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The experimental data on the electromagnetic (em) form factor of charged pions available at spacelike
momenta are analyzed using the dispersive matrix (DM) approach [M. Di Carlo et al., Unitarity bounds for
semileptonic decays in lattice QCD, Phys. Rev. D 104, 054502 (2021)] which describes the momentum
dependence of hadronic form factors without introducing any explicit parametrization and includes
properly the constraints coming from unitarity and analyticity. The unitary bound is evaluated non-
perturbatively making use of the results of lattice QCD simulations of suitable two-point correlation
functions contributing to the hadronic vacuum polarization term of the muon. Thanks to the DMmethod we
determine the pion charge radius from existing spacelike data in a completely model-independent way and
consistently with the unitary bound, obtaining hrπiDM ¼ 0.703� 0.027 fm. This finding differs by ≃1.6
standard deviations from the latest PDG [R. L. Workman et al., Review of particle physics, Prog. Theor.
Exp. Phys. 2022, 083C01 (2022).] value hrπiPDG ¼ 0.659� 0.004 fm, which is dominated by the very
precise results of dispersive analyses of timelike data coming from measurements of the cross section of the
eþe− → πþπ− process. We have analyzed the spacelike data using also traditional z-expansions, like the
Boyd-Grinstein-Lebed (BGL) or Bourrely-Caprini-Lellouch (BCL) fitting functions and adopting a simple
procedure that incorporates ab initio the nonperturbative unitary bound in the fitting process. We get
hrπiBGL ¼ 0.711� 0.039 fm and hrπiBCL ¼ 0.709� 0.028 fm in nice agreement with the DM result.
A detailed comparison in a wide range of spacelike momenta between the results of the BGL/BCL fitting
procedures and those of the DM method indicates that unitarity must be imposed not only on the fitting
function but also on the input data. We have addressed also the issue of the onset of perturbative QCD
(pQCD) by performing a sensitivity study of the pion form factor at large spacelike momenta, based only
on experimental spacelike data and unitarity. Hence, although the leading pQCD behavior is found to set in
only at very large momenta, our DM bands may provide information about the preasymptotic effects
related to the scale dependence of the pion distribution amplitude.
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I. INTRODUCTION

Since the pion is the lightest bound state in QCD, its
physical properties carry important information about the
way quark and gluon degrees of freedom govern the low-
energy dynamics. Therefore, its precise determination
represents an important test for our fundamental theory
of the strong interactions and requires nonperturbative
theoretical approaches, like QCD simulations on the lattice.

The electromagnetic (em) form factor of a (charged) pion,
FV
π ðQ2Þ, is defined in pure QCD by the matrix element

hπþðp0ÞjJemμ jπþðpÞi ¼ ðpþ p0ÞμFV
π ðQ2Þ; ð1Þ

where q ¼ p − p0 is the 4-momentum transfer, Q2 ≡ −q2
and Jemμ is the em current operator, namely

Jemμ ðxÞ ¼
X

f¼u;d;s;…

qfψ̄fðxÞγμψfðxÞ ð2Þ

with qf being the electric charge of the quark with flavor f
in units of the electron charge.
For spacelike values of the squared 4-momentum

transfer (Q2 ≥ 0 or, equivalently, q2 ≤ 0) the em pion form
factor contains information on the distribution of its
charged constituents, namely valence and sea light quarks,
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while for timelike values it has a branch cut starting at the
annihilation threshold 4M2

π . For Q2 ≤ −4M2
π (q2 ≥ 4M2

π) it
becomes complex and its modulus is a crucial quantity
governing the 2π contribution to the hadronic vacuum
polarization (HVP) of the muon anomalous magnetic
moment (see, e.g., Ref. [1]). As well known, the muon
HVP has long played an important role for testing the
Standard Model of particle physics.
The experimental information on the em pion form factor

is quite rich. At spacelike values of Q2 the form factor has
been determined using electron-pion scattering experi-
ments [2–4] and pion production off nucleons [5–12]. In
the timelike region the modulus of the pion form factor has
been extensively measured using the cross section of the
process eþe− → πþπ− (see Ref. [1] for a recent compila-
tion) as well as data on the hadronic τ decays in the limit of
isospin symmetry. Concerning the extraction of the em
pion form factor from experimental data and its analysis in
terms of dispersion methods a consistent treatment of
radiative corrections (due to both vacuum polarization
and final-state radiation effects) must be guaranteed, as
described in Refs. [13,14]. In the case of the spacelike data
the radiative corrections considered in the experiments
include already the subtraction of vacuum polarization
effects [15,16]. Thus, the dispersive treatment can be
applied to the spacelike data for the em pion form factor
without any adjustment.
An important quantity characterizing the em pion form

factor is its slope atQ2 ¼ 0, more precisely the pion charge
radius, hrπi, defined as hrπi≡

ffiffiffiffiffiffiffiffi
hr2πi

p
with

hr2πi≡ −6
dFV

π ðQ2Þ
dQ2

����
Q2¼0

¼ 6

π

Z
∞

4M2
π

dt
ImFV

π ðtÞ
t2

; ð3Þ

where the rightmost formula can be obtained via
dispersion relations. In the latest PDG review [17] the
result for hrπi reads

hrπiPDG ¼ 0.659� 0.004 fm; ð4Þ

coming from an average of four different results: hrπi ¼
0.656� 0.005 fm representing a suitable average of the
analyses of timelike (eþe−) and spacelike [3] data made in
Refs. [14,18], hrπi ¼ 0.663� 0.023 fm using the spacelike
data from the F2 experiment at FNAL [2], hrπi ¼ 0.663�
0.006 fm using the spacelike data from the NA7 experi-
ment at CERN [3] and hrπi ¼ 0.65� 0.08 fm using the
spacelike data from the SELEX experiment at FNAL [4].
The first result from Refs. [14,18] is based on a dispersive
representation of the em pion form factor, which properly
satisfies unitarity and analyticity. On the contrary, the other
three results, based only on spacelike data, are obtained
by fitting the data with a simple monopole ansatz, which
may introduce a disturbing model dependence and may be

inconsistent with unitarity (see similar remarks made in
Ref. [19], where Padé approximants are employed).
The aim of the present work is to describe the

Q2-dependence of the experimental data on the em pion
form factor at spacelike momenta without introducing any
explicit parametrization and fulfilling at the same time the
constraints coming from unitarity and analyticity. This will
allow us to determine the pion charge radius from existing
spacelike data in a completely model-independent way,
while fulfilling unitarity. This goal can be achieved by
adopting the dispersive matrix (DM) approach developed in
Ref. [20], and already applied successfully to the descrip-
tion of the hadronic form factors relevant in semileptonic
B-meson weak decays in Refs. [21–25]. In this work the
unitary bound on FV

π ðQ2Þwill be imposed using for the first
time a nonperturbative determination of the relevant trans-
verse vector susceptibility obtained using the results of
lattice QCD (LQCD) simulations of suitable two-point
correlation function contributing also to the muon HVP.
Our result is

hrπiDM ¼ 0.703� 0.027 fm; ð5Þ

which differs by ≃1.6 standard deviations from the PDG
value (4) with an uncertainty much larger (by a factor ≃4.5)
than the one quoted in the experimental work of Ref. [3].
We have analyzed the spacelike data using also traditional
z-expansions, like the renowned Boyd-Grinstein-Lebed
(BGL) [26] or Bourrely-Caprini-Lellouch (BCL) [27]
fitting functions and adopting a simple procedure that
easily incorporates ab initio the nonperturbative unitary
bound in the fitting process. We get hrπiBGL ¼ 0.711�
0.039 fm and hrπiBCL ¼ 0.709� 0.028 fm in nice agree-
ment with the DM result (5).
The analysis of the em pion form factor using the

basic features of the DM approach is not new at all. In
Refs. [18,28–31] the authors adopted a matrix approach
similar to the DM one, characterized by the use of one
timelike and one spacelike constraint at the same time, and
by a subsequent suitable averaging procedure of the results
corresponding to different pairs of input data. In this work
we introduce a new procedure, the unitary sampling
procedure, valid for any number of data points. In this
way we demonstrate that the DM approach is an easy and
very effective tool for analyzing even large sets of data
points (more than 50 in this work) fulfilling exactly the
unitarity and analyticity constraints.
The structure of this work is as follows. In Sec. II and

Appendix A we summarize the main features of the DM
approach applied to the em pion form factor. In particular,
we elucidate the meaning of the DM unitary filter, which
allows to select in a model-independent way only the subset
of input data that can be reproduced exactly by a unitary
z-expansion. This feature is not guaranteed by approaches
based on explicit z-expansions and it becomes more
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important as the impact of the unitary filter is more severe.
In these approaches the attention is focused only on the
fitting function and not also on the fitted data (either
experimental or theoretical ones). Even if the fitting function
is constructed to satisfy unitarity, the fitting procedure is
applied to all input data regardless whether the latter ones
satisfy unitarity or not (i.e., regardless whether the input
data can be exactly reproduced by a unitary z-expansion).
We point out that fitting nonunitary input data might
introduce distortions in unitary z-expansions (see Sec. VII
for a numerical evidence). Up to our knowledge this
potential problem is avoided only in the DM method.
In Sec. III we discuss the nonperturbative determination of

the unitary bound used in this work, namely the transverse
vector susceptibility χT, obtained using the results of lattice
QCD (LQCD) simulations of suitable two-point correlation
functions contributing to the HVP term of the muon.
In Secs. IV and V we apply the DM method to the

electroproduction JLAB-π data [11]. Since the unitary
bound turns out to be extremely selective as the number of
data points increases, we develop an efficient procedure to
generate a distribution of values for the pion form factor
satisfying unitarity, i.e., to get a set of unitary input data,
valid for any number of data points. The unitary sampling
procedure is described in detail in the case of the electro-
production JLAB-π data and it can be easily generalized
to any set of hadronic form factors, which must satisfy
unitary bounds.
In Sec. VI the unitary sampling method is applied to both

the CERN [3] and electroproduction JLAB-π [11] data for a
total of more than 50 data points. The DM band for the em
pion form factor is positively compared with the results
obtained in Ref. [14] by means of a unitary analysis of both
timelike eþe− and spacelike CERN data. A difference is
observed at small values of Q2, which translates into the
value (5) of the pion charge radius with respect to the result
hrπi ¼ 0.655� 0.003 fm from Ref. [14].
In Secs. VII and VIII we analyze the spacelike data using

the BGL [26] and BCL [27] z-expansions, respectively. We
adopt a simple procedure that incorporates ab initio the
nonperturbative unitary bound, described in Appendixes B
and C. A detailed comparison among the unitary BGL
fitting procedure and the DM method is performed, show-
ing explicitly that distortions are produced at large space-
like values of Q2 by fitting nonunitary input data.
In Sec. IX we investigate the role of the auxiliary

quantity Q̄2
0, at which the transverse susceptibility

χTðQ̄2
0Þ is evaluated, on the unitary DM filter and on the

corresponding DM band for the em pion form factor.
In Sec. X we address the issue of the onset of

perturbative QCD (pQCD) at large spacelike values of Q2.
As well known, for Q2 → ∞ the leading behavior of
FV
π ðQ2Þ predicted by pQCD [32–35] is given by

8πf2παsðQ2Þ=Q2, where fπ ≃ 130 MeV is the pion decay
constant and αsðQ2Þ is the running strong coupling.

We perform a sensitivity study and present the DM
predictions for Q2 ≳ 5 GeV2 ased only on unitarity and
experimental data available at spacelike momenta.
Although the leading pQCD behavior is found to set in
only at very large momenta, our DM bands may provide
information about the pre-asymptotic effects related to the
scale dependence of the pion distribution amplitude.
Our conclusions are summarized in Sec. XI. We point

out that the DM approach is equally well-suited to be
applied also to available results of LQCD calculations of
FV
π ðQ2Þ and, more generally, to experimental plus LQCD

data on FV
π ðQ2Þ. In this work, since tensions are present

among eþe− experiments (further exacerbated by the recent
results from the CMD-3 Collaboration [36]), we are
interested in the analysis of the experimental data available
at spacelike momenta without any mixing with timelike
data, allowing in this way an interesting comparison with
the results of Ref. [14], which are based almost totally on
timelike data. We leave the DM analysis of LQCD data as
well as of timelike plus spacelike data to future sepa-
rate works.

II. THE DM APPROACH FOR THE EM PION
FORM FACTOR

The DM approach is a nonperturbative method for
computing hadronic form factors in a model-independent
way in their full kinematical range [20,37].
The starting point is a dispersive bound that, for a generic

form factor f, can be written as [26,38,39]

1

2πi

I
jzj¼1

dz
z
jϕðzÞfðzÞj2 ≤ χ; ð6Þ

where ϕðzÞ is a kinematical function dependent on the
specific spin-parity channel and χ is the so-called suscep-
tibility, related to the derivative of the Fourier transform of a
suitable Green function of bilinear quark operators [26].
The conformal variable zðtÞ is defined as

zðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p ; ð7Þ

where t ¼ q2 ¼ −Q2 is the squared 4-momentum transfer
and, for the case of interest in this work, tþ ¼ 4M2

π and
t0 ¼ 0.1

In the case of subthreshold bound-state poles located
at ti ¼ M2

Ri
< tþ, the requirement of analyticity can be

1We anticipate here that the DM band for the form factor fðzÞ,
given by Eqs. (11)–(16), at a generic value of z does not depend
upon the value of the variable t0 (see the proof in Appendix A).
This is at variance with BGL or BCL z-expansions and it is
consistent with the fact that the DM method does not use
explicitly any z-expansion.
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fulfilled by modifying the kinematical function ϕðzÞ
through the so-called Blaschke factors, namely [37]

ϕðzÞ → ϕðzÞ ·
Y
i

z − zðM2
Ri
Þ

1 − z̄ðM2
Ri
Þz ;

where z̄ðtÞ is the complex conjugate of the conformal
variable zðtÞ. In the case of the em pion form factor no
subthreshold pole is present.
By introducing the inner product [37,40]

hgjhi ¼ 1

2πi

I
jzj¼1

dz
z
ḡðzÞhðzÞ;

where ḡðzÞ is the complex conjugate of the function gðzÞ,
Eq. (6) can be also written as

0 ≤ hϕfjϕfi ≤ χ: ð8Þ

Following Refs. [37,40] we introduce the set of functions

gtðzÞ≡ 1

1 − z̄ðtÞz ;

so that the use of Cauchy’s theorem yields

hgtjϕfi ¼ ϕðzðtÞÞfðzðtÞÞ;

hgtm jgtli ¼
1

1 − z̄ðtlÞzðtmÞ
:

The central ingredient of the DM method is the
matrix [37,40]

M≡

0
BBBBBBBB@

hϕfjϕfi hϕfjgti hϕfjgt1i � � � hϕfjgtN i
hgtjϕfi hgtjgti hgtjgt1i � � � hgtjgtN i
hgt1 jϕfi hgt1 jgti hgt1 jgt1i � � � hgt1 jgtN i

..

