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We present the complete results up to twist-3 for hadron production in the target fragmentation region of
semi-inclusive deep inelastic scattering with a polarized lepton beam and polarized nucleon target. The
nonperturbative effects are factorized into fracture functions. The calculation up to twist-3 is nontrivial
since one has to keep gauge invariance. By applying collinear expansion, we show that the hadronic tensor
can be expressed by gauge-invariant fracture functions. We also present the results for the structure

functions and azimuthal asymmetries.
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I. INTRODUCTION

Semi-inclusive deep inelastic scattering (SIDIS) is an
important process for hadronic physics. It provides a
cleaner environment for detecting the inner structure of
the initial hadron than inclusive processes in hadron-hadron
collisions. The kinematic region of SIDIS can roughly be
divided into two parts (see e.g., [1-5] for more discus-
sions). One is called the current fragmentation region
(CFR) where the observed hadron in the final state moves
into the forward region of the virtual photon. Another one is
the target fragmentation region (TFR), where the measured
hadron predominantly travels in the forward direction of
the incoming target. Events in both regions can be used to
comprehend the internal structure of hadrons and the
properties of strong interactions.

So far, the bulk of research on SIDIS has focused on the
CFR, where hadron production can be understood as
the fragmentation of a parton emitted from the target and
struck by the virtual photon. This allows us to investigate
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various parton distributions functions (PDFs) [6-9]
and fragmentation functions (FFs) [6,10,11] within the
transverse-momentum-dependent (TMD) [12-18] or col-
linear factorization formalisms [19-23] at small or large
hadron transverse momentum. While there have been
significant developments in recent years for physics in
the CFR [18,24,25], as well as elaborated and recent
extractions of quark TMDs [26-28], the physics in the
TFR has received less attention.

The early analysis of the experimental data at HERA
[29,30] indicates a surprisingly high number of events in the
TFR and has stimulated the introduction of fracture func-
tions [31-33]. Physically, fracture functions describe the
distributions of the struck parton inside the target when the
remnant spectators fragment inclusively into the detected
hadron. They encompass intricate initial final-state corre-
lations and provide a unique perspective into the partonic
dynamics and hadronization, complementing PDFs and
FFs. Most of our current knowledge about fracture functions
comes from the analysis of proton diffraction (see e.g., [34]
for a recent review), where the final hadron coincides with
the target proton, and the fracture function is conventionally
called as diffractive PDF [32]. Phenomenological fittings of
diffractive PDFs from HERA data [30,35-41] have been
conducted in [42-47]. Fracture functions for other leading
baryon production, such as neutron and A-hyperon, are also
constrained with parametrization assumptions in [48-54],
respectively. Fracture functions are also utilized in hadron
collisions in [55-57].
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From a theoretical point of view, most of the afore-
mentioned investigations about TFR hadron production
are based on the factorization at twist-2 in terms of
collinear fracture functions. This factorization has been
proven to hold to all orders of a, [58] and has been
confirmed through the explicit calculations up to
O(a?) [59-62]. Initially, the fracture functions in the
factorization included an integration over the final-hadron
transverse momentum P, [31], however, without this
integration the momentum transfer [32,33] and azimuthal-
angle distribution [63,64] can be studied. To further probe the
spin [60,63] and parton-transverse-momentum [63,65,66]
dependence of fracture functions, several observables and
factorization assumptions are proposed in [67-69]. The
CLAS Collaboration at JLab has recently reported the
first measurement of these dependences [70]. More
detailed discussions on the factorization with TMD fracture
functions and relevant evolution is presented in [57].
Furthermore, recent investigations have also addressed the
factorization properties of fracture functions in different
kinematic regions [57,64,71]. The small-x behavior of
fracture functions is studied in [71]. In [64] the large-P;, |
behavior is explored in detail, aiming to understand the
transition of production mechanisms between the TFR and
CFR in SIDIS.

Despite these progresses, the contributions of SIDIS in
the TFR beyond the leading twist are still less investigated.
The theoretical framework for a systematic study of the
TFR beyond the leading twist needs to be established.
The importance of higher-twist effects in improving the
description of the experimental data has already been
emphasized by recent phenomenological studies of frac-
ture functions [45,46,72].

