui, 230026, China

(Received 28 August 2023; accepted 16 October 2023; published 9 November 2023)

We present the complete results up to twist-3 for hadron production in the target fragmentation region of
semi-inclusive deep inelastic scattering with a polarized lepton beam and polarized nucleon target. The
nonperturbative effects are factorized into fracture functions. The calculation up to twist-3 is nontrivial
since one has to keep gauge invariance. By applying collinear expansion, we show that the hadronic tensor
can be expressed by gauge-invariant fracture functions. We also present the results for the structure
functions and azimuthal asymmetries.
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I. INTRODUCTION

Semi-inclusive deep inelastic scattering (SIDIS) is an
important process for hadronic physics. It provides a
cleaner environment for detecting the inner structure of
the initial hadron than inclusive processes in hadron-hadron
collisions. The kinematic region of SIDIS can roughly be
divided into two parts (see e.g., [1–5] for more discus-
sions). One is called the current fragmentation region
(CFR) where the observed hadron in the final state moves
into the forward region of the virtual photon. Another one is
the target fragmentation region (TFR), where the measured
hadron predominantly travels in the forward direction of
the incoming target. Events in both regions can be used to
comprehend the internal structure of hadrons and the
properties of strong interactions.
So far, the bulk of research on SIDIS has focused on the

CFR, where hadron production can be understood as
the fragmentation of a parton emitted from the target and
struck by the virtual photon. This allows us to investigate

various parton distributions functions (PDFs) [6–9]
and fragmentation functions (FFs) [6,10,11] within the
transverse-momentum-dependent (TMD) [12–18] or col-
linear factorization formalisms [19–23] at small or large
hadron transverse momentum. While there have been
significant developments in recent years for physics in
the CFR [18,24,25], as well as elaborated and recent
extractions of quark TMDs [26–28], the physics in the
TFR has received less attention.
The early analysis of the experimental data at HERA

[29,30] indicates a surprisingly high number of events in the
TFR and has stimulated the introduction of fracture func-
tions [31–33]. Physically, fracture functions describe the
distributions of the struck parton inside the target when the
remnant spectators fragment inclusively into the detected
hadron. They encompass intricate initial final-state corre-
lations and provide a unique perspective into the partonic
dynamics and hadronization, complementing PDFs and
FFs.Most of our current knowledge about fracture functions
comes from the analysis of proton diffraction (see e.g., [34]
for a recent review), where the final hadron coincides with
the target proton, and the fracture function is conventionally
called as diffractive PDF [32]. Phenomenological fittings of
diffractive PDFs from HERA data [30,35–41] have been
conducted in [42–47]. Fracture functions for other leading
baryon production, such as neutron andΛ-hyperon, are also
constrained with parametrization assumptions in [48–54],
respectively. Fracture functions are also utilized in hadron
collisions in [55–57].
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From a theoretical point of view, most of the afore-
mentioned investigations about TFR hadron production
are based on the factorization at twist-2 in terms of
collinear fracture functions. This factorization has been
proven to hold to all orders of αs [58] and has been
confirmed through the explicit calculations up to
Oðα2sÞ [59–62]. Initially, the fracture functions in the
factorization included an integration over the final-hadron
transverse momentum Ph⊥ [31], however, without this
integration the momentum transfer [32,33] and azimuthal-
angle distribution [63,64] can be studied. To further probe the
spin [60,63] and parton-transverse-momentum [63,65,66]
dependence of fracture functions, several observables and
factorization assumptions are proposed in [67–69]. The
CLAS Collaboration at JLab has recently reported the
first measurement of these dependences [70]. More
detailed discussions on the factorization with TMD fracture
functions and relevant evolution is presented in [57].
Furthermore, recent investigations have also addressed the
factorization properties of fracture functions in different
kinematic regions [57,64,71]. The small-x behavior of
fracture functions is studied in [71]. In [64] the large-Ph⊥
behavior is explored in detail, aiming to understand the
transition of production mechanisms between the TFR and
CFR in SIDIS.
Despite these progresses, the contributions of SIDIS in

the TFR beyond the leading twist are still less investigated.
The theoretical framework for a systematic study of the
TFR beyond the leading twist needs to be established.
The importance of higher-twist effects in improving the
description of the experimental data has already been
emphasized by recent phenomenological studies of frac-
ture functions [45,46,72].
Moreover, it is known that the absence of higher-twist