. ..
. ..

. ..
. ..

.

hgtN jϕfi hgtN jgti hgtN jgt1i � � � hgtN jgtN i

1
CCCCCCCCA
;

ð9Þ

where t1;…; tN are the values of the squared 4-momentum
transfer at which the form factor fðzÞ is known. Note that
the DM method can be applied not only to a series of
theoretical values fðzðtiÞÞ (with i ¼ 1; 2;…N), but also
directly to experimental data (as done in this work and
in Ref. [41]).
The important feature of the matrix M is that, thanks

to the positivity of the inner products, its determinant is
positive semidefinite, i.e., detM ≥ 0. This property is not
modified when the matrix element hϕfjϕfi is replaced by
the upper bound given by the susceptibility χ through
Eq. (8). Thus, the original matrix (9) can be replaced by

Mχ ¼

0
BBBBBBBB@

χ ϕf ϕ1f1 … ϕNfN
ϕf 1

1−z2
1

1−zz1
… 1

1−zzN

ϕ1f1
1

1−z1z
1

1−z2
1

… 1
1−z1zN

… … … … …

ϕNfN
1

1−zNz
1

1−zNz1
… 1

1−z2N

1
CCCCCCCCA
; ð10Þ

where ϕifi ≡ ϕðziÞfðziÞ (with i ¼ 1; 2;…N) represent the
known values of ϕðzÞfðzÞ corresponding to the given set
of values zi.
By imposing the positivity of the determinant of the

matrix (10) it is possible to explicitly compute the lower
and upper bounds that unitarity imposes on the form factor
fðzÞ for a generic value of z on the real axis, namely [20]

βðzÞ −
ffiffiffiffiffiffiffiffi
γðzÞ

p
≤ fðzÞ ≤ βðzÞ þ

ffiffiffiffiffiffiffiffi
γðzÞ

p
; ð11Þ

where

βðzÞ≡ 1

ϕðzÞdðzÞ
XN
i¼1

ϕifidi
1 − z2i
z − zi

; ð12Þ

γðzÞ≡ 1

1 − z2
1

ϕ2ðzÞd2ðzÞ ðχ − χDMÞ; ð13Þ

χDM ≡XN
i;j¼1

ϕifiϕjfjdidj
ð1 − z2i Þð1 − z2jÞ

1 − zizj
; ð14Þ

dðzÞ≡YN
m¼1

1 − zzm
z − zm

; ð15Þ

di ≡
YN

m≠i¼1

1 − zizm
zi − zm

: ð16Þ

When z → zi one has dðzÞ ∝ 1=ðz − ziÞ and, therefore,
βðzÞ → fi and γðzÞ → 0. In other words, Eq. (11) exactly
reproduces the set of input data ffig. In a frequentist
language this corresponds to a vanishing value of the
χ2-variable.
Unitarity is satisfied only when γðzÞ ≥ 0, which implies

the condition χ ≥ χDM. Such a condition depends on the
set of input data ffig and it is independent on any
parametrization or fitting ansatz of the input data.
The meaning of the DM filter χ ≥ χDM is clearer in

terms of explicit z-expansions, like the BGL ones [26].
When χ ≥ χDM, it is guaranteed the existence of (at least)
one BGL fit (either truncated or untruncated) that satisfies
unitarity and, at the same time, reproduces exactly the input
data. On the contrary, when χ < χDM, a unitary z-expansion
passing through the data does not exist, since the input data
do not satisfy unitarity. The important feature of the DM
approach is that only the unitary input data are eligible for
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consideration, while those data that do not satisfy the
unitary filter χ ≥ χDM are discarded.
We want to elucidate better the relevance of the above

feature of the DM approach. Let us consider a sample of
input data corresponding to known values of the form factor
at a series of points zi generated according to a given
covariance matrix. For each event we can apply the DM
filter χ ≥ χDM and, consequently, we can divide the original
sample into two disjoint subsets: the one corresponding to
input data satisfying the DM filter and the one made of
nonunitary events. In what follows we will refer to the first
subset as the unitary input data and to the second one as the
nonunitary input data.
The DM approach provides a band of values for the form

factor fðzÞ which are consistent with unitarity without
making use of any explicit fitting Ansatz. More precisely,
the DM band is given by the convolution of the uniform
distribution corresponding to Eqs. (11)–(13) with the
distribution of the unitary input data ffjg, i.e., only those
fulfilling the condition χ ≥ χDM (see Sec. V). In other
words, the DM approach automatically provides the
envelope of the results of all possible (either truncated
or untruncated) z-expansions, which satisfy unitarity and at
the same time exactly reproduce the unitary input data.
We stress again that separating the input data in the

two disjoint subsets corresponding to either χ ≥ χDM or
χ < χDM is an important feature of the DM approach,
which is not guaranteed by approaches based on explicit
z-expansions (including the one of Ref. [42] and also the
recent Bayesian approach of Ref. [43]). Indeed, in these
approaches the attention is focused only on the fitting
function and not also on the fitted data (either exper-
imental or theoretical ones). Even if the fitting function is
constructed to satisfy unitarity, the fitting procedure is
applied to all the input data regardless whether they
satisfy unitarity or not (i.e., regardless whether the input
data can be exactly reproduced by a unitary z-expansion).
In the case of the unitary subset of input data it is always
possible to find a suitable BGL fit, that satisfies unitarity
and at the same time exactly reproduces the input data.
This corresponds to the possibility to reach a null value of
the χ2-variable by increasing the order of the truncation of
the BGL fit (up to the number of data points). On the
contrary, when the input data do not satisfy the unitary
filter, it is not possible to find a fitting z-expansion that
satisfies unitarity and at the same time exactly reproduces
the input data. This corresponds to a nonvanishing value
of the χ2-variable, which depends on the impact of the
nonunitary input data. The above considerations applies
equally well also to the case of explicit z-expansions like
the BCL ones [27].
It is clear that the application of a fitting function (even

if unitary) to a subset of input data that do not satisfy
unitarity may lead to a distortion of the fitting results
related directly to the impact of the nonunitary effects

present in the input data. In particular, such a distortion
may be relevant when the fitting function extrapolates
the form factor in a kinematical region not covered by
the input data. Thus, the application of the DM method
is simpler and more general with respect to other
approaches, like the BGL or BCL z-expansions, particu-
larly when the number of input data increases and the
unitary constraint becomes more selective. In these cases
a BGL or BCL truncated expansion would require to
take into account a large number of fitting parameters
with no guarantee of avoiding the nonunitary effects
possibly present in the input data. This issue will
become evident in Secs. VII and VIII, where we apply
unitary BGL or BCL approaches to analyze the spacelike
data for the pion form factor. In Sec. VII we address
explicitly the issue of the impact of nonunitary input
data on a unitary BGL fit.
Let us now consider explicitly the case of the em pion

form factor assuming that it is known for a series of (N þ 1)
values Q2

i , namely

Fi ≡ FV
π ðQ2

i Þ for i ¼ 0; 1;…N; ð17Þ

where we have added the value i ¼ 0 to include the
absolute normalization condition FV

π ðQ2
0 ¼ 0Þ ¼ 1. The

susceptibility relevant for the em pion form factor is
the one of the transverse vector channel χT (see next
section for its explicit definition) and we introduce an
auxiliary variable Q̄2

0 at which the susceptibility χT is
evaluated.
Denoting by zi the value of the conformal z-variable

corresponding to Q2
i , i.e.,

zi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

i =4M
2
π

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2
i =4M

2
π

p
þ 1

≃
Q2

i

16M2
π
þO

�
Q4

i

M4
π

�
;

the constraint due to unitarity and analyticity on the values
Fi can be written in the form

4M2
πχTðQ̄2

0Þ ≥ χDMðQ̄2
0Þ; ð18Þ

where

χDMðQ̄2
0Þ ¼

XN
i;j¼0

FiFj

ϕiðQ̄2
0Þdið1 − z2i ÞϕjðQ̄2

0Þdjð1 − z2jÞ
1 − zizj

;

ð19Þ

di ¼
YN

m≠i¼0

1 − zizm
zi − zm

ð20Þ

and the kinematical factor ϕiðQ̄2
0Þ is explicitly given

by [26,44]
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ϕiðQ̄2
0Þ ¼

1ffiffiffiffiffiffiffiffi
48π

p
1þ Q2

i
4M2

π�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

i
4M2

π

q �
5=2

×

2
64 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

i

4M2
π

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q̄2

0

4M2
π

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

i
4M2

π

q
3
75
3

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1536π

p ð1þ ziÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − zi

p �
1 − z̄0
1 − z̄0zi

�
3

ð21Þ

with

z̄0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q̄2

0=4M
2
π

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q̄2
0=4M

2
π

p
þ 1

: ð22Þ

For a generic value of z on the real axis, when the unitary
filter (18) is satisfied, the pion form factor FV

π ðzÞ is limited
by the bounds

βðzÞ −
ffiffiffiffiffiffiffiffi
γðzÞ

p
≤ FV

π ðzÞ ≤ βðzÞ þ
ffiffiffiffiffiffiffiffi
γðzÞ

p
; ð23Þ

βðzÞ ¼ 1

ϕðz; Q̄2
0ÞdðzÞ

XN
i¼0

ϕiFidi
1 − z2i
z − zi

; ð24Þ

γðzÞ ¼ 1

ð1 − z2Þϕ2ðz; Q̄2
0Þd2ðzÞ

½4M2
πχTðQ̄2

0Þ − χDMðQ̄2
0Þ�;

ð25Þ

where

dðzÞ ¼
YN
m¼0

1 − zzm
z − zm

; ð26Þ

ϕðz; Q̄2
0Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1536π

p ð1þ zÞ2 ffiffiffiffiffiffiffiffiffiffi
1 − z

p �
1 − z̄0
1 − z̄0z

�
3

; ð27Þ

while χDMðQ̄2
0Þ and z̄0 are given by Eqs. (19) and (22),

respectively.
We stress once more that the important feature of the

DM method is the possibility to predict the value of the
form factor FV

π ðQ2Þ at a generic value of Q2 using only
the knowledge of the pion form factor at the series of values
Q2

i without any reference to a specific parametrization,
provided the unitary filter (18) is fulfilled. We will describe
the DM procedure in detail in Sec. V, while in the next
section we address the nonperturbative determination of the
transverse vector susceptibility χTðQ̄2

0Þ.

III. NONPERTURBATIVE DETERMINATION
OF THE TRANSVERSE VECTOR

SUSCEPTIBILITY χTðQ̄2
0Þ

In QCD the transverse vector susceptibility χTðQ̄2
0Þ is

given by [20]

χTðQ̄2
0Þ≡ 1

4

Z
∞

0

dττ4
j1ðQ̄0τÞ
Q̄0τ

V2πðτÞ; ð28Þ

where V2πðτÞ is the 2π contribution to the Euclidean vector-
vector current correlator VðτÞ, τ is the Euclidean time
distance and j1ðxÞ is an ordinary Bessel spherical function.
Note that at Q̄2

0 ¼ 0 the susceptibility χTðQ̄2
0 ¼ 0Þ is

proportional to the fourth moment of the correlator
V2πðτÞ, which contributes to the hadronic vacuum polari-
zation term of the muon (g − 2) (see Ref. [1]).
As well known, the Euclidean correlator VðτÞ can be

obtained by taking the Fourier transform of the spatial
components of the HVP tensor, which in turn is related via
dispersion relations to the (one photon) eþe− annihilation
cross section into hadrons, namely (see, e.g., Ref. [45])

VðτÞ ¼ 1

12π2

Z
∞

2Mπ

dωω2RhadðωÞe−ωτ; ð29Þ

where

RhadðωÞ ¼
3ω2

4πα2em
σhadðωÞ ð30Þ

with ω being the center-of-mass energy.
In QCD, neglecting the electron mass, the 2π contribu-

tion R2πðωÞ to RhadðωÞ is given by (see, e.g., Ref. [14])

R2πðωÞ ¼
1

4

�
1 −

4M2
π

ω2

�
3=2��FV

π ðωÞ
��2; ð31Þ

where FV
π ðωÞ is the em pion form factor in the timelike

region q2 ¼ ω2 ≥ 4M2
π . The 2π contribution to the

Euclidean correlator reads as

V2πðτÞ ¼
1

48π2

Z
∞

2Mπ

dωω2

�
1 −

4M2
π

ω2

�
3=2��FV

π ðωÞ
��2e−ωτ:

ð32Þ
Since

1

4

Z
∞

0

dττ4
j1ðQ̄0τÞ
Q̄0τ

¼ 2ω

ðQ̄2
0 þ ω2Þ3 ; ð33Þ

the transverse vector susceptibility χTðQ̄2
0Þ is given by

χTðQ̄2
0Þ ¼

1

24π2

Z
∞

2Mπ

dωω−3
�
1 −

4M2
π

ω2

�
3=2

×
1

ð1þ Q̄2
0=ω

2Þ3 jF
V
π ðωÞj2: ð34Þ
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Note that:
(i) the integrand in the rhs of Eq. (34) is positive

definite at all energies;
(ii) for large values of Q̄2

0 the transverse susceptibility
drops down as fast as 1=Q̄6

0

Q̄6
0χTðQ̄2

0Þ

⟶
Q̄2

0
→∞

1

24π2

Z
∞

2Mπ

dωω3

�
1 −

4M2
π

ω2

�
3=2

jFV
π ðωÞj2;

