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With the aim of exploring the evidence for or against phase transitions in cold and dense baryonic matter,
the inference of the sound speed and equation of state for dense matter in neutron stars is extended in view
of recent new observational data. The impact of the heavy (2.35M⊙) black-widow pulsar PSR J0952-0607
and the unusually light supernova remnant HESS J1731-347 is inspected. In addition, a detailed reanalysis
is performed of the low-density constraint based on chiral effective field theory and of the perturbative
QCD constraint at asymptotically high densities, in order to clarify the influence of these constraints on the
inference procedure. The trace anomaly measure, Δ ¼ 1=3 − P=ε, is also computed and discussed.
A systematic Bayes factor assessment quantifies the evidence (or nonevidence) of low averaged sound
speeds ðc2s ≤ 0.1Þ, a prerequisite for a phase transition, within the range of densities realized in the core of
neutron stars. One of the consequences of including PSR J0952-0607 in the database is a further stiffening
of the equation of state, resulting for a 2.1 solar-mass neutron star in a reduced central density of less than
5 times the equilibrium density of normal nuclear matter at the 68% level. The evidence against small sound
speeds in neutron star cores is further strengthened. Within the inferred 68% posterior credible bands, only
a weak first-order phase transition with a coexistence density interval Δn=n ≲ 0.2 would be compatible
with the observed data.
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I. INTRODUCTION

The inference of the equation of state (EoS) using the
empirical database from neutron star observations has
progressed significantly in recent times. Primary sources
of information are Shapiro delay measurements of neutron
star masses [1–6], determinations of masses and radii
inferred from x-ray data detected with the NICER telescope
[7–11], and the evaluation of gravitational-wave (GW)
signals from binary neutron star mergers observed by the
LIGO Scientific and Virgo collaborations [12,13]. These
data have served as standard input sets for a multitude of
Bayesian inference analyses [14–33] in search for a
compatible range of EoSs, i.e., pressure PðεÞ as a function
of energy density ε, with controlled uncertainties. An
important part of these procedures are nuclear physics
constraints at low densities around the equilibrium density
of nuclear matter, n0 ¼ 0.16 fm−3, for which chiral effec-
tive field theory (ChEFT) results are invoked [34,35]. At
asymptotically high densities, perturbative QCD (pQCD) is
applicable and provides a constraint that must be matched

in extrapolations far beyond the conditions realized in
neutron star cores [36–38].
The present work extends our previous Bayesian

studies [16] in view of new observational data reported in
the literature. We refer primarily to the black-widow (BW)
pulsar PSR J0952-0607 [39] with a mass M ¼ 2.35 �
0.17M⊙, in units of the solar massM⊙, the heaviest neutron
star found so far. This is also one of the fastest-rotating
neutron stars. With a spin period of 1.41 ms (an angular
velocity of 4.46 × 103 rotations per second), it requires
corrections for rotational effects, a point that we consider in
order to incorporate the equivalent nonrotating mass in our
database.
A second recently reported object is the supernova

remnant HESS J1731-347 [40] with an unusually small
mass, M ¼ 0.77þ0.20

−0.17M⊙, and radius, R ¼ 10.40þ0.86
−0.78 km.

The analysis on which these results are based is subject
to some discussion [41] concerning model-dependent
assumptions about the composition of the remnant’s
atmosphere. In fact, this object falls well outside of the
range of masses and radii supported by previous data sets. It
is nonetheless of some interest to examine its impact on the
overall systematics of the inference procedure.
Further topics to be investigated in the present paper are

the roles of low- and high-density constraints conditioning

*len.brandes@tum.de
†weise@tum.de
‡nkaiser@ph.tum.de

PHYSICAL REVIEW D 108, 094014 (2023)

2470-0010=2023=108(9)=094014(21) 094014-1 © 2023 American Physical Society

https://orcid.org/0000-0002-2058-968X
https://orcid.org/0000-0001-9684-722X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.094014&domain=pdf&date_stamp=2024-06-10
https://doi.org/10.1103/PhysRevD.108.094014
https://doi.org/10.1103/PhysRevD.108.094014
https://doi.org/10.1103/PhysRevD.108.094014
https://doi.org/10.1103/PhysRevD.108.094014


the inference of the sound speed and EoS. At low baryon
densities up to about n ∼ 2n0, ChEFT results have fre-
quently been used as prior input. We prefer a ChEFT
implementation in terms of a likelihood and only
up to n ≃ 1.3n0, given that an extension to 2n0 raises
convergence issues [34,35], as we point out. The pQCD
constraint at high densities and its possible impact on the
EoS [30,36–38], even down to densities realized in massive
neutron stars, is also examined. We find that this impact is
quite limited, given that pQCD methods are restricted to
asymptotically large densities above about 40n0.
A central part of this investigation, as in previous work,

is a detailed inference of the sound velocity, cs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂PðεÞ=∂εp

. Key questions are whether it exceeds the
conformal bound, c2s ¼ 1=3, at intermediate energy den-
sities, and the possible approach to conformal matter [42]
as displayed by a computation of the trace anomaly
measure [23], Δ ¼ 1=3 − P=ε. Both items are systemati-
cally examined. Closely related is a Bayes factor analysis
quantifying the likelihood of a rapid change in energy
density over a small range of pressures, which is the
defining characteristic of a first-order phase transition in
the core of heavy neutron stars. Special emphasis is put on
the additional impact of PSR J0952-0607 in comparison
with the previously employed data. By first-order phase
transition we refer in this work to a “strong” transition
subject to a Maxwell construction, i.e., with large interface
tension between the phases.
This paper is organized as follows. Section II briefly

introduces the Bayesian method and the parametrization
used to model the speed of sound inside neutron stars.
Sections II D and III explain and summarize the statistical
procedures that we use to infer constraints for neutron star
properties based on empirical data together with theoretical
low- and high-density conditions. The results for the sound
speed and related neutron star properties are presented and
discussed in Sec. IV where implications for possible phase
changes inside neutron stars are also examined. A summary
and conclusions follow in Sec. V.

II. METHODS

A. Speed of sound

One starting point for organizing the inference of the
equation of state of neutron star matter is a general
parametrization of the sound speed. Its square is defined
by the derivative of pressure with respect to energy density:

c2sðεÞ ¼
∂PðεÞ
∂ε

: ð1Þ

The EoS itself is reconstructed by simple integration,
PðεÞ ¼ R

ε
0 dε

0c2sðε0Þ. Causality and thermodynamic stabil-
ity dictate that the sound velocity must be within the
interval 0 ≤ cs ≤ 1. Different possible phases of neutron

star matter are reflected in the behavior of c2s as a function
of energy density [43]. For example, models describing
neutron star matter in terms of conventional hadronic
(nucleon and meson) degrees of freedom generally display
a monotonously rising speed of sound [44–46]. On the
other hand, the signature of a first-order phase transition (or
sufficiently sharp crossover) would be a rapid change in
energy density over a small range of pressures, manifested
in our parametrization as a sudden drop of c2s at a critical
energy density [47], while a softer continuous crossover
may lead to a peaked behavior [48,49]. Some model
calculations find that an onset of hyperonic degrees of
freedom can lead to a substantial softening of the speed of
sound [50]. For a survey of possible phases inside neutron
stars, see, e.g., Refs. [16,51].
With an equation of state PðεÞ deduced from c2s as input

to the Tolman-Oppenheimer-Volkoff (TOV) equations, the
total mass M and radius R of a neutron star can be
computed. Numerically solving the TOV equations for
several central pressures, Pc, leads to a mass-radius
relation, MðRÞ, for each given EoS. This includes a
maximum supported mass, Mmax, beyond which no stable
solution exists. Additional coupled differential equations
can be solved for the tidal deformability Λ, relevant for
binary neutron star systems [52,53].

B. Parametrization

We prepare a sufficiently general parametrization as an
approximation to the squared sound speed, capable of
capturing a wide range of possible phase transitions or
crossovers, in terms of segment-wise linear interpolations.
This ansatz is similar to the one employed in [32,54,55]. In a
previous work [16] we systematically compared this para-
metrization to a speed-of-sound model based on a skewed
Gaussian distribution. It was found that the posterior neutron
star properties inferred with these two parametrizations
agree within the uncertainties associated with the still
limited amount and accuracy of the available astrophysical
data. However, the segment parametrization turns out to be
preferred as it leads to slightly larger posterior credible
intervals, indicative of a less restrictive functional form.
This parametrization is represented by a set of N þ 1

points θ ¼ ðc2s;i; εiÞ. The squared speed of sound c2sðε; θÞ is
modeled as a linear interpolation between these points, i.e.,
for ε∈ ½εi; εiþ1� with i ¼ 0; 1;…; N one has

c2sðε; θÞ ¼
ðεiþ1 − εÞc2s;i þ ðε − εiÞc2s;iþ1

εiþ1 − εi
: ð2Þ

At very low densities, n ≤ 0.5n0, the speed of sound is
matched to the well-established Baym-Pethick-Sutherland
(BPS) neutron star crust EoS [56]. This fixes the parameters
ðc2s;0; ε0Þ ¼ ðc2s;crust; εcrustÞ. Beyond the last point, ε > εN ,
the speed of sound becomes constant, c2sðε; θÞ ¼ c2s;N . Here
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we choose N ¼ 5, corresponding to a total of seven seg-
ments, which turns out to be more than enough for a
representation of c2s . In fact, it was found in Ref. [17] that
four segments are already sufficient to describe the current
astrophysical data and lead to results comparable to those of a
nonparametric Gaussian process. Note that, in contrast to our
previouswork in Ref. [16], the last point (i ¼ N) is no longer
fixed to reproduce the asymptotic conformal limit, such that
the number of free parameters of the parametrization is
increased to ten. The pQCD constraint at very high densities,
far beyond those realized in the core of even the heaviest
neutron stars, is nonetheless systematically implemented.
A central focus of the present work is the possible

occurrence of a first-order phase transition in neutron star
matter. In the EoS this corresponds to a jump in energy
density, i.e., the appearance of two successive discontinu-
ities in the speed of sound. For instance, through a Maxwell
construction a phase coexistence region of constant pres-
sure emerges along a density interval Δn. At the lower end
of this interval the sound velocity drops to zero, while at the
upper end it jumps back to a finite value. This and similar
kinds of scenarios are represented in the parametrization of
Eq. (2) when one of the interpolation points reaches a small
sound speed, c2s;i ∼ 0, while the two adjacent points remain
at finite values. This condition as such is not sufficient to
identify a first-order phase transition. However, in combi-
nation with a detailed quantitative inspection of Δn=n as a
measure for the extension of a phase coexistence region that
can possibly develop within the posterior credible bands, it
serves to set constraints on the appearance of a strong first-
order transition. We refer to a first-order transition as
“strong” if Δn=n > 1 (where n is the density at which
the coexistence interval starts). In contrast, a “weakly” first-
order transition has Δn=n small compared to unity.

