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The excitation spectra of Λc and Λb baryons are investigated by using a quark-diquark model in which a
single-heavy baryon is treated as the bound state of a heavy quark and a scalar diquark. We take two types
of relativistic corrections into account for the quark-diquark potential. In the first type, we consider the one-
gluon exchange between the heavy quark and one of the light quarks in the diquark. In the second, we
consider the one-gluon exchange between a scalar particle and a heavy quark. We find that there is a large
difference between the two types of corrections due to different treatments of the internal color structure of
the diquark. The relativistic corrections are important for the solution to the string tension puzzle,
particularly, the Darwin term makes a large contribution.
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I. INTRODUCTION

Understanding the structure of hadrons is one of the most
important topics in hadron physics. It is too complex to
describe the properties of hadrons in quantum chromody-
namics (QCD) directly since QCD is nonperturbative at low
energies, so identifying the effective degree of freedom for
hadrons is essential. The constituent quark plays a key role
as the effective degree of freedom inside hadron, and, a
diquark which is a two-quark pair correlation may also be
one [1–4]. This is particularly true of a diquark with an
antisymmetric color, flavor, and spin, also known as a good
diquark, as it has the most attractive correlation [5]. The
structure of hadrons is investigated in the viewpoint of
diquark, for example, for baryons [1,2,6–18] and light
scalars [19–22].
Single-heavy baryons (called heavy baryons hereafter)

particularly show promise for reaching the properties of
diquarks due to the mass difference between the light
quarks and the heavy quark [9–15,17]. The Λcð2595Þ and
Λcð2625Þ baryons are the lowest excited states and can be
interpreted as the excitation of the λ-mode which is the
relative motion between the heavy quark and the center of
mass of light quarks, because these baryon can be regarded
as spin-orbit (LS) partners of the rotational excitation of the
heavy quark [23]. With this speculation the light quark

component can be considered as a good diquark. The
important point here is that the diquark correlation works as
an effective degree of freedom in the heavy baryon.
The mass spectra of heavy baryons have been inves-

tigated in quark-diquark models in many previous works.
In Ref. [24], the mass spectra of Λc and Σc baryons with
JP ¼ 1=2þ were investigated by using a quark-diquark
approach. It reported that the light-heavy diquark compo-
nent may be as important as the light-light diquark
component. In Ref. [17], the masses of the ground state
of Λ, Λc, and Λb baryons were calculated in the QCD sum
rule in which the diquark was introduced as an elementary
field. They estimated the constituent diquark mass to
0.4 GeV and found that the QCD sum rule works well
for these baryons. In Ref. [11], the excitation spectra of Λc
and Λb baryons were calculated in a quark-diquark model
with the Coulomb-plus-linear-type potential. The diquark
there is assumed to be a pointlike good diquark, and the
heavy baryons are treated as the bound systems of the
heavy quark and diquark. The confinement potential may
depend only on the color charge. If the diquark in the
heavy baryon has the same color as the antiquark, it would
be reasonable to use the same potential for both quark-
antiquark and quark-diquark systems. However, Ref. [11]
found the possibility that the confinement force between
the quark and the diquark was about half of that in the
quark-antiquark system in order to reproduce the exper-
imental value of the Λc 1p excitation energy. In Ref. [13],
this puzzle, which we call a string tension puzzle hereafter,
was tackled by considering the diquark size for the
calculation of the excitation spectra of the Λc baryon.
According to this work, the size effect of the diquark
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reduces the excitation energy, and the diquark size
ρ ≃ 1.1 fm reproduces the Λc 1p excitation energy of
0.33 GeV. However, the spin-dependent force is not
included in the potential.
In this paper, we consider relativistic corrections to the

quark-diquark potential as an alternative approach to this
puzzle. Assuming that one heavy quark and light scalar
diquark compose the heavy baryon, we consider two types
of relativistic corrections for the quark-diquark potential.
The diquark inside the heavy baryon is assumed to have
anti-color 3̄ and spin singlet S ¼ 0. One is derived by
considering a one-gluon exchange between the heavy quark
and the light quarks in the diquark and the other by
considering a one-gluon exchange between the quark and
the scalar diquark. In the former approach, the relativistic
corrections are calculated so that the diquark is composed of
two light quarks, and in the latter, the diquark is assumed to
be a scalar particle not having an internal color structure.
Since the confinement force mainly depends on only the
color charge and the good diquark has the same color charge
as the antiquark in quarkonia, we may determine the
parameters of the potential in the quark-diquark system
by quarkonium spectra. We will see that the Darwin term
plays an important role to improve the model calculation.
We will also calculate the Ξc excitation spectra to check the
consistency of this model.
This article is organized as follows. In Sec. II, we

calculate two types of the one-gluon exchange potential
to introduce the relativistic corrections. In Sec. III, we
determine model parameters to reproduce the mass spectra
of the charmonium, and show the excitation spectra of the
Λc, Λb, and Ξc baryons calculated with those parameters.
Section IV is devoted to the summary.

II. FORMULATION

We describe the heavy baryon in a quark-diquark model.
The diquark is assumed as the pointlike good diquark
which has antisymmetric color, flavor, and spin under the
exchange of quarks in the diquark.
We introduce two types of relativistic corrections whose

differences come from the consideration of the color
structure of the scalar diquark. One is that the color structure
of the scalar diquark is considered by treating the diquark as
a pair of two fermions. The relativistic corrections are
derived from the interaction between the heavy quark and
one of the light quarks inside the scalar diquark. We call this
potential q-Q type potential. The other is that the internal
color structure of the scalar diquark is not considered and
the diquark is just treated as a scalar particle with color 3̄.
The relativistic corrections are derived from the interaction
between the scalar particle and the heavy quark. We refer to
this potential S-Q type potential.
We calculate the matrix elements of the considering

quark-diquark potential V for each partial wave to obtain
the effective potential Veff as

VeffðrÞ ¼ h2Sþ1LJjVj2Sþ1LJi ð1Þ

which is calculated below in the following subsections. We
write the angular momentum state as j2Sþ1LJi with the total
spin S and the total angular momentum J. Then, we can get
the Schrödinger equation describing this system as

�
−

1

2μ

1

r
d2

dr2
rþ VeffðrÞ þ V0 þ

LðLþ 1Þ
2μr2

�
RðrÞ ¼ ERðrÞ:

ð2Þ

Here RðrÞ is the radial wave function, μ ¼ mdmQ

mdþmQ
is the

reduced mass with the diquark mass md and the heavy
quark mass mQ, and V0 is a constant. The total energy of
the system is given by E. Since we are interested in the
excitation spectra of heavy baryons, the constant V0 is
irrelevant to this analysis.