Moreover, it is known that the absence of higher-twist
effects results in the loss of predictions for fourteen SIDIS
structure functions in the TFR at the tree level. At the leading
twist, only four structure functions are nonzero [63] for
the case of unpolarized hadron production and a spin-1/2
target [73,74]. These higher-twist contributions are respon-
sible for various intriguing azimuthal and spin asymmetries.
Especially, some of these asymmetries are already within the
reach of the ongoing experimental program by CLAS12 [75]
at JLab due to the availability of a longitudinally polarized
target [76,77]. For instance, a preliminary investigation
utilizing CLAS12 data has revealed the significance of
the beam-spin asymmetry in the TFR, suggesting that its
sign and magnitude could serve as a novel indicator for
tracking the transition between the TFR and the CFR
(Sec. V.3in [77]). Furthermore, the potential JLab@22 GeV
program [77] and the planned electron-ion colliders in the
USA [78-82] and China [83] are poised to provide addi-
tional exciting opportunities for exploring new frontiers in
TFR physics. Given these experimental progresses, it is
important to undertake an evaluation of the higher-twist
contributions of SIDIS in the TFR.

The objective of this paper is to present a first analysis
of twist-3 contributions to SIDIS in the TFR within the
framework of collinear factorization at the tree level of
quantum chromodynamics (QCD) perturbation theory. Our
focus is on the scenario where the target is spin-1/2 and the
polarization of the final hadron is unobserved. The frame-
work can be easily extended to the case of a spin-1 target.
By employing the collinear expansion technique [84-92],
we demonstrate that the hadronic tensor of SIDIS in the
TFR can be expressed in terms of three distinct types of
twist-3 collinear fracture functions. We discuss the classi-
fication of these fracture functions and show that they are
not independent due to the constraints imposed by the QCD
equation of motion (EOM). With the EOM, the twist-3
contributions can be expressed with two-parton fracture
functions at the considered order. Our findings also have
significant phenomenological implications.

The rest of this paper is organized as follows. In Sec. II,
we discuss the kinematics for the polarized SIDIS in TFR
and present the general form for the cross section in terms
of the structure functions. In Sec. III, we present detailed
calculations of the hadronic tensor up to twist-3. In Sec. IV,
we give the final results for the structure functions and
azimuthal or spin asymmetries expressed by fracture
functions. A short summary is given in Sec. V.

II. KINEMATICS AND STRUCTURE FUNCTIONS
OF SIDIS IN THE TFR

Through out this paper, we use the light-cone coordin-
ate system, in which a vector a* is expressed as
o = (a*.a7.d,) = ((+a")/V2. ("~ ) /V2.a) a?).
With the light cone vectors n* = (0,1,0,0) and
n* = (1,0,0,0), the transverse metric is defined as
¢ = ¢" — i*n* — i¥n*, and the transverse antisymmetric
tensor is given as &\ = e n; with €2 = 1. We also
use the notation @ = ¢"a, .

We consider the SIDIS process with a polarized electron
beam and nucleon target as follows:

e(l,2,) + hy(P,S) = e(l') + h(Py,) + X, (1)

where [, I, P, and P, are the 4-momenta of the incident, the
outgoing electron, the nucleon target and the detected final-
state hadron, respectively. At the leading order of quantum
electrodynamics, there is an exchange of one virtual photon
between the electron and the nucleon. The momentum of
the virtual photon is given by ¢ = [ — I. The helicity of the
electron is denoted by A,, and S is the polarization vector
of the nucleon. We consider the production of a spin-0 or
unpolarized final-state hadron /4. The Lorentz invariant
variables of SIDIS are conventionally defined by

% P-q
2P-q

Q2 = _q27 XB
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We are interested in the TFR, where P, is almost collinear
with P and z, < 1. As discussed in [59,63], z;, is not
convenient for us to describe the hadron production in TFR,
because one can not differentiate the scenario of TFR
considered here from the soft-hadron production. Instead,
we will use [4,63]