effects results in the loss of predictions for fourteen SIDIS
structure functions in the TFR at the tree level.At the leading
twist, only four structure functions are nonzero [63] for
the case of unpolarized hadron production and a spin-1=2
target [73,74]. These higher-twist contributions are respon-
sible for various intriguing azimuthal and spin asymmetries.
Especially, some of these asymmetries are alreadywithin the
reach of the ongoing experimental programbyCLAS12 [75]
at JLab due to the availability of a longitudinally polarized
target [76,77]. For instance, a preliminary investigation
utilizing CLAS12 data has revealed the significance of
the beam-spin asymmetry in the TFR, suggesting that its
sign and magnitude could serve as a novel indicator for
tracking the transition between the TFR and the CFR
(Sec. V.3 in [77]). Furthermore, the potential JLab@22GeV
program [77] and the planned electron-ion colliders in the
USA [78–82] and China [83] are poised to provide addi-
tional exciting opportunities for exploring new frontiers in
TFR physics. Given these experimental progresses, it is
important to undertake an evaluation of the higher-twist
contributions of SIDIS in the TFR.

The objective of this paper is to present a first analysis
of twist-3 contributions to SIDIS in the TFR within the
framework of collinear factorization at the tree level of
quantum chromodynamics (QCD) perturbation theory. Our
focus is on the scenario where the target is spin-1=2 and the
polarization of the final hadron is unobserved. The frame-
work can be easily extended to the case of a spin-1 target.
By employing the collinear expansion technique [84–92],
we demonstrate that the hadronic tensor of SIDIS in the
TFR can be expressed in terms of three distinct types of
twist-3 collinear fracture functions. We discuss the classi-
fication of these fracture functions and show that they are
not independent due to the constraints imposed by the QCD
equation of motion (EOM). With the EOM, the twist-3
contributions can be expressed with two-parton fracture
functions at the considered order. Our findings also have
significant phenomenological implications.
The rest of this paper is organized as follows. In Sec. II,

we discuss the kinematics for the polarized SIDIS in TFR
and present the general form for the cross section in terms
of the structure functions. In Sec. III, we present detailed
calculations of the hadronic tensor up to twist-3. In Sec. IV,
we give the final results for the structure functions and
azimuthal or spin asymmetries expressed by fracture
functions. A short summary is given in Sec. V.

II. KINEMATICS AND STRUCTURE FUNCTIONS
OF SIDIS IN THE TFR

Through out this paper, we use the light-cone coordin-
ate system, in which a vector aμ is expressed as
aμ ¼ ðaþ; a−; a⃗⊥Þ ¼ ðða0 þ a3Þ= ffiffiffi

2
p

; ða0 − a3Þ= ffiffiffi
2

p
; a1; a2Þ.

With the light cone vectors nμ ¼ ð0; 1; 0; 0Þ and
n̄μ ¼ ð1; 0; 0; 0Þ, the transverse metric is defined as
gμν⊥ ¼ gμν − n̄μnν − n̄νnμ, and the transverse antisymmetric
tensor is given as εμν⊥ ¼ εμναβn̄αnβ with ε12⊥ ¼ 1. We also
use the notation ãμ⊥ ≡ εμν⊥ a⊥ν.
We consider the SIDIS process with a polarized electron

beam and nucleon target as follows:

eðl; λeÞ þ hAðP; SÞ → eðl0Þ þ hðPhÞ þ X; ð1Þ

where l, l0, P, and Ph are the 4-momenta of the incident, the
outgoing electron, the nucleon target and the detected final-
state hadron, respectively. At the leading order of quantum
electrodynamics, there is an exchange of one virtual photon
between the electron and the nucleon. The momentum of
the virtual photon is given by q ¼ l − l0. The helicity of the
electron is denoted by λe, and S is the polarization vector
of the nucleon. We consider the production of a spin-0 or
unpolarized final-state hadron h. The Lorentz invariant
variables of SIDIS are conventionally defined by

Q2¼−q2; xB¼
Q2

2P ·q
; y¼ P ·q

P ·ke
; zh¼

P ·Ph

P ·q
: ð2Þ
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We are interested in the TFR, where Ph is almost collinear
with P and zh ≪ 1. As discussed in [59,63], zh is not
convenient for us to describe the hadron production in TFR,
because one can not differentiate the scenario of TFR
considered here from the soft-hadron production. Instead,
we will use [4,63]

ξh ¼
Ph · q
P · q

: ð3Þ

We work in the reference frame shown in Fig. 1, where
the nucleon hA moves along the þz-direction and the
virtual photon moves in the −z-direction. In this frame, the
momenta of the particles are given by

Pμ ≈ ðPþ; 0; 0; 0Þ; ð4Þ

Pμ
h ¼ ðPþ

h ; P
−
h ; P⃗h⊥Þ; ð5Þ

lμ ¼
�
1 − y
y

xBPþ;
Q2

2xByPþ ;
Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

; 0

�
; ð6Þ

qμ ¼
�
−xBPþ;