ð35Þ

(iii) Equation (34) can be cast in the form of the unitary
bound (6) as a strict equality. Indeed, the relation
between the conformal variable z on the unit circle
jzj ¼ 1 and the center-of-mass energy ω is

z ¼ eiα ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=4M2

π − 1
p

− 1

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=4M2

π − 1
p

þ 1
; ð36Þ

so that one has ω ¼ 2Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1 − cos αÞp

. It fol-
lows that

4M2
πχTðQ̄2

0Þ ¼
1

48π2

Z þπ

−π
dα

jsin αj
4

�
1þ cos α

2

�
3=2 jFV

π j2h
1þ Q̄2

0

8M2
π
ð1 − cos αÞ

i
3

¼ 1

2πi

Z
jzj¼1

dz
z

1

1536π

����ð1þ zÞ4ð1 − zÞ
�
1 − z̄0
1 − z̄0z

�
6
����jFV

π j2

¼ 1

2πi

Z
jzj¼1

dz
z
jϕðz; Q̄2

0ÞFV
π j2; ð37Þ

where ϕðz; Q̄2
0Þ is the kinematical function given in

Eq. (27).
The Euclidean correlator of two em currents has been

evaluated on the lattice by several collaborations (see, e.g.,
Ref. [1]). In particular, the 2π contribution V2πðτÞ has been
estimated at the physical point and in the continuum and
infinite volume limits in Ref. [46].2 Thus, using the lattice-
based correlator V2πðτÞ we have evaluated the quantity
4M2

πχTðQ̄2
0Þ using Eq. (28). The Q̄2

0 dependence obtained in
this way is shown in Fig. 1 by the blue dots. Alternatively,
we have calculated Eq. (34) adopting for jFV

π ðωÞj the
results of the dispersive analysis of the eþe− data available
from Ref. [14] up to ω ¼ 1 GeV and putting jFV

π ðωÞj ¼ 0
for ω > 1 GeV. We will refer to the results obtained in this
way for the susceptibility 4M2

πχTðQ̄2
0Þ as the data-driven

ones, represented in Fig. 1 by the black line.
Since the pion form factor of Ref. [14] is provided up to

ω ¼ 1 GeV and the integrand in the rhs of Eq. (34) is
positive definite, the data-driven results for 4M2

πχTðQ̄2
0Þ

represent a lower bound for the transverse susceptibility.
Reassuringly, the lattice-based results turn out to be
slightly higher than the data-driven ones. The agreement
is remarkable with differences not exceeding ∼10% up
to Q̄2

0 ≃ 1 GeV2.

The agreement shown in Fig. 1 can be improved
by adding to the data-driven pion form factor a simple
power-law tail for ω > 1 GeV of the form jFV

π ðωÞj ¼
jFV

π ð1 GeVÞj · ð1 GeV=ωÞ4, which reproduces within the
errors the results of Ref. [14] in the ω2-range from
≃0.9 GeV2 up to 1 GeV2. In this case we have found that
the differences with respect to the lattice-based results for
the susceptibility 4M2

πχTðQ̄2
0Þ do not exceed ≃4% (i.e., less

than ≃2 standard deviations).
It should be kept in mind, however, that the para-

metrization of the pion form factor FV
π ðωÞ adopted in

Ref. [14], while fulfilling the requirements of unitarity
and analyticity, includes the contributions from 2π, 3π
and inelastic channels, estimated conservatively up to
ω ¼ 1 GeV. Any extension to the ω-region above
1 GeV requires at least the inclusion of the contributions
arising from higher resonances like ρð1450Þ and ρð1700Þ
(see the corresponding note in the PDG review [17]),
which is still to be settled [14]. At the same time, also the
application of the approach of Ref. [46] for estimating
the 2π correlator V2πðτÞ from lattice isoQCD simulations
is limited to Euclidean time distances τ ≳ 1 fm, which
qualitatively corresponds to energies below ≈1 GeV
[see Eq. (32)].
According to Eq. (34) the impact of the high-energy tail

of FV
π ðωÞ increases as Q̄2

0 increases and, therefore, we
consider trustable the results obtained for both the lattice-
based and the data-driven transverse susceptibility only up
to Q̄2

0 ≈ 1 GeV2 (as adopted in Fig. 1).
In what follows, we will make use of the lattice-based

results for the transverse vector susceptibility 4M2
πχTðQ̄2

0Þ

2There, LQCD simulations of the light-quark vector correlator
have been performed in isosymmetric QCD (isoQCD). The
results at finite lattice volumes have been fitted using the so-
called Lüscher-Lellouch-Meyer model [47–53] adopting the
Gounaris-Sakurai parametrization [54] for the pion form
factor FV

π .
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up to Q̄2
0 ≃ 1 GeV2. The main reason is that we want to

analyze the spacelike data within the DM method without
using information coming from eþe− data. In this way we
will compare our results coming only from the spacelike
sector with the corresponding ones obtained in Ref. [14]
from timelike data (see later Sec. VI).
At Q̄2

0 ¼ 0 we get

4M2
πχTð0Þ ¼ 0.00574ð10Þ: ð38Þ

This value can be compared with the upper bound

provided by the quantity 4M2
πΠ

ðI¼1Þ
1 , where ΠðI¼1Þ

1 is the
isovector contribution to the slope of the HVP polarization
function evaluated at vanishing four-momentum transfer.
The isovector HVP slope, which contains contributions
also from intermediate states other than the 2π states,
has been calculated (in isoQCD) by several lattice
collaborations, namely BMW [55], RBC [56], and FHM

[57], obtaining, respectively, 4M2
πΠ

ðI¼1Þ
1 ¼ 0.00607ð19Þ,

0.00624(17), 0.00611(9).

IV. ANALYSIS OF THE
ELECTROPRODUCTION DATA

Presently the experimental data on the em pion form
factor at spacelike momenta can be divided into two
groups. For values ofQ2 ≲ 0.25 GeV2 the pion form factor
FV
π ðQ2Þ has been determined by measuring the scattering

of high-energy (on shell) pions off atomic electrons at
FNAL F2 [2], CERN SPS [3], and FNAL SELEX [4]. The
data are shown in the upper panel of Fig. 2.
At higher values of Q2 the pion form factor is extracted

from cross section measurements of the reaction

1Hðe; e0πþÞn, i.e., from pion electroproduction off the
proton, which implies initial off shell pions. In such a case
the separation of the longitudinal and transverse response
functions as well as the extrapolation of the observed
scattering from virtual pions to the one corresponding to
on shell pions have to be carefully considered for estimating
the systematic uncertainties. Using the electroproduction
technique the pion form factor Fπ

VðQ2Þ has been determined
for Q2 ≳ 0.35 GeV2 in various experiments at CEA/Cornell
[5], DESY [6,7], and JLAB [8–10,12].
A careful analysis of the systematic uncertainties of all

the electroproduction data was carried out by the JLAB-π
Collaboration in Ref. [11]. Particular attention was paid to
estimating the uncertainty due to the extrapolation of the
electroproduction data to the pion pole. Within the errors no
inconsistency is visible with the pion form factor obtained
by the dispersive analysis of the eþe− data of Ref. [14] (see
later on Fig. 10) as well as with available results from lattice
(iso)QCD simulations (see the review in Ref. [58]).
The results of the JLAB-π Collaboration are collected

in Table I together with the absolute normalization value
F0 ¼ 1 atQ2

0 ¼ 0 (i.e., z0 ¼ 0) corresponding to the charge
conservation. The electroproduction data are shown in the
lower panel of Fig. 2 together with the CERN ones. Note
that: (i) few experimental data are plagued by large and
asymmetric errors, which come from the systematic uncer-
tainty due to a long extrapolation to the pion pole [11];
and (ii) at Q2 ¼ 1.6 GeV2 Ref. [11] quotes two results:
0.233þ19

−17 and 0.243þ23
−14 . Both are shown in the lower panel

of Fig. 2, while in Table I only their average 0.238þ21
−17 is

considered.
We now apply the DM approach to the set of N þ 1 ¼ 8

data collected in Table I assigning a very small, but

FIG. 1. Blue dots: transverse vector susceptibility 4M2
πχTðQ̄2

0Þ versus Q̄2
0 evaluated using Eq. (28) and adopting the 2π correlator

V2πðτÞ obtained in Ref. [46] using LQCD simulations (see text). Black line: the susceptibility 4M2
πχTðQ̄2

0Þ evaluated using Eq. (34)
adopting for jFV

π ðωÞj the results of the dispersive analysis of the eþe− data available from Ref. [14] up to ω ¼ 1 GeV and putting
jFV

π ðωÞj ¼ 0 for ω > 1 GeV. The uncertainties of the data-driven results are hardly visible on the vertical scale being of the order
of ≃0.6%.
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nonvanishing error to the data point F0 ¼ 1 at Q2 ¼ 0,
namely σ0 ¼ 10−16. We also symmetrize the errors
obtaining the set of data points shown in the fifth column
of Table I. Since no information is available on the
covariance matrix of the electroproduction data, the form
factor values are considered to be uncorrelated, namely the
covariance matrix C is given by

Cij ¼ σ2i δij; ð39Þ

where σ2i is the variance of Fi with i ¼ 0; 1;…N.
We start by choosing Q̄2

0 ¼ 0 and postponing to Sec. IX
the discussion about the impact of a generic choice Q̄2

0 > 0.
We assume a Gaussian distribution for the nonperturbative
transverse susceptibility 4M2

πχTðQ̄2
0 ¼ 0Þ ¼ 0.00574ð10Þ

[see Eq. (38)]. This distribution is taken to be uncorrelated
with those of the form factor points collected in Table I.
A sample of 105 uncorrelated events normally distributed

is generated using as input the mean values F≡ fFig
and uncertainties σ ≡ fσig with i ¼ 0; 1;…N. For each
event we calculate the susceptibility χDMðQ̄2

0 ¼ 0Þ given
by Eq. (19). It turns out that the calculated values of
χDMðQ̄2

0 ¼ 0Þ range from a minimum equal to ∼2.6 up to a
maximum given by ∼1.4 × 109 and, therefore, none of
the 105 generated events satisfies the unitary filter (18).
The same happens also when we increase the size of the
sample up to 106.
The main reason for the above finding can be traced back

to the values of the kinematical coefficients di, given by
Eq. (20). These coefficients depend only on the series of

FIG. 2. Experimental data on the em pion form factor FV
π ðQ2Þ obtained at FNAL F2 [2] (red upper triangles), CERN SPS [3] (black

circles), FNAL SELEX [4] (green lower triangles) and from the reanalysis of the electroproduction data performed by the JLAB-π
Collaboration in Ref. [11] (blue squares).
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values zi and their numerical values are shown in the sixth
column of Table I. They turn out to be quite large in
absolute value and to have alternating signs. It is therefore
very unlikely to generate an event with uncorrelated values
of the form factor points leading to a value of χDMðQ̄2

0 ¼ 0Þ
as small as 4M2

πχTðQ̄2
0 ¼ 0Þ. A very delicate compensation

among the contributions of the various data points to
Eq. (19) is required and this naturally implies specific
correlations among the form factor points. In principle, one
may increase the size of the sample until some of the events
satisfy the unitary filter, but a brute-force increase of the
size of the sample may become impracticable for large
values of the number of data points N (see also later
on Sec. VI).
As already pointed out in Sec. II, the unitary filter (18)

acts as a constraint and it allows to select a subset of
the initial events F and C≡ fCijg, made only by unitary
events. Such a subset corresponds to new values F̄ for the
form factor points and to a new covariance matrix C̄
representing the unitary form factor points (and correla-
tions) on which any further analysis fulfilling unitarity must
be based. Thus, we have to find an efficient way to

determine the unitary values F̄ and C̄. In the next section
we illustrate a simple procedure able to achieve this goal
and applicable for any value of N.

V. UNITARY SAMPLING PROCEDURE

The Gaussian multivariate distribution used in the
previous section is based on the probability density
function (PDF) given by

PDFðfiÞ ∝ exp

"
−
1

2

XN
i;j¼0

ðfi − FiÞC−1
ij ðfj − FjÞ

#
; ð40Þ

where fFi; g and fCijg are respectively the mean values
and the covariance matrix used as inputs. As is well-known,
the PDF (40) favors the relative likelihood of small values
of the quadratic form

P
N
i;j¼0ðfi − FiÞC−1

ij ðfj − FjÞ, which
however may correspond to large values of the suscep-
tibility (19), as shown in the previous section.
We now modify the above PDF in order to allow the

susceptibility (19) to be small enough to fulfill the unitary
constraint (18). We consider the following new PDF:

PDFDMðfiÞ ∝ PDFðfiÞ · exp
�
−

s
4M2

πχTðQ̄2
0Þ
χDMðQ̄2

0Þ
�

∝ exp

"
−
1

2

XN
i;j¼0

ðfi − FiÞC−1
ij ðfj − FjÞ −

s
4M2

πχTðQ̄2
0Þ
XN
i;j¼0

fiD−1
ij ðQ̄2

0Þfj
#
; ð41Þ

where s is a parameter [expected to determine the number of events satisfying the unitary filter (18)] and the matrix
D−1ðQ̄2

0Þ is defined as

D−1
ij ðQ̄2

0Þ≡
ϕiðQ̄2

0Þdið1 − z2i ÞϕjðQ̄2
0Þdjð1 − z2jÞ

1 − zizj
: ð42Þ

TABLE I. Experimental data on the em pion form factor FV
π ðQ2Þ obtained using the electroproduction technique

analyzed by the JLAB-π Collaboration in Ref. [11] together with the absolute normalization value F0 ¼ 1 atQ2
0 ¼ 0

(i.e., z0 ¼ 0) due to charge conservation. The fifth column represents the data after symmetrization of the errors. The
sixth column contains the values of the kinematical coefficients di [see Eq. (20)]. The last column shows the values
of the kinematical factors ϕi evaluated at Q̄2

0 ¼ 0 [see Eq. (21)].