_Ph'q
= ()

We work in the reference frame shown in Fig. 1, where
the nucleon #, moves along the +z-direction and the
virtual photon moves in the —z-direction. In this frame, the
momenta of the particles are given by

P~ (P*,0,0,0), (4)
Py = (P}, Py, Pyy), (5)
1- 2 VI=
poo (LY pr 2 OVIZY ) g
y 2xgyP™"
QZ
w— | —
q ( xgPT, 5y P*’O 0 (7)

For the case that the produced hadron 4 has small trans-
verse momentum and in the TFR, we have P; > |P,,, | >
P, and &, ~ P /P*, which specifies the longitudinal
momentum fraction of the nucleon taken by the final-state
hadron /. The polarization vector of the nucleon with mass
M can be decomposed by

Pt _ M
Sﬂ:SLﬁnﬂ+Si—SLFnﬂ, (8)

where §; is the longitudinal polarization of the nucleon and

s = (0,0, S ) the transverse polarization vector.

The incoming and outgoing electron span the lepton
plane. We define the azimuthal angle ¢, for 13;, 1 with
respect to the lepton plane, and ¢g is that for S 1. The
azimuthal angle of the outgoing lepton around the lepton
beam with respect to the spin vector is denoted by . In
the kinematic region of SIDIS with large Q?, one has
|

do a>

dxpdyd&,dyd®Py,  xzy0>

Hadronic plane

Leptonic plane

h(Py)

G0N g

/ r@ P ‘.
aw)

FIG. 1.

The kinematics for SIDIS in the TFR.

v = ¢g [73]. With these specifications, the differential cross
section is given by

do a’y

depdydeydydPy, 45,00 A W@ PSPy
©)

where « is the fine structure constant. The leptonic tensor is

LR(1 A, 1) = 2(I1Y + 1% = 1- I g™) + 23,7 L 1,
(10)

The hadronic tensor is defined by
W (q. P. S, Ph>

€' (S ha|J (x)|hX) (XR|J(0) |73 S).

(11)

where J*(x) = e w(x)y*y(x) is the electromagnetic cur-
rent. A summation over quark favors is implicit in Eq. (11).
In general, the hadronic tensor can be decomposed into a
sum of basic Lorentz tensors constructed by the kinematic
variables of the process. After contracting with the leptonic
tensor, one can get the differential cross section in terms of
the structure functions. It has been shown that the differential
cross section of SIDIS at small transverse momentum with
the polarized lepton beam and nucleon target is described by
eighteen structure functions [74]. We have the same number
of structure functions for SIDIS in the TFR, and the general
form of the differential cross section can be expressed as

{A(y)FUU,T +E(Y)Fyyr+BO)Fyy cosgy+E(y)Fiyy " cos2dy, +4.D(y) Fry singy,

S [BOVF P singy, + )y sin2gy, | +2.5. [CO0)Fri + D) F5 " cosgy

IS (A F )+ EG) R

)sin(ey —ds) +E@) iy sin(¢, + ¢s)

B(y)Fi?s singhg+ B(y) Fyn® =95 sin (2, — bs) + E(y) Fym>? =95 sin(3¢p,, — 453)}

2|51 [DGIFS " cosps+ C)FT ) cos(dy =dbs) + D) Fiy ™™ cos 2 — )|} (12)
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FIG. 2. Diagrams for the hadronic tensor in TFR at tree level.

Here we have defined several functions of y for conven-  photon. Note that the normalization of the structure
ience, i.e., functions adopted here is different from that in [74] by a
Jacobian since we have used &, instead of z,.
Ay) =y =2y +2,
B(y) =2(2-y) m III. THE HADRONIC TENSOR
(2-y) RESULTS UP TO TWIST-3