Q2

2xBPþ ; 0; 0

�
: ð7Þ

For the case that the produced hadron h has small trans-
verse momentum and in the TFR, we have Pþ

h ≫ jP⃗h⊥j ≫
P−
h and ξh ≈ Pþ

h =P
þ, which specifies the longitudinal

momentum fraction of the nucleon taken by the final-state
hadron h. The polarization vector of the nucleon with mass
M can be decomposed by

Sμ ¼ SL
Pþ

M
n̄μ þ Sμ⊥ − SL

M
2Pþ nμ; ð8Þ

where SL is the longitudinal polarization of the nucleon and
Sμ⊥ ¼ ð0; 0; S⃗⊥Þ the transverse polarization vector.
The incoming and outgoing electron span the lepton

plane. We define the azimuthal angle ϕh for P⃗h⊥ with
respect to the lepton plane, and ϕS is that for S⃗⊥. The
azimuthal angle of the outgoing lepton around the lepton
beam with respect to the spin vector is denoted by ψ. In
the kinematic region of SIDIS with large Q2, one has

ψ ≈ ϕS [73]. With these specifications, the differential cross
section is given by

dσ
dxBdydξhdψd2Ph⊥

¼ α2y
4ξhQ4

Lμνðl;λe; l0ÞWμνðq;P;S;PhÞ;

ð9Þ

where α is the fine structure constant. The leptonic tensor is

Lμνðl; λe; l0Þ ¼ 2ðlμl0ν þ lνl0μ − l · l0gμνÞ þ 2iλeϵμνρσlρl0σ:

ð10Þ

The hadronic tensor is defined by

Wμνðq; P; S; PhÞ

¼
X
X

Z
d4x
ð2πÞ4 e

iq·xhS; hAjJμðxÞjhXihXhjJνð0ÞjhA;Si;

ð11Þ

where JμðxÞ ¼ eqψ̄ðxÞγμψðxÞ is the electromagnetic cur-
rent. A summation over quark favors is implicit in Eq. (11).
In general, the hadronic tensor can be decomposed into a

sum of basic Lorentz tensors constructed by the kinematic
variables of the process. After contracting with the leptonic
tensor, one can get the differential cross section in terms of
the structure functions. It has been shown that the differential
cross section of SIDIS at small transverse momentum with
the polarized lepton beam and nucleon target is described by
eighteen structure functions [74]. We have the same number
of structure functions for SIDIS in the TFR, and the general
form of the differential cross section can be expressed as

dσ
dxBdydξhdψd2Ph⊥

¼ α2

xByQ2

n
AðyÞFUU;TþEðyÞFUU;LþBðyÞFcosϕh

UU cosϕhþEðyÞFcos2ϕh
UU cos2ϕhþλeDðyÞFsinϕh

LU sinϕh

þSL
h
BðyÞFsinϕh

UL sinϕhþEðyÞFsin2ϕh
UL sin2ϕh

i
þλeSL

h
CðyÞFLLþDðyÞFcosϕh

LL cosϕh

i

þjS⃗⊥j
h
ðAðyÞFsinðϕh−ϕSÞ

UT;T þEðyÞFsinðϕh−ϕSÞ
UT;L Þsinðϕh−ϕSÞþEðyÞFsinðϕhþϕSÞ

UT sinðϕhþϕSÞ

þBðyÞFsinϕS
UT sinϕSþBðyÞFsinð2ϕh−ϕSÞ

UT sinð2ϕh−ϕSÞþEðyÞFsinð3ϕh−ϕSÞ
UT sinð3ϕh−ϕSÞ

i

þλejS⃗⊥j
h
DðyÞFcosϕS

LT cosϕSþCðyÞFcosðϕh−ϕSÞ
LT cosðϕh−ϕSÞþDðyÞFcosð2ϕh−ϕSÞ

LT cosð2ϕh−ϕSÞ
io
: ð12Þ

FIG. 1. The kinematics for SIDIS in the TFR.
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Here we have defined several functions of y for conven-
ience, i.e.,

AðyÞ ¼ y2 − 2yþ 2;

BðyÞ ¼ 2ð2 − yÞ
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
;

CðyÞ ¼ yð2 − yÞ;
DðyÞ ¼ 2y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
;

EðyÞ ¼ 2ð1 − yÞ: ð13Þ

All the structure functions in Eq. (12) are scalar functions
depending on xB, ξh, Q2, and P⃗2

h⊥. The first and second
subscripts of the structure functions denote the polarization
of the electron and the nucleon, respectively. The third
subscript, if any, specifies the polarization of the virtual

photon. Note that the normalization of the structure
functions adopted here is different from that in [74] by a
Jacobian since we have used ξh instead of zh.