i Q2
i (GeV2) zi Fi Fi (sym.) di ϕi ðQ̄2

0 ¼ 0Þ
0 0.0 0.0 1.0 1.0 −7.02 × 101 0.0144

1 0.35 0.402 0.632þ23
−23 0.632 (23) þ2.88 × 104 0.0219

2 0.60 0.494 0.433þ138
−40 0.482 (89) −1.26 × 106 0.0229

3 0.70 0.519 0.473þ44
−41 0.475 (43) þ5.48 × 106 0.0230

4 0.75 0.530 0.341þ81
−38 0.363 (60) −4.73 × 106 0.0231

5 1.00 0.576 0.312þ38
−25 0.319 (32) þ5.34 × 105 0.0233

6 1.60 0.645 0.238þ21
−17 0.240 (19) −5.66 × 104 0.0232

7 2.45 0.701 0.167þ16
−12 0.169 (14) þ6.45 × 103 0.0228
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The use of Eq. (41) as a PDF allows to increase the relative
likelihood of small values of the susceptibility χDMðQ̄2

0Þ at
the expense of decreasing the PDF (40). Introducing the
matrix C̃ defined in compact notation as

C̃−1 ¼ C−1 þ 2s
4M2

πχTðQ̄2
0Þ
D−1ðQ̄2

0Þ; ð43Þ

Equation (41) can be easily rewritten in the form

PDFDMðfiÞ ∝ exp

"
−
1

2

XN
i;j¼0

ðfi − F̃iÞC̃−1
ij ðfj − F̃jÞ

−
1

2

XN
i;j¼0

ðFi − F̃iÞC−1
ij Fj

#
; ð44Þ

where the new vector of mean values F̃ is related to the
starting one F by

F̃ ¼ C̃C−1F: ð45Þ

Note that the second exponential in the rhs of Eq. (44) does
not depend on ffig and therefore it is irrelevant for the
relative likelihood of the events, so that the new PDF is
simply given by

PDFDMðfiÞ ∝ exp

�
−
1

2

XN
i;j¼0

ðfi − F̃iÞC̃−1
ij ðfj − F̃jÞ

�
; ð46Þ

which represents a multivariate Gaussian distribution char-
acterized by the new set of input values fF̃i; C̃ijg given by
Eqs. (43) and (45), respectively.
In the case of the electroproduction data of Table I we

generate samples with 105 events according to the new
PDF (46) for various values of the parameter s (assuming
again Q̄2

0 ¼ 0). Then, we calculate the corresponding
susceptibility χDMðQ̄2

0 ¼ 0Þ given by Eq. (19). The results
are shown in Fig. 3, where the (Gaussian) distribution
corresponding to the nonperturbative transverse result
4M2

πχTðQ̄2
0 ¼ 0Þ ¼ 0.00574ð10Þ is also presented. It can

be clearly seen that, as the parameter s increases, the
PDF (46) can be very effective in generating events with
χDMðQ̄2

0 ¼ 0Þ ≤ 4M2
πχTðQ̄2

0 ¼ 0Þ, i.e., satisfying the uni-
tary filter (18).
Both thevector ofmeanvalues F̃ and the covariancematrix

C̃ depend on the value of the parameter s. The case s ¼ 0

trivially corresponds to F̃ ¼ F and C̃ ¼ C, while s > 0 leads
to F̃ ≠ F and C̃ ≠ C. In order to quantify the deviation of F̃
from F we introduce the quantity Δ defined as

Δ≡
�

1

N þ 1

XN
i;j¼0

ðF̃i − FiÞC−1
ij ðF̃j − FjÞ

	1=2

⟶
Cij¼σ2i δij

�
1

N þ 1

XN
i¼0

ðF̃i − FiÞ2
σ2i

	1=2

: ð47Þ

The value of Δ represents the average deviation of the new
values F̃ from the starting ones F measured with respect to

FIG. 3. Histograms of the ratio χDM=0.00574 corresponding to the data susceptibility χDM [see Eq. (19)] obtained using samples of 105

events generated according to the multivariate distribution (46) for various values of the parameter s. The quantity 0.00574 represents the
central value of the nonperturbative transverse susceptibility (38), obtained in Sec. III at Q̄2

0 ¼ 0. The percentage p of events passing the
unitary filter (18) is given in the inset for each value of s. The gray histogram represents the Gaussian distribution of the nonperturbative
transverse susceptibility ratio 4M2

πχTð0Þ=0.00574.

DISPERSIVE ANALYSIS OF THE EXPERIMENTAL DATA ON … PHYS. REV. D 108, 094013 (2023)

094013-11



the starting covariance. In other words, Δ < 1 means that
on average F̃ deviates from F by less than one standard
deviation.
As a further estimator of the deviation of F̃ with respect

to F, we introduce also the quantity η defined as

η≡
(

1

N þ 1

XN
i¼0

F̃2
i

F2
i

)
1=2

: ð48Þ

The value of η can be smaller or larger than unity depending
on whether jF̃ij is (on average) smaller or larger than jFij.
In the same spirit, in order to estimate how the uncer-

tainties of the new mean values, i.e., σ̃i ≡ C̃1=2
ii , deviates

(on average) from the starting ones σi we introduce the
quantity ϵ defined as

ϵ≡
(

1

N þ 1

XN
i¼0

C̃ii

Cii

)
1=2

¼
(

1

N þ 1

XN
i¼0

σ̃2i
σ2i

)
1=2

: ð49Þ

In Table II we have collected the mean values F̃ and
the uncertainties σ̃ corresponding to some values of the
parameter s, which can be compared with the starting
values F and σ. The values of the quantities Δ [see
Eq. (47)], η [see Eq. (48)], ϵ [see Eq. (49)] and of the
percentage p of events passing the unitary filter (18) are
also shown.
The values of p and Δ increase for increasing s as

expected, while both η and ϵ are found to be substantially
constant. As the value of the parameter s varies from ≃0.5
to ≃7.5, the value of p ranges from ≃2% to ≃93% and the
one of Δ from ≃0.5 to ≃0.8, while η ≃ 1.02 and ϵ ≃ 0.7.
Not only F̃ ≠ F and σ̃ ≠ σ, but also the correlation

matrix of the data corresponding to the new PDF (46) is
different from the starting one, namely

ρ̃ij ≡ C̃ij

σ̃iσ̃j
≠ ρij ≡ Cij

σiσj
: ð50Þ

This point is illustrated through the heat maps of Fig. 4 for
various values of the parameter s before the application of
the unitary filter (18). As expected, the correlations among
first neighbors increases for s > 0. We observe a slight
dependence of ρ̃ij on the value of the parameter s.
We now apply the unitary filter (18) and select only the

subsets of events satisfying unitarity for each value of
the parameter s. On such subsets we calculate the mean
values, uncertainties and correlations for the form factor
and the transverse susceptibility. In order to adopt a
compact notation we will denote these quantities by
F̄ ¼ fF̄ig, σ̄ ¼ fσ̄ig and ρ̄ ¼ fρ̄ijg with ρ̄ij ¼ C̄ij=ðσ̄iσ̄jÞ
and i; j ¼ 0; 1;…ðN þ 1Þ.
The mean values F̄ and the uncertainties σ̄ corresponding

to the form factor points are shown in Table III for some
values of the parameter s and compared with the starting
values F and σ. The quantities Δ, η and ϵ are calculated
using F̄ and σ̄ in Eqs. (47)–(49) and shown in Table III, as
well as the size Nsample ¼ p × 105 of the subsets of events
passing the unitary filter (18). It can be seen that the
application of the unitary filter (18) leads to values fF̄ and
σ̄, which exhibit a weaker dependence on the parameter s
with respect to the values F̃ and σ̃ obtained before the
application of the unitary filter. As the value of the
parameter s varies from ≃0.5 to ≃7.5, the value of
the quantity Δ ranges only from ≃0.7 to ≃0.8, while both
η ≃ 1.03 and ϵ ≃ 0.7 do not change significantly.
Finally, also the correlation matrix ρ̄, obtained after

the application of the unitary filter and shown in
Fig. 5, changes only slightly with respect to the matrix ρ̃
(see Fig. 4) obtained before the application of the
unitary filter.

TABLE II. Mean values F̃ and uncertainties σ̃ obtained from Eqs. (43) and (45) for various values of the parameter
s before the application of the unitary filter (18) (assuming Q̄2

0 ¼ 0). The second column show the (symmetrized)
electroproduction data from Ref. [11] (see Table I). The values of the quantities Δ, η, ϵ [see Eqs. (47)–(49)] and of
the percentage p of events passing the unitary filter (18) are given in the last four rows.

Q2 (GeV2) F (sym.) F̃ ðs ¼ 0.5Þ F̃ ðs ¼ 1.5Þ F̃ ðs ¼ 3.0Þ F̃ ðs ¼ 7.5Þ
0.35 0.632 (23) 0.629 (22) 0.624 (21) 0.619 (21) 0.608 (20)
0.60 0.482 (89) 0.481 (18) 0.482 (16) 0.483 (16) 0.483 (16)
0.70 0.475 (43) 0.438 (18) 0.440 (16) 0.442 (16) 0.445 (15)
0.75 0.363 (60) 0.419 (18) 0.422 (17) 0.424 (16) 0.429 (15)
1.00 0.319 (32) 0.342 (18) 0.346 (17) 0.350 (16) 0.358 (15)
1.60 0.240 (19) 0.234 (15) 0.237 (15) 0.241 (14) 0.249 (13)
2.45 0.169 (14) 0.170 (14) 0.168 (14) 0.167 (14) 0.164 (14)

Δ 0.0 0.54 0.56 0.61 0.76
η 1.0 1.02 1.02 1.02 1.03
ϵ 1.0 0.72 0.70 0.69 0.69

pð%Þ <10−4 1.9 14.3 42.5 93.1

SILVANO SIMULA and LUDOVICO VITTORIO PHYS. REV. D 108, 094013 (2023)

094013-12



The values F̃ of the form factor data are by construction
normally distributed. After the application of the unitary
filter (18) also the distributions of the new values F̄ are
substantially normal regardless the size of the sample of the
unitary events, as shown in Fig. 6. Thus, we apply a simple
iteration procedure to get rid off the residual dependence
on the value of the parameter s. Namely, we apply the
unitary filter (18) to the distributions of the values F̄ and
recalculate on the new subset of unitary events the mean
values, uncertainties and correlations for the form factor
and the transverse susceptibility. The percentage of events
passing the unitary filter increases drastically and we iterate
(few times) the previous steps until the percentage reaches
≃99%. This is done for various values of the parameter s
and we find that the final set of values for F̄ and for the

covariance matrix C̄ is almost totally independent on the
starting value of s while keeping Δ ≃ 0.8, η ≃ 1.03 and
ϵ ≃ 0.7. We remind that the values obtained for Δ, η and ϵ
means that on average the new central values F̄ are larger
with respect to the original ones F by few percent with
changes lower than one standard deviation and that the
new uncertainties σ̄ are on average around 70% of the
original ones σ. We stress that F̄ ≠ F and C̄ ≠ C are direct
consequences of the application of the unitary filter (18).
Using our final set of values for F̄ and for the covariance

matrix C̄ we generate a sample of events for the input
values of the form factor, which all satisfy the unitary
filter (18). For the kth event, corresponding to form factor

values fðkÞj and transverse susceptibility 4M2
πχ

ðkÞ
T ðQ̄2

0Þ, we
apply the DM formulas (23)–(25) obtaining

FIG. 4. Heat maps representing the correlation matrix ρ̃ij ≡ C̃ij=ðσ̃iσ̃jÞ corresponding to the unitary sampling (46) for various values
of the parameter s before the application of the unitary filter (18). The case s ¼ 0 corresponding to the initial correlation matrix
ρij ≡ Cij=ðσiσjÞ → δij is also shown. Labels 0, 1, ... 7 correspond to the form factor points of Table I, while label 8 corresponds to the
nonperturbative result for the transverse susceptibility 4M2

πχTð0Þ.

DISPERSIVE ANALYSIS OF THE EXPERIMENTAL DATA ON … PHYS. REV. D 108, 094013 (2023)

094013-13



TABLE III. The same as in Table II, but for the mean values F̄ and uncertainties σ̄ obtained using only the subsets
of unitary events selected by the filter (18) for various values of the parameter s. The size Nsample ¼ p × 105 of these
subsets is shown in the last row.

Q2 (GeV2) F (sym.) F̄ ðs ¼ 0.5Þ F̄ ðs ¼ 1.5Þ F̄ ðs ¼ 3.0Þ F̄ ðs ¼ 7.5Þ
0.35 0.632 (23) 0.615 (19) 0.614 (19) 0.612 (19) 0.607 (20)
0.60 0.482 (89) 0.483 (16) 0.483 (16) 0.483 (16) 0.483 (16)
0.70 0.475 (43) 0.443 (16) 0.444 (16) 0.444 (15) 0.446 (15)
0.75 0.363 (60) 0.426 (16) 0.426 (16) 0.427 (15) 0.429 (15)
1.00 0.319 (32) 0.353 (15) 0.354 (15) 0.355 (15) 0.359 (15)
1.60 0.240 (19) 0.244 (13) 0.244 (13) 0.246 (13) 0.249 (13)
2.45 0.169 (14) 0.166 (14) 0.165 (14) 0.165 (14) 0.163 (14)

Δ 0.0 0.68 0.68 0.70 0.78
η 1.0 1.03 1.03 1.03 1.03
ϵ 1.0 0.66 0.66 0.66 0.66

Nsample � � � 1900 14300 42500 93100

FIG. 5. The same as in Fig. 4, but for the correlation matrix ρ̄ij ≡ C̄ij=ðσ̄iσ̄jÞ obtained after the application of the unitary filter (18) for
various values of the parameter s (see Table III).
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FðkÞ
L ðQ2Þ ≤ FVðkÞ

π ðQ2Þ ≤ FðkÞ
U ðQ2Þ ð51Þ

with

FðkÞ
LðUÞðQ2Þ¼ 1

ϕðz;Q̄2
0ÞdðzÞ

XN
j¼0

fðkÞj ϕjðQ̄2
0Þdj

1−z2j
z−zj

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð1−z2Þϕ2ðz;Q̄2
0Þd2ðzÞ

h
4M2

πχ
ðkÞ
T ðQ̄2

0Þ−χðkÞDMðQ̄2
0Þ
is

ð52Þ

with ϕðz; Q̄2
0Þ given by Eq. (27).