C. Bayesian inference

For given dataD and modelM, the posterior probability
distribution for the parameters θ is computed using Bayes’
theorem:

PrðθjD;MÞ ∝ PrðDjθ;MÞ PrðθjMÞ: ð3Þ
The prior PrðθjMÞ is fixed by choosing wide ranges for the
parameters introduced in the previous section. For given
parameters θ, the likelihood PrðDjθ;MÞ has to be com-
puted based on the available astrophysical data. Via
numerically solving the coupled system of TOV equations
and the equations for the tidal deformability, a set of
parameters θ is deterministically linked to M, R, and Λ,
such that we can write

PrðDjθ;MÞ ¼ PrðDjM;R;Λ;MÞ: ð4Þ
In the following, we assume that the posterior distributions
derived from the analyses of neutron star data can be
utilized as likelihoods in the inference process,

PrðDjM;R;Λ;MÞ ∝ PrðM;R;ΛjD;MÞ; ð5Þ

which is valid if the priors in ðM;R;ΛÞ used in the analyses
of the observational data are sufficiently flat. This is indeed
the case for the observables analyzed in this work [14].
After determining the posterior probability distribution

for the parameters θ according to Eq. (3), marginal credible
bands can be computed. This is done by discretizing the
pertinent variable on a grid, e.g., for c2sðεÞ the energy
density is discretized to fεjg. At each grid point εj credible
intervals are computed based on fc2sðεj; θÞg. These are
connected to obtain the marginal posterior credible bands.
Note that each EoS characterized by parameters θ is only
used up to the maximum central energy density εc;max, the
one corresponding to the maximum TOV mass Mmax
supported by that EoS. The latter statement applies unless
the EoS leads to more than one stable branch in the mass-
radius relation.
We use Bayes factors BH1

H0
to quantify the evidence for

some given hypothesis H1 over a counterhypothesis H0.
A Bayes factor can be computed as the ratio of marginal
likelihoods for the two given hypotheses. Of particular
interest is the detailed Bayes factor analysis of the evidence
for or against a rapid variation of energy density with
pressure, corresponding to a low averaged sound speed in
neutron star cores. In order to arrive at statistically well-
defined conclusions, we compare the resulting Bayes
factors to a commonly used classification scheme from
Refs. [57,58].

D. Priors

1. Sound speed prior

To achieve maximally general results, the ten parameters
for sound speeds and energy densities, θ ¼ ðc2s;i; εiÞ, are
varied over extremely broad ranges. The energy densities
are sampled logarithmically from εi ∈ ½εcrust; 4 GeV fm−3�.
The speed-of-sound values are collected from logarithmic
intervals c2s;i ∈ ½0; 1� spanning the whole permitted range.
Thus, they are causal and thermodynamically stable by
construction. In contrast to Ref. [16], we do not reject
parameter sets that lead to disconnected branches; hence,
our search includes the possibility of twin-star scenarios
and even cases with more than two disconnected branches
in the mass-radius relation.
The prior credible bands for the speed of sound as a

function of energy density are displayed in Fig. 1. With a
95% credible band that spans a wide range of sound speeds,
it is apparent that the prior probability distribution is quite
unrestrictive. Due to the logarithmic sampling of the c2s;i,
the 68% prior credible band resides at smaller sound
speeds. Accordingly, 15% of the EoSs in the prior
distribution display a possible strong phase transition,
represented in our parametrization by a minimum speed
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of sound c2s;min ≤ 0.1. In contrast to the posterior credible
bands, for the computation of the prior credible bands, each
EoS is employed unrestrictedly up to arbitrary ε > εc;max.

2. Mass prior

Each EoS characterized by a parameter set θ supports
neutron star masses between some minimum mass Mmin
and a respective maximum mass MmaxðθÞ. We follow
Ref. [59] and assume a flat prior distribution between
Mmin and MmaxðθÞ:

PrðMðθÞÞ ¼
� 1

MmaxðθÞ−Mmin
if M∈ ½Mmin;MmaxðθÞ�;

0 else;
ð6Þ

with a minimum mass of Mmin ¼ 0.5M⊙. This introduces
an Occam factor penalizing EoSs that involve extreme
masses beyond those supported by the astrophysical data.
The employment of a uniform mass prior differs from

our previous work [16] where a central pressure prior was
used instead, referring to [60,61]. In Ref. [38] the authors
found just a marginal distinction between a flat mass
prior and a central pressure prior. However, the uniform
mass prior has the advantage that it permits a more
direct comparison of our results with other recent works
[18–22,28,33,38,59,62]. Furthermore, for future develop-
ments it offers the possibility of easily incorporating the
mass population of neutron stars. When the amount of
available data increases, failing to account for the correct
population model may cause a bias in the resulting
posterior distributions [63].

III. LIKELIHOODS, DATA, AND CONSTRAINTS

In order to compute the posterior probability distribution
with Eq. (3) it is necessary to compute likelihoods for the
different types of data. In this section a brief account is
given of the sets of empirical data used in the inference
procedure. This also includes the recently explored heavy
pulsar PSR J0952-0607 and the extremely light supernova
remnant HESS J1731-347. Both of these objects were not
yet available for assessment in our previous publication
[16]. Finally, the low-density constraint from ChEFT and
the high-density matching to pQCD are shortly reviewed
and reexamined.

A. Shapiro time delay measurements

Shapiro time delay refers to the shift of the measured
pulsar frequency signal in the presence of a white dwarf
companion. From this delay, the mass of the pulsar can be
extracted with high precision. Using this method, several
neutron stars with masses around twice the solar mass were
established, namely, PSR J1614–2230 [1–3], PSR J0348þ
0432 [4], and PSR J0740þ 6620 [5,6]. The respective
extracted masses are listed in Table I. To compute the
likelihoods for this sort of data, we assume that the
resulting mass probability distributions are Gaussians,
N ðM;hMi;σMÞ¼ð1=

ffiffiffiffiffiffiffiffiffiffiffi
2πσ2M

p
Þexp½−1=2ðM−hMiÞ2=σ2M�,

with mean values hMi and standard deviations σM. Then,
the likelihood is equivalent to the integral over the Gaussian
probability distribution, weighted with the mass prior in
Eq. (6):

PrðMðθÞjDShapiro;MÞ

¼
Z

MmaxðθÞ

Mmin

dMN ðM; hMi; σMÞ PrðMðθÞÞ

≈
1

2

�
1þ erf

�
MmaxðθÞ − hMiffiffiffi

2
p

σM

��
PrðMðθÞÞ: ð7Þ

B. X-ray measurements: Pulse profile modeling

Through the analysis of x-ray emission from hot spots on
the surfaces of rapidly rotating pulsars, posterior distribu-
tions for the mass and radius of selected neutron stars have
been derived. Two x-ray spectra of neutron stars were
measured so far by the NICER telescope onboard the ISS.
Here we use the results from the analysis of the NICER data
by Riley et al. [7,8] listed in Table I. The complementary
NICER data analysis by Miller et al. found slightly
different results [9,10], but they are consistent within
uncertainties. Based on our previous studies, we expect
the choice between these two analyses to have only little
influence on the conclusions [16]. The posterior proba-
bilities for the mass and radius data are available as samples
and we can approximate the underlying distributions using

FIG. 1. Marginal prior probability distributions at the 95% and
68% levels of the squared speed of sound c2s as a function of
energy density ε. At each ε, there exist 95% and 68% prior
credible intervals for c2sðεÞ. These intervals are connected to
obtain the prior credible bands. The solid line represents the
median of the prior distribution. The dashed black line indicates
the value c2s ¼ 1=3 of the conformal bound.
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kernel density estimation (KDE). For a given EoS charac-
terized by parameters θ, we solve the TOV equations to
obtain RðM; θÞ. The likelihood is then computed as the
mass integral over the KDE evaluated at the radius given by
the mass-radius relation:

PrððM;RÞðθÞjDNICER;MÞ

¼
Z

MmaxðθÞ

Mmin

dM KDEðM;RðM; θÞÞPrðMðθÞÞ: ð8Þ

This is again weighted with the mass prior in Eq. (6). For
PSR J0740þ 6620, both Shapiro time delay and NICER
measurements are available. In this case, we do not include
the Shapiro mass data in the total likelihood to avoid double
counting.

C. Binary neutron star mergers

The merging of two neutron stars in a binary produces
gravitational waves (GWs). The signals detected by the
LIGO Scientific and Virgo collaborations can be compared
to gravitational waveform models. From these observa-
tions, a posterior for the masses ðM1;M2Þ and tidal
deformabilities ðΛ1;Λ2Þ of the two neutron stars can be
inferred. So far, two possible binary neutron star merger
events, GW170817 [12] and GW190425 [13], have been
detected. The resulting mass-weighted combinations of
tidal deformabilities, Λ̃, based on the analysis of both GW
events are listed in Table I. We can again approximate the
underlying probability distribution of the available pos-
terior samples via KDE. For a given set of parameters θ,
solving the TOV equations in combination with the
equations for the tidal deformability yields the relationship
ΛðM; θÞ. Masses larger than the maximum mass of a given

EoS, M > MmaxðθÞ, correspond to a black hole, in which
case ΛðM; θÞ is set to zero. The likelihood is given by the
integral over both neutron star masses, with the tidal
deformabilities given by ΛðM; θÞ:

PrððM;ΛÞðθÞjDGW;MÞ

¼
Z

dM1

Z
dM2 KDEðM1;M2;ΛðM1; θÞ;ΛðM2; θÞÞ:

ð9Þ

Following Ref. [59], we do not use the mass prior here, as
we cannot start a priori from assuming the events to be
neutron star–neutron star mergers, but should also allow for
the principal possibility of neutron star–black hole binaries.
The chirp mass, Mchirp ¼ ðM1M2Þ3=5ðM1 þM2Þ−1=5, of

the GW170817 event has a very small uncertainty,Mchirp ¼
1.186� 0.001M⊙; hence, some analyses assumed it to be
fixed. For a given M1, this allows to determine M2 and
effectively removes one of the integrations. However, this
does not work for GW190425 where the chirp mass has a
larger uncertainty, Mchirp ¼ 1.44� 0.02M⊙. Moreover,
determining M2 via Mchirp neglects the M1 dependence of
the chirp mass. We perform the double integration in Eq. (9)
over bothM1 andM2without resorting to a fixed chirpmass.