III. THE HADRONIC TENSOR
RESULTS UP TO TWIST-3

A. Collinear expansion for the hadronic tensor

Nowwe perform the collinear expansion for the hadronic
tensor in Eq. (11) up to twist-3. At the tree level of QCD
perturbation theory, the hadronic tensor in the TFR can be
represented by the diagrams in Fig. 2. The gray boxes
represent the parton correlation matrices with a hadron h
identified in the final state, which we call fracture matrices
in the following. The contributions for each diagram in
Fig. 2 are

Wμνj2a ¼
Z

d3k
ð2πÞ3 ½ðγ

μð=kþ =qÞγνÞij2πδððkþ qÞ2Þ�
X
X

Z
d3η
ð2πÞ4 e

−ik·ηhhAjψ̄ iðηÞjhXihXhjψ jð0ÞjhAi; ð14Þ

Wμνj2b ¼
Z

d3k1d3k2
ð2πÞ6

��
γμð=k1 þ =qÞγα

ið=k2 þ =qÞ
ðk2 þ qÞ2 þ iϵ

γν
�

ij
2πδððk1 þ qÞ2Þ

�

× ð−igsÞ
X
X

Z
d3ηd3η1
ð2πÞ4 e−ik1·ηeiðk1−k2Þ·η1hhAjψ̄ iðηÞjhXihXhjGαðη1Þψ jð0ÞjhAi; ð15Þ

Wμνj2c ¼
Z

d3k1d3k2
ð2πÞ6

��
γμ

ið=k1 þ =qÞ
ðk1 þ qÞ2 − iϵ

γαð=k2 þ =qÞγν
�

ij
2πδððk2 þ qÞ2Þ

�

× ð−igsÞ
X
X

Z
d3ηd3η1
ð2πÞ4 e−ik1·ηeiðk1−k2Þ·η1hhAjψ̄ iðηÞGαðη1ÞjhXihXhjψ jð0ÞjhAi; ð16Þ

where ij are the Dirac and color indices. The summation
over quark flavors

P
q e

2
q is implied in the expressions. The

integration variables take the following forms:

kμ ¼ðkþ;0; k⃗⊥Þ; kμ1 ¼ðkþ1 ;0; k⃗1⊥Þ; kμ2 ¼ðkþ2 ;0; k⃗2⊥Þ;
ð17Þ

ημ ¼ð0;η−; η⃗⊥Þ; ημ1 ¼ð0;η−1 ; η⃗1⊥Þ; ημ2 ¼ð0;η−2 ; η⃗2⊥Þ:
ð18Þ

k is the momentum carried by the quark line leaving the
box of Fig. 2(a). k1, k2 are the momenta carried by the
quark lines flowing into and out of the boxes of Figs. 2(b)
or 2(c). These momenta follow the collinear scaling, e.g.,
kμ ∼Qð1; λ2; λÞ with λ ¼ ΛQCD=Q. To obtain the contri-
butions up to twist-3, one has to expand the contributions in
Figs. 2(a)–2(c) in powers of λ up to OðλÞ. Here we have
already neglected the minus components of k, k1, and k2 in
½� � �� of Eqs. (14)–(16), since these components only yield
the corrections beyond twist-3.

(b) (c)(a)

FIG. 2. Diagrams for the hadronic tensor in TFR at tree level.
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For Wμνj2a, if we further neglect the quark transverse
momentum and take kμ ≈ ðkþ; 0; 0⃗⊥Þ in ½� � �� of Eq. (14),
one can obtain the contribution with the collinear fracture
matrix involving a nonlocal operator of quark and antiquark
fields. To obtain a gauge-invariant form, we should sum
over the contributions from the Gþ-gluon exchange in
Figs. 2(b) and 2(c) as well as those with the exchange of
any number of Gþ-gluons. Here the gluon field Gμ scales
like ð1; λ2; λÞ, and hence the Gþ-gluon does not induce any
power suppression. After this summation, we can obtain the
following gauge-invariant contribution

Wμνjq ¼ ðγμγþγνÞij
X
X

Z
dη−

2ð2πÞ4 e
−ixBPþη−

× hhAjψ̄ iðη−ÞL†
nðη−ÞjhXihXhjLnð0Þψ jð0ÞjhAi;

