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We propose extensions of the anti-kt and Cambridge/Aachen hierarchical jet clustering algorithms that
are designed to retain the exact jet kinematics of these algorithms, while providing an infrared-and-
collinear-safe definition of jet flavor at any fixed order in perturbation theory. Central to our approach is a
new technique called interleaved flavor neutralization (IFN), whereby the treatment of flavor is integrated
with, but distinct from, the kinematic clustering. IFN allows flavor information to be meaningfully accessed
at each stage of the clustering sequence, which enables a consistent assignment of flavor both to individual
jets and to their substructure. We validate the IFN approach using a dedicated framework for fixed-order
tests of infrared and collinear safety, which also reveals unanticipated issues in earlier approaches to
flavored jet clustering. We briefly explore the phenomenological impact of IFN with anti-kt jets for
benchmark tasks at the Large Hadron Collider.
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I. INTRODUCTION

The use of jet clustering algorithms is essential and
ubiquitous at colliders. Jet algorithms relate collimated
sprays of energetic hadrons to the underlying concept of
hard, perturbative quarks and gluons (or, more generally,
partons). In the vast majority of cases, only the kinematics
of the resulting jets are used for analysis. Insofar as jets are
meant to represent the underlying partonic structure of
an event, though, it is natural to ask whether jets can also
reflect the flavor of the underlying partons, for example,
their quark or gluon nature. The question of how to
formulate a jet algorithm where the flavors assigned to
jets are infrared and collinear (IRC) safe was first posed in
2006 [1,2]. The algorithm developed there, flavor kt, based
on a modification of the kt algorithm [3–5], appeared to be
successful in this task. However, one of the characteristics
of flavor kt was that the kinematics of the resulting
jets depended on the flavor of the underlying constituents
being clustered.

In modern jet usage, where the subsequently developed
anti-kt algorithm [6] has found widespread applications,
a flavor-induced modification of the jets’ kinematics is
undesirable. Notably, it has been found to complicate
unfolding corrections [7]. Nevertheless, there are situations
where IRC-safe flavored jet algorithms would be highly
beneficial. For example, the question of IRC-safe jet flavor
has recently come to the fore in the context of heavy-flavor
jets [8–11]. IRC safety in this instance ensures that flavored
jet cross sections do not contain any logarithms of the ratio
of the jet transverse momentum pt to the quark mass mq.
It also makes it possible to use anmq ¼ 0 approximation in
fixed-order perturbative calculations [7,12–21], with an
expectation that any missing contributions are suppressed
by powers of mq=pt.
In this article, we present a new strategy for flavored

jet finding called interleaved flavor neutralization (IFN),
which is designed to combine an IRC-safe definition of jet
flavor with the IRC-safe kinematics of sequential cluster-
ing. We will study IFN with two generalized-kt-style jet
algorithms: the anti-kt algorithm, used extensively at the
LHC, and the Cambridge/Aachen (C=A) algorithm [22,23],
widely favored for jet substructure studies. In the case of
the anti-kt algorithm, our objectives are similar to those of
the recent “flavored anti-kt” [10] and “flavor dressing” [11]
algorithms, which respectively achieve approximate and
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exact anti-kt kinematics. Like flavor dressing, IFN yields
exact anti-kt (or C=A) kinematics, but because it integrates
flavor information at each stage of the clustering sequence,
it is a viable candidate for jet substructure studies. We also
carry out a much more extensive set of IRC safety tests than
in any prior work, which support the conclusion that IFN is
IRC safe, at least through order α6s. These tests also reveal
unexpected and subtle issues in the default formulations of
all prior flavored jet algorithms.
We focus on the theoretical definition of jet flavor, leaving

a study of experimental issues to future work. The extent to
which any IRC-safe flavor algorithm can be adopted
experimentally is an open question. Even when identifying
heavy-flavor jets, where collinear singularities are regulated
by a nonzero mq, such algorithms would typically require
the identification of all heavy-flavored hadrons in an event.
That is challenging when there are multiple heavy-flavored
hadrons in a single jet or when some of the heavy-flavored
hadrons have low momenta.1 Despite these experimental
subtleties, the underlying question of IRC-safe flavor iden-
tification remains conceptually important. Jet flavor can
provide a valuable tool in a range of theoretical work, for
example, in matching parton showers and fixed-order
calculations [24]. One can further anticipate that it will be
useful in testing logarithmic accuracy for flavor-related
aspects of parton showers [25,26].
The remainder of this article is organized as follows. In

Sec. II, we review the key features of widely adopted
jet algorithms and some of the issues that arise when flavor
tagging is sought. We also briefly describe existing
proposals for those flavored jet algorithms that aim to
achieve all-order IRC safety [1,2,10,11]. In Sec. III, we
outline our general design aims for a modern flavored jet
algorithm and present a concrete realization via IFN. That
section also includes a discussion of some of the subtle
considerations brought about by IRC-safety requirements.
In Sec. IV, we present the framework that we developed to
explore IRC-safety issues in some depth (a substantial
extension of the approach developed some time ago for
testing the SISCone jet algorithm [27]), which we apply
both to our IFN proposal and to earlier flavored jet
algorithms. These tests expose unanticipated issues in
earlier proposals, many of them connected with the treat-
ment of initial-state radiation in a hadron collider context.
In some cases, we identify simple adaptations of the
original algorithms that should make them IRC safe. In
Sec. V, we perform three benchmark phenomenological
studies to illustrate the behavior of various flavored jet
algorithms, restricting ourselves to the ones that pass
our IRC-safety tests. In Sec. VI, we briefly present the
adaptation of our approach to eþe− colliders. We conclude
in Sec. VII.

Additional material is presented in the Appendixes. In
Appendix A, we review some features of the double-soft
quark emission current that we used for our analyses. In
Appendix B, we perform numerical tests to justify some of
the design decisions we made for the IFN algorithm.
In Appendix C, we provide detailed analyses of the main
IRC-safety issues that we encountered in this work. In
Appendix D, we present summary plots of IRC-safety tests
for those algorithms that we expect to be IRC safe.

II. REMINDERS ABOUT EXISTING
JET ALGORITHMS

In this section, we briefly review standard jet algorithms
and their interplay with jet flavor, including the original
flavor-kt approach [1]. To avoid confusion, we refer to the
flavored anti-kt algorithm of Ref. [10] as “CMP” and the
flavor dressing algorithm of Ref. [11] as “GHS.” Throughout
this section and most of this article, we concentrate on
longitudinally invariant hadron-collider algorithms, with a
brief mention of an eþe− adaptation in Sec. VI.

A. Flavorless kinematic clustering

Let us start with a reminder of how the generalized-kt
algorithm works. It employs distances dij between each
pair of pseudojets2 i and j and diB between each pseudojet i
and the beam:

dij ¼ minðp2p
ti ; p

2p
tj Þ

ΔR2
ij

R2
; ð1aÞ

ΔR2
ij ¼ ðyi − yjÞ2 þ ðϕi − ϕjÞ2; ð1bÞ

diB ¼ p2p
ti ; ð1cÞ

where pti, yi, and ϕi are, respectively, the transverse
momentum, rapidity, and azimuth of i (yi ¼ 1

2
ln Eiþpzi

Ei−pzi
).

The algorithm has two parameters, the jet radius R, which
sets the angular reach of the jets, and the power p, which
sets the nature of the algorithm: −1, 0, 1, respectively, for
the anti-kt [6], Cambridge/Aachen [22,23], and kt algo-
rithms [4,5]. The algorithm starts with all event particles
and proceeds as follows:
(1) Identify the smallest of the dij and diB among all i

and j at this stage of the clustering.
(2) If it is a dij, recombine i and j into a single new

pseudojet, and return to step 1.
(3) If it is a diB, declare i to be a jet, and remove it from

the list of pseudojets to be considered at subsequent
clustering steps; return to step 1.