A. q-Q type potential

In this subsection, we derive q-Q type quark-diquark
potential with the QCD Breit-Fermi potential. We construct
the two-body potential for the quark-diquark system by
summing the quark-quark interactions between one of the
light quarks and the heavy quark, and taking the distance
between the two light quarks to zero (ρ → 0) as in Fig. 1, for
the pointlike diquark.
We start from the quark-quark potential. The scattering

amplitude Mqq with the one-gluon exchange between
quark-1 and quark-2 is expressed as

−iMqq ¼ 4π
2

3
αsūðp⃗0

1Þγμuðp⃗1ÞDμνðq⃗Þūðp⃗0
2Þγνuðp⃗2Þ; ð3Þ

where αs is the strong fine structure constant and Dμν is the
gluon propagator. Here we consider a quark pair with color
3̄ and factor 2=3 in Eq. (3) is a color factor for the 3̄ quark
pair. The gluon three-momentum q⃗ is given by q⃗ ¼ p⃗0

1 −
p⃗1 ¼ p⃗2 − p⃗0

2 with momenta p⃗1 and p⃗0
1 of quark-1 in the

initial and final states and ones p⃗2 and p⃗0
2 of quark-2 in the

initial and final states. The quark spinor is given as

uðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2E

r � χ
σ⃗·p⃗
Eþm χ

�
; ð4Þ

where χ denotes a two component spinor and σ⃗ is the Pauli
matrix. Here, the normalization factor is determined to
satisfy the normalization u†u ¼ 1, because the wave
function in the Schrödinger equation is normalized in such
a way [25–27].
We reduce the amplitude of Eq. (3) in the small

momentum expansion up to Oðp⃗2

m2Þ as

S. KINUTANI, H. NAGAHIRO, and D. JIDO PHYS. REV. D 108, 094011 (2023)

094011-2



Mqq ¼ 4π
2αs
3

−1
q⃗2

χ0†1χ
†
1χ

0†
2χ

†
2

�
1 −

�
1

8m2
1

þ 1

8m2
2

�
q⃗2 þ iσ⃗1 · ðq⃗ × p⃗1Þ

4m2
1

−
iσ⃗2 · ðq⃗ × p⃗2Þ

4m2
2

−
q⃗2

4m1m2

σ⃗1 · σ⃗2

þ ðσ⃗1 · q⃗Þðσ⃗2 · q⃗Þ
4m1m2

−
iσ⃗1 · ðq⃗ × p⃗2Þ

2m1m2

þ iσ⃗2 · ðq⃗ × p⃗1Þ
2m1m2

−
1

m1m2

�
p⃗1 · p⃗2 −

ðp⃗1 · q⃗Þðp⃗2 · q⃗Þ
q⃗2

��
χ01χ1χ

0
2χ2; ð5Þ

where m1 and m2 are masses of quark-1 and quark-2, respectively.
The quark-quark potential Vqq is defined by the Fourier transform of the scattering amplitude (5) as

Vqqðp⃗1; p⃗2; r⃗Þ ¼
Z

d3q
ð2πÞ3 e

−ir⃗·q⃗Mqqðp⃗1; p⃗2; q⃗Þ; ð6Þ

where r⃗ is the relative coordinate between two quarks. Thus we obtain the quark-quark potential as

Vqqðp⃗1; p⃗2; r⃗Þ ¼ −
2

3
αs

�
1

r
−

8π

3m1m2

s⃗1 · s⃗2δ3ðr⃗Þ−
π

2

�
1

m2
1

þ 1

m2
2

�
δ3ðr⃗Þ− 1

m1m2

1

r3

�
3ðs⃗1 · r⃗Þðs⃗2 · r⃗Þ

r2
− s⃗1 · s⃗2

�

þ 1

r3

�
s⃗1 · ðr⃗ × p⃗1Þ

2m2
1

−
s⃗2 · ðr⃗ × p⃗2Þ

2m2
2

þ s⃗1 · ðr⃗ × p⃗2Þ − s⃗2 · ðr⃗ × p⃗1Þ
m1m2

�

−
1

2m1m2

1

r

�
p⃗1 · p⃗2 þ

ðr⃗ · p⃗1Þðr⃗ · p⃗2Þ
r2

��
: ð7Þ

Summing all interactions in the considering system, we
obtain the so-called QCD Breit-Fermi potential.
Now, we derive the two-body potential for the quark-

diquark system from the interactions between the heavy
quark and the light quarks. The spacial coordinate of the
center of mass R⃗ is written as

R⃗ ¼ mðr⃗1 þ r⃗2Þ þmQr⃗3
2mþmQ

: ð8Þ

Here, m is the light quark mass and mQ is the heavy quark
mass. The relative coordinate ρ⃗ between light quarks and
the relative coordinate r⃗ between a heavy quark and the
center of mass of light quarks are written as