D. Black-widow pulsar PSR J0952-0607

The heaviest neutron star observed so far was recently
reported in Ref. [39]. The pulsar PSR J0952-0607 is
estimated to have a total mass M ¼ 2.35� 0.17M⊙,
significantly larger than previously observed masses based
on Shapiro time delays, but with a relatively large uncer-
tainty. This object is a so-called black widow (BW) pulsar,

TABLE I. Data and constraints used in this Bayesian inference analysis. We examine the impact of the new black
widow (BW) and supernova remnant (HESS) data separately from the previously available data (Previous).
All listed results are at the 68% level, except for the Λ̃ results based on the GW measurements which are at the
90% level.

Data and constraints

Previous PSR J1614–2230 M ¼ 1.908� 0.016M⊙ [3]
PSR J0348þ 0432 M ¼ 2.01� 0.04M⊙ [4]
PSR J0030þ 0451 M ¼ 1.34þ0.15

−0.16M⊙
R ¼ 12.71þ1.14

−1.19 km [7]

PSR J0740þ 6620 M ¼ 2.072þ0.067
−0.066M⊙

R ¼ 12.39þ1.30
−0.98 km [8]

GW170817 Λ̃ ¼ 320þ420
−230 [12]

GW190425 Λ̃ ≤ 600 [13]
ChEFT [34,35]
pQCD [36–38]

BW PSR J0952-0607 M ¼ 2.35� 0.17M⊙ [39]

HESS HESS J1731-347 M ¼ 0.77þ0.20
−0.17M⊙

R ¼ 10.4þ0.86
−0.78 km [40]
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meaning that the neutron star accreted much of its mass
from a lighter companion. With a rotational frequency
ν ¼ 709 Hz, PSR J0952-0607 is also among the fastest-
spinning pulsars. Therefore, rotation corrections have to be
considered as they can effectively increase the maximum
mass that a given EoS can support. We use the radius-
dependent rotation adjustment provided in Ref. [64], where
the authors found approximately universal relations
between stationary and rotating masses and radii. They
fit an empirical formula, independent of the EoS, to derive
the mass and radius corrections induced by a rotation with
frequency ν. For the resulting radius-dependent rotation
correction of the PSR J0952-0607 mass, see Appendix A.
In order to compute the BW likelihood for a given set of
parameters θ, we first determine the TOV maximum
nonrotating mass MmaxðθÞ as well as the corresponding
radius RðMmax; θÞ. With the formulas derived in Ref. [64],
we can then compute the rotation-adjusted maximum mass
Mrot;maxðθÞ. Assuming that the mass distribution of PSR
J0952-0607 is Gaussian, its likelihood can be computed in
a way similar to the Shapiro time delay likelihood in
Eq. (7), with the nonrotating maximum mass replaced
by Mrot;maxðθÞ.
In addition to PSR J0952-0607, there exits another

similarly massive object, PSR J2215þ 5135, a redback
pulsar with a reported mass ofM ¼ 2.27þ0.17

−0.15M⊙ [65]. Like
other BW pulsars, this object required a more complex
heating model which introduces a larger systematic uncer-
tainty [39,65,66]. It is therefore not included in the present
analysis.

E. Supernova remnant HESS J1731-347

The observation of a neutron star with an unusually small
mass, a central compact objectwithin the supernova remnant
HESS J1731-347, was recently reported [40]. Such central
compact objects have weak magnetic fields and nearly
constant thermal x-ray emission. In their analysis, the
authors found a mass of only M ¼ 0.77þ0.20

−0.17M⊙ as well
as a small radius, R ¼ 10.4þ0.86

−0.78 km [40]. This low mass is
remarkable because it is not clear how neutron stars
with masses lower than around 1.17M⊙ form based on
known neutron star evolution mechanisms that involve
supernovae [67]. The previously known lightest neutron
star is compatiblewith this low-mass constraint [68]. This, in
combinationwith the object’s small radius, led the authors to
speculate that HESS J1731-347 might be a possible strange
star. Because of the absence of pulsations in the measured
spectra, the authors assumed a uniform surface temperature
as well as a carbon atmosphere. In addition, they assumed
that the stellarmagnetic field has no surface effect. However,
other authors suggested a nonuniform emission for similar
kinds of central compact objects [41]. In that case, larger
masses and radii might be possible for HESS J1731-347.
Despite such obvious model dependence in the interpreta-
tion of the data, it is instructive to add HESS J1731-347 as a

separate item in our inference analysis, just in order to
explore what its impact would be on the overall picture. The
mass-radius posterior from Ref. [40] is again available as
samples, so we can compute the likelihood in a way similar
to the NICER analyses in Eq. (8).

F. Low-density constraint: ChEFT

Chiral effective field theory (ChEFT) is the method of
choice to calculate nuclear many-body systems at low
baryon densities. The low-energy constants of this effective
field theory are fitted to a large amount of empirical
nucleon-nucleon and pion-nucleon interaction data. The
approach is then extended to many-body systems at finite
densities. In recent works, a novel ansatz has been
introduced based on a Gaussian process to derive combined
uncertainties from many-body approximations and from
missing higher-order terms beyond next-to-next-to-next-to-
leading chiral order (N3LO) [69–71]. In this way, posterior
credible bands were derived for the squared speed of sound,
c2sðnÞ, as a function of density up to 2 times the nuclear
saturation density, n ¼ 2n0 [34,35]. These credible bands
also agree with the results found independently by another
group [72].
In many other recent Bayesian studies, the ChEFT

constraints were implemented as a prior. However, the
ChEFT framework with its low-energy constants and
uncertainty measures should be considered as representing
a large variety of empirical nuclear physics data, in the
same general category as the astrophysical data. There is, in
principle, no reason to trust the uncertainty estimates of
ChEFT more than those of the astrophysical data. We
therefore follow our previous work [16] and employ the
ChEFT information as a likelihood instead of a prior. The
likelihood treatment permits a balancing between the
constraints from nuclear physics and astrophysics and
allows for a rigorous and statistically consistent Bayes
factor analysis.
With the Gaussian process used in Refs. [34,35], the

speed of sound is normally distributed at each density n
with mean value hc2sðnÞi and standard deviation σðnÞ. We
employ the ChEFT results at discrete densities ni starting
from the BPS crust and extending up to a maximum density
for the applicability of the effective field theory,
ni ∈ ½0.5n0; nChEFT�. The ChEFT likelihood is then com-
puted via Bayesian linear regression, that is, the total
likelihood is given by the product of the Gaussian like-
lihoods at each ni:

PrðDChEFTjc2sðn; θÞ;MÞ

∝
Y
i

exp

�
−
1

2

�hc2sðniÞi − c2sðni; θÞ
σðniÞ

�
2
�

¼ exp

�
−
1

2

X
i

�hc2sðniÞi − c2sðni; θÞ
σðniÞ

�
2
�
; ð10Þ

BRANDES, WEISE, and KAISER PHYS. REV. D 108, 094014 (2023)

094014-6



where we assign each density the same prior weight. The
speed-of-sound constraint of Refs. [34,35] is continuous
in n. Therefore, we choose to replace the sum by an integral:

PrðDChEFTjc2sðn; θÞ;MÞ

∝ exp

�
−
1

2

Z
nChEFT

0.5n0

dn

�hc2sðnÞi − c2sðn; θÞ
σðnÞ

�
2
�
: ð11Þ

We have checked that this likelihood leads to posterior
credible bands for the sound velocity that are very similar to
those in Refs. [34,35]. Following the results of the analysis in
Ref. [62], we choose a conservative maximum density for
the applicability of ChEFT as nChEFT ¼ 1.3n0. At higher
densities the N2LO and N3LO results become increasingly
different, hinting towards possible convergence issues. We
will examine the impact of this choice in the later analysis.