1Though, as we will see in Sec. V B for the tt̄ process, this may
be less of an issue than one might fear.

2Recall that a pseudojet may be either a single particle or the
combination of more than one particle arising from an earlier
stage of the clustering.
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The clustering stops once no pseudojets are left to be
clustered. Given the resulting jets, it is common to consider
only the subset that pass minimum pt (and maximum
rapidity or pseudorapidity3) constraints.

B. Flavor via recombination scheme

A crucial element of the jet definition is the choice
of recombination scheme. The most common is the
(somewhat inappropriately named) E scheme, in which
4-momenta are simply added. Flavor is usually not con-
sidered within standard jet algorithms, but it is useful to
introduce three potential flavor recombination schemes:

(i) Any-flavor scheme. This scheme is relatively close to
typical experimental practice for b and c tagging.
Here, any recombination that involves nonzero flavor,
e.g., qþ g, q̄þ g, or qþ q̄, yields a flavored result.
From a theoretical point of view, this scheme is
collinear unsafe for massless quarks due to the
collinear divergence of g → qq̄ splitting. For massive
quarks, as in the case of b and c production, this
scheme is logarithmically sensitive to the quark mass.
We will further consider this “any-flavor” scheme
only in a phenomenological context in Sec. V B.

(ii) Net-flavor scheme. This is a theoretically better-
motivated scheme that considers the net flavor in the
recombination. In this scheme, a q carries flavor, a q̄
carries antiflavor, and a qq̄ carries no flavor. This
“net-flavor” scheme resolves the collinear unsafety
for g → qq̄ splitting.

(iii) Flavor modulo-2 scheme. Typically for heavy flavor
at hadron level, it is not conceptually possible to
distinguish flavor from antiflavor, e.g., because of
B0 − B̄0 oscillations. In such a situation, one may
consider a “flavor modulo-2” scheme (see, e.g.,
Ref. [2]). Specifically, b and b̄ are treated as
equivalent, while bb̄, bb, and b̄b̄ are all considered
to be flavorless. This scheme also resolves the issue
of collinear unsafety for g → qq̄ splitting.

While the net flavor and modulo-2 options ensure
that the jet flavor is unaffected by collinear divergences
for g → qq̄ splittings, they still exhibit IRC safety issues for
jet flavor at higher orders, at least when used with standard
jet algorithms. This occurs at next-to-next-to-leading order
(NNLO), as discussed in Ref. [1] and illustrated in Fig. 1
(see Appendix A for further discussion about the matrix
element for this process). Specifically, when a soft gluon
splits to a large-angle qq̄ pair, one or another of the
resulting soft quarks can be clustered with a hard jet,
and the net-flavor and modulo-2 recombination schemes
result in an IRC-unsafe flavor for hard jets, with the
divergence appearing as α2s lnpt;jet=mq for a finite quark

mass mq. This is the classic problem when attempting to
obtain IRC-safe jet flavor.
When considering more than one flavor (e.g., all of

udscb), flavor recombination is typically applied sepa-
rately for each flavor. This may be done either within a
single run of the algorithm or (for algorithms where the
flavor does not affect the jet kinematics) applying the flavor
part of the jet clustering in one separate run of the algorithm
for each kind of flavor.

C. Existing flavored jet algorithms

We now review three jet-flavor definitions that aim to
achieve all-order IRC safety (see Refs. [8,9,29] for alter-
native definitions of jet flavor).

1. Flavor kt
The flavor-kt [1] algorithm took the approach of using

a net or modulo-2 flavor scheme, while modifying the
clustering distances relative to Eq. (1). Specifically, it
modifies the standard kt (p ¼ 1) distance when the softer
of i and j is flavored

dflav-ktij ¼ ½maxðpti; ptjÞ�α½minðpti; ptjÞ�2−α
ΔR2

ij

R2
;

if the softer of i and j is flavored; ð2Þ

with the parameter α usually taken to be 1 or 2.4 This has
the consequence that the dij for the clustering of a soft

FIG. 1. Classic problematic flavor configuration at NNLO. A
soft gluon at large angle splits to a q̄q pair (labeled 1 and 2), and
the flavor of the hard jet (numbered 3) is polluted by the flavor of
2, while 1 ends up outside the jet.

3The jets may be massive, and as a result, pseudorapidity is not
advised [28].

4The α ¼ 1 variant evokes a longitudinally invariant extension
of the classic JADE (squared invariant mass) clustering distance
[30,31]. The well-known drawback of the JADE distance,
namely, that early in the sequence it can cluster soft pairs going
in opposite directions, is precisely the behavior needed to resolve
the classic jet-flavor IRC safety issue of Fig. 1.
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flavored particle with a significantly harder particle is much
larger than the dij for two similarly soft particles. As a
result, the soft particles cluster first, resolving the original
IRC safety issue of Fig. 1. Note that flavor kt also uses a
modified diB distance for flavored particles. The details are
best obtained from the original article [1], however, the
essence of the modified beam distance is that one uses the
same kind of construction as in Eq. (2),

dflav-ktiB ¼ ½maxðpti; ptBðyiÞÞ�α½minðpti; ptBðyiÞÞ�2−α; ð3Þ

with ptBðyÞ a rapidity-dependent hardness scale. In the
central region, ptBðyÞ is of the same order as the overall
event hardness.
Relative to the standard kt algorithm, the flavor-kt

algorithm can significantly alter the kinematics of the
clustering of hard flavored jets. For example, in the
presence of a hard bb̄ pair, the flavor-kt algorithm can
cluster them even when ΔRbb̄ > R, as observed, e.g., in
Ref. [32] (see also the discussion in Sec. VA).

2. Flavor anti-kt (CMP)

The algorithm of Ref. [10], there called “flavor anti-kt,”
will be referred to here as CMP, to avoid ambiguity with
other flavor anti-kt algorithms. As in the flavor-kt algo-
rithm, it is to be used with net-flavor or modulo-2 flavor
recombination. It modifies the anti-kt (p ¼ −1) dij distance
when i and j are oppositely flavored,

dflav-anti-ktij ¼ danti-ktij × Sij;

if i and j are oppositely flavored; ð4Þ

where

Sij ¼ 1 − Θð1 − κÞ cos
�
π

2
κ

�
; κ≡ 1

a

p2
ti þ p2

tj

2p2
t;max

; ð5Þ

and pt;max would typically be a hard scale (see Ref. [10] for
further details). Throughout this paper, we use pt;max ≡
pt;global-max, where pt;global-max is the transverse momentum
of the hardest pseudojet across the event at the given stage
of the clustering.5 In addition to the jet radius, the algorithm
has one parameter, a, taken in the range 0.01–0.5 in the
original publication [10]. Unlike the flavor-kt algorithm,
the CMP algorithm uses a beam distance that is identical to
that of the plain anti-kt algorithm.
The CMP algorithm resolves the problem in Fig. 1

because when particles 1 and 2 are both soft, κ is very small.
Specifically, taking dimensions such that pt;global-max ¼ 1,
a soft ij quark pair has Sij ∼ κ2 ∼maxðp4

ti; p
4
tjÞ, leading to

an overall dij ∼maxðp2
ti; p

2
tjÞΔR2

ij. This is much smaller
than the anti-kt clustering distance of a soft quark with a
hard parton, which is of order ΔR2

ij. As a result, the soft qq̄
pair clusters first, and there is no IRC-safety issue in Fig. 1.
Note that when one or other of i and j is hard the use of a
small value for the parameter a results in κ being large
and thus Sij ¼ 1. As a result, the CMP algorithm behaves
like the anti-kt algorithm for hard particles. For a → 0, the
algorithm reduces to anti-kt. However, for finite a, the
algorithm does sometimes yield jets whose kinematics
differ from those of the anti-kt algorithm.