ð19Þ

where the gauge link is defined as

LnðxÞ ¼ P exp
�
−igs

Z
∞

0

dλGþðλnþ xÞ
�
: ð20Þ

The above contribution yields the gauge-invariant collinear
quark fracture matrix. As we will present later in Sec. III B,
by parametrization of this matrix up toOðλÞ, one can obtain
the hadronic tensor in terms of twist-2 and twist-3 quark
collinear fracture functions.
To derive the other twist-3 contributions fromWμνj2a, we

need to take into account the k⊥-dependence in ½� � �� of
Eq. (14) by the collinear expansion to OðλÞ. We notice
that there is no contribution from the partial derivatives
acting on the delta function in the expansion since
∂δððk̂þ qÞ2Þ=∂kα⊥ ∝ q⊥α ¼ 0. After this expansion, we
get the contribution from the fracture matrix with the
transverse partial derivative acting on the (anti)quark fields.
Again, after the combination with the relevant gauge-link
contributions from Wμνj2bþ2c, we obtain, up to OðgsÞ,

Wμνj
∂
¼ −i

2q−
ðγμγþγ⊥αγ

−γνÞij
X
X

Z
dη−

2ð2πÞ4 e
−ixBPþη−

× hhAjψ̄ iðη−ÞL†
nðη−ÞjhXi

× hXhj∂α⊥ðLnψ jÞð0ÞjhAi þ ðμ ↔ νÞ�; ð21Þ

where ðμ ↔ νÞ� stands for exchanging μν indices and
taking complex conjugate of the first term. Due to the
presence of the transverse derivative, the leading contribu-
tion of the fracture matrix in Eq. (21) is at twist-3.
In addition, after subtracting the gauge-link contributions

to Eqs. (19) and (21) from the collinear expansion of
Wμνj2bþ2c, we find the remaining part can be expressed
by the fracture matrix with the gluon field-strength tensor
gsFþα ¼ gs½∂þGα⊥ − ∂

α⊥Gþ� þOðg2sÞ. This gives another

contribution that starts from twist-3, which up to OðgsÞ can
be summarized as

WμνjF
¼ −i

2q−
ðγμγþγ⊥αγ

−γνÞij
Z

dx2

�
P

1

x2 − xB
− iπδðx2 − xBÞ

�

×
X
X

Z
dη−dη−1
4πð2πÞ4 e

−ixBPþη−−iðx2−xBÞPþη−
1 hhAjψ̄ iðη−ÞjhXi

× hXhjgsFþαðη−1 Þψ jð0ÞjhAi þ ðμ ↔ νÞ�: ð22Þ

Here P in ½� � �� of Eq. (22) stands for the principle-value
prescription. The δ-function term in Eq. (22) comes from
the absorptive part of the quark propagator that connects
the electromagnetic current to the quark-gluon vertex in
Figs. 2(b) and 2(c). In this term, the gluon has zero
momentum and generates the so-called soft-gluon-pole
contributions, see e.g., [93] and references therein.
The total contribution of the hadronic tensor is given by

the sum of the results in Eqs. (19), (21), and (22). The
following gauge-invariant collinear fracture matrices are
relevant:

MijðxÞ ¼
Z

dη−

2ξhð2πÞ4
e−ixP

þη−
X
X

hhAjψ̄ jðη−ÞL†
nðη−ÞjhXi

× hXhjLnð0Þψ ið0ÞjhAi; ð23Þ

Mα
∂;ijðxÞ ¼

Z
dη−

2ξhð2πÞ4
e−ixP

þη−
X
X

hhAjψ̄ jðη−ÞL†
nðη−ÞjhXi

× hXhj∂α⊥ðLnψ iÞð0ÞjhAi; ð24Þ

Mα
F;ijðx1; x2Þ

¼
Z

dη−dη−1
4πξhð2πÞ4

e−ix1P
þη−−iðx2−x1ÞPþη−

1

×
X
X

hhAjψ̄ jðη−ÞjhXihXhjgsFþαðη−1 Þψ ið0ÞjhAi: ð25Þ

Here we have suppressed the gauge links for brevity in
Eq. (25). Besides the partonic momentum fractions, the
fracture matrices also depend on the momentum of the
observed hadron (ξh, Ph⊥) and the spin vector of the target,
which are not shown explicitly in the arguments. With the
above notations, the hadronic tensor can be written as

Wμν ¼ ξhðγμγþγνÞijMjiðxBÞ

þ
�
−iξh
2q−

ðγμγþγ⊥αγ
−γνÞijMα

∂;jiðxBÞ þ ðμ ↔ νÞ�
�

þ
�
−iξh
2q−

ðγμγþγ⊥αγ
−γνÞij

Z
dx2

�
P

1

x2 − xB

− iπδðx2 − xBÞ
�
Mα

F;jiðxB; x2Þ þ ðμ ↔ νÞ�
�
: ð26Þ
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It is obvious that only the chirality-even parts of the fracture
matrices will contribute to the hadronic tensor. We discuss
the parametrization of these fracture matrices in the next
subsection.