ρ⃗ ¼ r⃗1 − r⃗2; ð9Þ

r⃗ ¼ 1

2
ðr⃗1 þ r⃗2Þ − r⃗3: ð10Þ

After considering the interaction between the light quark
and the heavy quark, we take the diquark limit ρ⃗ → 0.
The total spin S⃗ of the system is obtained by the sum of

the heavy quark spin s⃗Q and the diquark spin s⃗d as

S⃗ ¼ s⃗d þ s⃗Q; ð11Þ

where diquark spin is given by the sum of spins of two light
quarks s⃗1 and s⃗2 as

s⃗d ¼ s⃗1 þ s⃗2: ð12Þ

Since we consider a good diquark, the diquark spin is
s⃗d ¼ 0. The total angular momentum J⃗ is written as

FIG. 1. Schematic diagrams of the heavy baryon in a quark-diquark model with the Jacobi coordinate. Quark-1 and quark-2 denote
light quarks having masses m, and quark-3 denotes the heavy quark having mass mQ. By taking the diquark limit ρ⃗ → 0, we treat the
heavy baryon as the bound system of the diquark and heavy quark.
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J⃗ ¼ L⃗þ S⃗; ð13Þ

where the relative orbital angular momentum between a
heavy quark and a diquark is L⃗. We can get the quark-
diquark potential by the sum of the confinement part Vconf
and the nonconfinement part obtained from the QCD Breit-
Ferim potential. In the following, we calculate each term of

the effective q-Q type potential VðqQÞ
Qd separately. Here we

allow to take an individual coupling constant for each term.
We first calculate the confinement term of the total

potential. We consider a liner type confinement potential
for a quark pair, which is given as 1

2
kr with the string

tension k and the distance between two quarks. The string
tension is determined by the quark-antiquark system and
factor 1=2 is the relative color factor between the quark-
quark and quark-antiquark systems. The confinement term
is written as

1

2
kfjr⃗23j þ jr⃗31jg ¼ kjr⃗j ð14Þ

by taking the diquark limit ρ⃗ → 0, that is, setting the distance
between two light quarks to zero. Thus, the confinement
potential Vconf is

Vconf ¼ kr: ð15Þ

The Coulomb term is written as

−
2

3
αCoul

�
1

jr⃗23j
þ 1

jr⃗31j
�

¼ −
4

3

αCoul
jr⃗j ð16Þ

after taking the diquark limit ρ⃗ → 0. The effective Coulomb
term VCoul can be calculated as

VCoul ¼ −
4

3

αCoul
r

: ð17Þ

We write the Darwin term for the effective q-Q potential
by taking the diquark limit ρ⃗ → 0 as

2

3
αDar

π

2

�
δ3ðr⃗23Þ

�
1

m2
þ 1

m2
Q

�
þδ3ðr⃗31Þ

�
1

m2
Q
þ 1

m2

��

¼ 2π

3
αDarδ

3ðr⃗Þ
�

4

m2
d

þ 1

m2
Q

�
; ð18Þ

where we have assumed that the light quark mass is given
by a half of the diquark mass md. The expectation value of
the delta function can be evaluated by the value of the wave
function at the origin as

Z
d3rψ�ðr⃗Þδ3ðr⃗Þψðr⃗Þ ¼ 2Lþ 1

4π
jRnLð0Þj2: ð19Þ

Thus, we obtain the effective Darwin term VDar as

VDar ¼
2π

3
αDar

�
1

m2
Q
þ 4

m2
d

�
2Lþ 1

4πr2
δðrÞ: ð20Þ

Later we will regularize the delta function to reduce the
singularity at the origin, and thus the Darwin term can
contribute also to higher partial waves but its contributions
are highly suppressed by the centrifugal barrier.
The hyperfine interaction is written as

1

2

32π

9

αHyp
mmQ

fδ3ðr⃗23Þs⃗2 · s⃗Q þ δ3ðr⃗31Þs⃗Q · s⃗1g

¼ 32π

9
αHyp

1

mdmQ
δ3ðr⃗Þs⃗d · s⃗Q: ð21Þ

by taking the diquark limit ρ⃗ → 0. Since the good diquark
has the spin s⃗d ¼ 0, the effective hyperfine interaction term
VHyp for the scalar diquark is

VHyp ¼ 0: ð22Þ

The spin-orbit interaction of the q-Q type potential is
expressed as

1

2

4

3
αLS

�
1

jr⃗23j3
��

1

4m2
þ 1

4m2
Q
þ 1

mmQ

�
L⃗2Q · ðs⃗2 þ s⃗QÞ

þ
�

1

4m2
−

1

4m2
Q

�
L⃗2Q · ðs⃗2 − s⃗QÞ

�

þ 1

jr⃗31j3
��

1

4m2
Q
þ 1

4m2
þ 1

mmQ

�
L⃗Q1 · ðs⃗Q þ s⃗1Þ

þ
�

1

4m2
Q
−

1

4m2

�
L⃗Q1 · ðs⃗Q − s⃗1Þ

��

¼ 4

3

αLS
jr⃗j3

md þmQ

md þ 2mQ

�
1

2m2
Q
þ 4

mdmQ

�
L⃗ · s⃗Q ð23Þ

by taking the diquark limit ρ⃗ → 0, where the relative orbital
angular momenta between quark-1 and the heavy quark and
quark-2 and the heavy quark are written as L⃗Q1 and L⃗2Q,
respectively. In the case of the pointlike diquark ρ⃗ → 0,
they can be written as

L⃗Q1 ¼ L⃗2Q ¼ md þmQ

md þ 2mQ
L⃗

with the relative orbital angular momentum L⃗ between the
diquark and the heavy quark. The good diquark spin s⃗d ¼
s⃗1 þ s⃗2 is zero. Thus integrating over a solid angle, we
obtain the LS term VLS of the effective potential as
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VLS ¼
4