3. Flavor dressing (GHS)

The algorithm of Ref. [11], there called “flavor dress-
ing,” will be referred to here as GHS. This algorithm
involves three stages: a standard clustering stage in which
flavor is not considered; an “accumulation” stage in which
flavored particles accumulate momentum from nonflavored
ones; and a “dressing” stage, which assigns the flavor to the
original anti-kt jets. Here, we limit ourselves to sketching
the main features of each of the steps and refer the reader to
the original reference for the full details.
In the first step, the event is clustered with the standard

anti-kt algorithm. In this step, one also applies standard jet
cuts, e.g., on transverse momentum and rapidity, to the
resulting jets.
In the second step, the algorithm runs an accumulation

stage, which follows a version of C=A clustering [i.e.,
p ¼ 0 in Eq. (1a)] with a radius of Rcut, with two
modifications: (i) clustering of flavored objects with non-
flavored ones discards the nonflavored one if the clustering
fails to pass a SoftDrop kinematic cut [33],

minðpti; ptjÞ
ðpti þ ptjÞ

> zcut

�
ΔRij

Rcut

�
β

; ð6Þ

where zcut and β are the usual SoftDrop parameters; and
(ii) When two flavored objects would normally cluster, they
are instead both removed from the accumulation clustering
process, and each is treated as a “flavor cluster,” to be used
as an input to the third step of the algorithm. Any flavored
clusters that remain at the end of the modified C=A
clustering also serve as inputs to the third step.
The third step is the flavor dressing itself. It evaluates

flavor-kt distances (a) between pairs of flavor clusters
(df̂if̂j); (b) between each flavor cluster and the anti-kt
jet, jk, to which the flavored particle in the cluster belonged
(df̂ijk); and (c) with the beam (df̂iB�). When the smallest

distance is a df̂if̂j , the flavors annihilate, and f̂i and f̂j are

removed from further consideration; when it is a df̂ijk , the

flavor of i is assigned to jet jk, and f̂i is removed from
further consideration; and when it is a df̂iB� , f̂i is simply
discarded. Distance measures involving any flavor clusters

5We are grateful to the authors of Ref. [10] for discussions on
this point.
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f̂i or f̂j that were annihilated, assigned, or discarded are
then removed from the list, and the procedure repeats until
no flavored clusters remain. Besides the standard jet radius,
the algorithm has four parameters: Rcut, associated with the
C=A clustering; β and zcut for the SoftDrop condition; and
the α of the flavor-kt distances.
In the configuration of Fig. 1, we would have three flavor

clusters (1, 2, 3), with 2 and 3 associated with a hard jet.
The third step of the algorithm would annihilate the q̄ and q
flavors of 1 and 2, because they have the smallest flavor-kt
distance, and attribute the flavor of 3 to the hard jet. The
flavor dressing algorithm never modifies the kinematics of
the original anti-kt jets, only their flavor. Note that for
events where every anti-kt jet consists of a single particle,
i.e., events where there has been no kinematic recombina-
tion, the flavor of each jet is the same as for the anti-kt
algorithm. This is a property that we will seek also in our
IFN algorithm.

4. Multiflavored events

A final comment concerns clustering of events with more
than one flavor (e.g., tracking both b and c flavor). The
flavor-kt algorithm is to be run with all flavors for which
one wants information in the final jets. The CMP and GHS
algorithms are designed for a single flavor at a time (e.g.,
just the b and b̄ flavor in the event). However, we note that
for the CMP algorithm, it is straightforward to identify
potential ways of extending it, for example, by using the
distance in Eq. (4) whenever a pair has the potential for at
least some cancellation of flavor. As concerns GHS, since it
does not modify the anti-kt jets’ kinematics, one can simply
rerun it again for a second flavor, and so forth.

III. ANTI-kt AND C=A JETS WITH INTERLEAVED
FLAVOR NEUTRALIZATION

In this section, we present the motivation for, and
description of, our new flavor neutralization algorithm.

A. Design aims and core concept

If we consider what is needed for broad usage of a jet
flavor algorithm, we can identify at least four criteria that
are necessary, or at least highly desirable:

(i) IRC safety. Both the kinematics and the flavors of
any hard jets should be IRC safe.

(ii) Preserved kinematics. For a given member of the
generalized-kt algorithm family, the flavor algorithm
should not modify the jets’ kinematics.

(iii) Multiscale flavor resolution. The flavors of the
pseudojets should be well defined at any step of
the clustering, so as to leave open the possibility of
using flavor information with the full cluster se-
quence, e.g., for jet substructure studies.

Additionally, as mentioned at the end of Sec. II C 3, it can
be beneficial to have the following property:

(iv) Single parton consistency. For events in which each
jet contains exactly one parton, the flavor algorithm
should not modify the jets’ flavors relative to the
simple generalized-kt algorithm. This ensures that
typical leading-order calculations will give the same
results for the generalized-kt algorithm and its
flavored extension. It notably means that one cannot
a priori decide to neglect some subset of flavor in an
event without specifying the jet kinematics.

To achieve these aims, the core novel idea that we
introduce here is that of maintaining the standard clustering
procedure but modifying the flavor-related aspects of the
recombination scheme at each step of kinematic recombi-
nation. In particular, our approach uses a global, event-wide
treatment of flavor at each pairwise clustering step. By
construction, the resulting jets will have identical kinemat-
ics as compared to the original jet algorithm, and we aim to
arrange for the flavor labels associated with the jets to be
IRC safe at any stage in the clustering sequence.
There is quite some freedom in such an approach. The

fundamental principle of flavor neutralization, which we
believe can be applied in a variety of ways, is illustrated in
Fig. 2. When a pseudojet with nonzero flavor is about to
undergo a kinematic clustering [soft q (2), clustering with
hard q̄ (3) in Fig. 2(a)], the algorithm needs to establish
whether the flavors of 2 and 3 should be combined as per
usual net-flavor summation or instead whether the flavor of
either of the particles should be “neutralized” by some
other particle(s) in the event before allowing the kinematic
(2þ 3) clustering to proceed. For example, in Fig. 2(b),
with a soft q̄ (particle 1) in the vicinity of the soft q (2), the
algorithm may decide to first neutralize the flavors of
particles 1 and 2, before moving ahead with the 2þ 3
clustering. If that neutralization happens, then particles 1
and 2 become flavorless, as illustrated by the black dashed
lines in Fig. 2(c). This is then followed by the kinematic
clustering in Fig. 2(d), resulting in a 2þ 3 jet that retains
the q̄ flavor of hard particle 3, as needed for IRC safety.
In general, the IRC safety (or otherwise) of the algorithm

resides in the criteria used to decide whether to neutralize a
given pseudojet’s flavor and, if so, then with which other
pseudojet(s). As with earlier flavored clustering algorithms,
such a procedure will need to rely on some measure of the
likelihood that a given flavored pair came from an effective
parent gluon’s splitting, versus the flavor originating from a
genuine hard parton.