B. Parametrization of the fracture matrices and the
hadronic tensor in terms of fracture functions

The collinear fracture matrices in Eqs. (23)–(25) can be
decomposed using Dirac Γ-matrices. From the constraints
of parity invariance, the fracture matrices can be generally
parametrized as follows:

MijðxÞ¼
ðγρÞij
2Nc

�
n̄ρ
�
u1−

Ph⊥ · S̃⊥
M

uh1T

�
þ 1

Pþ

�
Pρ
h⊥uh

−MS̃ρ⊥uT−SLP̃
ρ
h⊥uhL−

Phρ
h⊥P

βi
h⊥

M
S̃⊥βuhT

��

−
ðγργ5Þij
2Nc

�
n̄ρ
�
SLl1L−

Ph⊥ ·S⊥
M

lh1T

�

þ 1

Pþ

�
P̃ρ
h⊥lhþMSρ⊥lTþSLP

ρ
h⊥lhL

−
Phρ
h⊥P

βi
h⊥

M
S⊥βlhT

��
þ���; ð27Þ

Mα
∂;ijðxÞ ¼

ðγ−Þij
2Nc

i
�
−Pα

h⊥uh∂ þMS̃α⊥u∂T

þ SLP̃α
h⊥uh∂L þ Phα

h⊥P
βi
h⊥

M
S̃⊥βuh∂T

�

þ ðγ−γ5Þij
2Nc

i

�
P̃α
h⊥lh∂ þMSα⊥l∂T þ SLPα

h⊥lh∂L

−
Phα
h⊥P

βi
h⊥

M
S⊥βlh∂T

�
þ � � � ; ð28Þ

Mα
F;ijðx1;x2Þ¼

ðγ−Þij
2Nc

�
Pα
h⊥wh−MS̃α⊥wT

−SLP̃α
h⊥wh

L−
Phα
h⊥P

βi
h⊥

M
S̃⊥βwh

T

�

−
ðγ−γ5Þij
2Nc

i

�
P̃α
h⊥vhþMSα⊥vT

þSLPα
h⊥vhL−

Phα
h⊥P

βi
h⊥

M
S⊥βvhT

�
þ�� � ; ð29Þ

where � � � denote the contributions beyond twist-3 or the
chirality-odd parts. In the above, we have used the

shorthand notations Phα
h⊥P

βi
h⊥ ≡ Pα

h⊥P
β
h⊥ þ gαβ⊥ P⃗2

h⊥=2 for
simplicity. As pointed out in [63], the fracture matrix is
not constrained by time reversal invariance, as it identifies a
hadron in the out state. Additionally, we note that the
collinear fracture matrices formally share similar para-
metrization forms with those of the conventional TMD
PDFs (see e.g., [94]).
The functions u’s and l’s in Eqs. (27) and (28) are quark

collinear fracture functions, they are functions of x, ξh, and
P⃗2
h⊥. w’s and v’s in Eq. (29) are quark-gluon collinear

fracture functions, they depend on x1 and x2 besides of ξh
and P⃗2

h⊥. We have suppressed all these arguments for
simplicity. From hermiticity, the fracture functions defined
in Eqs. (27) and (28) are real, while those in Eq. (29) are
complex in general.
The naming rules for these fracture functions we have

used are as follows: Four fracture functions in Eq. (27)
with “1” in the subscript are of twist-2. The remaining is
of twist-3. The “∂” in the subscript denote that the
fracture functions are defined via the fracture matrix with
the partial derivative operator. The “L” or “T” in the
subscript denotes the dependence on the longitudinal or
transverse polarization of the nucleon. The superscript
“h” denotes the explicit dependence on the transverse
momentum of the final-state hadron h in the decom-
position of the matrix elements. We note that the TMD
quark fracture functions at twist-2 have been classified for
a polarized nucleon target in [63,67]. After integrating
over the transverse momentum of the parton, they are
equivalent to the twist-2 collinear quark fracture functions
defined in Eq. (27).
We further note that the twist-3 fracture functions

defined above are not independent of each other. From
the QCD equation of motion iγ ·Dψ ¼ 0, one can show
that their relations can be written in a unified form as
follows:

x½uKS ðxÞþ ilKS ðxÞ� ¼ uK
∂SðxÞþ ilK

∂SðxÞ

þ i
Z

dy

�
P

1

y−x
− iπδðy−xÞ

�
½wK

S ðx;yÞ

−vKS ðx;yÞ�; ð30Þ

where ðS;KÞ ¼ ðnull; hÞ, ðL; hÞ, ðT; nullÞ, or ðT; hÞ. I.e.,
we have four sets of relations in the unified form of
Eq. (30). With these relations, we find that the hadronic
tensor in Eq. (26) can be expressed only with the fracture
functions defined via Mij in Eq. (27). We obtain
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Wμν ¼ −2gμν⊥
�
u1 −