G. High-density matching: pQCD

At asymptotically high densities, n≳ 40n0, far beyond
those encountered in neutron stars, the QCD coupling
turns sufficiently weak such that perturbative calculations
become feasible. As pointed out recently [37,38], even
though pQCD is applicable only at extremely high den-
sities, demanding that any valid EoS should be connected
to these asymptotic pQCD results can lead to constraints at
much lower densities.
The partial N3LO pQCD results of Ref. [36] are taken to

be valid at the chemical potential μpQCD ¼ 2.6 GeV, with
corresponding density npQCD and pressure PpQCD. For any
point of a given equation of state, nNS, PNS, and μNS, it must
be possible to connect to the asymptotic pQCD constraint
via a causal and thermodynamically stable interpolation.
Because the squared speed of sound [derived in the grand
canonical approach from PðμÞ] is causally limited,

c2s ¼
�
μ

n
∂n
∂μ

�
−1

≤ 1; ð12Þ

a minimal slope of the function nðμÞ is determined for any
specific EoS:

∂n
∂μ

≥
n
μ
: ð13Þ

Demanding that it should be possible to connect a point in
the neutron star range, ðμNS; nNS; PNSÞðθÞ, to μpQCD, npQCD,
and PpQCD leads to the integral constraint

Z
μpQCD

μNS

dμnðμÞ ¼ PpQCD − PNS ¼ ΔP: ð14Þ

It was shown in Ref. [37] that the requirements of causality
and thermodynamic stability imply the following minimum
and maximum values for ΔP:

ΔPmin ¼
μ2pQCD − μ2NS

2μNS
nNS; ð15Þ

ΔPmax ¼
μ2pQCD − μ2NS

2μpQCD
npQCD: ð16Þ

Accordingly, the pQCD likelihood is equal to one if the
difference ΔP is within these two values and zero other-
wise:

PrðDpQCDjΔPðθÞ;MÞ

¼
�
1 if ΔPðθÞ∈ ½ΔPminðθÞ;ΔPmaxðθÞ�;
0 else:

ð17Þ

The pQCD results still depend on a renormalization scale
X. We follow Refs. [37,38] and take the logarithmic
average over X∈ ½1=2; 2�. Each EoS is constrained by
neutron star data only up to the respective maximum
central chemical potential μc;max, density nc;max, and pres-
sure Pc;max. As in Refs. [21,30], we verify at that point,
ðμNS; nNS; PNSÞ ¼ ðμc;max; nc;max; Pc;maxÞ, whether a causal
and thermodynamic interpolation to the asymptotic pQCD
constraint exists. Note that the authors of Refs. [37,38]
chose nNS ¼ 10n0 instead, together with the corresponding
chemical potential and pressure, well above the central
densities reached in neutron stars. We will analyze the
impact of this choice in the later analysis.
The set consisting of Shapiro time delay data, NICER

measurements and the information from GW events,
together with ChEFT and pQCD constraints, is denoted
“Previous” in the following. This serves to study the impact
of the two new observations, i.e., the black widow (BW)
mass and the supernova remnant (HESS) mass-radius data.
This nomenclature is also displayed in Table I, where we
summarize all data used in the present Bayesian analysis.

IV. RESULTS

This section starts with a presentation of the posterior
results for neutron star properties (masses, radii, central
densities) together with the posterior credible bands for the
sound speed and the equation of state. This is done first for
the “Previous” database and then with further incorporation
of the “new” BW PSR J0952-0607 mass information.
Thereafter, we focus on detailed Bayes factor investiga-
tions, with special emphasis on low sound speeds in
combination with extended phase coexistence regions in
neutron star matter. Further issues are the assessment of
twin-star scenarios and the discussion of the trace anomaly
measure with its related quest for the approach to conformal
matter. The impacts of the low-density (ChEFT) and high-
density (pQCD) constraints on the inference procedure are
carefully examined. The section ends with comments on
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possible effects on the overall systematics induced by the
ultralight HESS J1731-347 supernova remnant.

A. Neutron star properties

By combining the likelihoods for the astrophysical data
with the constraints from ChEFT and pQCD introduced in
the previous section, we compute the total likelihood and,
using Eq. (3), the posterior probability distribution for the
parameters θ.
Marginalizing this posterior with respect to the maxi-

mummassMmax, we find median and 68% credible interval
values of Mmax ¼ 2.20þ0.10

−0.16M⊙ using the “Previous” data
set. (If not stated otherwise, from here on we always report

medians and 68% credible intervals in the text.)
The corresponding probability distribution is displayed
in Fig. 2. The upper limit of the 68% credible interval
extends to higher masses compared to the result of our
previous analysis in Ref. [16] because of the different
likelihood designs. Recent studies using comparable
likelihoods as the present one found similarly large
maximum masses [18,38]. The maximum central neutron
star density turns out to be nc;max ¼ 6.0þ0.7

−0.8n0. Changing
the likelihood to the version used in our previous work
which includes information from the ChEFT constraint
up to n ∼ 2.0n0, we find a larger central density of
nc;max ¼ 6.4� 0.6n0, in agreement with the value reported
in Ref. [16].
Including the new mass information of the BW

pulsar PSR J0952-0607 in the database, the maximum
nonrotating neutron star mass increases significantly to
Mmax ¼ 2.31þ0.14

−0.17M⊙. The median and the 68% credible
interval extend to masses lower than that of the PSR J0952-
0607 mass, 2.35M⊙. This is due to the large mass
uncertainty and the rotation correction that we have applied
in the analysis. To support such higher masses, the sound
speed needs to increase more rapidly, implying a stiffer EoS
which in turn leads to smaller central densities in the
neutron star core. Accordingly, the maximum central
density decreases to nc;max ¼ 5.6� 0.7n0 with the inclu-
sion of the new heavy-mass data.
Table II collects median and credible intervals of selected

inferred properties of neutron stars with masses of
M ¼ 1.4M⊙ and 2.1M⊙. With the “Previous” data set
but including the updated ChEFT likelihood, we find
nc ¼ 4.1þ0.8

−0.9n0 for the central density of a 2.1M⊙ neutron
star, comparable to the value for a 2.0M⊙ neutron star
reported in Ref. [18]. The radius of a 2.1M⊙ neutron star,

FIG. 2. Marginal posterior probability distributions of the
maximum neutron star massMmax. The nomenclature “Previous”
refers to the Shapiro time delay, NICER, ChEFT, pQCD, and GW
data listed in Table I. The shift induced by adding the (non-
rotating) mass information from the BW pulsar PSR J0952-0607
is also shown. The prior distribution is nearly uniform over a wide
mass range.

TABLE II. Median, 95%, and 68% credible intervals for selected neutron star properties given the previously available data and the
new information from the BW pulsar. These are computed from the one-dimensional posterior probability distribution marginalized over
all other parameters. Listed are the central density nc, central energy density εc, central pressure Pc, radius R, and tidal deformability Λ
of neutron stars with masses M ¼ 1.4M⊙ and 2.1M⊙.

Previous Previousþ BW

95% 68% 95% 68%

1.4M⊙ nc=n0 2.8þ0.8
−0.7 �0.4 2.6� 0.7 þ0.3

−0.4

εc [MeV fm−3] 451þ133
−123

þ62
−71 423þ118

−116
þ56
−67

Pc [MeV fm−3] 64þ30
−23

þ12
−16 60þ28

−20
þ11
−14

R [km] 12.2þ0.9
−1.0 �0.5 12.3þ0.8

−1.0 �0.5

Λ 396þ226
−197

þ107
−127 421þ236

−200
þ114
−124

2.1M⊙ nc=n0 4.1þ1.9
−1.5

þ0.8
−0.9 3.6þ1.6

−1.3 �0.7

εc [MeV fm−3] 716þ416
−326

þ162
−213 628þ357

−251
þ149
−146

Pc [MeV fm−3] 225þ239
−134

þ62
−110 186þ184

−104
þ52
−80

R [km] 11.9� 1.3 �0.7 12.1þ1.3
−1.2

þ0.6
−0.8

Λ 21þ30
−15

þ9
−13 26þ30

−20
þ10
−14
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R ¼ 11.9� 0.7 km, agrees with the value for RðM ¼
2.0M⊙Þ reported in Ref. [32].
The inclusion of the new information from PSR J0952-

0607 has only a marginal impact on the properties of
neutron stars with relatively small masses. However, for a
2.1M⊙ neutron star, the inclusion of the heavy mass
information reduces the central density significantly to
nc ¼ 3.6� 0.7n0. Similarly, the central energy density εc
and central pressure Pc are reduced, while the radius R is
slightly increased and the tidal deformability Λ remains
almost unchanged within the 68% credible interval.
Uncertainties will eventually be further reduced once
additional merger events are detected during the fourth
observation run of LIGO, Virgo, and KAGRA [59,73]. In
addition, four more objects are set to be measured by the
NICER telescope [61,74]. Moreover, a moment-of-inertia
measurement of the neutron star PSR J0737-3039 in a
double pulsar system is expected to become available in the
next few years (see, e.g., Ref. [75] and references therein).
With the heaviest observed pulsar in mind, Table III

displays inferred properties of a neutron star with mass
M ¼ 2.3M⊙. For such a heavy-mass object the central
density is still only nc ¼ 3.8þ0.7

−0.8n0, comparable to that of a
2.1M⊙ neutron star in Table II. This result is of some
significance because it indicates that the baryon densities in
the cores of even the heaviest neutron stars are not expected
to reach extreme values. Under such conditions, the average
distance between baryons still exceeds 1 fm, more than
twice the typical hard-core radius usually associated with
the short-range nucleon-nucleon interaction. An interpre-
tation of the dense matter in neutron star cores primarily in
terms of nucleon degrees of freedom is therefore not
excluded. Recent work by Benhar [76] came to a similar
conclusion based on the emergence of y scaling and the role
of short-range correlations in electron-nucleus scattering.
The posterior credible bands for the mass-radius relation

are displayed in Fig. 3. Median and credible bands
terminate at the respective median and upper limits of
Mmax. The posterior mass-radius credible bands are in good
agreement with the 68% credible intervals inferred from the
NICER measurements of PSR J0030þ 0451 and PSR

J0740þ 6620. The RðMÞ credible band is slightly shifted
to smaller radii compared to the NICER data because the
gravitational wave (GW) event GW170817 prefers such
smaller radii [77]. The 68% credible interval for the radius
of a neutron star with mass M ¼ 1.4M⊙ agrees well with
the radius extracted from quiescent low-mass x-ray binaries
in the baseline scenario of Ref. [78]. Moreover, the 68%
mass and radius credible intervals of 4U 1702-429
extracted from thermonuclear x-ray bursts in Ref. [79]
lie well within the 68%mass-radius credible band. Notably,
both of these observations were not used as input in the
Bayesian inference procedure. We mention that in Ref. [80]
quiescent low-mass x-ray binaries and sources of thermo-
nuclear bursts were also found to fit into an overall picture
that is consistent with the GW and NICER data.
The 90% credible intervals for the tidal deformabilities

and masses of the two neutron stars in the merger event
GW170817 extracted in Ref. [81] agree well with the
posterior credible band of ΛðMÞ displayed in Fig. 3. Using
universal relations, the tidal deformability of a 1.4M⊙
neutron star was extracted based on the information from
the merger event GW170817 in Ref. [82]. The resulting
90% credible interval does agree with the posterior credible
bands of ΛðMÞ at M ¼ 1.4M⊙, which lie, however, at
slightly larger tidal deformabilities.
To give an impression of the matter distribution inside

neutron stars, the density profiles of objects with masses
M ¼ 1.4M⊙ and M ¼ 2.1M⊙ are displayed in Fig. 4.
These profiles are computed using the median of PðεÞ
based on the previously available data together with the
new information from the BW pulsar. On the axes of Fig. 4
the 68% credible intervals of the central densities and radii
of 1.4 and 2.1M⊙ neutron stars listed in Table II are
indicated for comparison. The skewness of the posterior
probability distribution makes the central densities and
radii in Fig. 4 deviate slightly from the median values listed
in Table II. As in Fig. 3, both neutron stars with masses
M ¼ 1.4M⊙ and 2.1M⊙ have almost equal radii. The
density profiles smoothly decrease towards small densities
in the outer regions of the stars. In this regime, the EoS is
governed by the ChEFT constraint.