B. Introducing the IFN algorithm

We now construct a concrete algorithm based on Fig. 2
that integrates jet clustering with flavor neutralization:
interleaved flavor neutralization. The core of our algorithm
is the search for neutralization candidates at any given stage
of the clustering. Among the ingredients of that search is a
measure of flavor neutralization distance uij between any
pair of particles i and j, the softer of which will always be
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flavored. For now, the reader may wish to think of uij as
being a flavor-kt type distance, cf. Eq. (2), though there are
important further subtleties, discussed below in Sec. III C.
In defining the algorithm in the next few paragraphs, we

shall frequently make reference to Fig. 2 to illustrate the
function of the different steps, keeping in mind that the
flavor of the final hard jet (made of particles 2 and 3) should
ultimately just be that of the hard particle 3q̄ without
contamination from the flavors of the soft 1q̄2q pair.
We write the core neutralization search part of

the algorithm in the style of a computer subroutine
Nði; umax; C; EÞ, taking a number of arguments as inputs,
specifically:

(i) the index i of the pseudojet for which to identify
potential neutralization partner(s) [e.g., i ¼ 2 in
Fig. 2(a)],

(ii) a threshold umax above which to ignore neutraliza-
tion candidates [e.g., in the context of the 2þ 3
kinematic clustering in Fig. 2(a), this would be
umax ¼ u23],

(iii) a list C of all potential neutralization candidates,
i.e., all currently flavored pseudojets in the event
[C ¼ f1; 2; 3g in Fig. 2(a)], and

(iv) a subset E among those flavored pseudojets to be
excluded in the neutralization search because they
have already been considered in some prior step of
the algorithm [E ¼ f2; 3g in Fig. 2(a), because
particles 2 and 3 have already been considered in
that they set umax ¼ u23].

The Nði; umax; C; EÞ algorithm is formulated as follows:
N1. Create a list L of uik distances for all k among the
candidates C that satisfy uik < umax, excluding those
in the exclusion set E.

N2. Identify the k that corresponds to the smallest uik in
the list.

N3. If k contains no flavor that can neutralize flavor in i
(e.g., k is a b-quark and i is a c-quark), remove the
corresponding uik from list L, and loop back to
step N2.

N4. Before using k to neutralize flavor in i, check to
see whether there are other pseudojets that could
more naturally be paired with k in order to neutralize
k’s flavor. Do so through a recursive use of flavor
neutralization, searching for neutralization partners
of k by running Nðk; uik; C; E ∪ fkgÞ. Section III D
explains the importance of recursion for IRC safety.

N5. For each flavor currently in i, neutralize as much
of that flavor as one can with any flavor that is still
present in k.6 For example, if i has flavor cb̄ and k
has flavor bb, use k to cancel the b̄ flavor, so that
the updated i has flavor c and the updated k has
flavor b.

N6. If i is now flavorless, exit.
N7. Otherwise, remove the current uik from list L. If any
entries are still left in list L, loop back to step N2.
Otherwise, exit.

In our IFN formulation, the flavor neutralization search
is triggered whenever a clustering is about to occur for
which the softer pseudojet is flavored, specifically:

I1. When pseudojets i and j recombine in the standard
kinematic clustering sequence, let i be the pseudojet
with lower pt. If i is flavorless, then, iþ j simply
takes the flavor of j, and one moves on to the next
kinematic jet clustering step.

I2. Otherwise, identify all pseudojets that currently carry
flavor, including any flavored jets declared earlier
according to a diB step, and put them into a list C of
potential neutralization candidates. Initialize the set
E ¼ fi; jg of particles to be excluded from the search
for neutralization candidates.

I3. Call the flavor-neutralization search, Nði; uij; C; EÞ,
which may use one or more flavored particles in set C
to neutralize some or all of the flavor contained in i.

FIG. 2. Illustration of the flavor-neutralization approach. The event displayed here (a) has the property that there is a soft q̄q pair
(particles 1 and 2) and a hard q̄ (particle 3) with pt1 ∼ pt2 ≪ pt3. Additionally, we have all ΔR distances of order one, but with the
constraint that ΔR23 < R, while ΔR12 > R, so that within the anti-kt algorithm 2 and 3 cluster into one jet, while 1 would form a
separate soft jet. In (b), just before the 2þ 3 clustering, the flavor of 1 is used to neutralize the flavor of 2, which results in the
intermediate stage shown in (c), where particles 1 and 2 have lost their flavor (as represented by the black dashed lines). Finally, in (d),
the (now) flavorless pseudojet 2 is clustered with 3 into a pseudojet 2þ 3 with the q̄ flavor of just particle 3.

6If working with flavor modulo-2, then initial flavors are
always to be understood as being modulo-2, and each comparison
and/or combination is also to be performed in a modulo-2 sense.
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I4. For any remaining flavor in i, apply the standard net-
flavor (or flavor modulo-2) summation of i with j and
move on to the next kinematic jet clustering step.

Interleaving flavor neutralization at each step of the
clustering is important from the point of view of collinear
safety. To illustrate this, it is helpful to suppose that
particles i, j, and k all have comparable transverse
momenta and interparticle distances ΔR ∼ R. In this sit-
uation, uij ∼ uik. Consider the case where j undergoes a
collinear splitting, j → ja; jb with ΔRja;jb ≪ R. If one ran
flavor neutralization without clustering, one could find
oneself in a situation where uik < uij, but uik > uija , thus
changing the neutralization sequence.
Now, let us examine how this changes if neutralization is

interleaved with clustering. The clustering algorithms that
we consider are the anti-kt and C=A algorithms. They both
have the property that when all particles have similar
transverse momenta clustering of the collinear ja, jb pair
will precede the ij clustering step. At the ja, jb clustering, if
the neutralization search gets triggered, then ja and jb will
cluster with normal net-flavor recombination, since ujajb
is much smaller than all other u’s. When the clustering
reaches the ij step, all distances will see the kinematics of j,
rather than that of the underlying ja and jb, thus ensuring
that the algorithm is collinear safe.7

C. Choice of neutralization distance

Let us now turn to the uik flavor neutralization distance
between a pair of particles i and k. Recall that the softer of
the two will always be flavored, while the harder one may
or may not be.
We write the uik distance generically with two param-

eters, α and ω,

uik ≡ ½max ðpti; ptkÞ�α½min ðpti; ptkÞ�2−α ×Ω2
ik; ð7aÞ

Ω2
ik ≡ 2

�
1

ω2
ðcoshðωΔyikÞ − 1Þ − ðcosΔϕik − 1Þ

�
; ð7bÞ

whereΔyik ¼ yi − yk and analogously forΔϕik. Let us start
with the part related to the transverse momenta. This is
identical to that used in the flavor-kt algorithm, cf. Eq. (2),
with the same parameter α. As in typical flavor-kt studies,
we assume 0 < α ≤ 2 and in particular concentrate on
α ¼ 1 and α ¼ 2.

Next, we examine the angular part of the distance, Ω2
ik,

which involves a parameter ω. For any ω of order 1, in the
limit of small Δyik and small Δϕik, Ω2

ik reduces to the
standard ΔR2

ik ¼ Δy2ik þ Δϕ2
ik. The reason for using Ω2

ik
rather than the standard ΔR2 is to ensure IRC safety as
concerns the interplay between collinear initial-state split-
tings and splittings elsewhere in the event. This is best
explained with the help of Fig. 3. In the anti-kt and C=A
algorithms, particles 2 and 3 will cluster first.8 When
pt2 < pt3, the 2þ 3 clustering triggers a flavor neutrali-
zation search. The only candidate for flavor neutralization
is particle 1, and one should compare the u12 and u23
distances. We will suppose that particles 2 and 3 have
similar pt’s and are at central rapidity. The initial-state
collinear splitting that creates particle 1 typically results
in y1 ¼ lnpt3=pt1 þOð1Þ. Neglecting Oð1Þ factors, we
then have

u12 ∼ pα
t2p

2−α
t1

�
pt3

pt1

�
ω

∼ pðαþωÞ
t3 pð2−α−ωÞ

t1 ; ð8aÞ

u23 ∼ pα
t3p

2−α
t2 ΔR2

23 ∼ p2
t3ΔR2

23; ð8bÞ

where in the rightmost part of each equation we have
exploited pt2 ∼ pt3. One immediately observes that if
αþ ω < 2 then in the initial-state collinear limit, where
pt1 ≪ pt3, one has u12 ≪ u23. This causes particle 1 to

FIG. 3. NNLO contribution to the pp → Z þ jet process, that
helps illustrate the origin of the condition, Eq. (9), on the ω
parameter in the angular part of the uij distance, Eq. (7a). It
involves a hard jet with a final-state splitting (where the jet
constituents, q and a gluon, are labeled 2 and 3, respectively), as
well as an initial-state collinear splitting (g → qq̄, with the q̄
labeled 1). When αþ ω < 2, the initial-state collinear q̄ (1) neu-
tralizes the flavor of the q (2).