Ph⊥ · S̃⊥
M

uh1T

�
þ 2iεμν⊥

�
SLl1L −

Ph⊥ · S⊥
M

lh1T

�

þ 2

P · q
Pfμ
h⊥q̄νg

�
uh −

Ph⊥ · S̃⊥
M

uhT

�
þ 2i
P · q

P½μ
h⊥q̄ν�

�
lh −

Ph⊥ · S̃⊥
M

lhT

�
−

2M
P · q

S̃fμ⊥ q̄νg
�
uT −

P⃗2
h⊥

2M2
uhT

�

−
2iM
P · q

S̃½μ⊥q̄ν�
�
lT −

P⃗2
h⊥

2M2
lhT

�
−

2SL
P · q

P̃fμ
h⊥q̄νguhL −

2iSL
P · q

P̃½μ
h⊥q̄ν�lhL; ð31Þ

where AfμBνg ≡ AμBν þ AνBμ and A½μBν� ≡ AμBν − AνBμ.
We have also used the shorthand notation q̄μ ≡
qμ þ 2xBPþn̄μ. The first line in Eq. (31) is of twist-2
contributions, and the remains are of twist-3 contributions.
Because qμ has only longitudinal components and also
q · q̄ ¼ 0, we see explicitly that the hadronic tensor of
Eq. (31) satisfies the Uð1Þ-gauge invariance or the current
conservation, i.e., qμWμν ¼ qνWμν ¼ 0.

IV. THE RESULTS OF STRUCTURE FUNCTIONS
AND AZIMUTHAL OR SPIN ASYMMETRIES

A. The results of structure functions

Substituting the hadronic tensor result of Eq. (31) into
Eq. (9), we obtain the differential cross section. Comparing
with the cross section expressed by structure functions in
Eq. (12), we obtain the results of structure functions in
terms of the collinear fracture functions. Four structure
functions are at twist-2, which are expressed in terms of the
four twist-2 fracture functions, i.e.,

FUU;T ¼ xBu1; Fsinðϕh−ϕSÞ
UT;T ¼ jP⃗h⊥j

M
xBuh1T; ð32Þ

FLL ¼ xBl1L; Fcosðϕh−ϕSÞ
LT ¼ jP⃗h⊥j

M
xBlh1T: ð33Þ

The summation over quark flavors, i.e.,
P

q e
2
q � � �, is

implicit on the right-hand side of the equations. This
twist-2 result has been obtained in [67]. There are eight
structure functions that have contributions starting from
twist-3. They are expressed with eight different twist-3
fracture functions, i.e.,

Fcosϕh
UU ¼−

2jP⃗h⊥j
Q

x2Bu
h; Fsinϕh

LU ¼ 2jP⃗h⊥j
Q

x2Bl
h; ð34Þ

Fsinϕh
UL ¼−

2jP⃗h⊥j
Q

x2Bu
h
L; Fcosϕh

LL ¼−
2jP⃗h⊥j
Q

x2Bl
h
L; ð35Þ

FsinϕS
UT ¼−

2M
Q

x2BuT; FcosϕS
LT ¼−

2M
Q

x2BlT; ð36Þ

Fsinð2ϕh−ϕSÞ
UT ¼−

P⃗2
h⊥

QM
x2Bu

h
T; Fcosð2ϕh−ϕSÞ

LT ¼−
P⃗2
h⊥

QM
x2Bl

h
T:

ð37Þ

The remaining six structure functions are all zero up to
twist-3. We see that half of the eight twist-3 structure
functions are related to the transverse polarization-
dependent fracture functions.