A. Collinear expansion for the hadronic tensor

Now we perform the collinear expansion for the hadronic
y)=2(1-y). (13)  tensor in Eq. (11) up to twist-3. At the tree level of QCD
perturbation theory, the hadronic tensor in the TFR can be
All the structure functions in Eq. (12) are scalar functions  represented by the diagrams in Fig. 2. The gray boxes
depending on xg, &,, 0%, and 13%, | . The first and second  represent the parton correlation matrices with a hadron &
subscripts of the structure functions denote the polarization  identified in the final state, which we call fracture matrices
of the electron and the nucleon, respectively. The third  in the following. The contributions for each diagram in
subscript, if any, specifies the polarization of the virtual = Fig. 2 are
|

3
Wl = [ X 1t ) 2m8((k+ 9)?) N (g () XY (KRl (O)|h). (14)
@y
Wiy, = d k d kz [( (KL +d)r m}%yv) “2”5((](1 + q)2)}
“igy) / I it -ba 1 1 (o) 1) (XRIG (o, Y (0) ). (15)
W”D|2c = dSk d3k2 [( k fl(;— 4 Yoalo + ﬂ) >"2ﬂ5((k2 + 61)2)}
3
—ig, Z / PN ittt (11 (1) G () X (Xl (0) ). (16)

|
where ij are the Dirac and color indices. The summation  k is the momentum carried by the quark line leaving the
over quark flavors ), e2 is implied in the expressions. The ~ box of Fig. 2(a). ki, k, are the momenta carried by the

integration variables take the following forms: quark lines flowing into and out of the boxes of Figs. 2(b)
or 2(c). These momenta follow the collinear scaling, e.g.,
kﬂ:(k+,0,kl), k/il:(k?_,o,ku_), kg:(k;,O,ku), K+ NQ(],AZ,A) with A :AQCD/Q‘ To obtain the contri-

butions up to twist-3, one has to expand the contributions in
(17) p p
Figs. 2(a)-2(c) in powers of 4 up to O(4). Here we have
u_ - = _ - > _ - > already neglected the minus components of &, k;, and k, in
' =0n7).  m=0n7.00), = 0.13.71). ) :
[- -] of Egs. (14)—(16), since these components only yield
(18) the corrections beyond twist-3.
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For W#|, ., if we further neglect the quark transverse
momentum and take & ~ (k*,0,0,) in [ ] of Eq. (14),
one can obtain the contribution with the collinear fracture
matrix involving a nonlocal operator of quark and antiquark
fields. To obtain a gauge-invariant form, we should sum
over the contributions from the G*-gluon exchange in
Figs. 2(b) and 2(c) as well as those with the exchange of
any number of G*-gluons. Here the gluon field G* scales
like (1,42, 1), and hence the G*-gluon does not induce any
power suppression. After this summation, we can obtain the
following gauge-invariant contribution

e—leP+

Wl o= (r'rtr);

X <hA|l/7i(77_) ,,(n‘)|hX><Xh|£,,( )

Wj(0)|hA>’
(19)

where the gauge link is defined as

L, (x) = Pexp{—igs /)  dAG* (n + x)}. (20)

The above contribution yields the gauge-invariant collinear
quark fracture matrix. As we will present later in Sec. III B,
by parametrization of this matrix up to O(1), one can obtain
the hadronic tensor in terms of twist-2 and twist-3 quark
collinear fracture functions.

To derive the other twist-3 contributions from W#*|, ,, we
need to take into account the k-dependence in [-- -] of
Eq. (14) by the collinear expansion to O(4). We notice
that there is no contribution from the partial derivatives
acting on the delta function in the expansion since
05((k 4 q)?)/0k* < q,,=0. After this expansion, we
get the contribution from the fracture matrix with the
transverse partial derivative acting on the (anti)quark fields.
Again, after the combination with the relevant gauge-link
contributions from W#*|,, . ,., we obtain, up to O(gy),

q (7"1/ Yia? 7V ,Z/

< (hal; (™) L3 (™) |hX)
X (Xh|o% (L,y;)(0)]hs) +

—l.xBP+

Wiy =

(4 < v)", (21)

where (u <> v)* stands for exchanging uv indices and
taking complex conjugate of the first term. Due to the
presence of the transverse derivative, the leading contribu-
tion of the fracture matrix in Eq. (21) is at twist-3.