After summing over the sample we get the averages FLðUÞðQ2Þ, the standard deviations σLðUÞðQ2Þ and the correlation
coefficient ρLUðQ2Þ. Adopting a uniform distribution between FLðQ2Þ and FUðQ2Þ one finally obtains the following
expressions for the em pion form factor FV

π ðQ2Þ and its variance ½σVπ ðQ2Þ�2:

FV
π ðQ2Þ ¼ 1

2
½FLðQ2Þ þ FUðQ2Þ�; ð53Þ

FIG. 6. Distributions of the form factors values F̄ obtained after the application of the unitary filter (18) for various values of the
parameter s. The green, red, blue and orange histograms correspond respectively to Q2 ¼ 0.35, 0.70, 1.0, 2.45 GeV2. The black solid
lines represent a Gaussian fit of the various histograms.
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½σVπ ðQ2Þ�2 ¼ 1

12
½hFUðQ2Þi − hFLðQ2Þi�2

þ 1

3

n
σ2LðQ2Þ þ σ2UðQ2Þ

þ ρLUðQ2ÞσLðQ2ÞσUðQ2Þ
o
: ð54Þ

The results obtained using Eqs. (53) and (54) starting
from the electroproduction data of Ref. [11] are shown in
Fig. 7, where they compared also with the CERN SPS data
from Ref. [3]. The latter ones are not used to construct the
DM band. Nevertheless, the DM predictions at low Q2

based on the electroproduction data at higher Q2 deviates
from the CERN data only within ∼1σ.
We close this section by stressing that the unitary

sampling procedure can be easily generalized to any set
of hadronic form factors, which must satisfy unitary
bounds.

VI. UNITARY SAMPLINGAPPLIED TO THE CERN
AND JLAB-π EXPERIMENTAL DATA

We now add the direct CERN data [3] to the electro-
production JLAB-π ones [11] obtaining a total of 52 data
points distributed in the z-range [0.043, 0.70]. We include
also the data point F0 ¼ 1 atQ2

0 ¼ 0 (i.e., z0 ¼ 0) related to
the charge conservation, obtaining a total of N þ 1 ¼ 53
data points.
The CERN data are uncorrelated with the electropro-

duction JLAB-π ones and, therefore, the covariance matrix
is block diagonal, namely

C ¼
 
CCERN 0

0 CJLAB-π

!
; ð55Þ

where, as in the previous section, the JLAB-π covariance
matrix CJLAB-π is diagonal, i.e., of the form given in
Eq. (39), while for the CERN data it is necessary to include
a normalization error δr ¼ 0.45% [3] beyond the tabulated
uncertainties σi. We do that by using the following
covariance matrix for the CERN data3

CCERN
ij ¼ σ2i δij þ FiFjδr2; ð56Þ

where Fi � σi are the tabulated values of the pion form
factor in Ref. [3].
We adopt a sample of 104 events generated according

to the PDF (40) with the covariance matrix given by
Eq. (55). As in Sec. IV we consider also a Gaussian
distribution for the nonperturbative transverse susceptibil-
ity 4M2

πχTðQ̄2
0 ¼ 0Þ ¼ 0.00574ð10Þ. This distribution is

taken to be uncorrelated with those of the form factor
points. Then, we calculate the values of χDMðQ̄2

0 ¼ 0Þ
[Eq. (19)], which range from a minimum equal to ≈1098 up
to a maximum equal to ≈10105, i.e., extremely far from the
2-point bound 4M2

πχTðQ̄2
0 ¼ 0Þ ¼ 5.74ð10Þ × 10−3. This is

due to the fact that the kinematical coefficients di [see
Eq. (20)] have alternating signs with absolute values

FIG. 7. The DM band (at 1σ level) for the em pion form factor corresponding to the set of values F̄ and the covariance matrix C̄
obtained starting from the (symmetrized) electroproduction data analyzed by the JLAB-π Collaboration in Ref. [11], shown as the blue
squares. The value Q̄2

0 ¼ 0 is assumed. The experimental data obtained at CERN SPS [3] (black circles) are shown just for comparison,
but they are not used to construct the DM band (see text).

3Since the DM approach does not make use of any
minimization procedure (at variance with the case of explicit
z-expansions), we should not care about any D’Agostini bias
described in Ref. [59].
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ranging from ∼1014 to ∼5 × 1055. The huge cancellation
occurring among the individual contributions to the rhs
of Eq. (19) can be handled using multiple arithmetical
precision, achieved by adopting the software package
MPFUN from Ref. [60] and using an adequate number of
significant digits for the arithmetic operations.
The use of the PDF (46) with the modified mean values

F̃ and covariance matrix C̃, given respectively by Eqs. (43)
and (45), allows to generate events fulfilling the unitary
filter (18). As the parameter s varies from ≃20 to ≃45, the
percentage p of unitary events ranges from ≃1% to ≃96%.
Following the iterative procedure described in the previous
section we obtain a final set of values F̄ for the form factor
and C̄ for the covariance matrix. We stress that both F̄ and
C̄ are almost totally independent on the starting value of s,
while the quantities Δ ≃ 1.0, η ≃ 1.01 and ϵ ≃ 0.4 [see
Eqs. (47)–(49)] still remain at acceptable values.
The unitary form-factor values F̄ turn out to be almost

normally distributed. The correlation matrix correspond-
ing to the final covariance matrix C̄ is shown in Fig. 8
and compared with the initial correlation matrix of the
input data C given by Eq. (55). The corresponding unitary
band for the pion form factor, obtained using Eqs. (53)
and (54), is shown in Fig. 9 as the red band. It can be
seen that the inclusion of the CERN data is very effective
in producing a more precise band for the pion form factor
at all Q2.
Thanks to the DM method we can evaluate the slope

of the pion form factor at Q2 ¼ 0 in a way completely
independent of any (unitary) parametrization or explicit
z-expansion. Using both the CERN and JLAB-π data
(i.e., the red band of Fig. 9) we obtain for the pion charge
radius hrπi the result

hrπiDM ¼ 0.708� 0.029 fm; ð57Þ

which is definitely larger than the PDG value (4) by ≈1.8σ.
By neglecting the normalization error of the CERN data
[i.e., by putting δr ¼ 0 in Eq. (56)] we get a more precise
result, hrπiDM ¼ 0.695� 0.014 fm, which differs from the
PDG value (4) by ≈2.5σ.
The DM result (57) differs also from the estimate hrπi ¼

0.663� 0.006 fm made in Ref. [3] using the CERN data,
but adopting a simple monopole ansatz for the fitting
function. We have checked that using the covariance
matrix (56) a monopole fitting function leads to hrπi ¼
0.656� 0.008 fm with a value of χ2=ðd:o:f:Þ ≃ 1.0.
However, when a dipole term is added to the monopole
one, we get a quite different value of the pion charge radius,
namely hrπi ¼ 0.699� 0.024 fm [again with a value of
χ2=ðd:o:f:Þ ≃ 1.0], which agrees much better with the DM
result (57) for both the mean value and the uncertainty.
These findings indicate clearly that the estimate of hrπi
made in Ref. [3] as well as those from Refs. [2,4] are
plagued by a significative model dependence, so that they
cannot be considered parametrization independent.
As already pointed out, the DM result (57) differ by

≈1.8σ from the determination of hrπi obtained using the
abundant and precise timelike eþe− data in Refs. [14,18],
while exhibiting a much larger uncertainty. In order to
clarify any possible significance of the above difference a
significant improvement of the precision of the experimen-
tal data in the spacelike region is called for.
In Fig. 10 our DM band is compared with the results of

Ref. [14], based on a unitary analysis of both timelike eþe−
and spacelike CERN data. A good overall agreement is

FIG. 8. Heat maps representing the initial correlation matrix of the CERN + JLAB-π data [see Eq. (55)] and the final correlation
matrix C̄, obtained using the unitary sampling (46) after 10 iterative steps. As in Fig. 4 the last label corresponds to the nonperturbative
result for the transverse susceptibility 4M2

πχTð0Þ.
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observed up to Q2 ≃ 1ðGeV=cÞ2 (see lower panel), while a
zoom in the low-Q2 region (upper panel) shows that:

(i) the use of the very precise and dense timelike
eþe− data leads to the accurate result for the pion
charge radius obtained in Ref. [14], namely
hrπi ¼ 0.655� 0.003 fm; and

(ii) the DM band is in better agreement with the
spacelike CERN data with respect to the results
of the dispersive analysis of Ref. [14]. In this respect,
since the pion charge radius is correlated with the 2π
contribution to the muon HVP term [61], it would
be interesting to analyze the possible impact of
the new eþe− → πþπ− experimental data from the
CMD-3 Collaboration [36] on such correlated
quantities [62].

We close this section by observing that the addition of
the spacelike data of the F2 [2] and the (less precise)
SELEX [4] experiments at FNAL do not change signifi-
cantly the results shown in Fig. 9 and in Eq. (57).
In particular, using as input the F2 [2], CERN [3], and
JLAB-π [11] data sets (for a total of 66 data points
including the absolute normalization at Q2 ¼ 0) we get

hrπiDM ¼ 0.703� 0.027 fm; ð58Þ

which differs from the PDG value (4) by ≈1.6σ. Had
we chosen the vector susceptibility 4M2

πχTðQ̄2
0 ¼ 0Þ to be

equal to the value 0.00550(4), which corresponds to the
evaluation of Eq. (34) using the dispersive pion form
factor jFV

π ðωÞj from Ref. [14] up to ω ¼ 1 GeV, the value
of the pion charge radius hrπiDM would result to be
0.702� 0.026 fm, i.e., very close to Eq. (58).

VII. UNITARY BGL FIT

In this section we perform a BGL analysis of the
spacelike data after constructing a truncated z-expansion
in which unitarity is built-in.
As known, in the BGL approach [26] the product of the

pion form factor FV
π ðQ2Þ times the kinematical function ϕ

is analytic inside the unit circle jzj ¼ 1 and, therefore, it can
be expanded as

FV
π ðQ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

πχTðQ̄2
0Þ

p
ϕðz; Q̄2

0Þ
X∞
k¼0

akðQ̄2
0Þzk; ð59Þ

where ϕðz; Q̄2
0Þ is given by Eq. (27) and the coefficients

akðQ̄2
0Þ [which are real and depend implicitly also on the

choice of the auxiliary quantity t0 appearing in the
definition of the conformal variable (7)] are constrained
by the unitary bound

X∞
k¼0

a2kðQ̄2
0Þ ≤ 1: ð60Þ

In order to lighten the notation, we will indicate hereafter
the coefficients akðQ̄2

0Þ simply as ak.
The z-expansion (59), truncated at some order NBGL, can

be used as a fitting ansatz to describe the spacelike data for
the pion form factor, namely

FBGL
π ðQ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

πχTðQ̄2
0Þ

p
ϕðz; Q̄2

0Þ
XNBGL

k¼0

akzk ð61Þ

FIG. 9. The red DM band (at 1σ level) corresponding to the input values F̄ and C̄ obtained after 10 iterative steps of the unitary
sampling procedure applied to both the CERN SPS [3] (black circles) and the (symmetrized) electroproduction JLAB-π [11] (blue
squares) experimental data. The blue DM band is the same as in Fig. 7 and corresponds to the use of only the electroproduction
JLAB-π data.
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with the unitary bound given by

XNBGL

k¼0

a2k ≤ 1: ð62Þ

The truncation introduces unavoidably a model depend-
ence. In Ref. [26] it was proposed to look at the truncation
error δFBGL

π ðQ2Þ, defined as

δFBGL
π ðQ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

πχTðQ̄2
0Þ

p
ϕðz; Q̄2

0Þ
X∞

k¼NBGLþ1

akzk; ð63Þ

which has un upper bound given by

jδFBGL
π ðQ2Þj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

πχTðQ̄2
0Þ

p
jϕðz; Q̄2

0Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

XNBGL

k¼0

a2k

vuut jzjNBGLþ1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p :

ð64Þ

The weak point of the bound (64) on the truncation
error (63) is that it may represent an upper limit on the
difference between the true function (59) and the truncated
fit (61) if and only if the coefficients ak with k ¼
0; 1;…NBGL of the true function coincides exactly with
those of the truncated fit. However, generally speaking, this
is not guaranteed and, therefore, the truncation bound (64)
is of limited use, particularly when the bound (62) is
almost saturated.

FIG. 10. The red DM band of Fig. 9 compared with the results of Ref. [14] (labeled CHS 2019), based on a unitary analysis of both
timelike eþe− and spacelike CERN data [3] (black circles). In the lower panel also the (symmetrized) electroproduction JLAB-π [11]
(blue squares) experimental data are shown.
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We now want to apply the truncated BGL fit (61) to the
description of the spacelike pion data with the unitary
bound (62) built-in. This can be achieved through a simple
procedure based on a hyperspherical transformation (see,
e.g., Ref. [63]) described in Appendix B. We generate a
sample of 103 events F according to the PDF (40) using
the direct CERN [3] and electroproduction JLAB-π [11]
data with the covariance matrix C given by Eq. (55). At
the same time, as in Secs. IV and VI, we consider also a
Gaussian distribution for the nonperturbative transverse
susceptibility 4M2

πχTðQ̄2
0 ¼ 0Þ ¼ 0.00574ð10Þ. This dis-

tribution is taken to be uncorrelated with those of the form
factor points.
For each event we fit the input data using the BGL

ansatz (61) corresponding to a given truncation order NBGL
with the unitarity bound (62) built-in through the hyper-
spherical procedure of Appendix B. Then, we minimize the
reduced χ2r-variable given by

χ2r ≡ 1

N − NBGL

XN
i;j¼0

ðFBGL
i − FiÞC−1

ij ðFBGL
j − FjÞ; ð65Þ

obtaining the best unitary BGL fit for a given truncation
order NBGL. We have considered values of NBGL between 2
and 10 and the corresponding results for the BGL param-
eters ak are shown in Table IV for NBGL ¼ 2, 4, 6, 8, 10.
Note that the value of the parameter a0 is constrained by
the absolute normalization FV

π ðQ2 ¼ 0Þ ¼ 1 and by the
value of the transverse susceptibility 4M2

πχTðQ̄2
0 ¼ 0Þ ¼

0.00574ð10Þ, leading to a0 ¼ 0.190� 0.002 for any value
of NBGL.