3

αLS
r3

md þmQ

md þ 2mQ

�
1

2m2
Q
þ 2

mdmQ

�

×
1

2

�
JðJ þ 1Þ − LðLþ 1Þ − 3

4

�
: ð24Þ

The tensor term is obtained as

1

2

�
4

3mmQ

αtens
jr⃗23j

�
3ðs⃗2 · r⃗23Þðs⃗Q · r⃗23Þ

jr⃗23j2
− s⃗2 · s⃗Q

�

þ 4

3mmQ

αtens
jr⃗31j

�
3ðs⃗Q · r⃗31Þðs⃗1 · r⃗31Þ

jr⃗31j2
− s⃗Q · s⃗1

��

¼ 4

3

αtens
jr⃗j3

1

mdmQ

�
3ðs⃗d · r⃗Þðs⃗Q · r⃗Þ

jr⃗j2 þ s⃗d · s⃗Q

�
ð25Þ

by taking the diquark limit ρ⃗ → 0 and replacing the quark
mass to the diquak mass. Since the diquark spin is s⃗d ¼ 0,
the part of the bracket in the final line vanishes. Therefore
the effective tensor term V tens is

V tens ¼ 0: ð26Þ

The orbit-orbit interaction on the q-Q type potential is
expressed as

1

2

�
2

3mmQ

αoo
jr⃗23j

�
p⃗2 · p⃗Q þ ðp⃗2 · r⃗23Þðp⃗Q · r⃗23Þ

jr⃗23j2
�

þ 2

3mmQ

αoo
jr⃗31j

�
p⃗Q · p⃗1 þ

ðp⃗Q · r⃗31Þðp⃗1 · r⃗31Þ
jr⃗31j2

��

¼ 2

3

1

mdmQ

αoo
jr⃗j

�
ðp⃗1 þ p⃗2Þ · p⃗Q þ ððp⃗1 þ p⃗2Þ · r⃗Þðp⃗Q · r⃗Þ

jr⃗j2
�

ð27Þ

by taking the diquark limit ρ⃗ → 0 for the above expression
and replacing the mass of the light quark to one of the
diquark. The momentum of each quark can be rewritten
with the total momentum P⃗ and the relative momentum
p⃗ as

p⃗1 þ p⃗2 ¼
md

md þmQ
P⃗þ p⃗

and

p⃗Q ¼ mQ

md þmQ
P⃗ − p⃗:

Thus, the orbit-orbit interaction Voo is obtained as

Voo ¼ −
2

3

1

mdmQ

αoo
r

�
−
2

r
d2

dr2
rþ LðLþ 1Þ

r2

�
: ð28Þ

Collecting the above results, we have the quark-diquark
potential derived by the QCD Breit-Fermi potential as

VðqQÞ
Qd ¼ Vconf þ VCoul þ VDar

þ VHyp þ VLS þ V tens þ Voo: ð29Þ

We regularize the singularities at the origin and obtain the

q-Q type effective potential VðqQÞ
Qd as

VðqQÞ
Qd ðrÞ ¼ kr −

4

3

αCoul
r

þ 2π

3
αDar

�
1

m2
Q
þ 4

m2
d

�
2Lþ 1

4πr2
Λe−Λ2r2 þ 4

3

αLS
r3

md þmQ

md þ 2mQ

�
1

2m2
Q
þ 2

mdmQ

�

×
ð1 − e−ΛrÞ2

2

�
JðJ þ 1Þ − LðLþ 1Þ − 3

4

�
−
2

3

ð1 − e−ΛrÞ2
mdmQ

αoo
r

�
−
2

r
d2

dr2
rþ LðLþ 1Þ

r2

�
ð30Þ

with the regularization parameter Λ.
For later use, we also show the corresponding effective

potential for the quark-antiquark VQQ̄. According to the
color factor the quark-antiquark interaction is twice as
strong as the quark-quark potential. To this end, we take
the factor 1 instead of 1=2 in Eq. (7). Each term of the
regularized effective quark-antiquark potential for the heavy
quark with mass mQ is expressed as

VQQ̄ ¼ Vconf þ VCoul þ VDar þ VHyp þ VLS þ V tens þ Voo

ð31Þ

with

Vconf ¼ kr; ð32Þ

VCoul ¼ −
4

3

αCoul
r

; ð33Þ

VDar ¼
2π

3
αDar

2

m2
Q

2Lþ 1

4πr2
Λe−Λ2r2 ; ð34Þ
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VHyp ¼
32π

9m2
Q
αHyp

2Lþ 1

4πr2
Λe−Λ2r2 1

2

�
SðSþ 1Þ− 3

2

�
; ð35Þ

VLS ¼
4

3

αLS
r3

3

2m2
Q
ð1 − e−ΛrÞ2 1

2
ðJðJ þ 1Þ − LðLþ 1Þ

− SðSþ 1ÞÞ; ð36Þ

V tens ¼
4

3m2
Q

αtens
r3

ð1 − e−ΛrÞ2αS;J; ð37Þ

and

Voo ¼−
2

3m2
Q

αoo
r

�
−
2

r
d2

dr2
rþLðLþ 1Þ

r2

�
ð1− e−ΛrÞ2; ð38Þ

where Λ is the regularization cutoff. The coefficient αS;J
appearing in Eq. (37) is listed in

α0;J ¼ 0;

α1;L−1 ¼ −
Lþ 1

2L − 1
;

α1;L ¼ 1;

α1;Lþ1 ¼ −
L

2Lþ 1
: ð39Þ

The total spin S⃗ is the sum of heavy quark spins as
S⃗ ¼ s⃗1 þ s⃗2, and the orbital angular momentum is written
as L⃗, so the total angular momentum is J⃗ ¼ S⃗þ L⃗.