In addition, after subtracting the gauge-link contributions
to Egs. (19) and (21) from the collinear expansion of
WH|5, 5., we find the remaining part can be expressed
by the fracture matrix with the gluon field-strength tensor
g, Ft* = g,[07G% — 07 G| + O(g?). This gives another

contribution that starts from twist-3, which up to O(g,) can
be summarized as

W[
—i
:—_(7ﬂ7+7la7_7y)ij / dx, [P
Z/ dn~ d’h
dr( 27z
X (Xh|g F (7 )y ;(0) [ ha) +

Here P in [---] of Eq. (22) stands for the principle-value
prescription. The d-function term in Eq. (22) comes from
the absorptive part of the quark propagator that connects
the electromagnetic current to the quark-gluon vertex in
Figs. 2(b) and 2(c). In this term, the gluon has zero
momentum and generates the so-called soft-gluon-pole
contributions, see e.g., [93] and references therein.

The total contribution of the hadronic tensor is given by
the sum of the results in Egs. (19), (21), and (22). The
following gauge-invariant collinear fracture matrices are
relevant:

—ind(xy — xp)
X2 = Xp

P P (g ) X)

(ko). (22)

dn~ e ~ .
M) = [ G e Sl o) £ 3)
X
X (Xh| L, (0)y;(0)[hy). (23)
dl’] e X +
61/( ) /2@[72” P Z hA‘l/// )|hX>
x (XN|07 (L) (0)|h4), (24)
M%,ij(xlaxﬁ
= /Me—iX]P+ﬂ_—i(x2—xl)P+,7l—
47[5;[(277:)4

)IAX)(Xhl g F ™ (n7)wi(0)|ha).  (25)

X Z hA‘l///

Here we have suppressed the gauge links for brevity in
Eq. (25). Besides the partonic momentum fractions, the
fracture matrices also depend on the momentum of the
observed hadron (&, P;, ) and the spin vector of the target,
which are not shown explicitly in the arguments. With the
above notations, the hadronic tensor can be written as

= fh(?”)’W”)i'M 'i(xB>

+ [; 5_ 7y a7 r")iiMG i (x8) + (< V)*}

—i& / 1
dx, |P
+{2_(77 Yiar 1) | dxa o

— ind(xy — xg)} M (xp,x2) + (< y)*}. (26)
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It is obvious that only the chirality-even parts of the fracture
matrices will contribute to the hadronic tensor. We discuss
the parametrization of these fracture matrices in the next
subsection.

B. Parametrization of the fracture matrices and the
hadronic tensor in terms of fracture functions

The collinear fracture matrices in Egs. (23)—(25) can be
decomposed using Dirac I'-matrices. From the constraints
of parity invariance, the fracture matrices can be generally
parametrized as follows:

M,J(x)—% |:I7lp (Ml —PhL.SLMh > +L(leuh

2N, M ) pt
(p ph)
N - P P -
_MSG)_MT_SLPZLMZ_ hJMhlSlﬁM]%)]
(7 Vs)i' _ Py -8,
—chj n’ SLZIL_TI}IIT

e
o7 <Pﬁllh +MS I +S. Py 1

 ph)
Py P
SElis, )| - @)

» ()i
d,ij(x) = 2Nc]

i(—Pg;l ult + M8% ugr

A
Pﬁzliphl Sv Llh
M Lp*or

+ S, Pg ul, +

rrs)ij . [ 4
N i\ P Ly + MSS Lo + S Py 1

(@ ph)
P, P
_%Slﬂl%) 4o, (28)

+

(r )i
2N,

M(Il?,ij(xhxz) = (PZLWh _MgciWT

(@ ph)
_ PP .
= SLPj wi —%SMW}O

_ (yzjyvﬁ')ff i (P;L vt MS vy
c
P<0’ Pﬂ)
+ 8P v - SL,,@’;> +- (29)

where --- denote the contributions beyond twist-3 or the
chirality-odd parts. In the above, we have used the

(a

shorthand notations P} LP?L =P Pl +¢VP;. /2 for
simplicity. As pointed out in [63], the fracture matrix is
not constrained by time reversal invariance, as it identifies a
hadron in the out state. Additionally, we note that the
collinear fracture matrices formally share similar para-
metrization forms with those of the conventional TMD
PDFs (see e.g., [94]).