The following comments are in order:
(i) As NBGL increases, the mean values and uncertain-

ties of the coefficients ak with k≲ 6 tend to remain
stable.

(ii) The coefficients ak for high-order monomials
(k≳ 6) have large uncertainties (up to ≈100%).

(iii) For NBGL ≥ 4 the unitary bound (62) is almost
saturated, while unitarity is strictly fulfilled [see
in Table IV the maximum and average values of the
parameter r20, defined in Eq. (B5)].

(iv) The values of the reduced χ2r-variable (65) are
always consistent with unity.

(v) The distribution of the coefficients ak is approx-
imately normal for low-order monomials (k≲ 6),
while significative deviations from a Gaussian dis-
tribution occur in the case of higher-order mono-
mials (see Fig. 11) due mainly to the saturation
of the unitary bound (62). Nevertheless, the form
factors values are almost normally distributed, as
shown in Fig. 12.

(vi) For a given order NBGL of the truncation the param-
eters ak are generally anticorrelated (see Fig. 13).

The bands for the pion form factors corresponding to
the unitary BGL fits of Table IV are shown in Fig. 14 for
various values of the truncation order NBGL. It can be seen
that in the kinematical region covered by the CERN and
JLAB-π data (i.e. for Q2 ≲ 2.5 GeV2) the results of the
unitary BGL fit are stable against the order NBGL of the
truncation, while at larger values of Q2 the bands are
largely unstable and no extrapolation is possible at least
from NBGL ≤ 10. This finding clearly indicates the inad-
equacy of the estimate of the truncation error based on

TABLE IV. Values of the parameters ak of the unitary BGL fit (61) for various values of the truncation orderNBGL.
The minimum ðr20Þmin, maximum ðr20Þmax, and the average hr20i values of the parameter r20 representing the unitary
bound [see Eq. (B5) for its definition] are shown together with the average value of the reduced χ2r -variable (65)
corresponding to a sample of 103 events generated using the direct CERN [3] and electroproduction JLAB-π [11]
data with the covariance matrix given by Eq. (55).

NBGL ¼ 2 NBGL ¼ 4 NBGL ¼ 6 NBGL ¼ 8 NBGL ¼ 10

a0 þ0.190� 0.002 þ0.190� 0.002 þ0.190� 0.002 þ0.190� 0.002 þ0.190� 0.002
a1 þ0.203� 0.007 þ0.159� 0.014 þ0.153� 0.015 þ0.154� 0.016 þ0.155� 0.016
a2 −0.58� 0.01 −0.25� 0.07 −0.24� 0.09 −0.26� 0.101 −0.27� 0.11
a3 −0.75� 0.08 −0.53� 0.22 −0.42� 0.27 −0.40� 0.28
a4 þ0.52� 0.07 −0.24� 0.20 −0.27� 0.21 −0.25� 0.21
a5 þ0.25� 0.12 þ0.05� 0.20 −0.00� 0.21
a6 þ0.57� 0.17 þ0.27� 0.13 þ0.24� 0.17
a7 þ0.35� 0.16 þ0.30� 0.14
a8 þ0.35� 0.21 þ0.25� 0.16
a9 þ0.21� 0.18
a10 þ0.18� 0.19

ðr20Þmin 0.36 0.25 0.34 0.32 0.29
ðr20Þmax 0.47 1.00 1.00 1.00 1.00
hr20i 0.41 0.98 0.98 0.96 0.96

hχ2ri 1.13� 0.35 0.98� 0.35 0.98� 0.35 1.04� 0.36 1.13� 0.38
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Eq. (64), since the saturation of the unitary bound (62)
would imply a negligible truncation error that is not
observed at all at large Q2.
Moreover, a closer look to Figs. 9 and 14 reveals that the

BGL and DM bands differ by 1 ÷ 2σ in the kinematical
region of the electroproduction JLAB-π data (i.e., for
0.35 ≤ Q2ðGeV2Þ ≤ 2.45). This observation will be dis-
cussed in a while.
The pion charge radius hrπi corresponding to the BGL

fit (61) is explicitly given by

hrπiBGL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

8M2
π

�
3

2
−
a1
a0

�s
: ð66Þ

The results for hrπiBGL obtained for the unitary BGL fits
of Table IV are shown in Fig. 15 and exhibit a good
convergence as a function of the truncation order NBGL. We
get hrπiBGL ¼ 0.717� 0.044 fm, which is consistent with
the DM result (57) with an uncertainty larger by a factor
≃1.5. Including also the spacelike data of the F2 experi-
ment at FNAL [2] we obtain

hrπiBGL ¼ 0.711� 0.039 fm; ð67Þ

which differs from the PDG value (4) by ≃1.3σ. We
mention that, if we adopt for the vector susceptibility
4M2

πχTðQ̄2
0 ¼ 0Þ the value 0.00550(4), which corresponds

to the evaluation of Eq. (34) using the dispersive pion form

FIG. 11. Distributions of the parameter a2, a6, a8, and a10 of the unitary BGL fit (61) with NBGL ¼ 10 shown in Table IV. The black
solid lines represent a Gaussian fit of the various histograms.
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factor jFV
π ðωÞj from Ref. [14] up to ω ¼ 1 GeV, the pion

charge radius hrπiBGL remains basically unchanged with
respect to Eq. (67).
The instability of the unitary BGL fits of the pion form

factor observed in Fig. 14 at Q2 ≳ 2.5 GeV2 and the larger
uncertainty of the BGL result (67) with respect to the
corresponding DM result (57) are connected to nonunitary
effects present in the fitted CERN and JLAB-π experimental
data. According to the DMmethod these data, corresponding
to the input sets F and C for the pion form factor values

and their covariance matrix, do not fulfill the unitary
bound (11). The unitary sampling procedure, described in
Sec. V, has allowed us to get in Sec. VI a new set of input
data F̄ and C̄ fulfilling the unitary bound (11).
Therefore, we apply the unitary BGL fit (61) with

NBGL ¼ 10 to the unitary set of input data F̄ and C̄ defined
by the DM method, i.e., we replace in Eq. (65) the input
data set F and C with the DM set F̄ and C̄. We stress that
only in this way unitarity is fulfilled both by the fitting
function (by construction) and by the fitted data (by the

FIG. 12. Distributions of the form factors values FBGL of the unitary BGL fit (61) with NBGL ¼ 10. The green, red, cyan, orange, and
brown histograms correspond respectively to Q2 ¼ 0.021, 0.101, 0.203, 0.75, 2.45 GeV2. The black solid lines represent a Gaussian fit
of the various histograms.

FIG. 13. Heat maps representing the correlation matrix for the parameter ak of the unitary BGL fit (61) with NBGL ¼ 6 (left panel) and
NBGL ¼ 10 (right panel). The last label (7 in the left panel and 11 in the right one) corresponds to the transverse susceptibility
4M2

πχTðQ̄2
0 ¼ 0Þ. Note that this quantity is anticorrelated with a0 because of the absolute normalization condition FV

π ðQ2 ¼ 0Þ ¼ 1.

SILVANO SIMULA and LUDOVICO VITTORIO PHYS. REV. D 108, 094013 (2023)

094013-22



unitary sampling procedure). The corresponding band for
the pion form factor is shown in Fig. 16 as the green band.
The comparison with the bands from Figs. 9 and 14
indicates very clearly that nonunitary effects are signifi-
cantly present when the set F and C of input data are
adopted regardless the fact that the BGL fit satisfies

unitarity by construction. Such nonunitary effects produces
not only a large instability of the BGL fits in the
kinematical region not covered by the experimental data,
but they can also affect significantly the fitting results in
the electroproduction region. Finally, the pion charge
radius corresponding to the green band of Fig. 16 is

FIG. 14. The unitary bands (at 1σ level) obtained using the unitary BGL fit (61) for various values of the truncation order NBGL,
applied to the CERN SPS [3] (black circles) and the (symmetrized) electroproduction JLAB-π [11] (blue squares) experimental data.

FIG. 15. The pion charge radius hrπi corresponding to the unitary BGL fit (61) for various values of the truncation orderNBGL, applied
to the CERN [3] and the (symmetrized) electroproduction JLAB-π [11] experimental data. The red band correspond to the DM result
(57), while the black one to the PDG value (4) given in Ref. [17].
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hrπi ¼ 0.707� 0.029 fm; both the central value and the
uncertainty are now in nice agreement with the DM
result (57).

VIII. UNITARY BCL APPROACH

An alternative z-expansion is the so-called BCL one,
originally proposed in Ref. [27] to address the momentum
dependence of the hadronic form factors describing the
semileptonic B → πlνl decays.
In the case of the em pion form factor the BCL expansion

is a direct z-expansion and its truncated form read as

FBCL
π ðQ2Þ ¼

XNBCL

k¼0

bkzk: ð68Þ

An interesting feature of the BCL approach is the inclusion
of the analytic constraint at the annihilation threshold z ¼ −1.
Indeed, angular momentum conservation requires that in the
timelike region Im½FV

π ðωÞ�∝ ðω2−4M2
πÞ3=2. In turn this

implies that the real part of pion form factor should have
a vanishing first derivative at the annihilation threshold,
namely dFV

π ðzÞ=dz ¼ 0 at z ¼ −1. Such a constraint can
be easily implemented in the truncated BCL approach (at
variance with the BGL one) by adding a further monomial
term bNBCLþ1zNBCLþ1 to Eq. (68), namely

FBCL
π ðQ2Þ ¼

XNBCL

k¼0

bk

�
zk þ ð−Þk−NBCL

k
NBCL þ 1

zNBCLþ1

�
;

ð69Þ

where bNBCLþ1 ¼
PNBCL

k¼0 kbkð−Þk−NBCL=ðNBCL þ 1Þ.
The unitary constraint for the coefficients bk is more

involved with respect to the case of the BGL fit. It makes
the coefficients bk dependent on Q̄2

0 and reads as

XNBCLþ1

j;k¼0

bjðQ̄2
0ÞBjkðQ̄2

0ÞbkðQ̄2
0Þ ≤ 1; ð70Þ

where the matrix BjkðQ̄2
0Þ is calculable in terms of the

kinematical function ϕðz; Q̄2
0Þ and of the transverse sus-

ceptibility 4M2
πχTðQ̄2

0Þ (see Ref. [27]). In Appendix C we
extend the procedure used in the case of BGL fits to include
the unitary condition (70) in a χ2-minimization fitting
approach based on the BCL fit (69). We calculate also
the matrix BjkðQ̄2

0Þ for Q̄2
0 ¼ 0 and NBCL up to 10.

We have applied the truncated BCL fit (69) to the
description of the spacelike pion data with the unitary
bound (70) built-in. As in the case of the unitary BGL fits
performed in the previous section, we have used a sample
of 103 events F generated according to the PDF (40) using
the direct CERN [3] and electroproduction JLAB-π [11]
data with the covariance matrix C given by Eq. (55).
A Gaussian distribution for the nonperturbative transverse
susceptibility 4M2

πχTðQ̄2
0 ¼ 0Þ ¼ 0.00574ð10Þ, uncorre-

lated with those of the form factor points, has been
assumed. We have minimized the reduced χ2r-variable
given by

χ2r ≡ 1

N − NBCL

XN
i;j¼0

ðFBCL
i − FiÞC−1

ij ðFBCL
j − FjÞ; ð71Þ

FIG. 16. The unitary band (at 1σ level) obtained using the unitary BGL fit (61) for various values of the truncation order NBGL, applied
to the CERN SPS [3] (black circles) and the (symmetrized) electroproduction JLAB-π [11] (blue squares) experimental data.
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obtaining the best unitary BCL fit for a given truncation
order NBCL. Note that the value of the parameter b0 is
constrained by the absolute normalization FV

π ðQ2 ¼ 0Þ ¼ 1
to be equal to b0 ¼ 1 for any value of NBCL.
We have considered values of the truncation order NBCL

between 2 and 10, obtaining results similar to those of the
BGL fits shown in Fig. 14 with a slightly better precision.
In the kinematical region covered by the CERN and
JLAB-π data (i.e., for Q2 ≲ 2.5 GeV2) the results of the
unitary BCL fit are stable against the order of the truncation
NBCL, while at larger values of Q2 the bands are unstable
and no extrapolation is possible at least from NBCL ≤ 10.
We find that for NBCL ≥ 4 the unitary bound (70) is almost
saturated. As in the case of the BGL fits performed in the
previous section, this finding implies the inadequacy of
truncation errors based only on higher-order terms in the
BCL fit (69), since the saturation of the unitary bound
would imply a negligible truncation error that is not
observed at all at large Q2.
For the pion charge radius the results corresponding

to the BCL fits exhibit a good convergence as a function of
the truncation order NBCL, obtaining hrπiBCL ¼ 0.713�
0.031 fm, which agrees very well with the DM result (57).
Including also the spacelike data of the F2 experiment at
FNAL [2] we get

hrπiBCL ¼ 0.709� 0.028 fm; ð72Þ

which differs from the PDG value (4) by ≃1.8σ. As already
observed in Secs. VI and VII in the cases of the DM and
BGL approaches, respectively, if we adopt for the vector
susceptibility 4M2

πχTðQ̄2
0 ¼ 0Þ the value 0.00550(4), which

corresponds to the evaluation of Eq. (34) using the
dispersive pion form factor jFV

π ðωÞj from Ref. [14] up to
ω ¼ 1 GeV, the pion charge radius hrπiBCL remains
basically unchanged with respect to Eq. (72).

