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In this paper, a comprehensive analysis of the dynamical evolution of quark-gluon plasma (QGP) is
presented. A perturbation approach is utilized to obtain the longitudinal and radial evolution of the fluid.
The transverse fluid velocity and acceleration parameter are determined based on the influence of the
generalized Bjorken model. By employing this approach, the fluid velocities, acceleration parameter, and
energy density are derived. These quantities offer valuable insights into the space-time evolution of the
quark-gluon plasma in heavy-ion collisions. To accurately assess these quantities, only four free
parameters, namely A1, A2, q, and bϵ0, need to be introduced, which are the only free parameters in
the model. The transverse expansion of the quark-gluon plasma is characterized by two parameters, namely
q and bϵ0, which are introduced by Gubser’s solution. Gubser’s solutions are utilized as initial conditions at
τ0 to determine the energy density and the radial fluid velocity. Our approach, therefore, involves exploring
the parameter space of these two parameters in order to find suitable values that can simulate heavy-ion
collisions. It has been observed that selecting bϵ0 ¼ 1500 and 1=q ¼ 6.4 fm produces reasonable results.
Furthermore, a comparison is made between the radial velocity and correction energy density obtained
from our model and those obtained from the Gubser model. In addition, we ascertain the acceleration
parameter of the fluid and the distribution of longitudinal energy density, which manifests as a Gaussian
distribution. The expansion of the quark-gluon plasma in the longitudinal direction is distinguished by two
additional parameters, denoted as A1 and A2. Our methodology facilitates the derivation of equations for
fluid velocities and energy densities in both the transverse and longitudinal directions of the dense and
heated quark matter.
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I. INTRODUCTION

Based on experimental data obtained from relativistic
heavy-ion collisions (HICs) conducted at RHIC and LHC, a
distinct form of hot and dense nuclear matter is generated
during the initial stages of collisions, commonly referred to
as quark-qluon plasma (QGP). It has been observed that
QGP exhibits characteristics of a strongly coupled, nearly
perfect fluid. The application of relativistic hydrodynamics
to describe the QGP phase has yielded promising results in
heavy-ion collision experiments [1–6].
The Bjorken flowmodel is a straightforward scenario that

characterizes the typical motion of partons following a
collision [7]. This model is founded on certain assumptions,
including boost invariance along the beam line, as well as
translation and rotation invariance in the transverse plane.
Consequently, all relevant quantities can be expressed as
functions of the proper time τ in the ðτ; x⊥;ϕ; ηÞ Milne
coordinate system. By considering the aforementioned
symmetries, along with the system’s invariance under
reflection, one can determine the four-velocity profile,

which is given by uμ ¼ ð1; 0; 0; 0Þ in the Milne coordinate
system.
The Bjorken model, even in central collisions, is subject

to two issues. Firstly, the model predicts that the radial flow
ðux⊥Þ is zero due to translation invariance in the transverse
plane. However, this symmetry is not realistic as the size of
colliding nuclei is limited, which may result in misleading
subsequent hydrodynamical flow, on which much of
heavy-ions phenomenology depends. Secondly, the model
predicts a flat rapidity distribution of final particles, which
is inconsistent with observations at RHIC, except for a
limited region around midrapidity. In realistic collisions,
boost, and translation invariance are violated, and a model
that is more faithful and not far from the accelerationless
Bjorken picture should be investigated. Several attempts
have been made to generalize the Bjorken model, such as
those presented in [8–12]. Some of these attempts have
included accelerating solutions of relativistic fluid dynam-
ics to obtain more realistic estimations, as seen in [13–16].
A recent paper based on accelerating hydrodynamic
description can be found in [17,18].
The objective of our research is to extend the Bjorken

model in a generalized manner. Our approach assumes the*a.f.kord@hsu.ac.ir
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breaking of translation and boost invariance, while the
rotational symmetry around the beam line is maintained.
Our investigation focuses on central collisions, wherein we
present a solution for the transverse and longitudinal
expansions of a plasma, utilizing perturbation theory. We
assume that the medium is formed rapidly following the
collisions, with generalized Bjorken transverse and longi-
tudinal expansions. Our aim is to derive solutions that
represent the resistive relativistic hydrodynamic extension
of Bjorken flow, along both the z and x⊥ directions.
The current study aims to examine a model that displays

a partial breakdown of boost invariance in the longitudinal
expansion, while simultaneously undergoing radial expan-
sion in the transverse plane. A comprehensive analysis of
the model’s dynamical evolution and characteristics is
provided. A novel solution of relativistic hydrodynamics
in (2þ 1) dimensions is derived, which is contingent upon
three variables: proper time (τ), transverse coordinate ðx⊥Þ,
and rapidity (η). The findings of this investigation are
presented, including the longitudinal and radial evolution
of fluid velocities and energy density.
The present paper is structured as follows. Section II

provides an exposition of the ideal relativistic hydrodynamic
framework, specifically in the context of a plasma.
Subsequently, we present our perturbative approach and
derive analytical solutions. The findings are then discussed
in Sec. III, where a comprehensive analysis of the general
results is provided. The investigation focuses on the expan-
sion of flow in both the transverse and longitudinal direc-
tions. In the transverse plane, the Gubser flow is utilized as
the initial flow configuration. Subsequently, a comparison is
made between the outcomes of our model and those of the
Gubser flow. Furthermore, the transverse flow velocity
obtained from our model is assessed in relation to the
phenomenological proposition of v⊥ ¼ x⊥

50
. Additionally, a

partial breakdown of boost invariance in longitudinal
expansion is demonstrated. By introducing appropriate
values for the free parameters A1 and A2 in the solutions,
satisfactory results are obtained for the rapidity fluid
velocity and distribution of energy density. Finally, the last
section serves to summarize the conclusions drawn from our
study and highlight potential avenues for future research.

II. IDEAL RELATIVISTIC FLUID EXPANSION

In this section, we provide a succinct overview of our
formalism for characterizing the assessment of QGP matter.
Additionally, we take into account the rotational symmetry
of the medium with respect to the beam line, which is
applicable to central collisions. Consequently, we posit that
all relevant quantities are dependent solely on the trans-
verse radial coordinate x⊥, the proper time τ, and the
rapidity η in the Milne ðτ; r;ϕ; ηÞ coordinate system.
In this paper, we examine the scenario of an ideal

nonresistive plasma consisting of massless particles.
Additionally, we propose the inclusion of a thermodynamic

equation of state (EOS) that assumes the pressure to be
directly proportional to the energy density, expressed as
P ¼ 1=3ϵ, in order to close the set of equations. We
proceed to present the energy-momentum conservation
equations for an ideal fluid.
The energy-momentum conservation equations for an

ideal fluid can be expressed in a covariant form, which is
given by

dμTμν ¼ 0; ð2:1Þ

where

Tμν ¼ ðϵþ PÞuμuν þ Pgμν: ð2:2Þ

The energy density and pressure of the fluid are
denoted by ϵ and P, respectively. In a flat spacetime, the
metric tensor is represented by gμν ¼ diagf−;þ;þ;þg.
Additionally, the four velocity of the single fluid, denoted
as uμ with the constraint uμuμ ¼ −1, can be expressed as
uμ ¼ γð1; v⃗Þ, where γ ¼ 1ffiffiffiffiffiffiffiffi

1−v2
p .