B. Speed of sound and EoS

The posterior credible bands of the speed of sound and the
pressure as a function of energy density, based on the
previously available data plus the new superheavy mass
observation, are displayed in Fig. 3.With the updated ChEFT
likelihoodofEq. (11), the sound velocity remains small at low
energy densities, ε < 250 MeV fm−3. Given that the low-
density behavior is constrained up to nChEFT ¼ 1.3n0 (unlike
some previous setups that used nChEFT ¼ 2n0), a steeper
increase of c2s is now possible at densities around twice n0,
i.e., from energy densities ε∼250–300MeVfm−3 onward.
The median of c2sðεÞ exceeds the conformal limit,

c2s ¼ 1=3, around ε ∼ 350 MeV fm−3. We can quantify

TABLE III. Same as Table II, but median and credible intervals
for a neutron star with mass M ¼ 2.3M⊙ are displayed given the
previously available data plus new information from the BW
pulsar PSR J0952-0607.

Previousþ BW

95% 68%

2.3M⊙ nc=n0 3.8þ1.6
−1.3

þ0.7
−0.8

εc [MeV fm−3] 673þ363
−268

þ140
−180

Pc [MeV fm−3] 237þ226
−134

þ69
−104

R [km] 12.3� 1.2 þ0.7
−0.6

Λ 14þ17
−10

þ4
−9
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the evidence for a violation of the conformal bound by

computing the Bayes factor Bc2s;max>1=3
c2s;max≤1=3

which compares

equations of state with maximum squared speed of sound
larger than 1=3 to EoSs with maximum squared sound
speed below 1=3. With a Bayes factor of well over 103,
there is extreme evidence that c2s exceeds the conformal
bound inside neutron stars. This is consistent with other
recent studies [16,18,32,38,59,83,84].
At intermediate energy densities, ε ∼ 600 MeV fm−3, the

speed of sound starts to form a plateau that extends up to
higher energy densities. This behavior of the sound speed is
reflected in the pressure. The plateau in c2s corresponds to
an approximately linear rise of the pressure with increasing
energy density. In a double-logarithmic depiction of PðεÞ
the onset of this behavior is reminiscent of the “kink” noted

in Ref. [54]. It is then apparent that such a “kink” is not
necessarily a signal of a pronounced softening of the EoS
but may just reflect the formation of a plateau in the squared
sound velocity.
At energy densities ε ∼ 350–950 MeV fm−3, the

inferred equation of state turns out to be stiffer than the
Akmal-Pandharipande-Ravenhall (APR) EoS [44],
whereas at higher energy densities PðεÞ increases more
slowly as compared to APR. (We recall the known feature
that the APR equation of state violates causality at the
highest densities.)
In Fig. 5, the posterior credible bands of the sound speed

and mass-radius relation are displayed for an inference
without the new information from PSR J0952-0607. At
first sight the comparison between Figs. 5 and 3 appears to
reveal only marginal differences, but with a more focused

FIG. 3. Marginal posterior probability distributions at the 95% and 68% levels: squared speed of sound c2s and pressure P as a function
of energy density ε, inferred from the data set “Previousþ BW” (see Table I). Also shown are the marginal posterior probability
distributions for the mass-radius relation and the tidal deformability, Λ, as a function of neutron star mass M in units of the solar mass
M⊙. At each ε orM, there exist 95% and 68% posterior credible intervals for c2sðεÞ, PðεÞ or RðMÞ, ΛðMÞ. These intervals are connected
to obtain the posterior credible bands. Similarly, the medians of the posterior probability distributions at each ε orM are connected (solid
lines). For squared speed of sound or pressure the dashed black lines indicate the value of the conformal limit or represent the APR EoS
[44]. In the upper two figures bars mark the 68% credible intervals of the central energy densities of neutron stars with masses
M ¼ 1.4M⊙ and 2.3M⊙, respectively. The mass-radius relation is compared to the marginalized intervals at the 68% level from the
NICER data analyses by Riley et al. (black) [7,8] of PSR J0030þ 0451 and PSR J0740þ 6620. In addition the 68% mass-radius
credible intervals of the thermonuclear burster 4U 1702-429 [79] are displayed as well as the 68% credible interval of Rð1.4M⊙Þ
extracted from quiescent low-mass x-ray binaries [78] (blue), both of which are not included in the Bayesian analysis.ΛðMÞ is compared
to the masses and tidal deformabilities inferred in Ref. [81] for the two neutron stars in the merger event GW170817 at the 90% level
(black) as well as Λð1.4M⊙Þ at the 90% level extracted from GW170817 [82] (blue).
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view the absence of the condition to reach the high mass of
the BW pulsar implies that the speed of sound increases
more softly at low energy densities, ε≲ 500 MeV fm−3.
Accordingly, the conformal bound is exceeded at higher
energy densities, and smaller speeds of sound are reached
compared to the case including the heavy mass data in
Fig. 3. Without inclusion of the new data, smaller radii are
possible for heavy neutron stars with M ∼ 2.1M⊙. In
contrast, the mass-radius relation in Fig. 3 features an
almost constant radius over the whole mass range.

C. Evidence for (or against) a strong
first-order phase transition

A sufficient condition for a first-order phase transition is
an equation of state that features a domain of phase
coexistence within which a Maxwell construction implies
a region of constant pressure. The width of this domain,
characterized by Δn=n (where n is the density at which the
coexistence interval ends), is a measure of the “strength” of
the phase transition. For guidance and comparison, an
example of a “strong” first-order transition is the liquid-gas
phase transition in symmetric nuclear matter. There, at low
temperatures (T < 15 MeV), the phase coexistence region
obtained through a Maxwell construction has a typical
width Δn=n > 1 [46,85,86].
Starting from a given EoS, PðεÞ, the Gibbs-Duhem

relation is used to reexpress pressure as a function of
density, PðnÞ. The border lines of the 68% and 95%
posterior credible bands for PðnÞ constrain the maximum
possible phase coexistence intervals, ðΔn=nÞmax, at the
corresponding credibility levels. The results in Fig. 6 show
that these maximum possible coexistence regions are
narrow: ðΔn=nÞmax ≃ 0.2 (0.3) at the 68% (95%) level.
In fact, it turns out that ðΔn=nÞmax is nearly constant as a
function of the baryon density n taken at the starting point
of the possible phase coexistence region. This observation
holds throughout the regime relevant for neutron stars. We

conclude that only weak phase transitions with Δn=n ≤
ðΔn=nÞmax can still be realized inside neutron stars within
the inferred posterior credible bands.
The detailed behavior of the squared speed of sound is to

be seen in a related context. Figures 3 and 5 show
indications of a shallow maximum, c2s;max. At the 68%
level this maximum takes a value c2s;max ¼ 0.78þ0.18

−0.11 at a
baryon density nðc2s;maxÞ ¼ 3.2þ0.8

−1.2n0. The peak in c
2
s found

in Ref. [23] has a similar magnitude and location, although
a pronounced peak structure is not seen in our posterior
result. In contrast, we find that the sound velocity forms a
plateau at higher densities. There is no indication of a
softening. Still, at the 95% level small sound speeds are not
entirely excluded, though the probability of their occur-
rence is low. Nevertheless, at asymptotically high densities
pQCD dictates that the speed of sound reaches the

FIG. 4. Density profiles of neutron stars with masses of M ¼
1.4M⊙ and M ¼ 2.1M⊙. The employed equation of state
corresponds to the median of the credible band in Fig. 3, i.e.,
using the previously available and new data from the BW pulsar.
The bars indicate the 68% credible intervals of the central
densities and radii of neutron stars with mass M ¼ 1.4M⊙ (blue)
and 2.1M⊙ (orange), as listed in Table II.

FIG. 5. Similar to Fig. 3: posterior credible bands are displayed for the squared speed of sound, c2s , as a function of energy density ε,
and the mass-radius relation RðMÞ, but now using only the “Previous” data in Table I without inclusion of the new PSR J0952-0607
(BW) information.
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conformal bound c2s ¼ 1=3 from below. This implies that,
at some density beyond the plateau, the speed of sound
must turn downward again and reach a minimum, c2s;min, at
some higher density. A fast drop in c2s could potentially
indicate the occurrence of a phase transition. The question
is whether such a decrease still takes place within the
density range of neutron star cores.
To answer this question, we specifically perform a Bayes

factor analysis to quantify the evidence for a rapid variation
of energy density with pressure, corresponding to a low
averaged sound speed over the relevant pressure interval.