The functions u’s and I’s in Egs. (27) and (28) are quark
collinear fracture functions, they are functions of x, &;,, and

f’,% - ws and »’s in Eq. (29) are quark-gluon collinear
fracture functions, they depend on x; and x, besides of &,

and 13% - We have suppressed all these arguments for
simplicity. From hermiticity, the fracture functions defined
in Eqs. (27) and (28) are real, while those in Eq. (29) are
complex in general.

The naming rules for these fracture functions we have
used are as follows: Four fracture functions in Eq. (27)
with “1” in the subscript are of twist-2. The remaining is
of twist-3. The “0” in the subscript denote that the
fracture functions are defined via the fracture matrix with
the partial derivative operator. The “L” or “T” in the
subscript denotes the dependence on the longitudinal or
transverse polarization of the nucleon. The superscript
“h” denotes the explicit dependence on the transverse
momentum of the final-state hadron % in the decom-
position of the matrix elements. We note that the TMD
quark fracture functions at twist-2 have been classified for
a polarized nucleon target in [63,67]. After integrating
over the transverse momentum of the parton, they are
equivalent to the twist-2 collinear quark fracture functions
defined in Eq. (27).

We further note that the twist-3 fracture functions
defined above are not independent of each other. From
the QCD equation of motion iy - Dy = 0, one can show
that their relations can be written in a unified form as
follows:

x[ug (x) + il (x)] = ugs (x) + il (x)

where (S,K) = (null, k), (L,h), (T,null), or (T,h). Le.,
we have four sets of relations in the unified form of
Eq. (30). With these relations, we find that the hadronic
tensor in Eq. (26) can be expressed only with the fracture
functions defined via M;; in Eq. (27). We obtain
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P S
W = =24 <”1 # ul ) + 2i€’’ (SLllL -

2
+P;{fiq”}<

P.-q M P.-q
ZIM ~[/4—y PhJ_ h 2SL {# -y
_P—.qsiq]<lT ZMZZ P P}u Yu

where AB*} = A¥BY + ABF and AVBY) = A*BY — AVBF.
We have also used the shorthand notation ¢g" =
g" + 2xgPti#. The first line in Eq. (31) is of twist-2
contributions, and the remains are of twist-3 contributions.
Because ¢* has only longitudinal components and also
q-g =0, we see explicitly that the hadronic tensor of
Eq. (31) satisfies the U(1)-gauge invariance or the current
conservation, i.e., g, W = g, W* = 0.

IV. THE RESULTS OF STRUCTURE FUNCTIONS
AND AZIMUTHAL OR SPIN ASYMMETRIES

A. The results of structure functions

Substituting the hadronic tensor result of Eq. (31) into
Eqg. (9), we obtain the differential cross section. Comparing
with the cross section expressed by structure functions in
Eq. (12), we obtain the results of structure functions in
terms of the collinear fracture functions. Four structure
functions are at twist-2, which are expressed in terms of the
four twist-2 fracture functions, i.e.,

si - |ﬁhl|

Fyyr=xguy, F;}r}(,q;h ¢S>:7xguil'r, (32)
s(pn—o |ﬁhl|

Frp=xgli, F(i(;(dl s) — M xplir (33)

The summation over quark flavors, i.e., Zq e?]~--, is

implicit on the right-hand side of the equations. This
twist-2 result has been obtained in [67]. There are eight
structure functions that have contributions starting from
twist-3. They are expressed with eight different twist-3
fracture functions, i.e.,

2|P ] 2|P
pogp =il g g Al g
0 0
, 2|P 2|P
pigp =il g e Hulgy s
0 0
; oM oM
F;}l}¢s = __xBuT’ Fﬁ[ﬁs = __xBlTv (36)
0 0
i bn—as P bn—aps P
F;}HT(M“ bs) _ hl x% 1;’ FCLO;(2</h bs) _ _Thl %lh
oM oM
(37)

P, -S 2i _
P ) 2 <lh

Py -8, M i, ﬁ%&
Y l?)—P'qSYCI} ”T—m”]%

2iS; <1, _
;P[}j:lql/]lﬁ’ (31)

The remaining six structure functions are all zero up to
twist-3. We see that half of the eight twist-3 structure
functions are related to the transverse polarization-
dependent fracture functions.