The covariant derivative is expressed in Eq. (2.1) as
follows:

dpAμν ¼ ∂pAμν þ Γμ
pmAmν þ Γν

pmAμm: ð2:3Þ

The symbols Γi
jk denote the Christoffel symbols. They are

Γi
jk ¼

1

2
gim

�
∂gmj

∂xk
þ ∂gmk

∂xj
−
∂gjk
∂xm

�
: ð2:4Þ

One can express the conservation equations by projec-
ting dμTμν ¼ 0 along the longitudinal and transverse
directions relative to uμ,

uνðdμTμν
matter ¼ 0Þ → Dϵþ ðϵþ PÞΘ ¼ 0; ð2:5Þ

ΔανðdμTμν
matter ¼ 0Þ → ðϵþ PÞDuα þ∇αP ¼ 0; ð2:6Þ

where

D ¼ uμdμ; Θ ¼ dμuμ;

∇μ ¼ dμ þ uμD; Δα
ν ¼ gαν þ uαuν: ð2:7Þ

A. Method

In the realm of central collisions involving two nuclei, it
is hypothesized that the matter undergoing expansion
exhibits azimuthal symmetry. This postulation prompts
the examination of the four-vector velocity of the matter,
as follows:

uμ ¼ γð1; vx⊥ ; 0; vzÞ
¼ ðcoshK coshY; sinhK; 0; coshK sinhYÞ: ð2:8Þ
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The present study considers the transverse and longitudinal
fluid rapidities, denoted by Y and K, respectively, with
vz ¼ tanhY and vx⊥ ¼ tanhK

coshY. To facilitate our analysis, we
make the assumption that K is solely dependent on ðx⊥; tÞ,
while Y is dependent on ðz; tÞ.
The utilization of Milne coordinates is deemed more

expedient in comparison to the conventional Cartesian
coordinates.

ðτ; x⊥;ϕ; ηÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

; x⊥;ϕ;
1

2
ln

tþ z
t − z

�
: ð2:9Þ

The metric is given by

gμν ¼ diagð−1; 1; 1=x2⊥; 1=τ2Þ;
gμν ¼ diagð−1; 1; x2⊥; τ2Þ: ð2:10Þ

By utilizing Milne coordinates, the Christoffel symbols can
be readily derived. The sole nonzero symbols are as
follows: Γτ

ηη¼τ, Γη
τη¼1=τ, Γx⊥

ϕϕ¼−x⊥, and Γϕ
x⊥ϕ ¼ 1=x⊥.

Furthermore, in the Milne coordinate system, the four-
vector velocity is expressed as follows:

uμ ¼ ðcoshK coshðY − ηÞ; sinhK; 0; coshK sinhðY − ηÞ=τÞ
¼ γð1; v⊥; 0; 0; vη=τÞ; ð2:11Þ

where γ̄ ¼ coshKðτ; x⊥Þ coshðYðτ; ηÞ − ηÞ; vx⊥ ¼ tanhK
coshðY−ηÞ

and vη ¼ tanhðY − ηÞ.
The aforementioned assumptions facilitate the rewriting

of the conservation equations in Milne coordinate. The
energy and Euler equations can be expressed as follows:

ðϵþPÞðvητ∂τYþ∂ηYÞþðτ∂τϵþvη∂ηϵþ τvx⊥∂x⊥ϵÞþðϵþPÞ
�
τ tanhK∂τKþ τ

coshðY−ηÞð∂x⊥KÞþ τ

x⊥
vx⊥

�
¼ 0; ð2:12Þ

ðϵþ PÞ
�
coshK∂τK þ sinhK

coshðY − ηÞ ∂x⊥K
�
þ
�
vη sinhK

τ
∂ηpþ sinhK∂τPþ coshK

coshðY − ηÞ ∂x⊥P
�

¼ 0; ð2:13Þ

ðϵþ PÞðτ∂τY þ vη∂ηY þ τvη tanh k∂τK þ τvηv⊥ tanhK∂x⊥KÞ þ
�
vητ∂τPþ v2η∂ηPþ 1

coshK2cosh2ðY − ηÞ ∂ηP
�

þ τvηvx⊥∂x⊥P ¼ 0: ð2:14Þ

In the present study, we shall examine perturbative
solutions of the aforementioned conservation equations.
The desired quantities will be expressed as power series in
λ1. The convergence of the series is not a primary concern,
as it has been demonstrated that this method accurately
describes the physical system under investigation. Within
the framework of the perturbative approach, it is postulated
that specific assumptions are made in the following
manner:

ϵðτ;x⊥;ηÞ ¼ ϵ0ðτÞþ λ1ϵ
ð1Þðτ;x⊥;ηÞþ λ21ϵ

ð2Þðτ; x⊥;ηÞþ � � � ;
ð2:15Þ

Yðτ;ηÞ¼ ηþ λ1Yð1Þðτ;ηÞþλ21Y
ð2Þðτ;ηÞþ �� � ; ð2:16Þ

Kðτ; x⊥Þ ¼ λ1kð1Þðτ; x⊥Þ þ λ21K
ð2Þðτ; x⊥Þ þ � � � : ð2:17Þ

In this context, the symbol λ1 represents an expansion
parameter that will ultimately be assigned a value of one
upon completion of the calculations. To address the
conservation equations under the aforementioned assump-
tions, it is necessary to commence by simplifying certain
terms in Eqs. (2.12)–(2.14),

coshðY − ηÞ ≃ 1þ 1=2λ21Y
ð1Þ þ � � � ; 1= coshðY − ηÞ

≃ 1þ � � � ; vη ≃ λ1Yð1Þ þ λ21Y
ð2Þ þ � � � ;

sinhK ≃ λ1Kð1Þ þ λ21K
ð2Þ þ � � � ; coshK

≃ 1þ 1=2λ21K
ð1Þ þ � � � ; v⊥

≃ λ1Kð1Þ þ λ21K
ð2Þ þ � � � : ð2:18Þ

We have retained the terms up to second order of λ1 in
our analysis. Additionally, we have taken into account that
the fluid is highly relativistic, thereby rendering the rest
mass contributions to the EOS negligible. Consequently,
the pressure can be expressed as a simple proportionality to
the energy density, i.e., P ¼ c2sϵ ¼ 1=3ϵ, where cs ¼ 1=3
denotes the speed of sound. Upon substituting the afore-
mentioned assumptions into the conservation equa-
tions (2.12)–(2.14) and identifying the powers of λ1, a
series of equations can be obtained.
Thus, it is possible to express the equation to the first

degree of λ1 as follows:

τ∂τϵ
ð0Þ þ 4

3
ϵð0Þ ¼ 0;

Yð0Þ ¼ η; Kð0Þ ¼ 0: ð2:19Þ
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The standard result for Bjorken flow, namely ϵ0 ¼ ϵcðτ0τ Þ4=3,
has been obtained herein.
The equations resulting from the identification of terms

proportional to first order in λ1 are presented as follows:

ϵ0Yð1Þ þ ϵð1Þ þ 3

4
τ∂τϵ

ð1Þ þ τϵ0∂x⊥K
ð1Þ þ τ

x⊥
ϵ0Kð1Þ ¼ 0;

ð2:20Þ

4ϵ0∂τKð1Þ þ Kð1Þ
∂τϵ

0 þ ∂x⊥ϵ
ð1Þ ¼ 0; ð2:21Þ

4ϵ0∂τðτYð1ÞÞ þ Yð1Þτ∂τϵ0 þ ∂ηϵ
ð1Þ ¼ 0: ð2:22Þ

Furthermore, the equations resulting from the identifi-
cation of terms that are proportional to the second order in
λ1 are expressed as follows:

ϵ2 þ K2ϵ0τ

x⊥
þ K1ϵ1τ

x⊥
þ ϵ1τ∂x⊥K

1 þ ϵ0τ∂x⊥K
2 þ ϵ1∂ηY1

þ ϵ0∂ηY2 þ K1ϵ0τ∂τK1 þ Y1ϵ0τ∂τY1 þ 3

4
Y1

∂ηϵ
1

þ 3

4
K1τ∂x⊥ϵ

1 þ 3

4
τ∂τϵ

2 ¼ 0; ð2:23Þ

K2
∂τϵ

0 þ 4K1ϵ0∂x⊥K
1 þ 4ϵ1∂τK1 þ 4ϵ0∂τK2 þ ∂x⊥ϵ2

þ K1
∂τϵ1 ¼ 0; ð2:24Þ

4ϵ1Y1 þ 4ϵ0Y2 þ τY2∂τϵ
0 þ 4ϵ0Y1∂ηY1 þ 4ϵ1τ∂τY1

þ 4ϵ0τ∂τY2 þ ∂ηϵ
2 þ τY1

∂τϵ
1 ¼ 0: ð2:25Þ

B. First-order expansion equations

In the subsequent section, the conservation equations
will be solved up to the first order expansion, as presented
in Eqs. (2.20)–(2.22). The method of separation of vari-
ables will be employed to obtain the ordinary differential
equations. To achieve this, we make the assumption,

ϵð1Þðτ; x⊥; ηÞ ¼ ϵ1x⊥ðτ; x⊥Þ þ ϵ1ηðτ; ηÞ: ð2:26Þ

The aforementioned formula can be utilized to transform
Eqs. (2.20)–(2.22) into simplified expressions, which are
presented as follows:

ϵð1Þx⊥ þ 3

4
τ∂τϵ

ð1Þ
x⊥ þ τϵ0∂x⊥K

ð1Þ þ τ

x⊥
ϵ0Kð1Þ ¼ n2; ð2:27Þ

4ϵ0∂τKð1Þ þ Kð1Þ
∂τϵ

0 þ ∂x⊥ϵ
ð1Þ
x⊥ ¼ 0; ð2:28Þ

ϵ0∂ηYð1Þ þ ϵð1Þη þ 3

4
τ∂τϵ

ð1Þ
η ¼ −n2; ð2:29Þ

4ϵ0∂τðτYð1ÞÞ þ Yð1Þτ∂τϵ0 þ ∂ηϵ
ð1Þ
η ¼ 0: ð2:30Þ

The equations denoted by (2.27) and (2.28) are dependent
solely upon the proper time τ and the transverse coordinate
x⊥, and serve to describe the dynamic evolution of the fluid in
the transverse direction. Additionally, the equations repre-
sented by (2.29) and (2.30) are dependent solely upon the
proper time τ and the space rapidity η, and serve to describe
the dynamic evolution of the fluid in the longitudinal
direction. It should be noted that the real number denoted
by n must be identified based on physical conditions.
The amalgamation of Eqs. (2.27) and (2.28) results in a

partial differential equation that solely comprises the
variable of Kð1Þ, as given by

∂
2
x⊥K

ð1Þ − 3∂2τKð1Þ þ ∂x⊥K
ð1Þ

x⊥
þ ∂τKð1Þ

τ

− Kð1Þ
�

1

x2⊥
þ 1

τ2

�
¼ 0: ð2:31Þ

The aforementioned partial differential equation can be
solved through the method of separation of variables. The
resulting general solution is as follows:

Kð1Þðx⊥; τÞ ¼
X
k

ðck1J1ðkx⊥Þ þ ck2Y1ðkx⊥ÞÞ

×

�
τ2=3

�
ck3J1

3

�
kτffiffiffi
3

p
�
þ ck4Y1

3

�
kτffiffiffi
3

p
���

:

ð2:32Þ

The Bessel functions J1; Y1; J1
3
, and Y1

3
are of interest in this

study. For each value of k, there exist four integration
constants, which are typically determined by initial con-
ditions. Alternatively, the integration constants may be
reduced by imposing the initial conditions Kð1Þðx⊥ ¼
0; τÞ ¼ 0 and Kð1Þðx⊥; τ → ∞Þ ¼ 0. It is important to note
that, up to the first-order expansion of the energy and Euler
equations,u⊥ ¼ sin hK ≃ Kð1Þ. Consequently, ck2 ¼ ck4 ¼ 0,
yielding

Kð1Þðx⊥; τÞ ¼
X
k

ckJ1ðkx⊥Þτ2=3J1
3

�
kτffiffiffi
3

p
�
: ð2:33Þ

To determine the integration constants ck, it is necessary
to have knowledge of the space-time profile of the radial
velocity u⊥ðτ; x⊥Þ at τ ¼ τ0. To achieve this, we will utilize
the analytic conformal four velocity uμðτ; x⊥;ϕ; τÞ discov-
ered by Gubser [8]. The Gubser fluid velocity (uμ) has only
two nonzero components, namely uτ and u⊥, which
describe the boost-invariant longitudinal expansion and
the transverse expansion, respectively. These components
are expressed as follows:

u⊥ðx⊥; τÞ ¼
qx⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2ðx⊥; τÞ
p ; ð2:34Þ
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uτðx⊥; τÞ ¼
1þ q2x2⊥ þ q2τ2

2qτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2ðx⊥; τÞ

p : ð2:35Þ

The function gðx⊥; τÞ is hereby defined as follows:

gðx⊥; τÞ ¼
1þ q2x2⊥ − q2τ2

2qτ
: ð2:36Þ

Subsequently, the conformal hydrodynamic solution
shall be employed as the initial condition at τ0.
Specifically, it is postulated that the fluid adheres to the
characteristics of a Gubser fluid during the initial proper
time τ0. Consequently, the radial fluid velocity field at τ0
can be represented by a profile.

uð1Þðx⊥; τ0Þ ¼
qx⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2ðx⊥; τ0Þ
p : ð2:37Þ

It is postulated that our proposed solution, as denoted by
Eq. (2.33), is equivalent to Gubser’s radial velocity sol-
ution, represented by Eq. (2.37), when evaluated at τ ¼ τ0.

uð1Þðx⊥; τ0Þ ¼
qx⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2ðx⊥; τ0Þ
p

¼
X
k

ckJ1ðkx⊥Þτ2=30 J1
3

�
kτ0ffiffiffi
3

p
�
: ð2:38Þ

The determination of the coefficients ck can be achieved
through the utilization of the orthogonality of Bessel
functions. These coefficients are expressed as follows:

ck ¼ 2

a2ðJ2ðβ1kÞÞ2J1
3
ðβ1k τ0

a
ffiffi
3

p Þ
Z

a

0

qx2⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2ðx⊥; τ0Þ

p
× J1

�
β1k

x⊥
a

�
dx: ð2:39Þ

The kth zero of J1 is denoted by β1k. It should be noted that
in the aforementioned equation, k is equivalent to the ratio
of β1k=a (k ¼ β1k=a). Ultimately, the transverse fluid
velocity is expressed as

u⊥ ¼ uð1Þðx⊥; τÞ

¼
X
k

�
2

a2ðJ2ðβ1kÞÞ2J1
3
ðβ1k τ0

a
ffiffi
3

p Þ

×
Z

a

0

qx2⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2ðx⊥; τ0Þ

p J1

�
β1k

x⊥
a

�
dx⊥

�

× J1ðkx⊥Þτ2=3J1
3

�
kτffiffiffi
3

p
�
: ð2:40Þ

Based on our assumptions, the total energy density up to
the first order in λ1 can be given by

ϵðτ; x⊥; ηÞ ¼ ϵ0 þ ϵ1x⊥ þ ϵ1η: ð2:41Þ

The density energy distribution in the transverse plane is
denoted by ϵ1x⊥, while the density energy distribution in the
longitudinal direction is denoted by ϵ1η. To determine the
transverse energy density distribution ϵ1x⊥ , we combine
Eqs. (2.27) and (2.28). This yields the following partial
differential equation:

3∂2τ ϵ
ð1Þ
x⊥ − ∂

2
x⊥ϵ

ð1Þ
x⊥ þ 7∂τϵ

ð1Þ
x⊥

τ
−
∂x⊥ϵ

ð1Þ
x⊥

x⊥
¼ 0: ð2:42Þ

Equation (2.42) may be solved through the method of
separation of variables. The general solution that is as
follows:

ϵð1Þx⊥ ðx⊥; τÞ ¼
X
k

ðc0k1 J0ðkx⊥Þ þ c0k2 Y0ðkx⊥ÞÞ

×

�
τ−2=3

�
c0k3 J2

3

�
kτffiffiffi
3

p
�
þ c0k4 Y2

3

�
kτffiffiffi
3

p
���

:

ð2:43Þ

To ensure consistency between the above solution and the
transverse fluid velocity equation (2.40), it is necessary to
set c0k2;4 ¼ 0. Consequently, the solution can be expressed as
follows:

ϵð1Þx⊥ ðx⊥; τÞ ¼
X
k

c0kJ0ðkx⊥Þτ−2=3J2
3

�
kτffiffiffi
3

p
�
: ð2:44Þ

Furthermore, it is posited that the fluid being studied
exhibits characteristics akin to those of Gubser’s inviscid
hydrodynamic fluid at the specific time of τ ¼ τ0. As a

result, the value of ϵð1Þx⊥ ðx⊥; τ0Þ can be expressed as

ϵð1Þx⊥ ðx⊥; τ0Þ ¼ ϵgðx⊥; τ0Þ − ϵ0ðτ0Þ; ð2:45Þ

where ϵgðx⊥; τÞ is given by [8]

ϵgðx⊥; τÞ ¼
ϵ̂0
τ4=3

ð2qÞ8=3
½1þ 2q2ðτ2 þ x2⊥Þ þ q4ðτ2 − x2⊥Þ2�4=3

:

ð2:46Þ

Gubser’s energy density for a conformal inviscid fluid is
denoted by ϵg, while ϵ̂ and q are two constants. The
reciprocal of q is directly proportional to the transverse size
of the plasma. By utilizing Eqs. (2.44)–(2.46), and the
orthogonality of Bessel functions, one can derive the
coefficients in (2.44). These coefficients are
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c0k ¼ 2

a2ðJ1ðβ0kÞÞ2J2
3
ðβ0k τ0

a
ffiffi
3

p Þ
Z

a

0

x⊥ðϵgðx⊥; τ0Þ − ϵ0ðτ0ÞÞ

× J0

�
β0k

x⊥
a

�
:dx⊥ ð2:47Þ

with β0k being the kth zero of J0, where k ¼ β0k=a. The kth
zero of the Bessel function of the first kind, denoted as J0,
is represented by β0k. It is noteworthy that in the afore-
mentioned equation, the value of k is equivalent to the ratio
of β0k=a. Ultimately, the distribution of transverse energy
density is expressed as follows:

ϵð1Þx⊥ ðx⊥;τÞ¼
X
k

�
2

a2ðJ1ðβ0kÞÞ2J2
3
ðβ0k τ0

a
ffiffi
3

p Þ
Z

a

0

x⊥ðϵgðx⊥;τ0Þ

−ϵ0ðτ0ÞÞJ0
�
β1k

x⊥
a

�
dx⊥

�

×J0ðkx⊥Þτ−2=3J2
3

�
kτffiffiffi
3

p
�
: ð2:48Þ

C. Longitudinal expansion

In this section, we shall examine the evolution of
longitudinal expansion in an ideal fluid. The Bjorken
model represents the most elementary approach to char-
acterizing the longitudinal expansion of a fluid [7]. The
Bjorken model depicts a flow that remains invariant under a
Lorentz boost along the longitudinal direction. However, in
reality, the longitudinal expansion may be influenced by
acceleration, and nonboost invariant initial conditions may
exist, leading to the absence of a rapidity plateau [14–16].
Further references and information can be found in
[17–20].
The present study investigates a model that exhibits

partial breakdown of boost invariance in the longitudinal
expansion. The approach taken involves the utilization of
power series expansions up to the first order in λ1, leading
to the following assumption:

Yð1Þðτ; ηÞ ¼ Yðτ; ηÞ − η: ð2:49Þ

Yð1Þ denotes the acceleration of the fluid in the longitudinal
direction. By combining Eqs. (2.29) and (2.30), a partial

differential equation for Yð1Þ can be derived, which is
expressed as follows:

∂
2
ηYð1Þ − 3τ2∂2τYð1Þ − 5τ∂τYð1Þ ¼ 0: ð2:50Þ

The equation can be solved through the method of
separation of variables. The general solution is given by

Yð1Þðτ; ηÞ ¼ A0

τ2=3
þ
X
m¼1

Amτ
−1
3
−1
3

ffiffiffiffiffiffiffiffi
3þ 1

m2

p
m

× ½sin hðmηÞ þ Bm cos hðmηÞ�: ð2:51Þ

In the context, the constant coefficientsA0,Am, andBm can
be determined upon the physical conditions. Assuming that
the limit of Yðτ; η → 0Þ → η, it can be deduced that both A0

andBmmust be equivalent to zero.As a result, the formula for
the correction fluid rapidity Y1ðτ; ηÞ can be derived,

Yð1Þðτ; ηÞ ¼
X
m¼1

Amτ
−1
3
−1
3

ffiffiffiffiffiffiffiffi
3þ 1

m2

p
m½sinhðmηÞ�: ð2:52Þ

To ascertain the coefficients Am, it is necessary to possess
knowledge of the flow rapidity profile Yðτ ¼ τ0; ηÞ ¼
ηþ Y1ðτ0; ηÞ. However, for the sake of simplicity, we limit
ourselves to retaining solely the first two terms in Eq. (2.52).
Consequently, the corrected flow rapidity can be expressed as

Yð1Þðτ; ηÞ ¼ A1

τ
sinhðηÞ þ A2τ

−1
3
ð1þ ffiffiffiffi

13
p Þ sinhð2ηÞ: ð2:53Þ

Furthermore, in order to determine the correction for
energy density distribution in the longitudinal direction ϵ1η,
it is feasible to integrate Eqs. (2.29) and (2.30). As a result,
the partial differential equation for ϵ1η can be formulated as
follows:

∂
3
ηϵ

ð1Þ
η − 3τ2∂2τ∂ηϵ

ð1Þ
η − 13τ∂τ∂ηϵ

ð1Þ
η − 8∂ηϵ

ð1Þ
η : ð2:54Þ

The aforementioned equation can be solved through the
process of separating variables. The general solution is
given by

ϵð1Þη ðτ; ηÞ ¼ ðA1
0 þ A2

0ηþ A3
0η

2Þ
�
A01
0

τ2
þ A02

0

τ4=3

�
þ ðB1

1 cos hðηÞ þ B2
1 sin hðηÞ þ B3

1Þ
�
B01
1

τ7=3
þ B02

1

τ

�

þ ðC1
2 cos hð2ηÞ þ C2

2 sin hð2ηÞ þ C3
2ÞðC01

2 τ
−5
3
−
ffiffiffi
13

p
3 þ C02

2 τ
−5
3
þ
ffiffiffi
13

p
3 Þ

þ
X
m¼3

ðD1
mτ

−5
3
−1
3

ffiffiffiffiffiffiffiffi
3þ 1

m2

p
mÞðcos hðmηÞ −D01

m sin hðmηÞ þD02
mÞ: ð2:55Þ

The determination of constant coefficients can be accomplished by means of physical conditions. Furthermore, by
substituting both solutions, as given in Eqs. (2.52) and (2.55), into Eq. (2.30), one obtains
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ϵð1Þη ðτ; ηÞ ¼ ðB1
1 cos hðηÞÞ

�
B01
1

τ7=3
þ B02

1

τ

�

þ ðC1
2 cos hð2ηÞÞðC01

2 τ
−5
3
−
ffiffiffi
13

p
3 þ C02

2 τ
−5
3
þ
ffiffiffi
13

p
3 Þ

þ
X
m¼3

ðD1
mτ

−5
3
−1
3

ffiffiffiffiffiffiffiffi
3þ 1

m2

p
mÞðcos hðmηÞÞ: ð2:56Þ

Upon consideration of the particular solution represented
by Eq. (2.53) pertaining to the fluid rapidity, the solution
for the correction energy density ϵ1η can be expressed as
follows:

ϵð1Þη ðτ;ηÞ¼ 4

3
ϵcτ

4=3
0 A1

coshðηÞ
τ7=3

þ2

3
ð

ffiffiffiffiffi
13

p
−1Þϵcτ4=30 A2τ

−5
3
−
ffiffiffi
13

p
3 coshð2ηÞ: ð2:57Þ

The above equation comprises of two distinct terms that
delineate the energy density distribution in the longitudinal
expansion. The following section will elucidate the behav-
ior of these physical quantities.
In this section, a perturbation expansion has been

employed to analyze the conservation equations mentioned
earlier. By identifying terms that are proportional to the
second order in λ1, the resulting equations have been
obtained. However, the conservation equations have only
been solved up to the first-order expansion. The general
solutions obtained are consistent with the findings pre-
sented in Ref. [12]. The authors of Ref. [12] have inves-
tigated a small perturbation added to the Bjorken flow,
represented as P ¼ P0 þ P1 (the pressure field) and uμ ¼
uμ0 þ uμ1 (the fluid velocity field). They have derived the
linearized hydrodynamic equations and subsequently
solved them to determine the general solutions. It is worth
noting that their linearized hydrodynamic equations and
general solutions align with our solutions up to the first-
order expansion. However, the physical solutions have not
been obtained. To obtain the physical solutions, knowledge
of the flow profile at the initial proper time τ0 is required.
By utilizing the proper initial conditions, the coefficients of
the general solutions can be determined. In our case, the
physical solutions in transverse expansions have been
obtained by utilizing the analytic conformal solutions [8]
at τ ¼ τ0, and the orthogonality of Bessel functions. In the
longitudinal expansions, the constant coefficients A0, Am,
and Bm have been determined based on physical conditions
and some simplifications. Finally, the energy density,
transverse flow velocity, and flow rapidity have been
derived.