B. S-Q type potential

In this subsection, we derive the quark-diquark potential
by treating the diquark as the scalar particle with color 3̄.
We consider the one-gluon exchange potential between the
scalar particle and the remaining heavy quark [6]. The color
structure of the diquark is not considered in this model,
which is the difference from the q-Q type potential.
We call the obtained quark-diquark potential S-Q type

potential. Since we assume that the scalar particle have anti-
color 3̄, we take the strength of the coupling constant for the
scalar-quark system to be the same as the quark-antiquark
system. Here we use again the Breit equation [25] to derive
the effective interaction between the diquark and the
heavy quark.
The scattering amplitude MSQ for the system of a scalar

diquark and a heavy quark is expressed as

−iMSQ ¼ 4π
4

3
αs

ðp0
1 þ p1Þμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0

12E1

p Dμνūðp⃗0
2Þγνuðp⃗2Þ ð40Þ

with the momenta p⃗1 and p⃗0
1 of the scalar diquark in the

initial and final states and those p⃗2 and p⃗0
2 of the heavy quark

in the initial and final states. E1 and E0
1 denote the energies

of the scalar diquark in the initial and final states, respec-
tively. Factor 4=3 in Eq. (40) is the color factor of one gluon
exchange for the quark and 3̄ diquark. The factor 1ffiffiffiffiffiffiffiffiffiffiffi

2E0
1
2E1

p is

adapted as the normalization factor so that the time compo-
nent of its current is unity. In fact, this causes the different
expressions from the quark-diquark potential derived in
Ref. [6]. We discuss this difference and importance in detail
after completing this derivation.
We calculate the scattering amplitude in the nonrelativistic

expansion as

MSQ ¼ 4π
4αs
3

−1
q⃗2

χ0†
�
1 −

1

8m2
Q
q⃗2

−
iσ⃗ · ðq⃗ × p⃗2Þ

4m2
Q

þ iσ⃗ · ðq⃗ × p⃗1Þ
2mdmQ

−
1

mdmQ

�
p⃗1 · p⃗2 −

ðp⃗1 · q⃗Þðp⃗2 · q⃗Þ
q⃗2

��
χ: ð41Þ

Performing Fourier transform of the scattering amplitude

VSQðp⃗1; p⃗2; r⃗Þ ¼
Z

d3q
ð2πÞ3 e

−ir⃗·q⃗MSQðp⃗1; p⃗2; q⃗Þ; ð42Þ

we obtain the quark-diquark potential as

VSQðp⃗; r⃗Þ ¼ −
4

3
αs

�
1

r
− 4π

1

8m2
Q
δ3ðr⃗Þ

−
1

2mdmQr

�
p⃗2 þ ðp⃗ · r⃗Þ2

r2

�

−
1

r3

�
1

2m2
Q
þ 1

mdmQ

�
s⃗Q · L⃗

�
ð43Þ

with the relative momentum p⃗ ¼ p⃗1 ¼ −p⃗2, the spin of the
heavy quark s⃗Q, and the relative orbital angular momentum

L⃗ between the scalar particle and the heavy quark.
The S-Q type quark-diquark potential is given by the

sum of the confinement term Vconf and the nonconfinement
terms obtained from one-gluon exchange between the
scalar particle and quark as

VðSQÞ
Qd ¼ Vconf þ VCoul þ VDar þ VLS þ Voo: ð44Þ

The difference from the q-Q type potential is only the
dependence of mass of the diquark. Thus the matrix
elements can be obtained in the same way as the q-Q
type potential with different coefficients. We obtain the
effective potential as follows.
The effective confinement term Vconf can be obtained as

Vconf ¼ kr: ð45Þ
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The effective Coulomb term VCoul is

VCoul ¼ −
4

3

αCoul
r

: ð46Þ

The effective Darwin term VDar is

VDar ¼
2π

3
αDar

1

m2
Q

2Lþ 1

4πr2
δðrÞ: ð47Þ

The effective spin-orbit interaction VLS is

VLS ¼ −
4

3

αLS
r3

�
1

2m2
Q
þ 1

mdmQ

�
1

2
ðJðJ þ 1Þ

− LðLþ 1Þ − sQðsQ þ 1ÞÞ: ð48Þ

The effective orbit-orbit interaction Voo is

Voo ¼ −
4

3

αoo
r

1

2mdmQ

�
−
2

r
d2

dr2
rþ LðLþ 1Þ

r2

�
: ð49Þ

Thus the regularized S-Q type effective potential VðSQÞ
Qd is

VðSQÞ
Qd ðrÞ ¼ kr−

4

3

αCoul
r

þ 16π

3

αDar
8m2

Q

2Lþ 1

4πr2
Λe−Λ2r2

þ 4

3

αLS
r3

�
1

2m2
Q
þ 1

mdmQ

� ð1− e−ΛrÞ2
2

ðJðJþ 1Þ

−LðLþ 1Þ− sQðsQ þ 1ÞÞ

−
4

3

αoo
r

ð1− e−ΛrÞ2
2mdmQ

�
−
2

r
d2

dr2
rþLðLþ 1Þ

r2

�
:

ð50Þ

The confinement term, Coulomb term, and the orbit-
orbit interaction have the completely same forms as those
on the q-Q type potential. The spin-orbit interaction and the
Darwin term have different coefficients from those of the
q-Q type potential.
Now, we discuss the Darwin term. The Darwin term in

the S-Q type potential does not depends on the diquark mass
md as in Eq. (47). This result for a scalar particle is
consistent in Ref. [28]. According to Ref. [28], the
Darwin term appears from the order of m−3 for a scalar
particle. On the contrary, the potential between the scalar
particle and the quark in Ref. [6] has the Darwin term
containing the diquark mass in this order. Their scalar
particle current is normalized so that the time component of
its current is 2E. Here we need to normalize the wave
function of the scalar particle to satisfy that the time
component of its current is unity because this is the way
to normalize the wave function in Schrödinger equation.
The orbit-orbit interaction in our result also has different

form from that in Ref. [6] because of the difference of the
normalization, and there are some missing terms.

III. NUMERICAL RESULTS

In this section, we discuss our results of the excitation
energy spectra of quarkonia and heavy baryons. We deter-
mine the potential parameters to reproduce the experimental
spectra of charmonium. After that, we show theoretical
results of theΛc andΛb baryons calculated by using the q-Q
type and S-Q type potentials. We also calculate the
excitation spectrum of the Ξc baryon by using the q-Q
type potential.