IX. IMPACT OF Q̄2
0 > 0

In this section we address the issue of the impact of
the value of the auxiliary quantity Q̄2

0, at which the
transverse susceptibility 4M2

πχT is evaluated, on the unitary
filter (18) and on the corresponding DM band for the pion
form factor.
The Q̄2

0-dependence of the lhs of the inequality (18) is
shown in Fig. 1 for Q̄2

0 ≤ 1 GeV2. The transverse suscep-
tibility 4M2

πχTðQ̄2
0Þ decreases as Q̄2

0 increases and such a
drop is mainly governed by the mass of the dominant
ρð775Þ-meson resonance in FV

π ðωÞ.
Instead, the Q̄2

0-dependence of the rhs of the inequality
(18) is due to the kinematical function ϕðz; Q̄2

0Þ, defined in
Eq. (27) where z̄0 is given by Eq. (22). By definition the
function ϕðz; Q̄2

0Þ does not know anything about meson
resonances. Let us factorize out the term ð1 − z̄0Þ ¼
4Mπ=Q̄0 þOð1=Q̄2

0Þ by introducing the quantities

4M2
πχ̄TðQ̄2

0Þ≡ 4M2
πχTðQ̄2

0Þ
ð1 − z̄0Þ6

; ð73Þ

ϕ̄ðz;Q̄2
0Þ≡ϕðz;Q̄2

0Þ
ð1− z̄0Þ3

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1536π

p ð1þzÞ2
ffiffiffiffiffiffiffiffiffi
1−z

p

ð1− z̄0zÞ3
: ð74Þ

In this way, the DM band for the pion form factors can be
obtained from Eqs. (23)–(25) simply by replacing χT and ϕ
with χ̄T and ϕ̄, namely

β̄ðzÞ −
ffiffiffiffiffiffiffiffi
γ̄ðzÞ

p
≤ FV

π ðzÞ ≤ β̄ðzÞ þ
ffiffiffiffiffiffiffiffi
γ̄ðzÞ

p
; ð75Þ

β̄ðzÞ ¼ 1

ϕ̄ðz; Q̄2
0ÞdðzÞ

XN
i¼0

ϕ̄iFidi
1 − z2i
z − zi

; ð76Þ

γ̄ðzÞ ¼ 1

ð1 − z2Þϕ̄2ðz; Q̄2
0Þd2ðzÞ

½4M2
πχ̄TðQ̄2

0Þ − χ̄DMðQ̄2
0Þ�;

ð77Þ

and the unitary filter (18) becomes

4M2
πχ̄TðQ̄2

0Þ
≥ χ̄DMðQ̄2

0Þ

≡XN
i;j¼0

FiFj

ϕ̄iðQ̄2
0Þdið1 − z2i Þϕ̄jðQ̄2

0Þdjð1 − z2jÞ
1 − zizj

: ð78Þ

The Q̄2
0-dependencies of 4M2

πχ̄TðQ̄2
0Þ and ϕ̄ðz; Q̄2

0Þ are
shown in Figs. 17 and 18, respectively. The following
comments are in order:

(i) The susceptibility 4M2
πχ̄TðQ̄2

0Þ increases as Q̄2
0 in-

creases and goes for Q̄2
0 → ∞ to the limiting value

4M2
πχ̄Tð∞Þ ¼ 1

1536π2

Z
∞

2Mπ

dω
2Mπ

�
ω

2Mπ

�
3

×

�
1 −

4M2
π

ω2

�
3=2

jFV
π ðωÞj2; ð79Þ

which is very sensitive to the high-energy tail
of jFV

π ðωÞj.
(ii) The kinematical function ϕ̄ðz; Q̄2

0Þ is approximately
flat at Q̄2

0 ¼ 0, while it increases sizably at high
values of z as Q̄2

0 increases. Thus, as Q̄2
0 increases,

the quantity χ̄DMðQ̄2
0Þ increases, so that the rhs of the

DM filter (78) becomes more sensitive to the input
data in the large Q2-region.

Thus, from the above findings we can conclude that at
Q̄2

0 ¼ 0 the unitary filter (78) is dominated by the CERN
data, which are more precise and dense with respect to the
JLAB-π data, while as Q̄2

0 increases the impact of the
electroproduction data increases.
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As Q̄2
0 increases, both sides of the DM filter (78)

increase. Whether this filter may lead to more precise
form factor bands for Q̄2

0 > 0, can be established only by a
direct numerical investigation. This has been done for three
different values of Q̄2

0 not exceeding the limiting value
Q̄2

0 ¼ 1 GeV2, as discussed in Sec. III. The corresponding
results are shown in Fig. 19.
At low values of Q2 (≲0.25 GeV2) the sensitivity to

the choice of Q̄2
0 is quite limited and the more precise

determination of the pion charge radius hrπi is the one
obtained at Q̄2

0 ¼ 0, presented in Sec. VI. In the Q2-region
of few GeV2 the DM band becomes more precise as Q̄2

0

increases. In particular, the DM band at Q̄2
0 ¼ 0 may be

consistent with negative values of the pion form factor for
Q2 ≈ 4–5 GeV2. This tendency is less pronounced as Q̄2

0

increases and it is expected to disappear for Q̄2
0 > 1 GeV2.

Note that it is reasonable to exclude zeros in the pion
form factor, particularly in the spacelike region, where in

FIG. 18. The kinematical function ϕ̄ðz; Q̄2
0Þ, given by Eq. (74), versus the conformal variable z at various values of Q̄2

0 specified in
the inset. The vertical dotted line separates the Q2-region of the CERN data ð0.04≲ z ≲ 0.35Þ from the one of the electroproduction
JLAB-π data ð0.4 ≲ z≲ 0.7Þ.

FIG. 17. Blue dots: transverse vector susceptibility 4M2
πχ̄TðQ̄2

0Þ evaluated adopting the 2π correlator V2πðτÞ obtained in Ref. [46]
using LQCD simulations (see Sec. III). Black line: the susceptibility 4M2

πχ̄TðQ̄2
0Þ obtained using for jFV

π ðωÞj the results of the dispersive
analysis of the eþe− data available from Ref. [14] up to ω ¼ 1 GeV and putting jFV

π ðωÞj ¼ 0 for ω > 1 GeV. The dashed line
corresponds to add to the data-driven pion form factor a power-law tail for ω > 1 GeV of the form jFV

π ðωÞj ¼ jFV
π ð1 GeVÞj ·

ð1 GeV=ωÞ4 (see Sec. III). The range of Q̄2
0 is limited to Q̄2

0 ≲ 1 GeV2 for the reasons explained in Sec. III.
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quantum mechanics the pion form factor is the Fourier
transform of a charge distribution proportional to the square
of the pion wave function.4

The main conclusion of this section is that the choice of
the value of Q̄2

0 can have an impact on the DM predictions
in the region of Q2≈ few GeV2 (and beyond), where the
optimized choice is expected to be Q̄2

0 ≈ few GeV2. On the
contrary, for the pion charge radius hrπi, which represents

an important quantity investigated in this work, the opti-
mized choice is given by Q̄2

0 ¼ 0, as properly considered
in Sec. VI.
Thus, it would be valuable to obtain in the next future a

reliable determination of the susceptibility 4M2
πχ̄TðQ̄2

0Þ for
Q̄2

0 ≳ 1 GeV2 either coming from LQCD simulations or
driven by analyses of timelike eþe− data.
We close this section by recalling that the precision of the

unitary DM band for FV
π ðQ2Þ depends also on the quantity

and the Q2-range of the input data. In this respect, both the
addition of experimental results for Q2 up to ≈8.5 GeV2,
planned at JLAB [65,66], or even up to ≈30 GeV2,

FIG. 19. The DM bands (at 1σ level) obtained at three different values of Q̄2
0 ¼ 0, 0.5, 1 GeV2 using the unitary sampling procedure

(with ten iterative steps) applied to both the CERN SPS [3] (black circles) and the (symmetrized) electroproduction JLAB-π [11] (blue
squares) experimental data.

4For an interesting discussion about the absence of zeros of
FV
π ðωÞ and new dispersion relations applicable to the logarithm of

jFV
π ðωÞj see Ref. [64].
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expected at future facilities like electron-ion colliders
[67,68], and the inclusion of precise LQCD determinations
of FV

π ðQ2Þ at low and high Q2 would be very valuable.

X. THE ONSET OF PERTURBATIVE QCD

The behavior of the pion form factor at large spacelike
momentum transfer is predicted by the pQCD hard-
scattering mechanism [32–35] to be

FV
π ðQ2Þ ⟶

Q2→∞
8πf2π

αsðQ2Þ
Q2

½1þGðQ2Þ�; ð80Þ

where fπ ≃ 130 MeV is the pion decay constant,

αsðQ2Þ ¼ 4π

ð11 − 2Nf=3Þ ln ðQ2=Λ2
QCDÞ

ð81Þ

is the running strong coupling at leading order (with Nf

being the number of active flavors and ΛQCD the QCD
scale) and GðQ2Þ describes the corrections due to the
preasymptotic structure of the scale-dependent pion dis-
tribution amplitude, which is function of the light-front
fraction of the pion’s total momentum carried by a
valence quark.
The question at which energy scale the asymptotic

behavior (80) sets in has long been debated in literature
and the answer is not trivial because of the presence of
nonperturbative effects at intermediate values of Q2 (see,
e.g., the recent review in Ref. [69]).
As already noted in Ref. [20], at finite values of Q̄2

0 the
DM unitary width γðzÞ in Eq. (25) [or equivalently γ̄ðzÞ
in Eq. (77)] is proportional to ð1 − zÞ−2 for z → 1 and,
therefore, it diverges proportionally toQ2. This implies that
the DM method looses its predicting power at the endpoint
z ¼ 1 (i.e., Q2 → ∞).5 However, the situation changes
when Q̄2

0 becomes sufficiently large. Indeed, from Eq. (74)
for Q̄2

0 ≫ Q2 one has that the function ϕ̄ðz; Q̄2
0Þ ∝

ð1 − zÞ−5=2 ∝ Q5=2, so that
ffiffiffiffiffiffiffiffi
γ̄ðzÞp

∝ ð1 − zÞ2 ∝ 1=Q2.
While the central value β̄ðzÞ drops down as 1=Q5=2, i.e.,
faster than the pQCD prediction (80), the unitary widthffiffiffiffiffiffiffiffi
γ̄ðzÞp

does not. This means that at a certain value of
Q2 ¼ Q2

pQCD the pQCD prediction (80) may start to be

within the unitary bounds β̄ðzÞ � ffiffiffiffiffiffiffiffi
γ̄ðzÞp

at 1σ level (for
Q̄2

0 ≫ Q2
pQCD). Such a value Q

2
pQCD provides an estimate of

the energy scale at which the asymptotic behavior (80) sets
in and it is based only on unitarity and spacelike exper-
imental data.
Note that in principle one should calculate the DM

unitary bands for the pion form factor for increasing, but

finite values of Q̄2
0 and then extrapolate such DM bands to

the limit Q̄2
0 → ∞. In this way the analytic property of the

kinematical function ϕ̄ðz; Q̄2
0Þ is kept at each step of the

calculation. In practice we have checked that at large Q2

the DM band extrapolated to Q̄2
0 → ∞ can be obtained

directly by considering ab initio the kinematical function
ϕ̄ðz; Q̄2

0Þ in the limit Q̄2
0 → ∞.

Since a precise estimate of the transverse susceptibility
4M2

πχ̄TðQ̄2
0Þ is not available for Q̄2

0 > 1 GeV2, we limit
ourselves to investigate the sensitivity of the DM unitary
band to a range of possible values for the quantity
4M2

πχ̄Tð∞Þ given by Eq. (79). The first estimate is
calculated using for jFV

π ðωÞj the results of Ref. [14] and
cutting the integral in the rhs of Eq. (79) at ω ¼ 1 GeV.
Due to the positivity of the integrand function in Eq. (79),
such a value represents a lower bound to the transverse
susceptibility, namely

4M2
πχ̄Tð∞Þ ≥ 0.034� 0.002: ð82Þ

By considering for ω > 1 GeV a power-law tail of the form
jFV

π ðωÞj ¼ jFV
π ð1 GeVÞj · ð1 GeV=ωÞ4 an additional con-

tribution equal to 0.009� 0.003 is obtained, leading to

4M2
πχ̄Tð∞Þ ¼ 0.043� 0.004; ð83Þ

which corresponds to an increase of about 30%. Since the
susceptibility 4M2

πχ̄Tð∞Þ is very sensitive to the high-
energy tail of the em pion form factor, we consider for our
sensitivity study a third higher value by applying to the
result (83) a conservative factor equal to 2, obtaining6

4M2
πχ̄Tð∞Þ ¼ 0.086� 0.008: ð84Þ

The DM bands for the quantity Q2FV
π ðQ2Þ corresponding

to the three choices (82)–(84) are shown in Fig. 20.
The lower unitary bound (at 1σ level) turns out to be
almost insensitive to the chosen value of 4M2

πχ̄Tð∞Þ
and remains significantly much larger than the leading
pQCD prediction (80) [with GðQ2Þ ¼ 0] at least up to
Q2 ∼ 100 GeV2. Therefore, the preasymptotic structure of
the pion distribution amplitude is expected to produce
significant effects on the pion form factor up to quite
large values of Q2. This is in qualitative agreement with
the findings of several estimates available in the
literature based both on models [71,72] and on LQCD
simulations [73–75].

5A similar situation occurs at the endpoint z ¼ −1 correspond-
ing to the annihilation threshold q2 ¼ −Q2 ¼ 4M2

π .

6By assuming conservatively for ω > 1 GeV a tail of jFV
π ðωÞj

proportional to the leading behavior expected in pQCD for
timelike momenta [35], i.e., ω−2 log−1ðω2=Λ2

QCDÞ with ΛQCD ≃
300 MeV [70], one gets an additional contribution to Eq. (82)
equal to ≃0.04, yielding a value of 4M2

πχ̄Tð∞Þ not exceeding the
one given in Eq. (84).
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We point out that the DM bands shown in Fig. 20,
which we recall are based only on unitarity and spacelike
experimental data, may provide important information on
the scale dependence of the pion distribution amplitude.

As noted in Sec. IX, the precision of the unitary DM
band for FV

π ðQ2Þ at large Q2 can be improved by adding
new experimental results, like those planned at JLAB
[65,66] for Q2 up to ≈8.5 GeV2. The projected precision

FIG. 21. The pion form factor Q2FV
π ðQ2Þ predicted by the DM method in the Q2-range up to 10 GeV2 adopting the estimate (84) for

the transverse susceptibility 4M2
πχ̄Tð∞Þ at Q̄2

0 → ∞. The input data are the CERN [3] (black circles) and the (symmetrized)
electroproduction JLAB-π [11] (blue squares) experimental data. The green triangles (fixed at an arbitrary value of 0.4) correspond to
the projected precisions (statisticalþ systematic) expected in the experimental proposal [66] for the 12 GeV JLAB upgrade. The orange
and black lines are the same as in Fig. 20.