III. RESULTS AND DISCUSSIONS

In this section, we provide a comprehensive analysis of
the dynamical evolution and characteristics of our model,
utilizing a perturbation approach. Our investigation focuses

on the longitudinal and radial evolution of the fluid, which
is reflected in the transverse fluid velocity and acceleration
parameter, respectively, due to the influence of the gener-
alized Bjorken model. Through our perturbation approach,
we derive the corrected fluid velocities, acceleration
parameter, and energy density. These quantities provide
valuable insights into the space-time evolution of the quark-
gluon plasma in heavy-ion collisions.
The aforementioned quantities are crucial in compre-

hending the space-time evolution of the quark-gluon
plasma in heavy-ion collisions. To accurately assess these
quantities, it is imperative to establish the values of the
constants A1, A2, q, and bϵ0. These are the only free
parameters in our model.
The initial conditions for the transverse expansion of the

quark-gluon plasma are characterized by two parameters,
namely q and bϵ0, which are introduced by Gubser’s
solution. Together, they determine the initial energy density
profile of the plasma at some early time that should be
comparable to or greater than the time at which a hydro-
dynamic description becomes valid. The parameter q also
implicitly determines the radial velocity profile at early
time of the hydrodynamic evolution. Our approach, there-
fore, is to explore the two parameter space looking for
reasonable values to mock up heavy-ion collisions. We
have found that choosing bϵ0 ¼ 1500 and 1=q ¼ 6.4 fm
yields reasonable results, as we shall show below.
In order to accurately depict the space-time assessment

of longitudinal expansion of QGP, it is imperative to
establish fixed parameters, namely A1 and A2, that align
with phenomenological analyses. Regrettably, in this par-
ticular study, the aforementioned parameters have been
selected based on the following condition:

ϵð1Þη ðτ; ηÞ
ϵ0ðτÞ

<
ϵð1Þη ðτ0; η ¼ 0Þ

ϵ0ðτ0Þ
¼ 4

3
A1

1

τ0
þ 2

3
ð

ffiffiffiffiffi
13

p
− 1ÞA2τ

−1
3
−
ffiffiffi
13

p
3

0 ≪ 1: ð3:1Þ

For our numerical computation, we have opted to utilize the
values of A1 ¼ 0.3 and A2 ¼ −0.07.

A. Transverse expansion

This subsection presents the numerical results of the
transverse velocity and energy density obtained through our
perturbation approach. These two quantities aid in com-
prehending the transverse evolution of the quark-gluon
plasma in heavy-ion collisions. Through our analysis, the
value of ϵ0 has been determined to be 5.4 GeV=fm3 at a
proper time of approximately τ ¼ 1 fm, as reported in
Ref. [21]. The parameters bϵ0 ¼ 1500 and 1=q ¼ 6.4 fm
have been chosen for our study. Subsequently, we display
the transverse fluid velocity ðv⊥ ¼ u⊥

uτ
Þ and the transverse

energy density distribution [ϵ1⊥ðτ; x⊥Þ].
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Figure 1 illustrates the transverse velocity, denoted as v⊥,
which is defined as the ratio of the transverse component of
the four-velocity, u⊥, to its temporal component, uτ. The
plot depicts v⊥ as a function of x⊥ or τ, while either τ or x⊥
is held constant. Additionally, a comparison with Gubser’s
transverse velocity is presented. The transverse velocity’s
dependence on x⊥ exhibits a comparable shape to that of
Gubser’s work. Nevertheless, the transverse velocity’s
dependence as a function of τ, as depicted in the right
panel of Fig. 1, deviates from the Gubser flow for τ > 5fm.
This suggests that our flow exhibits a longer life time
compared to the Gubser flow. Figure 2 displays the trans-
verse velocity v⊥ as a function of either τ or x⊥ for various
values of x⊥ or τ, respectively. Notably, it is observed that
v⊥ increases for larger values of τ (at a fixed x⊥) or for
larger values of x⊥ (at a fixed τ). This phenomenon is a
consequence of the assumption of conformal symmetry in
the initial conditions, which impacts the spatiotemporal
evolution of the transverse expansion of the fluid [8].
Nevertheless, the energy density experiences a significant

decrease and ultimately reaches zero at a largevalue of x⊥, as
depicted in the right panel of Fig. 5. This peculiar phe-
nomenon is attributed to a complete failure of the derivative
expansion, which serves as the foundation of hydrodynam-
ics. To elucidate this aspect, we present the two-dimensional
fluid velocity and the contours of constant temperature in
Fig. 3. The plot has been exhibited for values of ðτ; x⊥Þ
wherein ϵ is positive. The prominently delineated red
contour corresponds to the temperature of 130 MeV. It is
suggested that the region of flow in which the temperature
exceeds 130 MeV may be considered as the quark-gluon
plasma. It is important to note that the temperature of
130 MeV is approximately the decoupling temperature in
a Cooper-Frye treatment. Beyond this temperature, the
genuine degrees of freedom are those of a nearly free hadron
gas, rather than a fluid. The hydrodynamic approximation is
deemed invalid when the temperature falls below 130 MeV.
In summary, our hydrodynamic model approximation is
applicable only for values of x⊥ and τwhere the temperature
exceeds 130 MeV. A comparison with the findings of
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FIG. 2. Left: the transverse velocity v⊥ as a function of proper time τ for several values of transverse radius x⊥. Right: the transverse
velocity v⊥ as a function of transverse radius x⊥ for several values of proper time τ. It is measured in fm=c, with q ¼ 1=6.4 fm−1.
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FIG. 1. Left: the transverse velocity v⊥ ¼ u⊥
uτ ≃ K1ðτ; x⊥Þ in terms of x⊥ for τ ¼ 2. Right: the transverse velocity in terms of τ for

x⊥ ¼ 3. The blue curve correspond to present work and the red curve correspond to [8]. It is measured in fm=c, with q ¼ 1=6.4 fm−1.
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Ref. [8] suggests that a slightly larger value of τ and a smaller
value of x⊥ would be more appropriate in our case. This
indicates that the spatial regain of the QGP is smaller
compared to the Gubser flow, but the lifetime of the system
in the plasma phase is longer than in the Gubser case.
Figure 4 displays the energy density ϵðτ; x⊥Þ ¼ ϵ0ðτÞ þ

ϵ1x⊥ðτ; x⊥Þ as a function of x⊥ or τ at a fixed value of either τ
or x⊥. It is important to note that the total energy density is
given by ϵðτ; x⊥; ηÞ ¼ ϵ0 þ ϵ1x⊥ þ ϵ1η. The analysis also
includes a comparison with the Gubser flow. The results
indicate that the majority of energy distribution is con-
centrated at small values of x⊥ < 5 fm. Furthermore, the
left panel of Fig. 4 demonstrates that the spatial distribution

of energy density is comparatively smoother than that of the
Qubser flow’s energy density. Figure 5 shows the energy
density ϵðτ; x⊥Þ=ϵ0 as a function of x⊥ for different values
of τ or as a function of τ for different values of x⊥,
respectively.
To evaluate the efficacy of our model, we derive the

coefficients ck in (2.33) by employing an alternative radial
flow profile, as investigated in [22], at the initial proper
time τ0. The coefficients ck are obtained through the
utilization of the orthogonality of Bessel functions, and
are expressed as follows:

ck ¼ 2

a2ðJ2ðβ1kÞÞ2J1
3
ðβ1k τ0

a
ffiffi
3

p Þ

×
Z

a

0

tan hðx⊥=50Þ
γ

J1

�
β1k

x⊥
a

�
dx: ð3:2Þ

Upon conducting a first order expansion calculation, it has
been determined that γ̄ ≃ 1. As a result, the transverse fluid
velocity can be expressed as

v⊥ ≃ uð1Þðx⊥; τÞ

¼
X
k

�
2

a2ðJ2ðβ1kÞÞ2J1
3
ðβ1k τ0

a
ffiffi
3

p Þ

×
Z

a

0

tan hðx⊥=50ÞJ1
�
β1k

x⊥
a

�
dx⊥

�

× J1ðkx⊥Þτ2=3J1
3

�
kτffiffiffi
3

p
�
: ð3:3Þ

Figure 6 displays the transverse velocity v⊥ ≃ u1 as a
function of transverse radius x⊥ for various values of the
proper time τ. The radial flows are compared, with the
coefficients ck being derived from distinct initial condi-
tions. The transverse velocity was displayed by the solid
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FIG. 4. Left: the total energy density ϵðτ; x⊥Þ as a function of transverse radius x⊥ at τ ¼ 3 fm. Right: the total energy density ϵðτ; x⊥Þ
as a function of proper time τ at x⊥ ¼ 3 fm. The blue curve correspond to present work and the red curve to [8]. With parameters chosen
as q ¼ 1=6.4 fm−1, τ0 ¼ 1 fm, ϵ̂0 ¼ 1500, and ϵc ¼ 5.4 GeV=fm3.
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FIG. 3. The two-dimensional fluid velocity ðuτ=
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Þ is plotted with parameters chosen as q ¼

1=6.4 fm−1, τ0 ¼ 1 fm, ϵ̂0 ¼ 1500, and ϵc ¼ 5.4 GeV=fm3.
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lines utilizing the initial conditions derived from the
phenomenological proposal v⊥ ¼ tan h x⊥

50
at τ0 ¼ 0.6.

The transverse velocity, derived from the initial conditions
proposed by Gubser at τ0 ¼ 0.6 for two distinct values of q,
was represented by dashed lines in the plot. The results of
our study suggest that, for a value of q equal to 1=6.4 fm−1

and x⊥ < 5, the radial velocity of systems with varying
initial conditions converge to a common late-time behavior.
However, it is observed that this convergence does not
occur when q deviates from the aforementioned value, as
depicted in the left panel of Fig. 6. This finding is in
accordance with the results presented in [23], which have
also concluded that selecting q ¼ 1=6.4 fm produces
reasonable spectra for both pions and protons.
When comparing with phenomenological studies, it is

important to note that the linear solution is only applicable
for small perturbations. Therefore, the reliability of our

results may be limited to the qualitative level. However, our
linear solution may have relevance to certain aspects of the
expanding fluid in heavy-ion collisions. Additionally, it
should be emphasized that this work presents an approxi-
mate calculation, which can be valuable for cross-checking
current and future numerical calculations in specific limit-
ing regions. It is worth noting that a comprehensive
description of the dynamical evolution of the created
fireball can be effectively achieved through the use of
relativistic hydrodynamics, including viscous corrections.
To accomplish this, a numerical code that solves the
equations of (1þ 3)-dimensional relativistic hydrodynam-
ics is required.

B. The longitudinal expansion

The QGP system that undergoes evolution in relativistic
heavy-ion collisions is inherently nonboost invariant.
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FIG. 6. The transverse velocity v⊥ as a function of transverse radius x⊥ for several values of τ, measured in fm. The solid lines
displayed the transverse velocities where ck are obtained from the phenomenological proposal v⊥ ¼ tan hx⊥=50 at τ0 ¼ 0.6 fm. The
dashed lines displayed the transverse velocities where ck are obtained from the Gubser proposal at τ0 ¼ 0.6 fm. The initial proper time is
chosen as τ0 ¼ 0.6 fm. Two different values of q ¼ 1=11.24266 fm−1 (left panel) and q ¼ 1=6.4 fm−1 (right panel) are chosen for the
Gubser proposal as initial conditions.
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FIG. 5. Left: ϵðτ; x⊥Þ in terms of proper time τ for different value of x⊥. Right: ϵðτ; x⊥Þ in terms of transverse radius x⊥ for different
value of τ. With parameters chosen as q ¼ 1=6.4 fm−1, τ0 ¼ 1 fm, ϵ̂0 ¼ 1500, and ϵc ¼ 5.4 GeV=fm3.
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The hot medium is confined within a finite range of
rapidity, while the system remains dilute outside of this
window. Within this subsection, we present a novel set of
solutions to the hydrodynamic equations that do not exhibit
boost invariance. We illustrate the impact of a disrupted
longitudinal boost invariant motion on the solutions of
relativistic hydrodynamics. Our general solutions, denoted
as (2.52) and (2.56), delineate the effects of nonboost
longitudinal expansion of the fluid. These solutions have
been employed to approximate the correction fluid rapidity
vηðτ; ηÞ ≃ Y1ðτ; ηÞ and the correction longitudinal energy
density ϵ1η that arise from the hydrodynamic solutions
expressed in Eqs. (2.53) and (2.57).
In this study, we have conducted an investigation into the

dynamical evolution of the fluid rapidity. The results of this
investigation are presented in Fig. 7, which depicts the

evolution of λ ¼ Y
η ¼ Y1ðτ;ηÞþη

η as a function of η for various
values of τ (the left panel), or as a function of τ for different
values of η (the right panel). It is important to note that λ is
commonly referred to as the acceleration parameter [19], as

it characterizes the acceleration of the longitudinal flow.
The analysis reveals that the acceleration parameter exhib-
its a decreasing trend as the absolute value of η increases.
However, it is noteworthy that a plateau is observed for the
late-time regime. The plotted data indicates that an increase
in η leads to a reduction in the acceleration parameter, and
over time, the attenuation of λðτ; ηÞ occurs over a broad
range of rapidity. This implies that the flow experiences a
greater acceleration at lower values of η or τ.
Figure 8 shows the ratio of energy density ϵðτ; ηÞ=ϵ0 in

terms of η for several values of τ (left panel), or in terms of τ
for several values of η (right panel). In according to the left
panel of Fig. 8, the energy density rapidity distribution at
the early time when QGP is formed has a Gaussian shape,
while at the late time it becomes rather a plateau. It is found
that energy density slowly flows toward high rapidity at the
later time. The ratio of energy density ϵðτ; ηÞ=ϵ0 in terms of
η (the left panel) or in terms of proper time τ (right panel) is
exhibited in Fig. 9 for several different values of A1 and A2.
As is evident, the shape of energy density profile depends
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FIG. 8. Right: ϵηðτ; ηÞ=ϵ0 as a function of the space-time rapidity η with different values of τ. Right: ϵηðτ; ηÞ=ϵ0 as a function of proper
time τ with different value of η. The values A1 ¼ 0.3 and A2 ¼ −0.07 are chosen.
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FIG. 7. Right: acceleration parameter λðτ; ηÞ ¼ Yðτ; ηÞ=η ≃ Y1ðτ;ηÞþη
η in terms of η with different value of τ. Right: λðτ; ηÞ in terms of η

with different value of η. The values A1 ¼ 0.3 and A2 ¼ −0.07 are chosen.
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on the free parameters A1, A2. These parameters should be
fixed with the rapidity dependence of particle yield, which
can be computed in the theory and measured in experi-
ments. Also, in left panel of Fig. 9, we demonstrate
ϵðτ; ηÞ=ϵ0 in terms of rapidity for different fixed proper
times. It can be seen that at the early times, the plot has a
Gaussian distribution, while at the late time, it becomes a
plateau around the small rapidity.