With this aim, Bayes factors B
c2s;min>0.1

c2s;min≤0.1
are computed,

comparing the evidence for EoSs with a minimum speed
of sound larger than c2s;min > 0.1 over EoSs with small
c2s;min ≤ 0.1, the latter possibly indicating a strong first-
order phase transition. It is assumed that this minimum is
positioned above the maximum located at lower densities,
nðc2s;minÞ > nðc2s;maxÞ. These Bayes factors are shown in
Fig. 7, calculated for a given maximum mass, i.e., the
minimum speed of sound up to the correspondingM is used
in the likelihood computation. As in Ref. [16], there is
extreme or very strong evidence against small sound speeds
inside neutron stars with masses up to M ≤ 2M⊙. The
Bayes factors increase further with the inclusion of the BW
pulsar information. With these new data, there is strong
evidence against small sound speeds, c2s;min < 0.1, inside
neutron stars with masses even up to M ≤ 2.1M⊙.
In Refs. [17,24], the authors also found sound speeds

larger than c2s > 0.1 at the 95% level for neutron stars with
massM ¼ 2M⊙. In their analyses the authors used different
parametrizations and accordingly different prior distribu-
tions. With that much consistent evidence it is safe to say
that a strong first-order phase transition in the core of
neutron stars with massM ≤ 2.0M⊙ is fairly unlikely based
on the current data. With the new information from the BW

pulsar PSR J0952-0607 the Bayes factors in Fig. 7 further
increase such that the evidence against small sound speeds
inside even heavier neutron stars with masses up to
M ≤ 2.1M⊙ becomes strong. The Bayes factors feature a
plateau at extreme evidence for maximum masses smaller
than M ≲ 1.9M⊙, because all relevant EoSs must support
these masses in order to fulfil the Shapiro and NICER

constraints. Numerical values of the Bayes factors B
c2s;min>0.1

c2s;min≤0.1

for different maximum masses can be found in Table VI in
Appendix C. The Bayes factors corresponding to a stronger

criterion of smaller minimum speeds of sound, B
c2s;min>0.05

c2s;min≤0.05
,

are larger especially at small maximum masses, but lead to
similar evidence classifications.
It turns out that just four segments are sufficient to cover

the entire set of astrophysical data and theory constraints, in
agreement with the findings of Refs. [17,32]. With up to
three more segments available, the parametrization
employed in the present work has sufficient flexibility to
describe additional features such as phase transitions, if
these can occur within the given range of uncertainties. We
actually find similar Bayes factors compared to our
previous work in Ref. [16], where less general parametri-
zations were used. This indicates that our results are not
influenced by details of the parametrization.

FIG. 6. Maximumpossible phase coexistence interval ðΔn=nÞmax
of constant pressure (where n is the density at which the interval
ends) extracted from the 68% and 95% posterior credible bands of
PðnÞ. ðΔn=nÞmax is displayed as a function of baryon density n in
units of the nuclear saturation density, n0 ¼ 0.16 fm−3.

FIG. 7. Bayes factors B
c2s;min>0.1

c2s;min≤0.1
comparing EoS samples with

the following competing scenarios: (a) minimum squared speed
of sound (following a maximum), with c2s;min larger than 0.1,
excluding a strong first-order phase transition with a Maxwell
construction, versus (b) EoS samples with c2s;min ≤ 0.1. The
Bayes factors are calculated for a given maximum neutron star
mass M, i.e., the minimum speed of sound up to the correspond-
ing mass is used. For illustration, the evidence classification from
Refs. [57,58] is indicated by dashed grey lines and annotated on
the right-hand side.
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In addition to setting constraints for a strong first-order
phase transition in the core of neutron stars, the Bayes
factors in Fig. 7 also limit the likelihood for the appearance
of a continuous crossover with c2s ≤ 0.1. A softer crossover
with c2s > 0.1 is still possible in neutron stars with masses
up to M ≲ 2.1M⊙ and beyond. This includes EoSs
featuring quark-hadron continuity [48,87] or percolation
scenarios [88]. Moreover, small sound speeds c2s < 0.1 in
the cores of neutron stars with even higher masses,
M ≳ 2.2M⊙, less constrained by the currently available
astrophysical data, cannot be firmly excluded. Similarly, a
phase transition with a Gibbs (rather than Maxwell)
construction [89] does not necessarily result in a drop of
the sound speed to c2s ∼ 0 and can also not be ruled out.
By analyzing minima occurring at densities beyond the

maximum of the speed of sound, nðc2s;minÞ > nðc2s;maxÞ, we
are restricting ourselves to setting constraints for strong
first-order phase transitions in the deep core of neutron
stars. From the behavior of the sound speed in Fig. 3, a
minimum appearing at a density lower than that of the
maximum seems to be only conceivable at small energy
densities, ε ∼ 250–350 MeV fm−3, i.e., at baryon densities
n≲ 2n0. With this in mind, we proceed in the next section
to quantify the evidence for the possible occurrence of a
phase transition strong enough to lead to a disconnected
mass-radius relation.

D. Twin-star scenarios

Among the multitude of possible equations of state in the
prior, 3.5% have a disconnected mass-radius relation with
more than one stable branch and hence represent a possible
twin-star scenario. To quantify the evidence for such a
scenario, we compute Bayes factors BNbranches¼1

Nbranches>1
comparing

the marginalized likelihoods of EoSs with a single con-
nected mass-radius relation to EoSs with multiple stable
branches. The resulting Bayes factor of well over 900
demonstrates extreme evidence against a disconnected
mass-radius relation with multiple stable branches. This
value further increases with the inclusion of the new data
from the BW pulsar. The conclusion agrees well with that
of Ref. [90] where the authors found only an extremely
small possible parameter space for a twin-star scenario that
is consistent with the low-density constraint from ChEFT
and the astrophysical data. Furthermore, the authors already
noted that the observation of a still more massive neutron
star beyond M ≃ 2M⊙ would make a twin-star scenario
even more unlikely.
If the low-density constraint involving likelihood from

ChEFT is ignored, the pertinent Bayes factor decreases
to BNbranches¼1

Nbranches>1
¼ 11.8, providing “only” strong evidence

against a scenario with multiple disconnected branches.
This value increases to BNbranches¼1

Nbranches>1
¼ 13.0with the inclusion

of the new heavy-mass data. In comparison, the Bayesian
analyses in Refs. [18,33], where the authors did not employ

ChEFT information, found only moderate evidence. This
difference may be traced to the different treatment of the
neutron star crust. It appears that the only possibility for a
twin-star scenario, given the astrophysical database as a
constraint, is through a phase transition that takes place at
very low energy densities shortly above those in the neutron
star crust, which was also noted in Ref. [33]. Accordingly,
the mass at which the mass-radius branches become
disconnected is as low as M ∼ 0.8M⊙. (Note that in our
analysis, similar to Ref. [33], we do not consider discon-
nected branches below the assumed minimum neutron star
mass, Mmin ¼ 0.5M⊙.)
The additional inclusion of the new information from

HESS J1731-347 further strengthens the evidence against a
twin-star scenario, even in the absence of ChEFT con-
straints: the evidence now becomes very strong with a
Bayes factor of BNbranches¼1

Nbranches>1
≃ 35. This is quite interesting as

some authors considered the unusually light HESS super-
nova remnant as a hint in favor of a twin-star scenario [91].

E. Trace anomaly measure

Based on the equation of state PðεÞ the trace anomaly
measure Δ can be computed, given by the normalized trace
of the energy momentum tensor Tμν:

Δ ¼ gμνTμν

3ε
¼ 1

3
−
P
ε
: ð18Þ

Causality and thermodynamic stability dictate that
the trace anomaly measure has to be within the range
−2=3 ≥ Δ ≥ 1=3. Moreover, Δ → 0 for conformal matter
realized at high densities. The posterior credible bands for
the trace anomaly measure are shown in Fig. 8. Starting
with a value Δ ¼ 1=3 at zero density, the trace anomaly
measure decreases with increasing energy density until
ε ∼ 700 MeV fm−3 where the median of Δ turns negative.
At even higher energy densities, ε≳ 900 MeV fm−3,

FIG. 8. Posterior 95% and 68% credible bands and medians for
the trace anomaly measure Δ ¼ 1=3 − P=ε as a function of
energy density ε.
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encountered only in extremely heavy neutron stars, the
68% credible band becomes altogether negative.
In order to access the evidence for a negative trace

anomaly measure, we compute Bayes factors BΔ<0
Δ≥0 , com-

paring the likelihood for EoSs with a negative trace
anomaly, Δ < 0, up to εc;max versus EoSs with positive
Δ. Given only the previously available data with a resulting
Bayes factor BΔ<0

Δ≥0 ¼ 6.32, there is moderate evidence that
Δ becomes negative within neutron stars. The Bayes factor
further increases to BΔ<0

Δ≥0 ¼ 8.11 with the inclusion of the
new information from PSR J0952-0607. These results are
consistent with the deduced empirical band for Δ in
Refs. [42,92], which also starts turning negative around
ε ∼ 700 MeV fm−3. At the same time, the authors of
Ref. [42] motivated a scenario with a positive trace anomaly
measure Δ ≥ 0, which is in light contrast to our Bayes
factor analysis.
Lattice QCD calculations suggest that the trace anomaly

measure always stays larger than zero at finite temperatures
and vanishing baryon chemical potential [93,94]. However,
in two-color QCD the trace anomaly can become negative
at finite chemical potentials [95,96]. Other recent Bayesian
studies also found a negative trace anomaly measure at high
densities [17,21,23] or in extremely heavy neutron stars
[25]. At much higher energy densities beyond those
displayed in Fig. 8, the asymptotic pQCD limit does imply
a switch back to positive Δ in the approach to Δ → 0.

F. Impact of low-density (ChEFT) constraint

The low-density conditioning of the EoS must incorpo-
rate the breadth of well-known empirical facts from nuclear
physics. Chiral effective field theory is an established
framework for this purpose. We recall that we are taking
a conservative position here, terminating the applicability
range of ChEFT at nChEFT ¼ 1.3n0.
The ChEFT constraints do indeed provide an important

limiting window for the evolution of the EoS to higher
densities. It is thus of interest to analyze the impact of the
ChEFT likelihood in the inference procedure. We do this by
comparing the posterior credible bands of the speed of
sound as they emerge in our approach, to the ChEFT
constrained results from Refs. [34,35] which extend up to
nChEFT ¼ 2.0n0 (see Fig. 9). Two important findings con-
cerning the ChEFT impact in relation to constraints from
astrophysical data become apparent from this figure.
First, at small energy densities the c2s posterior has extra
support at small sound speeds below the ChEFT constraint,
because small c2s are preferred by the GW event
GW170817. Lowering the ChEFT constraint density to
nChEFT ¼ 1.1n0 therefore changes the posterior credible
bands only marginally. However, at energy densities
n > nChEFT ¼ 1.3n0, the c2s posterior bands increase
more rapidly compared to the ChEFT constraint which
remains at softer sound velocities. Accordingly, choosing

nChEFT ¼ 2.0n0 has a huge impact on the description of
neutron stars: the posterior credible bands in Fig. 3 become
more tight and the stiffening of the speed of sound is
delayed to energy densities ε≳ 300 MeV fm−3. With this
change, the central density of a 2.1M⊙ neutron star is
increased to nc ¼ 3.9þ0.6

−0.8n0. The softening seen in the
ChEFT results around n ∼ 2n0 is in opposition to the
apparent trend inferred from current astrophysical data.
This slight tension was already noted in Ref. [62]. There it
was suggested that the range of ChEFT applicability be left
as a free parameter in the range nChEFT ∼ 1.1–2.0n0, to be
sampled together with the other parameters of the EoS and
then marginalized in the end [22].
It thus appears that the EoS resulting from ChEFT at

densities around twice n0 has a tendency of becoming too
soft in comparison with the conditions provided by
astrophysical data. Heavy-ion collisions at intermediate
energies probing the density region n ∼ 2–3n0 may help to
further clarify this situation [97,98]. An analysis of data
from the FOPI experiment led to pressure constraints
similar to those derived from ChEFT [27]. On the other
hand, the PREX II measurement of the 208Pb neutron skin
thickness suggests a stiffer EoS [28,99]. Further insights
can be expected from continuing developments in the near
future.