B. Azimuthal or spin asymmetries

In addition to structure functions, one can also construct
various azimuthal or spin asymmetries by

hF iPePN
≡

Z
dσ

dxdydξhdψd2Ph⊥
Fdϕhdψ

=

Z
dσ

dxdydξhdψd2Ph⊥
dϕhdψ ; ð38Þ

where the subscripts Pe ¼ U or L and PN ¼ U, L or T
denote the polarization states of the electron and the
nucleon target. From our results of the structure functions,
we see clearly that there are two spin-dependent azimuthal
asymmetries at twist-2. They both depend on the nucleon
transverse polarization and are given by

hsinðϕh − ϕSÞiUT ¼ jP⃗h⊥j
2M

uh1TðxB; ξh; Ph⊥Þ
u1ðxB; ξh; Ph⊥Þ

; ð39Þ

hcosðϕh − ϕSÞiLT ¼ jP⃗h⊥jCðyÞ
2MAðyÞ

lh1TðxB; ξh; Ph⊥Þ
u1ðxB; ξh; Ph⊥Þ

: ð40Þ

Here and in the below, a summation over quark flavors,
i.e.,

P
q e

2
q � � �, is implicit both in the numerators and the

denominators. We note that the asymmetry hsinðϕh −
ϕSÞiUT is of Sivers-type [95] and it does not depend on
y because of the cancellation of the common AðyÞ factors
associated with Fsinðϕh−ϕSÞ

UT;T and FUU;T in the cross section.
We have in particular eight azimuthal or spin asymme-

tries at twist-3 associated with the eight twist-3 structure
functions in Eqs. (34)–(37), i.e.,

hcosϕhiUU ¼ −
jP⃗h⊥j
Q

BðyÞ
AðyÞ

xBuhðxB; ξh; Ph⊥Þ
u1ðxB; ξh; Ph⊥Þ

; ð41Þ

hsinϕhiLU ¼ jP⃗h⊥j
Q

DðyÞ
AðyÞ

xBlhðxB; ξh; Ph⊥Þ
u1ðxB; ξh; Ph⊥Þ

; ð42Þ
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hsinϕhiUL ¼ −
jP⃗h⊥j
Q

BðyÞ
AðyÞ

xBuhLðxB; ξh; Ph⊥Þ
u1ðxB; ξh; Ph⊥Þ

; ð43Þ

hcosϕhiLL ¼ −
jP⃗h⊥j
Q

DðyÞ
AðyÞ

xBlhLðxB; ξh; Ph⊥Þ
u1ðxB; ξh; Ph⊥Þ

; ð44Þ

hsinϕSiUT ¼ −
M
Q

BðyÞ
AðyÞ

xBuTðxB; ξh; Ph⊥Þ
u1ðxB; ξh; Ph⊥Þ

; ð45Þ

hcosϕSiLT ¼ −
M
Q

DðyÞ
AðyÞ

xBlTðxB; ξh; Ph⊥Þ
u1ðxB; ξh; Ph⊥Þ

; ð46Þ

hsinð2ϕh−ϕSÞiUT ¼−
P⃗2
h⊥

2MQ
BðyÞ
AðyÞ

xBuhTðxB;ξh;Ph⊥Þ
u1ðxB;ξh;Ph⊥Þ

; ð47Þ

hcosð2ϕh−ϕSÞiLT ¼−
P⃗2
h⊥

2MQ
DðyÞ
AðyÞ

xBlhTðxB;ξh;Ph⊥Þ
u1ðxB;ξh;Ph⊥Þ

: ð48Þ

One can see that at the order we are considering, each
azimuthal or spin asymmetry in the TFR is only generated
by a specific fracture function. This suggests that inter-
pretations of these functions from experimental data may
be simpler and more straightforward compared to the CFR
at small Ph⊥, where multiple TMD PDFs and FFs are
typically involved and intertwined in the asymmetry [74].
Some of the twist-3 asymmetries, such as hsinϕhiUL and
hsinϕhiLU, have already been measured in the TFR by
CLAS12 at JLab [96]. Of particular interest is the beam-
spin asymmetry hsinϕhiLU in Eq. (42), which is related
to a twist-3 longitudinal quark fracture function lh. A
preliminary analysis shows that it undergoes a clear sign
flip from the TFR to the CFR and could serve as an
efficient tool to understand the transition between the
production mechanisms (Sec. V.3 in [77]). Further exper-
imental measurements will provide us with more

information about the relevant fracture functions, espe-
cially the twist-3 ones.

V. SUMMARY

In summary, we have derived the hadronic tensor up to
twist-3 level for SIDIS with hadron production in the target
fragmentation region. The hadronic tensor at the considered
order is shown to be expressed by gauge-invariant fracture
functions defined with two-parton correlations. Based on
the obtained hadronic tensor, the results for structure
functions are derived for both polarized lepton beam and
polarized nucleon target. At the tree level, there are four
structure functions at twist-2 and eight structure functions
at twist-3. Azimuthal or spin asymmetries are given based
on the results of the structure functions. These observables
are all expressed using twist-2 or twist-3 collinear fracture
functions. Possible connections to experimental measure-
ments are discussed. Future SIDIS experiments measuring
these azimuthal or spin asymmetries will provide oppor-
tunities to extract the corresponding fracture functions.
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