7When considering collinear splitting in events with a hier-
archy of energies, the different members of the generalized-kt
family may perform the soft and the collinear clusterings in
different orders. However, when the neutralization search is, say,
comparing neutralization distances involving two soft particles i
and k and a hard particle j (uik ≪ uij; ukj), a collinear splitting of
any of the soft or hard particles will only modify the u’s by a
factor of order 1, and it will leave the hierarchies untouched, and
correspondingly also the resulting neutralization pattern.

8This would not be the case for the kt algorithm, and an
investigation of the interplay of kt clustering with IFN is left to
future work.
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neutralize the flavor of particle 2, even when 1 is
arbitrarily collinear, resulting in a flavorless hard jet. In
contrast, when the initial-state splitting is absent, the hard
jet will be flavored. Thus, the algorithm would be unsafe
with respect to initial-state collinear splittings. On the
other hand, if we take

αþ ω > 2; ð9Þ

then u12 will always be parametrically larger than u23 in
the limit pt1 → 0, thus effectively forbidding neutraliza-
tion of 1 and 2; see Appendix B 1 for further discussion.9

In practice, we will nearly always take

default∶ ω ¼ 3 − α; ð10Þ

and where not explicitly stated in plots, this will be the
choice that we adopt.
IRC-safety subtleties connected with the large Δyij

behavior of normal ΔR2
ij distances are relevant for all

flavor algorithms, though sometimes the issues appear
only at orders beyond α2s . Further discussion of this
point is provided in Appendixes B 1, C 1, and C 3. Note
also that the original formulation of the kt algorithm for
hadron colliders [4] foresaw the possibility of an angular
distance Ω2

ik with ω ¼ 1, though this does not have IRC
safety implications for the kinematic aspects of normal jet
clustering.

D. Need for recursion

A key element of IFN is the recursion in step N4 above.
The need for recursion can be illustrated with the help of
Fig. 4. Again considering the anti-kt or the C=A clustering
algorithms, the first clustering step is that of particles 3
and 4. If pt3 < pt4, their clustering triggers a flavor
neutralization search. That search will identify particle 2
(from a large-angle soft pair) as a potential neutralization
candidate. With α ¼ 1, we will have u23 ≪ u34, while for
α ¼ 2, u23 ∼ u34. Either way, without recursion, it would be
possible for 2 to neutralize the flavor of 3, which would
ultimately result in the hard jet being flavorless. In the
absence of the (1, 2) pair, the hard jet would be flavored.
This would induce an infrared divergence.

The recursive aspect of the algorithm resolves this
problem as follows: when 2 is identified as a neutralization
candidate for 3, the recursive search that is triggered in step
N4 identifies particle 1 as a neutralization candidate for 2.
For both α ¼ 1 and α ¼ 2, we have u12 ≪ u23, and so
particles 1 and 2 will neutralize. When the algorithm exits
the recursion step, there are no longer any remaining
flavored particles to neutralize the flavor of particle 3.
Thus, the hard jet will retain its net flavor, resolving this
IRC safety issue (see, e.g., Appendix B 2).

E. Further comments

We conclude this section with a few general comments
about the IFN algorithm.
A first comment concerns single parton consistency,

as discussed in Sec. III. A potentially useful character-
istic of IFN, shared with GHS, is that for configurations
where each jet contains no more than one particle the
flavors of those jets are identical to those in standard
anti-kt. This is trivial because for such configurations
there is never a situation where two particles would
cluster together and so the flavor neutralization part of
the algorithm is never triggered. Thus, any leading-order
jet calculation, for an arbitrary number of final-state jets,
will give identical jets and flavors for those jets in the
anti-kt and its IFN extension.
A second comment concerns the fact that, unlike the

flavor-kt algorithm, the flavor-related part of our IFN
algorithm has no specific treatment of beam distances
for flavored particles (the CMP algorithm has similarities
in that it leaves the anti-kt beam distance untouched for
flavored particles). This means that particular care is
needed around the potential for long-distance clusterings,

FIG. 4. N3LO contribution to the Z þ jet process that helps
illustrate the need for recursion in step N4 of the flavor
neutralization search. It involves a hard jet with a noncollinear
splitting (flavored 3 and flavorless 4) and a flavored initial-state
double-soft pair (labeled 1 and 2). Without recursion, particle 2
can end up neutralizing the flavor of 3.

9We have also explored the border case of αþ ω ¼ 2 and find
that it diverges. This is relevant in particular to the case of α ¼ 1
and ω ¼ 1, for which uik coincides with the ik squared invariant
mass when i and k are massless, i.e., a JADE-like distance
[30,31]. An issue to be aware of with an invariant-mass distance
in a hadron collider context is that the invariant mass between
an energetic initial-state collinear emission and a hard final-state
particle is commensurate with that between two well-separated
hard final-state particles. Furthermore, a potential solution to this
issue, i.e., clustering initial-state collinear emissions early, via
their small invariant mass with the beam, involves ambiguities in
the identification of the beam energy.

FABRIZIO CAOLA et al. PHYS. REV. D 108, 094010 (2023)

094010-8



as discussed in Sec. III C. Nevertheless, even algorithms
with beam distances can suffer from long distance cluster-
ing when using standard ΔR2

ij-type angular measures, as
discussed in Appendix C 1.
A third comment concerns events with more than one

flavor, e.g., both c and b flavor. One possibility is to
consider all flavors within a single IFN run. Suppose i has
flavor b and is about to cluster with j. This triggers a search
for candidates to neutralize i’s flavor. The search may find a
particle k with flavor cb̄ (which could have arisen, for
example, through earlier clusterings). The recursion of the
IFN algorithm may then identify some other particle with
flavor c̄, which neutralizes the c component of k’s flavor.
Thus, c flavor elsewhere in the event is affected by the b
flavor in the iþ j clustering. Alternatively, one could
choose to run the IFN algorithm first for the b flavor, then
for the c flavor. In that case, the flavor neutralization steps
for b flavor have no side effects on those for c flavor.
Consequently, the output of the algorithm can be different
according to whether one runs it for all flavors at once or
separately a flavor at a time. In those of our studies below
that include multiple flavors (the IRC safety tests of Sec. IV
for the IFN algorithms and the phenomenological study of
Sec. V C), we treat all flavors at once.
In the discussion so far, we have always described the

IFN algorithm as happening at the same time as the
kinematic clustering. However, because IFN preserves
the kinematic clustering sequence, the neutralization steps
can also be run as an add-on. Here, one loops again through
each step of the kinematic clustering and updates the flavor
information. This may be more convenient in cases where
one already has a jet collection (and associated clustering
sequence) defined.
A final comment concerns the “bland” option of flavor

kt [1], which sets to infinity any clustering distances that
would lead to flavors that are inconsistent with a single
partonic flavor (e.g., bb or c̄b).10 One could imagine a
similar bland extension for our flavor neutralization dis-
tances, but we leave the study of this question to
future work.