G. Impact of asymptotic (pQCD) constraint

Figure 10 shows the posterior credible bands of c2sðεÞ
using a different implementation of the asymptotic pQCD
constraint: we shift the matching condition at which it is
verified whether the asymptotic pQCD requirement can be
met in a causal and thermodynamically stable fashion, from
εNS ¼ εc;max to a fixed point, nNS ¼ 10n0. This is how the
pQCD likelihood was implemented in Refs. [17,37,38]. It

FIG. 9. Posterior credible bands for the squared speed of sound,
c2s , as a function of energy density ε. The inference includes
previous data as well as the new information from the BW pulsar.
The low-density behavior of the posterior credible bands is
compared to the N3LO ChEFT results from Refs. [34,35]
(grey) up to 300 MeV fm−3.
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is obvious that this choice leads to strong, even qualitative
changes in the speed-of-sound credible bands. While at
energy densities ε≲ 500 MeV fm−3 the posterior credible
bands look similar to those in Fig. 3, at higher energy
densities the speed of sound falls off and reaches signifi-
cantly smaller values of c2s . This test-case behavior agrees
well with the findings in Refs. [17,37,38]. The differences
resulting from the two pQCD implementations were
already pointed out in Refs. [30,33].
If the integral pQCD likelihood of Eq. (17) is imposed at

densities as high as nNS ¼ 10n0, EoSs featuring large
sound speeds at energy densities ε < 1200 MeV fm−3

are in fact not excluded, but they become much less likely.
In order to fulfill the integral pQCD constraint at higher
densities, EoSs with large sound speeds must decrease to
smaller c2s, whereas small sound speeds have more freedom
to gain support in the analysis. In fact, imposing the integral
pQCD likelihood at nNS ¼ 10n0 makes large speeds of
sound unlikely all the way down to ε ∼ 0. This softening
does, however, depend sensitively on the specific choice of
nNS. For example, an alternative scenario with nNS ¼ 8n0,
which is also far beyond the central densities of most
neutron stars, leads to a much less pronounced softening in
c2s . Despite these drastic changes, in our analysis (as in
Refs. [25,38]) the mass-radius relation is only weakly
affected. Small modifications are seen only for the most
massive neutron stars, M > 2.1M⊙, which are no longer
constrained by radius measurements. In fact, even the
properties of a 2.3M⊙ neutron star depicted in Table IV
change only slightly. The strong evidence against
small sound speeds in the cores of neutron stars with
masses M ≤ 2.0M⊙ persists.
Because the EoSs beyond εc;max are no longer con-

strained by astrophysical data but merely interpolated up to
high densities, we believe that εNS ¼ εc;max is the better

(i.e., more conservative) choice. Selecting a higher match-
ing density may lead to an overestimation of the pQCD
impact. With such a higher matching density beyond the
range of control by data, the impact is expected to depend
sensitively on the choice of priors in the unconstrained
interpolation region [33]. With the conservative choice
employed in the present work, however, the integral pQCD
likelihood of Eq. (17) has a negligible influence on the
sound speed and related properties of neutron stars. This
corresponds well to the conclusions drawn in Ref. [30]
where the authors also found only a very small impact of
the pQCD integral constraint imposed at εc;max.
Some authors recently claimed evidence for a possible

phase transition to a new state of matter near the maximum
neutron star mass, Mmax [17,22], based on inferred values
for the sound speed [25,26], the polytrope index [54], or the
behavior of the trace anomaly measure at densities corre-
sponding to Mmax. In these analyses, the authors used the
approach with fixed matching density to implement the
asymptotic pQCD constraint which, as we discussed, is
strongly prior dependent. In addition, the central density
reached inside the most massive neutron stars are, similar to
our analysis, much higher than the central density of a
2.1M⊙ neutron star. This high-density regime is, however,
only loosely constrained by the current astrophysical data.
Therefore, analyses of properties of the most massive stars
should require a particularly detailed assessment of the
prior dependence induced by the interpolation to high
densities. In contrast, in our analysis we claim evidence
only for neutron stars with masses ≲ 2.1M⊙, which are still
in the density regime that is well constrained by the current
astrophysical data.
A further note concerns selected recent analyses which

saw a pronounced softening of the sound velocity and
equation of state at high energy densities [17,22,23,26,32].
Apart from a different implementation of the pQCD like-
lihood, as discussed above, this may be due to differences
in presentation. As pointed out, in computing credibility
bands we follow Refs. [14,61] and employ each equation of

FIG. 10. Similar to Fig. 3: posterior credible bands for the
squared speed of sound, c2s , as a function of energy density ε,
based on the previous data as well as the new information from
the BW pulsar. Here, however, the integral pQCD likelihood is
implemented, as in Refs. [17,37,38], at nNS ¼ 10n0 instead of
εNS ¼ εc;max.

TABLE IV. Same as Table II, but median and credible intervals
for a neutron star with mass M ¼ 0.77M⊙ are displayed, given
the previously available data, the mass measurement of the BW
pulsar and the mass-radius data of the supernova remnant HESS
J1731-347.

Previousþ BWþ HESS

95% 68%

0.77M⊙ nc=n0 2.2þ0.6
−0.5 �0.3

εc [MeV fm−3] 352þ81
−87

þ38
−52

Pc [MeV fm−3] 25þ9
−7 �4

R [km] 11.8þ0.9
−1.0

þ0.5
−0.4

Λ 7911þ3979
−3352

þ1799
−1827
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state only up to their respective maximum central energy
density εc;max corresponding to the respective maximum
mass. Similarly, in the computation of the credible bands
for the radius as a function of mass we consider each EoS
only up to their respective maximum mass Mmax, as higher
masses do not correspond to stable neutron stars. In
contrast, Refs. [17,22,23,26,32] among others used each
EoS up to arbitrarily high energy densities. We decided
against this approach because it generates an uncontrolled
mix of information from EoSs constrained by astrophysical
data and EoSs beyond empirical limits. If we also use each
equation of state up to arbitrary ε, we do indeed observe a
slight softening in Fig. 3. However, this behavior is not
based on the empirical data but merely on the interpolation
extending up to the pQCD constraint at asymptotic
densities.

H. Possible impact of HESS J1731-347

Finally, we analyze the impact of including the mass-
radius estimate for the very light central compact object
HESS J1731-347 reported in Ref. [40]. The updated
posterior credible bands including this additional informa-
tion are collected in Fig. 11. To reach small radii, the speed
of sound has to increase more rapidly at densities above the
ChEFT constraint at nChEFT ¼ 1.3n0. With the new infor-
mation, the credible bands are much more tightly con-
strained compared to Fig. 3. The inclusion of the supernova
remnant in the Bayesian analysis shifts the radii at all
masses to lower values. The radius of a 1.4M⊙ neutron star
reduces to R ¼ 11.8þ0.5

−0.4 km at the 68% level, similar to the
value R ¼ 11.7� 0.5 km reported in Ref. [40] at the 90%
level. In addition to HESS J1731-347 and the previously
available data listed in Table I, the latter estimate includes
additional information from the x-ray burster 4U 1702-429
and from the rotation limit for the radio pulsar PSR J1748-
2446ad. There is visibly some tension between the radius

estimate at lower masses based on the current data, most
importantly from PSR J0030þ 0451, and HESS J1731-
347, as already noted in Ref. [26]. As a consequence of this
tension the posterior credible band for RðMÞ agrees with
the credible intervals of the supernova remnant only
marginally at the 95% level. However, as also noted in
Sec. III E, the analysis of HESS J1731-347 involves more
systematic uncertainties compared to other data includ-
ing NICER.
In Table IV we show inferred properties of neutron stars

with mass M ¼ 0.77M⊙. The central density of a 0.77M⊙
neutron star is low, only nc ¼ 2.2� 0.3n0. As an additional
output, theBayes factorBΔ<0

Δ≥0 with the inclusion of theHESS
supernova remnant increases from about 8 to BΔ<0

Δ≥0 ≃ 11, so
that the evidence for a negative trace anomaly measure
inside neutron stars turns from moderate to strong.

V. SUMMARY AND CONCLUSIONS

The present work is a substantial update beyond our
previous Bayesian studies focusing on the equation of state
of neutron star matter. A primary aim was to tighten the
conclusions about possible phase transitions in the cores of
neutron stars. The framework has been expanded in several
respects. New information from the mass determination of
the heavy pulsar PSR J0952-0607 has been included in the
inference procedure, in addition to the previously estab-
lished empirical database from NICER, Shapiro delay
measurements, and binary neuron star merger observations.
A novel likelihood implementation of the low-density
constraint from ChEFT has been introduced. A detailed
assessment of the matching condition connecting the neu-
tron star region with the pQCD limit at asymptotic densities
has been performed. Finally, the influence of the unusually
light supernova remnant HESS J1731-347 on the overall
systematics of neutron star properties has been examined.