A. Model parameters

The diquark inside a heavy baryon has the same color as
the antiquark inside a quarkonium. Since the confinement
force depends only on the color charge and not on the flavor
in the first approximation, it is reasonable to use the same
potential for the quark-diquark system as for the quark-
antiquark system. We determine the potential parameters to
reproduce the experimental spectrum of charmonium.
The parameters appearing in the potential are the string

tension k in the confinement part, the regularization param-
eter Λ, the fine structure constants αs in the nonconfinement
part, and the masses of the heavy quark and the diquark. The
string tension k is fixed as k ¼ 0.9 GeV=fm, which repro-
duces the global excitation spectra of the charmonium and
bottonium [11], and the charm quark mass is set to be
mc ¼ 1.5 GeV. We consider two parameter sets. In param-
eter set 1, we assume a common coupling constant αs in the
nonconfining potential. We determine αs and Λ from the
charmonium spectrum. In parameter set 2, we allow fine-
tuning of the spectrum by introducing individual coupling
constants for the nonconfinement terms. The coupling
constants, αCoul; αDar; αHyp; αLS; αtems, and αoo, are deter-
mined together with Λ by the charmonium spectrum. The
determined values are listed in Table I.
We show the excitation energy spectrum of charmonium

calculated with the determined parameters in Fig. 2, where
the excitation energies are measured from the lowest state.
We also show the excitation energy spectrum of bottomo-
nium obtained with the same parameter sets for compari-
son. The bottom quark mass is set asmb ¼ 4.0 GeV. As we

TABLE I. Parameter sets of the potentials determined to
reproduce the experimental spectrum of the charmonium. For
parameter set 1, the nonconfinement terms have a single parameter
αs. Parameter set 2 introduces individual coupling constants for
the nonconfinement terms: αCoul; αHyp; αDar; αtens; αLS and αoo.

αCoul αHyp αDar αtens αLS αoo k ½GeV=fm� Λ ½fm−1�
Number 1 0.37 0.9 8.1
Number 2 0.40 0.32 0.22 0.54 0.46 0.65 0.9 6.4
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can see, these parameters also reproduce the bottomonium
spectrum well. The spectra calculated with parameter set 2
reproduce the experimental values better than those with
parameter set 1.

B. Excitation spectra of Λc and Λb
with q-Q type potential

In this subsection, we calculate the excitation spectra of
the Λc and Λb baryons by using the q-Q type potential. In
this article, we assume that the mass of the nonstrange
scalar diquark is md ¼ 0.5 GeV.

Figure 3 shows the excitation spectra of the Λc and Λb
baryons calculated with the q-Q type potential by using the
parameter sets in Table I. As we can see, the 1p excitation
energies and LS splitting are reproduced the experimental
data better than the previous work [11] but they are slightly
overestimated. The higher excitation energies are not
reproduced. The Λc1p excitation energies for parameter
set 1 reproduce the experimental data better than those for
parameter set 2, in contradiction to the results for the
charmonium. This implies that it is hard to reproduce both
spectra of the quarkonia and heavy hadrons by common
parameters. In Ref. [11], the calculated excitation energy of

FIG. 2. Excitation spectra of the charmonium and bottomonium measured from the ground states. The masses of the charm bottom
quarks are with mc ¼ 1.5 GeV, and mb ¼ 4.0 GeV, respectively. The parameters are determined to reproduce the experimental data
of the charmonium. Two parameter sets are considered as shown in Table I. The experimental data are taken from the Particle Data
Group [29].

FIG. 3. Calculated spectra with the q-Q type potential for Λc and Λb systems. The parameter sets shown in Table I are used. The
experimental data are taken from the Particle Data Group [29].
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the Λc1p state was overestimated to be about 140 MeV if
one uses the parameters αs ¼ 0.4 and k ¼ 0.9 GeV=fm
which is determined so as to reproduce the quarkonia
spectra. In contrast, in our work, the energy difference
between the experimental and theoretical values is about
70–115 MeV. The calculated Λc1p excitation energies are
improved roughly 20% or more by taking the relativistic
corrections in the q-Q type potential model. The relativistic
correction is significant for the heavy baryon spectra.
Next we discuss the LS splitting. We find that the LS

splitting is slightly overestimated comparing the experi-
mental data. We find that if we change the value of the
parameter αLS of the LS term, the LS splitting of the Λc
baryon can be fitted simultaneously to the experimental data
but 1p excitation energies cannot be done. Both of them can
be fitted to the experimental data only by changing the
strength of the string tension k, which is a similar situation
with Ref. [11]. In Fig. 4, we show the excitation spectra of
the Λc and Λb baryons calculated with the q-Q type
potential by using parameters given in Table I but with
different string tensions. The string tension is redetermined
to reproduce the spin-weighted average of the excitation
energies of theΛc1p states, 0.330 GeV. For parameter set 1,
the string tension is found to be k ¼ 0.63 GeV=fm, and for
parameter set 2, it is to be k ¼ 0.50 GeV=fm. As we can
see, the LS splitting of the Λc baryon matches the
experimental data as well as the 1p excitation energies.
The string tension has to be reduced by 30–40% to
reproduce the experimental data of both 1p excitation
energies and the LS splitting quite well, although its
reduction is smaller than that invented in Ref. [11].
Here, let us move on the discussion for other excitation

states. In contrast to the 1p excitation states, higher

excitation states do not match the experimental data and
they are overestimated considerably. Many studies have
found that the theoretical spectra of Λcð2765Þ are overesti-
mated as the Λc2s state against the experimental observa-
tion, which is suggested to appear as a Roper-like state.
Similarly, our result for the Λc2s state is about 1.4 times
larger than the experimental data, which is consistent with
those works. As for the Λcð2880Þ, Ref. [30] evaluated the
decay widths of charmed baryons from one-pion emission
and found that the diquark inside Λcð2880Þ potentially
having spin 1 can explain the small decay ratio between
Λ�
c → Σ�

cð2520Þπ and Λ�
c → Σcð2455Þπ. This model also

implies that the Λcð2880Þ does not have the spin 0 diquark.
Next we discuss the effect of each term of the potentials

for the charmonium spectra and Λc spectra. Figure 5 shows
the excitation spectra of the charmonium and Λc baryon
calculated with the potentials as