IV. IRC SAFETY: DISCUSSION AND TESTS

Given the considerable subtlety of IRC safety for
jet flavor, it is important to design tests to help build
confidence in the IRC safety of any new algorithm. Subtle
IRC-safety problems have arisen in the past in the context
of cone-type jet algorithms, which ultimately led to the
construction of an automated testing framework, used to
verify the IRC safety of the SISCone algorithm [27]. Here,

we adapt and substantially extend that framework. The
framework is available on request from the authors.

A. Methodology

Our approach is illustrated in Fig. 5, which goes beyond
the tests performed in the more recent literature. We begin
by generating a random hard event, with some number of
particles (flavored or not), and run the clustering with the
jet definition that we wish to test. This results in a set of
hard jets, J hard ¼ fðp1; f1Þ;…; ðpn; fnÞg with kinematics
fp1;…; png and associated flavors ff1;…; fng. Note that
here we do not force the total 4-momentum (or even
transverse momentum) of the hard event to be balanced;
i.e., it is as if the events have neutrinos, leptons, or isolated
photons that would balance the momentum but do not
take part in the clustering. We then construct a modified
hardþ IRC event, where we add soft emissions and
collinear splittings up to some given order in αs. We cluster
that modified event and verify whether the hard jets in the
modified event, J hardþIRC coincide with the hard jets in
the original event, both in terms of kinematics and flavor.11

FIG. 5. On the left, hard particles (in blue) are generated, some
with flavor, at central rapidities. The event is clustered with a given
jet algorithm, resulting in a set of “hard” jetsJ hard, with kinematics
fpig and associated flavors ffig. On the right, additional IRC
radiation is added to the event as explained in the main text. This
modified event is then clusteredwith the same jet algorithm, and the
resulting set of “hardþ IRC” jets J hardþIRC is compared against
the original set of hard jets (and similarly for each hard step of the
underlying clustering sequence). The sets agree if both the kin-
ematics and the flavors of the various jets (and hard clustering steps)
are identical. In the limit where the extra radiation becomes soft and
collinear, the rate of failed events (whereJ hard ≠ J hardþIRC) should
go to zero for an algorithm that is IRC safe. The right-hand figure
also serves to illustrate some of the classes of IRC additions that we
make, though in practice, we do not go beyond sixth order inαs; i.e.,
we do not simultaneously add as many emissions as are shown.

10This approach was adopted also in the IRC-unsafe “QCD-
aware” clustering algorithm [29], without any clustering distance
modification.

11In the modified event, we also identify each step in the
clustering sequence that involves clustering of two hard particles,
and compare its kinematics and flavor to that of the correspond-
ing step for the unmodified event.
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We then examine the rate of failure as a function of the
logarithmic momentum range (L) of IRC additions. For an
IRC-safe algorithm, we expect that failure rate to vanish as
a (possibly fractional) power of the momentum scale of the
IRC additions.
Ideally, we would consider all possible IRC insertions.

There are two logarithms per order in αs, and we have
found that it is important to explore configurations at least
up to α4s . The smallest non-IRC-safe contribution would
be a term independent of L, and at α4s , that would imply
identifying one event in L8 that fails. We will return to the
question of the meaning and range of L below, but for
now, let us consider L ¼ 30. That would imply identify-
ing failures at the level of one event in 308 ≃ 6.6 × 1011,
which is prohibitive. Note, however, that the only con-
tributions that give the maximum number of logarithms
are those that exclusively involve the emission of simul-
taneously soft and collinear gluons, which are not the
most likely configuration for triggering flavor-related
IRC safety issues.
Consequently, we take a more targeted approach, in

which we allow up to one logarithm per order in αs,
prioritizing configurations that are potentially nontrivial
from the point of view of flavor. We do so by omitting
single soft-gluon divergences unless they involve a sub-
sequent splitting to a pair of commensurate-angle partons.

B. Classes of IRC emissions

The specific IRC emissions included in our testing
framework are shown in Fig. 6 and described below:

(i) Final-state hard-collinear (FHC) emission. We
perform a (hard) collinear splitting of a randomly
chosen final-state particle. We uniformly sample the
logarithm of the transverse momentum of the split-
ting. We also uniformly sample the longitudinal
momentum fraction of the splitting. This is consis-
tent with our choice not to include the soft gluon
emission divergence as part of the FHC class. For all
flavor combinations (q → qg, g → qq̄, g → gg), an
FHC branching is associated with one power of αs
and one logarithm of the IRC scale. For readers in
the habit of using a Lund-diagram [34] representa-
tion of soft-collinear phase space, this corresponds
to a strip close to the hard-collinear boundary in the
Lund leaf of the emitter [Fig. 6(a); that figure shows
a shaded logarithmic transverse momentum range,
which we further discuss below]. Note that sensi-
tivity to soft gluon emission will still be present in
the analysis but will be obtained through the double-
soft (FDS/IDS) contributions below.

(ii) Initial-state hard-collinear (IHC) emission. We
perform a hard-collinear splitting of the beam
[Fig. 6(b)]. Again, we sample the longitudinal
momentum fraction of the splitting uniformly, bring-
ing one order of αs and one logarithm.

(iii) Final-state double-soft (FDS) pair, i.e., the addition
of a g → gg or g → qq̄ pair. We choose one emitter
randomly among the final-state hard particles and
uniformly sample the logarithm of the transverse
momentum lnpt;g and the rapidity yg of the inter-
mediate gluon with respect to the emitter. This
corresponds to uniform sampling of the bulk of
the Lund leaf for that emitter [Fig. 6(c)] and brings
one power of the coupling and two powers of the
logarithm. We allow the intermediate gluon to split
and distribute the kinematics of the resulting pair in
such a way as to correctly reproduce the asymptotic
behavior of the qq̄ double-soft matrix element
in those kinematic regions where the splitting is
asymmetric (either substantially different momentum
fractions or rapidities, as elaborated upon in Appen-
dix A). Note that, even for g → gg splittings, we use
the asymptotic matrix element for g → qq̄.12 With
the branching to a pair, we gain an extra power of the
coupling and no logarithms, giving in total two
powers of the coupling and two powers of the
logarithm. We do not include the collinear divergence
when θqq̄ ≪ θhq ∼ θhq̄, where h is the hard particle.
That would bring three powers of logarithm for two
powers of the coupling. That said, we still have
configurations with θqq̄ ≪ θhq, but those are gener-
ated by a different sequence, namely, FDS production
of a pair of soft gluons, followed by nested FHC
branching of one of those gluons to a qq̄ pair.

(iv) Initial-state double-soft (IDS) pair. These are gen-
erated similarly to FDS, but with respect to the
forward or backward beam [Fig. 6(d)]. Note that
both the IDS and FDS mechanisms include a subset
of phase space where the double-soft pair is not
collinear but instead at large angles, i.e., the con-
figuration of Fig. 1. The matrix element for large-
angle double-soft production is the same as collinear
double-soft production (up to complications of color
factors), a consequence of longitudinal boost invari-
ance of soft production in the (leading-NC) color
dipole rest frame. As a result, the IDS component in
particular is guaranteed to fully cover the soft large-
angle double-soft phase space.