B. Azimuthal or spin asymmetries

In addition to structure functions, one can also construct
various azimuthal or spin asymmetries by

do
= de,d
<f>PePN /dxdydédeJZPhlf ¢h l///

do
do,dy, 38
/ dxdydz,dydpy, T (38)

where the subscripts P, =U or L and Py =U, L or T
denote the polarization states of the electron and the
nucleon target. From our results of the structure functions,
we see clearly that there are two spin-dependent azimuthal
asymmetries at twist-2. They both depend on the nucleon
transverse polarization and are given by

- 1P| uly(xp, & Pry)

<Sin(¢h_¢S)>UT - M ul(stgh Phi) ’

(39)

_ 1B |C(y) Iy (xp, Ena Pry)
2MA( ) M1<x3,§h,PhJ_) ‘

(cos(pp — b)) 1r = (40)

Here and in the below, a summation over quark flavors,
ie., Zq eé .-+, 1s implicit both in the numerators and the
denominators. We note that the asymmetry (sin(¢;, —
¢s))yr is of Sivers-type [95] and it does not depend on

y because of the cancellation of the common A(y) factors

associated with F; qm("}” ?s) and F vy r in the cross section.

We have in partlcular eight azimuthal or spin asymme-
tries at twist-3 associated with the eight twist-3 structure
functions in Egs. (34)—(37), i.e.,

_ |Pyi| BOY) xpu” (xp. & Pis)

<C05¢h>UU 0 A(y) ul(xB,fh,PhJ_) ’

_ |ﬁhJ_| D()’) xBlh(vaéjthhJ_)

(singp) .y 0 A(y) uy(xg, &y Pry) '
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_|Pui| B(y) xpuef (xp, Eps Pir)

WINduL = =75 R0 wr(xmEn Pr) (43)
ot =g T I
== G om0
IR w0
=i e )
(cos(2y— b)) 1 = Phy D(y)xplh(xp. & Py 8)

C2MQA(Y) ui(xp.EPry)

One can see that at the order we are considering, each
azimuthal or spin asymmetry in the TFR is only generated
by a specific fracture function. This suggests that inter-
pretations of these functions from experimental data may
be simpler and more straightforward compared to the CFR
at small P, where multiple TMD PDFs and FFs are
typically involved and intertwined in the asymmetry [74].
Some of the twist-3 asymmetries, such as (sin ¢, ), and
(sin ¢y}, > have already been measured in the TFR by
CLASI12 at JLab [96]. Of particular interest is the beam-
spin asymmetry (sin¢,);, in Eq. (42), which is related
to a twist-3 longitudinal quark fracture function I". A
preliminary analysis shows that it undergoes a clear sign
flip from the TFR to the CFR and could serve as an
efficient tool to understand the transition between the
production mechanisms (Sec. V.3 in [77]). Further exper-
imental measurements will provide us with more

information about the relevant fracture functions, espe-
cially the twist-3 ones.

V. SUMMARY

In summary, we have derived the hadronic tensor up to
twist-3 level for SIDIS with hadron production in the target
fragmentation region. The hadronic tensor at the considered
order is shown to be expressed by gauge-invariant fracture
functions defined with two-parton correlations. Based on
the obtained hadronic tensor, the results for structure
functions are derived for both polarized lepton beam and
polarized nucleon target. At the tree level, there are four
structure functions at twist-2 and eight structure functions
at twist-3. Azimuthal or spin asymmetries are given based
on the results of the structure functions. These observables
are all expressed using twist-2 or twist-3 collinear fracture
functions. Possible connections to experimental measure-
ments are discussed. Future SIDIS experiments measuring
these azimuthal or spin asymmetries will provide oppor-
tunities to extract the corresponding fracture functions.
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