ðiÞ V ¼ Vconf þ VCoul

ðiiÞ V ¼ Vconf þ VCoul þ VDar

ðiiiÞ V ¼ Vconf þ VCoul þ Voo

ðivÞ V ¼ Vconf þ VCoul þ VDar þ Voo ð51Þ

by using the q −Q type potential for the Λc baryon. Here,
we fix the parameters as αs ¼ 0.4, k ¼ 0.9 GeV=fm, and
Λ ¼ 3.5 fm−1. The values of parameters αs and k are used
in Ref. [11] and the value of Λ is used in Ref. [23]. The
common parameter in the nonconfinement part αs is utilized
to examine the effect of the potential term. We find that the
effect of relativistic corrections for the charmonium spectra
is rather small. From Fig. 5 (i) and (ii) on the charmonium

FIG. 4. Calculated spectra with q −Q type potential for the Λc and Λb baryon. The string tensions are redetermined to reproduce the
Λc1p excitation energies for each parameter set. For parameter set 1, the value of the string tension is k ¼ 0.63 GeV=fm, and for
parameter set 2, that is k ¼ 0.50 GeV=fm. Experimental data are taken from the Particle Data Group [29].
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part, we find that the level spacing between 1s and 1p
becomes smaller owing to the Darwin term, which reduces
the 1p excitation energy by 20 MeV. This is because the
Darwin term is repulsive for 1s state and lifts its energy level
up. Looking at (iii) on the charmonium part in Fig. 5, the
orbit-orbit interaction increases the 1p excitation energy of
the charmonium by about 5 MeV, which is very small.
As for the Λc part, the effect of the Darwin term is large

for the Λc spectra while that of the orbit-orbit interaction is
small. The Darwin term reduces the 1p excitation energy
by 88 MeV. The effect of the Darwin term for the Λc
excitation spectra is thus more significant than that for the
charmonium because of the different mass dependence of
the Darwin term as

VDar ¼
2π

3
αDar

2

m2
Q

2Lþ 1

4πr2
Λe−Λ2r2 ð52Þ

for the charmonium and

VDar ¼
2π

3
αDar

�
1

m2
Q
þ 4

m2
d

�
2Lþ 1

4πr2
Λe−Λ2r2 ð53Þ

for the Λc baryon. We can see that the Darwin term for the
Λc baryon contains the term depending on the diquark mass
1=m2

d which remains finite even in the heavy quark limit
(mh → ∞). This term provides large influence for the Λc
spectra. The orbit-orbit interaction whose effect on the
Λc1p excitation spectra is 10 MeV, has small effect on the
excitation spectra of the Λc baryon with the q-Q type

potential. Thus, the Darwin term is not so important for the
charmonium, but important for the Λc.
In conclusion, the relativistic corrections are not enough

large to reproduce theΛc 1p excitation energy, but thanks to
the effect of the Darwin term, it is unnecessary to reduce the
string tension in a quark-diquark system to as much as half
of that in the quark-antiquark system to reproduce the 1p
excitation energy ofΛc baryon. The existence of the Darwin
term related to the diquark mass can be one of the keys of
the solution to the string tension puzzle.

C. Excitation spectra of Λc and Λb
with S-Q type potential

In this subsection, we discuss the energy spectra of the
Λc and Λb baryons calculated by using the S-Q type
potential.
Figure 6 shows the Λc and Λb excitation spectra

calculated with the S-Q type potential for parameter set
1. As we can see, all the calculated excitation energies are
larger than the experimental values. Focusing on the Λc1p
excited energies, we find that the energy difference between
the calculated results and the experimental data is about
170 MeV, which is 1.2 times as large as that in Ref. [11].
Next we discuss each contribution of the relativistic

correction. Figure 7 shows the excitation spectra of Λc
baryon calculated by using the potentials (i)–(iv) listed in
Eq. (51) whose terms are taken from the S-Q type potential,
and we use parameters αs ¼ 0.4, k ¼ 0.9 GeV=fm, and
Λ ¼ 3.5 fm−1 to see effects of each term for the excitation
spectra of Λc. Effects of all terms of the potential are small,
and they are 5 MeV. Comparing (ii) on the Λc part in Fig. 5

FIG. 5. Excitation energies calculated with potentials (i)–(iv) listed in Eq. (51). The charmonium spectra are on the left side, and theΛc
spectra are on the right side. The Λc spectra are calculated with the q −Q type potential. The potential parameters are fixed to αs ¼ 0.4,
k ¼ 0.9 GeV=fm, and Λ ¼ 3.5 fm−1.
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to that in Fig. 7, in contrast to the q-Q type potential, the
effect of the Darwin term on the S-Q type potential is much
smaller. The term depending on the diquark mass in the
Darwin term does not exist in the S-Q type potential (47),
and this causes a large difference between the heavy baryon
spectra with the q-Q and S-Q type potentials. Table II

shows the expectation values of the orbit-orbit interaction
for each state of the charmonium and the Λc baryon with
the S-Q type potential. As we can see, since the orbit-orbit
interaction is attractive and its effects for the s state are a
bit larger, the energy differences between the 1s state and
the 1p and 1d states become enhanced. Thus, the Λc1p
excitation energies calculated with the S-Q type potential
are larger than those calculated in Ref. [11]. Nevertheless,
we find that the magnitudes of the relativistic corrections
for the S-Q type potential are not so large.
As done in Ref. [11], we redetermine the string tension to

reproduce the spin-weighted average of the excitation
energies of the Λc1p states, 0.330 GeV. To reproduce
the experimental data, we find the string tension k is needed
to become smaller k ¼ 0.42 GeV=fm for parameter set 1.
Figure 8 shows the calculated excitation spectra with this
string tension.
In conclusion, the relativistic corrections for the S-Q

type potential are too small to solve the string tension
puzzle, so we have to reduce the string tension k to
reproduce the experimental spectrum with the S-Q type

FIG. 6. Calculated spectra with the S-Q type potential for Λc and Λb systems. The experimental data are taken from the Particle Data
Group [29]. Parameter set 1 shown in Table I is used.