12This might seem surprising at first sight, since the pro-
duction of a soft gg pair has a qualitatively different structure
from that of a soft qq̄ pair when the pair is well separated. For
example, for emission of a double soft gluon pair from a quark
line, the component with the C2

F color factor corresponds to
independent emission, with logarithmic divergences both in the
ratio of the gluon transverse momenta and the rapidity sepa-
ration. However, these contributions would be associated with
the double (soft-collinear) logarithms that we are deliberately
leaving out. Similarly, the soft singularity in the CFCA term
would also bring an extra soft-gluon logarithm that is beyond
what we aim to sample.
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For each emission, we need to choose the range in lnpt,
which we define as lnpt;min < lnpt < lnpt;max (we choose
our dimensions such that lnpt;max and lnpt;min are always
negative). One potential difficulty is that of proximity (or
overlap) between the momentum scale of the IRC additions
and the momentum scales of the hard event because when
there is proximity or overlap the IRC additions can

legitimately modify the hard event. If one keeps the range
of hard scales fixed and takes IRC scales to zero, one
expects the rate of such legitimate modifications to vanish.
There should also be a suitably generous factor between the
upper (lnpt;max) and lower (lnpt;min) edges of the IRC
additions’ lnpt range, so as to be sensitive to IRC-unsafety
mechanisms that work across a hierarchy of scales.

FIG. 6. Illustration of the emissions sampled in the hardþ IRC event on a Lund diagram [34]. The left column shows emissions from a
final-state jet. The right column shows initial-state radiation from the beams, where an emission collinear to the forward beam (coming
from the left on the diagram) ends up at positive rapidities (right-hand half of the Lund plane) and vice-versa for an emission collinear to
the backward beam. The top row shows hard-collinear splittings from [(a) FHC] hard final-state particles or [(b) IHC] the beams. The
bottom row shows double-soft pairs, flavored or not, being emitted from [(c) FDS] hard final-state particles or [(d) IDS] the beams. In a
bin defined by lnpt;min < lnpt < lnpt;max, we sample any additional radiation in slices in the Lund planes (both for initial- and final-
state radiation). We typically choose lnpt;min ¼ 3 lnpt;max, with lnpt;max < 0.
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C. Implementation details

In our testing framework, the FHC, IHC, FDS, and IDS
emissions are applied in a nested way (with some caveats;
see below) so as to generate configurations up to order α6s.
We could have imposed angular ordering between nested
emissions but choose not to, so as to ensure that we retain
sensitivity to cases where strict angular ordering might miss
a potentially divergent part of phase space. We also allow
for FHC emissions from the individual q, q̄, or g of the FDS
and IDS pairs (again with no angular ordering condition).
Nesting is essential in order to test collinear splitting

chains. It also partially alleviates worries of missing
relevant IRC-unsafe configurations as a result of only
considering configurations with one logarithm per power
of the coupling. For example, as indicated above, g → qq̄
collinear splitting from a soft-collinear gluon (α2sL3) is not
generated directly, but the underlying L3 divergence does
appear in our framework, in the context of FDS (double
gluon) emission followed by the nested collinear splitting
of one of the soft gluons to qq̄. This is not exactly the same
configuration as the α2sL3 divergence, since it involves
an extra soft gluon. In effect, if there is a problem in an
α2sL3 h → hg → hqq̄ configuration, we are making the
assumption that we will still detect it in at least some of
the h → hgg → hgqq̄ configurations. For technical reasons,
there are some nestings that we are missing: (a) nesting of
one double-soft emission from a prior double-soft emission

and (b) insertion of double-soft emissions on more than one
of the descendants of a collinear splitting. These limitations
may be addressed in future work.
One final potential concern is that by allowing strongly

angular-disordered configurations we might mistakenly
declare an algorithm to be IRC unsafe. To guard against
that risk, when we identify an IRC-unsafe configuration,
we further investigate it to establish whether it is genuine.
All IRC failure classes that we identified were genuine, as
documented in Appendix C.
We close this description with some final technical

details:
(i) We generate a random number of hard particles and

randomly sample their flavors. Themaximumnumber
of hard particles we consider is 8. In the figures
targeting specific IRC-unsafe configurations, the hard
particles' momenta are chosen randomly uniformly
between 100 GeV and 1 TeV, and their rapidities
uniformly in the range jyj < 1.5. In our final IRC
safety tests for the IFN algorithms, we use a broader
range, with the hard particles’ momenta chosen
randomly uniformly between 1 GeV and 1 TeV and
their rapidities takenuniformlywithin jyj < 2.5. Plots
with results will always indicate the ranges used.

(ii) The lnpt;max scale is typically scanned in the range
−3 down to −42.5 (with pt expressed in units of
GeV). When we show a failure rate, it will always
include the lnn pt;max=pt;min measure that arises from

TABLE I. Summary of the IRC safety test results. Red crosses (×) indicate a clear failure of IRC safety. Checkmarks (✓) signify that the
algorithmpasses numerical tests at that order or for that configuration. The tilde (∼) for flavor kt (and by extensionGHS,which uses flavor-kt
distances) indicatesmarginal convergence, thoughone expects divergent behavior at higher orders. For algorithms that fail or aremarginal at a
given order, we display long dashes at higher orders, since those higher orders are also bound to fail. In a few cases, we have identified a new
class of problem that only arises at higher order, and we explicitly mark these with a red cross. The GHS parameters here are set to α ¼ 2,
β ¼ 2. The IFN procedure is tested both for the anti-kt andC=A algorithms, and the IFN parameters are chosen asα∈ f1; 2gwithω ¼ 3 − α
(tests are successful for both sets of parameters).Detailed discussions of the issues identified are linked to from the relevant table cells. Plots in
support of the IRC safety conclusion for the IFN combinations are to be found in Appendix D, specifically Figs. 24 and 25, as are plots
(Figs. 26 and 27) supporting the IRC safety of our modified versions of the flavor-kt and CMP algorithms, respectively, flavor-kt;Ω and
CMPΩ, which are discussed in the text. (They are not shown in the table because we have run them with lower statistics.).

Order relative to born Anti-kt Flavor kt (α ¼ 2) CMP GHSα;β (2, 2) Anti-kt þ IFNα C=Aþ IFNα

αs FHC ✓ ✓ ✓ ✓ ✓ ✓
IHC ✓ ✓ ✓ ✓ ✓ ✓

α2s FDS ×IIB ✓ ✓ ✓ ✓ ✓
IDS ×IIB ✓ ✓ ✓ ✓ ✓

FHC × IHC ✓ ✓ ✓ ✓ ✓ ✓

IHC2 ✓ ✓ ×C 2 ✓ ✓ ✓

FHC2 ✓ ✓ ✓ ×C 4 ✓ ✓

α3s IHC × IDS — ∼C 1 ×C 3 ∼C 1 ✓ ✓
Rest — — — ✓ ✓

α4s IDS × FDS — — — ×C 5 ✓ ✓
Rest — ✓ ✓

α5s — — — — ✓ ✓

α6s — — — — ✓ ✓
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the n logarithmic integrations at a given order n, but
it will not include overall constants such as color
factors. We will refer to this as a phase-space
weighted failure rate.

(iii) We generally use lnpt;min ¼ 3 lnpt;max. However, in
the tests of our IFN algorithms, we have also carried
out a subset of tests with a larger ratio lnpt;min ¼
5 lnpt;max. Results are consistent between the two
sets of tests.

(iv) The jet radius is sampled randomly between 0.3
and 1.57.

(v) The jet algorithms are coded as plugins to FastJet [35]
version 3.4.1 using techniques that allow for more
accurate handling of large rapidities and very small
rapidities. Ultimately, however, we found that in
order to fully explore the phase space it was also
necessary to use higher-precision numerical types
from the QD package [36], up to four times normal
double precision. This was achieved with the help of
a suitably converted version of the FJCORE form of
the FastJet package. Many of the techniques that we
explored were inspired by, adapted from, and some-
times fed back to the PanScales project [26,37,38].

(vi) In practice, the framework can operate in twomodes: it
can sample randomly across the available configura-
tions at any given order, which is useful to system-
atically check whether there are any IRC-unsafe
configurations for a given algorithm, or alternatively,
it can focus on a specific class of configuration, which
is useful when trying to understand the detailed nature
of any IRC safety issues that have appeared.