FIG. 11. Similar to Fig. 3: posterior credible bands for the squared speed of sound, c2s , as a function of energy density ε, and mass-
radius relation RðMÞ, but now including the information from the supernova remnant HESS J1731-34 in addition to the BW pulsar PSR
J0952-0607. The resulting mass-radius relation is also compared to the marginalized intervals at the 68% level from the analysis of the
low-mass supernova remnant HESS J1731-34 [40] (green).
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The results and conclusions are summarized as follows:
(1) The low-density, nuclear physics constraint from

ChEFT is treated as a likelihood rather than a
prior, and its conservative application is restricted
to baryon densities n ≤ 1.3n0 (where n0 is the
density of equilibrium nuclear matter). In the range
ε≲ 0.5 GeV fm−3 the squared speed of sound,
c2s ¼ ∂P=∂ε, rises rapidly beyond c2s ¼ 1=3 and
develops a plateau at larger energydensities.Moderate
tension exists between ChEFTextrapolations of c2s up
to n ≃ 2n0 (where n0 ¼ 0.16 fm−3) and the trend
towards a stifferEoS implied by the astrophysical data.

(2) A Bayes factor analysis demonstrates extreme evi-
dence that the sound velocity exceeds the conformal
bound, cs ≤

ffiffiffiffiffiffiffiffi
1=3

p
, in neutron stars.

(3) The incorporation of the heaviest neutron star
observed so far, PSR J0952-0607, with rotation
corrections properly applied, results in a further
stiffening of the EoS, PðεÞ. The increased pressure
covers the entire range of energy densities realized
in the cores of neutron stars with masses
M ¼ 1.4–2.3M⊙. The TOV maximum supported
mass is raised to Mmax ¼ 2.31þ0.14

−0.17M⊙.
(4) As a consequence of the stiffer EoS, the central core

densities of neutron stars are reduced: nc < 3n0 for
M ¼ 1.4M⊙ and nc < 5n0 even for masses as high
as M ¼ 2.3M⊙ (at 68% credibility). This observa-
tion is of some significance for a possible interpre-
tation of neutron star matter in terms of baryonic
degrees of freedom: the average distance between
two baryons in the core of a 1.4M⊙ star is still about
1.2 fm. Even in the core center of a 2.3M⊙ neutron
star, this mean distance does not fall below about
1 fm, well beyond the characteristic hard-core radius
r ∼ 0.5 fm of the short-range repulsive interaction
that keeps two nucleons apart.

(5) Within the posterior credible bands (at 68% level),
possible phase coexistence regions, i.e., domains
of constant pressure in a Maxwell construction,
are restricted to a maximal width of Δn=n ≤
ðΔn=nÞmax ≃ 0.2. This upper limit stays nearly
constant throughout the density regime relevant to
neutron stars, allowing at most for a weakly first-
order phase transition which would have little
observable impact.

(6) The inclusion of the heavy BW pulsar increases the
evidence against small sound speeds inside neutron
star cores. A corresponding Bayes factor investiga-
tion demonstrates strong evidence against minimum
squared sound speeds smaller than c2s;min ≤ 0.1,
indicative of a possible strong first-order phase
transition, in neutron stars with masses up to
M ≤ 2.1M⊙. This is consistent with other studies
that found c2s > 0.1 at the 95% level in the cores of
neutron stars with mass M ≃ 2.0M⊙.

(7) Extreme evidence is established on the basis of
corresponding Bayes factors against scenarios with
multiple stable mass-radius branches, including
twin-star solutions of the TOV equations. The
low-density constraint from ChEFT plays a crucial
role in drawing this conclusion. In the absence of
this constraint, the evidence against twin-star sce-
narios turns out to be “only” strong.

(8) Matching the neutron star EoS to asymptotic pQCD
requires an extrapolation from densities reached in
neutron star cores, nNS, to the extreme densities at
which perturbative QCD methods can be applied. If
instead a matching density is chosen at a value far
beyond the density range controlled by empirical
observations, the impact of the pQCD constraint on
the EoS for neutron stars depends sensitively on this
prior choice. As a result, this pQCD impact may be
overestimated. With the matching density nNS fixed
at the value corresponding to the maximum sup-
ported neutron star mass for each EoS, we find only
very little impact of the asymptotic pQCD.

(9) The trace anomaly measure, Δ ¼ 1=3 − P=ε, is a
presently much discussed quantity that provides an
estimate for the approach to conformal matter at high
baryon densities. A corresponding Bayes factor
analysis suggests moderate evidence for a negative
trace anomaly in heavy neutron stars (M ≳ 2M⊙).
This implies thatΔ should change its sign to positive
at some higher densities in order to approach the
asymptotic limit, Δ → 0, from above.

(10) The mass-radius relation for neutron stars inferred
from previous plus new heavy-mass data has the
remarkable feature that the median is at an almost
constant radius (R ≃ 12.3 km) for all masses above
M ≳ 0.7M⊙. The ultralight supernova remnant
HESS J1731-347, if incorporated into the inference
procedure, falls out of this systematics and would
shift this mass-radius relation to smaller radii. In
particular, the inferred HESS radius including un-
certainties is located outside the 68% credible band
of the mass-radius relation.

We thus come to the overall conclusion that the addi-
tional incorporation of the new massive BW pulsar data in
the Bayesian inference analysis performed with very large
(∼106) EoS samples further strengthens the evidence
against very low squared sound velocities in neutron stars.
This together with a maximum possible phase coexistence
region of ðΔn=nÞmax ≃ 0.2 within the 68% posterior credi-
ble bands renders the occurrence of a strong first-order
phase transition in neutron star cores more unlikely. On the
other hand, a continuous hadrons-to-quarks crossover or a
conventional baryonic matter scenario are not ruled out. We
are looking forward towards progressively more rigorous
constraints on the EoS as the quantity and quality of
observational data increases in the future.
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APPENDIX A: ROTATION CORRECTION

The magnitude of the relative mass increase of the BW
pulsar PSR J0952-0607 by its high spin frequency of ν ≃
709 Hz is illustrated in Fig. 12. The correction is estimated
using the EoS-independent formulas deduced in Ref. [64].
This adjustment is quite strongly radius dependent, with a
significant difference between rotating and nonrotating
mass at larger radii. The uncertainty in the correction as
reported in Ref. [64] is smaller than the uncertainty in the
heavy-mass measurement itself. At a neutron star radius of
R ¼ 12 km the rotating mass M ¼ 2.35M⊙ decreases by
3% to an equivalent nonrotating mass of M ≃ 2.28M⊙.

APPENDIX B: CHEMICAL POTENTIAL
AND EoS TABLE

For a given equation of state, the baryon chemical
potential can be computed as

μ ¼ ∂ε

∂n
¼ εþ P

n
: ðB1Þ

The resulting posterior credible bands are displayed in
Fig. 13. Note that this baryon chemical potential corre-
sponds to the total μ from all active degrees of freedom

carrying baryon number: μ ¼ P
i xiμi, where xi ¼ ni=n is

the fraction corresponding to each species i. Our agnostic
approach for the speed of sound does not permit to
distinguish between separate species of constituents real-
ized inside neutron stars.
For practical purposes and applications, the median

values of the squared sound velocity c2sðεÞ as a function
of energy density, as shown in Fig. 3, are listed in Table V,
using the data set including the previously available data
and the new information from PSR J0952-0607. Based on
these values, the pressure P is computed using Eq. (1), as
well as the baryon density n and the chemical potential μ
with Eq. (B1). The asymmetry of the posterior distribution
causes small insignificant deviations between the pressure
computed from the integral of the sound velocity and the
median of P in Fig. 3.

FIG. 12. PSR J0952-0607 mass measurement with 68% un-
certainty [39] compared to the static case (without the ν ≃ 709 Hz
rotation) computed using the prescription in Ref. [64].

FIG. 13. Posterior 95% and 68% credible bands and medians
for the baryon chemical potential μ as a function of baryon
density n in units of the nuclear saturation density,
n0 ¼ 0.16 fm−3.

TABLE V. Tabulated values of the median for the squared
sound velocity, c2s , as a function of energy density ε as shown in
Fig. 3, i.e., including the previously available data and the new
information from PSR J0952-0607. Based on these values, the
pressure is computed as well as the baryon density n (in units of
the nuclear saturation density n0) and the baryon chemical
potential μ.

ε [GeV fm−3] c2s P [MeV fm−3] n=n0 μ [GeV]

0.1 0.02 0.8 0.66 0.96
0.2 0.07 5.4 1.31 0.98
0.3 0.20 17.4 1.93 1.03
0.4 0.44 49.0 2.50 1.12
0.5 0.59 101.3 3.03 1.24
0.6 0.64 163.0 3.52 1.35
0.7 0.64 226.8 3.97 1.46
0.8 0.62 289.8 4.39 1.55
0.9 0.60 350.9 4.78 1.64
1.0 0.59 410.6 5.15 1.71
1.1 0.60 470.4 5.50 1.78
1.2 0.61 531.1 5.84 1.85
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A comparison of this table with the corresponding table
in Appendix C of Ref. [16] is instructive as it underlines the
significant stiffening of the EoS that emerges when the new
PSR J0952-0607 data are incorporated together with the
updated implementations of ChEFTand pQCD constraints.
For example, in the range ε ¼ 0.5–0.9 GeV fm−3 the
pressure has increased by typically about one third as
compared to the previous results in Ref. [16].

APPENDIX C: BAYES FACTOR TABLE

A key result of the present work is the systematics of the

Bayes factor B
c2s;min>0.1

c2s;min≤0.1
, quantifying the evidence against a

dropping of the squared sound speed to values below
c2s;min ≤ 0.1, as a function of the maximum mass in neutron
stars. For a further documentation of these results, a table of
numerical values is useful to underscore the increase of this
evidence when the new information from PSR J0952-0607
is incorporated.
There is extreme evidence that the minimum squared

sound speed, after exceeding the conformal limit, does not
drop to values smaller than 0.1 for neutron stars with
masses M ≤ 1.9M⊙. There is strong evidence that c2s;min
does not become smaller than 0.1 in neutron stars with mass

M ≤ 2.0M⊙. The Bayes factors increase further with the
inclusion of the BW mass data. With this new empirical
information, there is strong evidence against small sound
speeds c2s;min < 0.1 inside neutron stars even up to
masses M ≤ 2.1M⊙.
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