FIG. 7. Excitation energies of Λc calculated with potentials
(i)–(iv) in Eq. (51) for the S −Q type potential. The potential
parameters are fixed to αs ¼ 0.4, k ¼ 0.9 GeV=fm, and
Λ ¼ 3.5 fm−1.

TABLE II. Expectation values of the orbit-orbit interaction for
each state of the charmonium and the Λc baryon calculated with
S-Q type potential in unit of GeV. Parameters αs ¼ 0.4,
k ¼ 0.9 GeV=fm, and Λ ¼ 3.5 fm−1 are used.

1s 1p 2s 1d

cc̄ −0.030 −0.026 −0.036 −0.024
Λc with S-Q type −0.051 −0.041 −0.064 −0.037
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potential. And then, the string tension puzzle still remains.
We can see that there is a large difference between the two
potential models stemming from treating the color structure
of the diquark.

D. Excitation spectra of Ξc baryon

In this subsection, we show the calculated result of the
Ξc excitation spectrum with the q-Q type potential. We
consider that the Ξc baryon consists of a charm quark and a
scalar strange diquark which is composed of a light quark
and a strange quark.
We estimate the strange diquark mass mds by the

difference of the ground state mass of Λc and the isospin
averaged mass of Ξc, which is 0.18 GeV. The ground state
mass of the Λc baryon is calculated by using the value of
the diquark mass 0.5 GeV and parameter set 1. We
determine the strange diquark mass by fitting the mass
difference between the ground states of the Ξc and Λc
baryons to the experimental value, and we find the strange
diquark mass to be 0.81 GeV for parameter set 1.
Figure 9 shows the excitation spectrum of the Ξc baryon

calculated with parameter set 1 listed in Table I. We find
that the calculation a bit overestimates the 1p excitation
energies and their differences between the calculation and
the experiments is 45 MeV. Even though the average of
the calculated 1p excitation energies is consistent with the
experimental one, the LS splitting of the 1p states in the
calculation is about twice larger than that of the experi-
ments. Similarly to the result of the Λc excitation spectra

with the q-Q type potential, in order to reproduce the 1p
excitation energies and the LS splitting, we should reduce
the string tension. For the higher excited states of the Ξc
baryon, the calculation overestimates largely the excitation
spectra. Similarly to the result of Λc excitation spectra with
the q-Q type potential, if both of calculated results of the
1p excitation energies and the LS splitting reproduce
experimental data, we should reduce the string tension.
For the higher excitation states of the Ξc baryon, the
calculated values are larger than the experimental data.

IV. SUMMARY

In this paper, we have calculated the excitation spectra of
the heavy baryons in a quark-diquark model with relativ-
istic corrections. The heavy baryon has been assumed to be
composed of a heavy quark and a pointlike scalar diquark
having anti-color 3̄ and spin S ¼ 0. We considered two
types of relativistic corrections by depending on the
internal color structure of the diquark. In the first approach,
the diquark has been treated as an exact two-quark pair, and
this model is called as q-Q type potential. In the second
approach, the diquark has been treated as just a scalar
particle having no internal structure, and this model is
called as S-Q type potential. Our objective is to obtain a
solution to the puzzle pointed out in Ref. [11], which we
call as the string tension puzzle, by considering relativistic
corrections for the quark-diquark potential.
For the q-Q type potential, we have found that the

calculated Λc1p excitation energies are slightly larger than

FIG. 8. Calculated spectra with the S − q type potential for the Λc and Λb baryons. The string tension is redetermined to reproduce
the Λc1p excitation energies. The value of the string tension is k ¼ 0.42 GeV=fm. Experimental data are taken from the Particle Data
Group [29].
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the experimental data. We need to reduce the string tension
to reproduce the experimental data of both 1p excitation
energies and the LS splitting with good precision, but we do
not need to reduce it by half of the strength in the quark-
antiquark system. This potential has a Darwin term with the
diquark mass. This originates from the quark structure of
the diquark, which indicates that the Darwin effect is
stronger for heavy baryons than for quarkonia. The energy
difference between the Λc1s state and the 1p state becomes
relatively small, as the energy of the 1s state increases due
to the Darwin term. This demonstrates that considering the

relativistic effects, especially the Darwin term, is important
for solving the string tension puzzle.
The S-Q type potential in which the diquark has been

treated as a scalar particle does not have a Darwin term
with the diquark mass. This means that the string tension
on the S-Q type potential should be taken much smaller
than one in the quark-antiquark potential, which is quali-
tatively the same result as the previous work [11]. Our
findings have shown that treating the internal color
structure of the diquark causes large differences, and since
the diquark is composed of two quarks, its structure should
be carefully considered.
We have also calculated the Ξc excitation spectra by

using the q-Q type potential. The Ξc baryon was considered
as the bound system of the scalar strange diquark and the
charm quark. We have found that the calculated 1p
excitation energies reproduced the experimental data and
the LS splitting was overestimated. The consistent results
with the Λc baryon have been obtained.
In the future, it should be considered that the possible

mixing with quark configurations other than the one
considered here, such as the pion cloud and/or pentaquark
systems, etc., should be taken into account in order to
understand the full spectra of heavy baryons.
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