Finally, Fig. 10 illustrates the total energy density
ϵðτ; x⊥; ηÞ as a function of x⊥ and η at a fixed value of
τ ¼ 2 fm, or as a function of τ and η at a fixed value of
x⊥¼ 3 fm. The figure indicates that the energy density is
most significantly altered in the central region, where a
reduction is observed in both cases. Additionally, Fig. 11
displays the total energy density ϵðτ; x⊥; ηÞ as a function of
τ and x⊥ at a fixed value of η ¼ 2.
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FIG. 9. Left: ðϵηðτ; ηÞ þ ϵ0Þ=ϵ0 as a function of the space-time rapidity η with different values of τ. Right: ðϵηðτ; ηÞ þ ϵ0Þ=ϵ0 as a
function of proper time τ with different values of η. The values A1, A2 are chosen: A1 ¼ 0.3; A2 ¼ −0.07 (top panel), A1 ¼ 0.1; A2 ¼
−0.01 (middle), and A1 ¼ 0.1; A2 ¼ −0.1 (bottom) respectively.
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IV. CONCLUSION

In this study, we present a novel extension of Bjorken
flow that accounts for a medium with finite transverse
dimensions, which undergoes radial and axial expansion.
Additionally, we explicitly consider the breaking of boost
invariance, while preserving its fundamental character-
istics. The conservation equations are solved analytically
and perturbatively, leading to the derivation of a new set of
exact solutions for the 1þ 2D ideal hydrodynamics. These
solutions are capable of accurately describing heavy-ion
collisions at finite collision energies. We provide a detailed
analysis of the modifications to the fluid velocity and
energy density resulting from our proposed approach.

The present study involves the identification of terms that
are proportional up to the second order in λ1, resulting in a set
of equations. However, the conservation equations have only
been solved up to the first-order expansion, with the general
solutions expressed in terms of a series. To obtain physical
solutions, we impose the analytic conformal solutions
discovered by Gubser [8] at τ ¼ τ0. The coefficients of
the general solutions in transverse expansions are then
determined through the utilization of the orthogonality of
Bessel functions. In the longitudinal expansions, the constant
coefficientsA0,Am, andBm are determined basedonphysical
conditions and some simplifications. It should be noted that
knowledge of the flow rapidity profileYðτ; ηÞ at initial proper
time τ0 is necessary, but for simplicity, only the first two
terms in Eq. (2.52) have been retained, representing the
corrected flow rapidity solutions. Finally, utilizing a first-
order perturbation expansion, we have derived the energy
density, transverse flow velocity, and flow rapidity.
To investigate the expansion of flow in the transverse

plane, we have opted to utilize the Gubser flow as our initial
flow configuration. The transverse expansion of the quark-
gluon plasma has been characterized by two parameters,
specifically q and bϵ0, which have been introduced by
Gubser’s solution. Our objective has been to explore the
parameter space of these two parameters in order to identify
suitable values that can accurately simulate heavy-ion
collisions. It has been observed that selecting bϵ0 ¼ 1500
and 1=q ¼ 6.4 fm yields reasonable results. Additionally, a
comparison has been conducted between the radial velocity
and correction energy density obtained from our model and
those obtained from theGubser model. The findings indicate
that the distribution of energy density in our model is
comparatively smoother than that of the Gubser flow.
Furthermore, we have evaluated the transverse flow velocity
obtained from ourmodel in relation to the phenomenological
proposition of v⊥ ¼ x⊥

50
. In fact, an alternative radial flow

FIG. 10. ϵðτ; x⊥; ηÞ. The values A1 ¼ 0.3, A2 ¼ −0.07, q ¼ 1=6.4 fm−1, τ0¼ 1 fm, ϵc ¼ 5.4, and ϵ̂0 ¼ 1500 are chosen.

FIG. 11. ϵðτ; x⊥; ηÞ. The values A1 ¼ 0.3, A2 ¼ −0.07,
q ¼ 1=6.4 fm−1, τ0¼ 1 fm, ϵc ¼ 5.4, and ϵ̂0 ¼ 1500 are chosen.
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profile has been employed at the initial proper time τ0,
as investigated in the study conducted by [22], in order
to calculate the coefficients ck of our general solutions.
Subsequently, a comparison has been made between the
radial flows obtained from different initial conditions,
namely the Gubser flow and the phenomenological proposal
profiles. The results of our analysis have indicated that, when
the value of q is set to 1=6.4 fm−1 and x⊥ < 5, the radial
velocities of systems with varying initial conditions tend to
converge towards a common late-time behavior.
The present study focuses on investigating the longi-

tudinal expansion of the flow in a particular model, which
exhibits a partial breakdown of boost invariance in longi-
tudinal expansion. The rapidity distribution of the energy
density has been obtained through computations using a
perturbative method. Our findings indicate that the rapidity
distribution is approximately Gaussian, albeit with a broad
shape. Consequently, the deviations from the Bjorken flow
are not substantial. In order to analyze the overall character-
istics of the flow, we also derived approximate solutions for

the acceleration parameter under the assumption of broad
Gaussian distributions in the central region. To accomplish
this, appropriate values for the free parameters A1 and A2,
which describe the expansion of the quark-gluon plasma in
the longitudinal direction, have been selected.
In our analysis, we have adopted a perturbative approach

to model the plasma, which is superimposed on the
background flow, rather than conducting a comprehensive
hydrodynamical calculation. The insignificance of the
observed effects validates our methodology. However,
we must emphasize that our calculations are based on
several crucial assumptions; namely, we have considered
the medium’s two fundamental properties, assuming central
collisions that lead to azimuth symmetry, a small transverse
velocity compared to longitudinal expansion ðu⊥ ≪ 1Þ,
and a soft breakdown of boost invariance ðY − η ≪ 1Þ.
Relaxing these assumptions could yield intriguing out-
comes and warrant further investigation. Nonetheless, any
deviation from these assumptions would render the calcu-
lation significantly more complex.
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