FIG. 20. The pion form factor Q2FV
π ðQ2Þ predicted by the DM method adopting the three estimates (82)–(84) for the transverse

susceptibility 4M2
πχ̄Tð∞Þ in the limit Q̄2

0 → ∞. The input data are the CERN [3] (black circles) and the (symmetrized) electroproduction
JLAB-π [11] (blue squares) experimental data. The orange line represents the leading pQCD prediction (80) with GðQ2Þ ¼ 0 and
ΛQCD ≃ 300 MeV [70]. The black line corresponds to the monopole shape Q2=ð1þ hr2πiPDGQ2=6Þ reproducing the PDG central
value (4) for the pion charge radius.
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of the forthcoming JLAB experimental data is shown
in Fig. 21 by the green triangles and compared with
the DM unitary band corresponding to the transverse
susceptibility (84).

XI. CONCLUSIONS

The experimental data on the em form factor of charged
pions available at spacelike momenta have been analyzed
using the DM approach [20], which describes the momen-
tum dependence of hadronic form factors without intro-
ducing any explicit parametrization and includes properly
the constraint coming from unitarity and analyticity. The
latter one is given by a transverse vector susceptibility,
which has been evaluated nonperturbatively from the
results of lattice QCD simulations of suitable two-point
correlation functions contributing to the hadronic vacuum
polarization term of the muon.
We have elucidated in detail the role played by the

DM unitary filter (18), which allows to select the subset of
input data that can be reproduced exactly by a unitary
z-expansion. Since the unitary bound turns out to be
extremely selective as the number of data points increases,
we have develop a unitary sampling procedure, which
allows to generate in an efficient way a distribution of
values for the pion form factor satisfying unitarity for any
value of the number of data points. Such a procedure can be
generalized straightforwardly to any set of hadronic form
factors, which must satisfy unitary bounds.
We have applied the unitary sampling method to the

spacelike data from both the CERN SPS experiment [3]
and the JLAB-π Collaboration [11] for a total of more
than 50 data points. The pion charge radius has been
determined in a completely model-independent way and
consistently with the unitary bound. This is at variance
with the results obtained in the experimental works [2–4],
where the spacelike data have been fitted assuming a simple
monopole ansatz, which introduces a non-negligible model
dependence.
The DM result is hrπiDM ¼ 0.703� 0.027 fm, which

differs by ≃1.6 standard deviations from the latest
PDG [17] value hrπiPDG ¼ 0.659� 0.004 fm, dominated
by the very precise results of dispersive analyses of timelike
data [14,18] coming from measurements of the cross
section of the eþe− → πþπ− process. In order to clarify
any possible significance of such a difference it is crucial to
improve significantly the precision of the experimental data
in the spacelike region.
We have analyzed the spacelike data using also tradi-

tional z-expansions, like the BGL [26] or BCL [27] fitting
functions, using a new procedure that easily incorporates
ab initio the nonperturbative unitary bound, obtaining
hrπiBGL ¼ 0.711� 0.039 fm and hrπiBCL ¼ 0.709�
0.028 fm in nice agreement with the DM result.
A detailed comparison among the BGL/BCL fitting

procedures and the DM method has been carried out in

a wide range of values of Q2, showing that unitarity is
fulfilled properly only by the DM approach even if the
BGL/BCL fitting functions are constructed to be unitary.
This is due to the fact that unitarity must be imposed both
on the fitting function and on the input data. Even if an
explicit z-expansion is constructed to satisfy unitarity,
the fitting procedure is usually applied to all the input
data regardless whether they satisfy unitarity or not (i.e.,
regardless whether the input data can be exactly reproduced
by a unitary z-expansion). Fitting nonunitary data might
introduce distortions in a unitary z-expansion, as we have
found explicitly in the case of the unitary BGL/BCL fitting
procedures. It will be interesting to investigate such a
potential problem in the case of the hadronic form factors
describing semileptonic B-meson weak decays.
We have addressed also the issue of the onset of pQCD at

large spacelike momenta. Using the DM method we have
performed a sensitivity study of the pion form factor at
large spacelike momenta based only on experimental
spacelike data and unitarity. Although the leading pQCD
behavior is found to set in only at very large momenta, our
DM bands may provide information about the preasymp-
totic effects related to the scale dependence of the pion
distribution amplitude.
We stress that the DM approach is equally well-suited to

be applied to experimental and/or theoretical data. The DM
analyses of LQCD data as well as of timelike data for the
em pion form factor are in progress. An extension of the
present work to the case of the spacelike data on the em
form factors of the nucleon is also in progress.
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APPENDIX A: INDEPENDENCE OF THE DM
APPROACH ON THE AUXILIARY VARIABLE t0

In this appendix we provide some details about the
independence of the DM approach by any specific choice
of the auxiliary variable t0 introduced in the definition of
the conformal variable z, namely [see Eq. (7)]

z≡ zðt; t0Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p : ðA1Þ
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It is straightforward to show that the quantities

1 − zzi
z − zi

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffi
t − ti

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffi
t − ti

p ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2i

p
z − zi

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p 1=4 ffiffiffiffiffiffiffiffiffiffi
t − ti

p 1=4ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffi
t − ti

p ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2i

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2j

q
1 − zizj

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − ti

p 1=4 ffiffiffiffiffiffiffiffiffiffiffi
t − tj

p 1=4ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − ti

p þ ffiffiffiffiffiffiffiffiffiffiffi
t − tj

p ; ðA2Þ

are independent on t0. The first of the above equations
implies that the coefficients dðzÞ and di, given respectively
by Eqs. (15) and (16), do not depend upon the choice of t0.
On the contrary, the kinematical function ϕðzÞ depends

on t0 through a simple factor given by (see, e.g., Ref. [76])

ðtþ − tÞ1=4
ðtþ − t0Þ1=4

½ ffiffiffiffiffiffiffiffiffiffiffiffitþ − t
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p �; ðA3Þ

which can be rewritten as 2
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
. Therefore,

for any kinematical function ϕ the product ϕðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
is

independent on t0. This property guarantees that the
bound (6) is independent on t0 as it should be7 and,
together with Eq. (A2), that the quantities βðzÞ, γðzÞ,
and χDM, given respectively by Eqs. (12)–(14), are inde-
pendent on t0.

APPENDIX B: INCLUSION OF THE UNITARY
CONSTRAINT IN TRUNCATED BGL FITS

In this appendix we describe a simple procedure that
allows to span the space of the values of the BGL
coefficients ak, appearing in the truncated BGL fit

FBGL
π ðQ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

πχTðQ̄2
0Þ

p
ϕðz; Q̄2

0Þ
XNBGL

k¼0

akzk ðB1Þ

and satisfying the (truncated) unitary constraint

XNBGL

k¼0

a2k ≤ 1: ðB2Þ

Let us introduce NBGL þ 1 parameters rk with
k ¼ 0; 1;…NBGL, whose values can vary by construction
in the range [0, 1]. Then, we define NBGL hyperangles θk
(with k ¼ 1; 2;…NBGL) as

θk ¼ πrk for k ¼ 1; 2;…NBGL − 1;

θNBGL
¼ 2πrNBGL

; ðB3Þ

so that the hyperangles θk vary in the range ½0; π� for
k ¼ 1; 2;…NBGL − 1, while the angle θNBGL

is in the range
½0; 2π�. Then, the coefficients ak are related to the hyper-
radius r0 and to the hyperangles θk (k ¼ 1; 2;…NBGL) by

a0 ¼ r0 cosθ1;

ak ¼ r0

�Yk
j¼1

sinθj

�
cosθkþ1 for k¼ 1;2;…NBGL − 1;

aNBGL
¼ r0

� YNBGL−1

j¼1

sinθj

�
sinθNBGL

: ðB4Þ

It is straightforward to check that

XNBGL

k¼0

a2k ¼ r20; ðB5Þ

so that the parameter space 0 ≤ rk ≤ 1 maps the one of
the parameters ak fulfilling the unitary bound (62). The
relation between the coefficients fakg and fr0; θkg can be
inverted obtaining

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXNBGL

j¼0

a2j

vuut ;

θk ¼ Arccos
ak−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNBGL
j¼k−1 a

2
j

q for k ¼ 1; 2;…NBGL − 1;

θNBGL
¼ Arccos

aNBGL−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2NBGL−1 þ a2NBGL

q for aNBGL
≥ 0;

¼ 2π − Arccos
aNBGL−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2NBGL−1 þ a2NBGL

q for aNBGL
< 0:

ðB6Þ

We stress that the procedure described in this appendix
for constructing a unitary BGL fitting function can be
applied to a generic hadronic form factor which should
fulfill a unitary constraint.

APPENDIX C: INCLUSION OF THE UNITARY
CONSTRAINT IN TRUNCATED BCL FITS

In this appendix we describe briefly the procedure that
allows to span the space of the values of the BCL
coefficients bk, appearing in the truncated BCL fit

7The change of the integration variable from z to z̃≡ zðt; t̃0Þ is
given by the Jacobian dz=dz̃ ¼ ð1 − z2Þ=ð1 − z̃2Þ. On the circle
one has z ¼ eiα and 1 − z2 ¼ j1 − z2jeiðα−π=2Þ, which implies
ðz̃=zÞð1−z2Þ=ð1− z̃2Þ¼ jð1−z2Þ=ð1− z̃2Þj, so that the bound (6)
does not depend on the value of t0.
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FBCL
π ðQ2Þ ¼

XNBCL

k¼0

bkðQ̄2
0Þzk ðC1Þ

and satisfying the (truncated) unitary constraint

XNBCL

j;k¼0

bjðQ̄2
0ÞBjkðQ̄2

0ÞbkðQ̄2
0Þ ≤ 1: ðC2Þ

According to Ref. [27], in the case of the em pion form
factor, the matrix BjkðQ̄2

0Þ is given by

BjkðQ̄2
0Þ ¼ B̄jj−kjðQ̄2

0Þ≡
X∞
n¼0

ηnðQ̄2
0Þηnþjj−kjðQ̄2

0Þ ðC3Þ

with ηnðQ̄2
0Þ being the coefficients of the z-expansion of the

kinematical function ϕðz; Q̄2
0Þ divided by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

πχTðQ̄2
0Þ

p
,

namely

ϕðz; Q̄2
0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2
πχTðQ̄2

0Þ
p ¼

X∞
n¼0

ηnðQ̄2
0Þzn: ðC4Þ

Since the lhs of Eq. (C4) represents an analytic, bounded
function inside the unit disc jzj ≤ 1, the coefficients
B̄jj−kjðQ̄2

0Þ can be evaluated numerically by truncating
the sum over n in Eq. (C3) up to a finite order. We have
performed such a calculation at Q̄2

0 ¼ 0 using n ≤ 300

and 4M2
πχTð0Þ ¼ 0.00574. The corresponding results for

the first 12 coefficients B̄jj−kjð0Þ are

fB̄ð0Þg ¼ fþ0.1470510;þ0.0630217;−0.0396807;−0.0388320;−0.0148702;

− 0.0085370;−0.0056373;−0.0040269;−0.0030298;−0.0023662;−0.0019011;−0.0015618g; ðC5Þ

which allow to construct the matrix Bjkð0Þ for NBCL ≤ 10.
The distribution of values of the transverse susceptibility
4M2

πχTð0Þ can be taken exactly into account by dividing all
the coefficients B̄jj−kjð0Þ given in Eq. (C5) by the common
factor 4M2

πχTð0Þ=0.00574.
Following the strategy described in the case of the unitary

BGL fit in Appendix B and dropping for sake of simplicity
the dependence upon Q̄2

0, we introduce NBCL þ 1 param-
eters rk with k ¼ 0; 1;…NBCL, whose values can vary by
construction in the range [0, 1]. Then, using the hyper-
spherical rotation defined by Eqs. (B3) and (B4), we
transform the set of parameters rk into a set of (intermediate)
coefficients ak satisfying the constraint

XNBCL

k¼0

a2k ¼ r20 ≤ 1: ðC6Þ

TheBCLcoefficientsbk canbeobtainedbyobserving that the
matrixBjk is symmetric and positive definite, so that it can be
diagonalized having only positive eigenvalues. Thus, we can
obtain the NBCL þ 1 coefficients bk from the set fakg as

bk ¼
XNBCL

k0¼0

B−1=2
kk0 ak0 ðC7Þ

with

B−1=2
kk0 ¼

XNBCL

m¼0

vmk
1ffiffiffiffiffi
λm

p vmk0 ; ðC8Þ

where vm is the eigenvector of the matrix B corresponding to
the eigenvalue λm. It follows that

XNBCL

j;k¼0

bjBjkbk ¼
XNBCL

k¼0

a2k ¼ r20 ≤ 1: ðC9Þ

Charge conservation requires that FV
π ðQ2 ¼ 0Þ ¼ 1,

which implies b0 ¼ 1 in Eq. (C1). Thus, the unitary
constraint (C2) should be evaluated putting b0 ¼ 1. In
the case the unitary sum exceeds unity, the coefficients bk
with k ¼ 1; 2;…NBCL can be multiplied by a common
factor chosen to ensure that the unitary sum is equal to
unity, while b0 is kept equal to unity.
Finally, as described in Sec. VIII, the inclusion of

the analytical constraint at the annihilation threshold
z ¼ −1 corresponds to add in Eq. (C1) a further mono-
mial term bNBCLþ1zNBCLþ1 with the value of the coefficient
bNBCLþ1 fixed by those of the coefficients bk with
k ¼ 1; 2;…NBCL. Such an addition requires to re-evaluate
the unitary constraint (C2) with NBCL replaced by
NBCL þ 1. In the case the new unitary sum exceeds unity,
the coefficients bk with k ¼ 1; 2;…NBCL þ 1 can be
multiplied by a common factor to ensure that the unitary
sum is equal to unity, while the analytical constraint
remains fulfilled.
The procedure described in this appendix is not limited

to the case of the em pion form factor, but it can be applied
to a generic hadronic form factor which should fulfill a
unitary constraint.
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