(vii) For flavor jet algorithms where the flavor of the
cluster sequence is meaningful (i.e., all algorithms
except GHS), we test not just the flavor and kin-
ematics of the final jets but additionally those of all
steps in the hardþ IRC clustering sequence that
correspond to steps in the hard clustering sequence.

(viii) Some algorithms (such as flavor-kt and IFN) can
naturally handle multiple flavors at a time, while
others (such as CMP and GHS) are designed around
a single flavor at a time. Most of our tests will be
carried out with one flavor. For the higher-order IFN
tests that go into our summary, Table I, we use six
light flavors, so as to ensure that we do not
accidentally miss IRC issues that would arise only
for multiflavored configurations. Plots will always
be labeled with the number of light flavors used.

D. Results

Sample results from our numerical IRC-safety tests are
illustrated in Fig. 7. The left-hand plot shows the α2s FDS
contribution to the phase-space weighted failure rate for
the plain anti-kt algorithm. The failure rate grows linearly
with lnpt;max, consistent with the expectation of an α2sL
divergence.

The middle plot of Fig. 7 shows the phase-space
weighted failure rate for the anti-kt þ IFN algorithm (both
with α ¼ 1 and α ¼ 2) at order α2s. These results are
summed over all sampled configurations (IDS, FDS,
IHC2, FHC2, and IHC × FHC). One sees that the failure
rate vanishes as pt;max → 0, consistently with a power law,
implying no IRC divergence. The right-hand plot shows
the results for anti-kt þ IFN at order α4s. Again, the plot
indicates that the phase-space weighted failure rate van-
ishes as pt;max is reduced, consistently with a power law.
For more negative values of lnpt;max, no points are

shown simply because we observed no failures with
anti-kt þ IFN. The gray band at the bottom of the plots
shows how the test is broken up into different regions with
the number of events used for each region (5 × 109 in the
lowest region). The regions each involve a different under-
lying numerical precision type in the code, and one of the
limiting factors in our tests is the speed of the code in
the lowest region where we are using four times the
precision of a standard IEEE double type.13 Overall, the
results provide a strong indication of IRC safety for
the anti-kt þ IFN algorithm developed in this paper.
Table I summarizes the results of our testing framework

applied to a range of jet algorithms. At lowest order, we
organize the results according to the class of divergence
being probed, as indicated in the second column of the
table, while at higher orders, we limit the breakdown to
configurations that have turned out to be of specific interest.
The corresponding failure rate plots for the IFN algorithms
(with the anti-kt and C=A algorithms) are given in
Appendix D.
Algorithms whose failure rate goes down as the extra

radiation becomes softer/more collinear are indicated by a
checkmark (✓). Algorithms that develop a divergence
(a nonvanishing integrated failure rate as lnpt;max → −∞)

13In interpreting these results, one should keep in mind that the
integration volume at order αns is effectively ðlnpt;max − lnpt;minÞn.
Defining lnpt;max ≡ L and lnpt;min ¼ ð1þ cÞL (c ¼ 2 in Fig. 7),
that corresponds to ðcLÞn. Assuming that the failure rate for a Lp

divergence goes as ðcLÞp, then with N events in a given bin, we
expect to observe a nonzero failure rate down to L ∼ −N1=ðn−pÞ=c.
Figure 7 was generated with N ∼ 109 events per point and c ¼ 2.
We therefore expect that up to n ¼ 4 we should observe all main
classes of failure (i.e., any case with p ≥ 0) for L≳ −90, i.e., over
the full range of L ¼ lnpt;max in Fig. 7 (keeping in mind that order
1 factors that we have neglected can have a significant impact on
the range). For n ¼ 5, failures with a p ¼ 0 structure would be
observed only for L ≳ −30, while for n ¼ 6, this would reduce to
L≳ −15. Note that it is still useful to explore the full range of L,
even at high orders n, because there can be cases where an IRC
divergence appears for the first time already with some number of
logarithmic enhancements (e.g., the L3 divergence that appears at
α4s in the GHS algorithm, as discussed in Appendix C 5). A final
comment concerns the overall normalization of the result of the
phase-space weighted failure rate. This can appear large at
moderate values of L where there are still failures because it
includes the ðcLÞn integration volume.
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for a given target configuration, are marked by a red
cross (×). For each case that has shown a divergence, we
have examined a few events where there is a clear failure
and developed an analytic understanding of the nature of
the problem. We will briefly discuss each issue here, while
the table also links to the relevant part of Appendix C with
further analytic and numerical studies.
The first two rows of Table I emphasize that at order αs

with just one emission (FHC or IHC) there are no
divergences for any jet algorithm with IRC safe kinematics,
even without a special treatment of flavor. The classic IRC
safety problem of standard anti-kt only shows up at order
α2s , as highlighted in the next two rows of Table I for a
configuration with one double-soft pair (see Fig. 1). That
problem arises in both the FDS and the IDS channels,
and in each case, it appears for the subset of events where
the FDS or IDS pair is at large angles. From the table, it is
clear that all flavor jet algorithms solve that original IRC
safety issue.
However, the tests reveal new issues for all algorithms

other than our IFN-based procedure. In two cases, flavor-
kt;Ω and CMPΩ, we will propose modifications that seem to
resolve the problem(s). For the interested reader, the
summary of the issues is as follows:

(i) Initial-state (IHC × IDS) subtlety at α3s for flavor-kt
and GHS. The “∼” for α ¼ 2 flavor-kt and GHS
at α3s (IHC × IDS) indicates a borderline case. It
arises, for example, for a hard event consisting of a
single energetic parton (and resulting hard jet),

supplemented with a hard-collinear initial-state split-
ting and a large-angle double-soft pair, which may
be IDS or FDS (see Fig. 15, together with the
complete details in Appendix C 1). When one (anti)
quark from the double-soft pair is somewhat softer
than the other, its dij distance with the hard-collinear
particle can be smaller than that with the other (anti)
quark from the soft pair, essentially because theΔR2

ij

distance goes as Δy2ij, which is only logarithmically
large. The large-angle soft (anti)quark and the
initial-state collinear quark cluster, leaving a lone
large-angle soft quark, which can contaminate the
flavor of the hard jet. AtOðα3sÞ, one ends up with an
integral that goes as

R
d lnpt=ðlnptÞ2. This integral

converges for pt → 0; however, the way in which the
integrand (multiplying d lnpt) vanishes as pt → 0 is
not a power-law in pt. One may thus consider the
algorithm to be marginally safe at this order; how-
ever, at the next order, one would expect to see
additional logarithmic enhancements. These might
arise, e.g., from the running of the QCD coupling or
evolution of the parton distribution functions (PDF),
and would ultimately cause the integral to diverge.
Indeed, our study identified a problem in the IHC2 ×
IDS channel at order α4s. However, a conclusive
understanding of this configuration requires inclu-
sion also of the virtual and PDF-counterterm con-
tributions, which is beyond the scope of this study. A
similar problem arises with α ¼ 1, but with extra

FIG. 7. Example results from our numerical IRC safety tests showing (a) the IRC unsafety of standard anti-kt at order α2s, and (b, c) the
IRC safety of anti-kt with Interleaved Flavor Neutralization (IFN) at orders α2s and α4s , respectively. In all plots, the phase-space weighted
failure rate is shown as a function of the maximum hardness of the extra radiation lnpt;max, where we sample values 3 lnpt;max <
lnpt < lnpt;max for any bin of lnpt;max. In (a), the integrated failure rate is plotted on a linear scale for standard anti-kt in the FDS
configuration from Fig. 1 with one double-soft pair and 2 hard particles in the event. The classic anti-kt IRC safety issue is confirmed
numerically by the linear divergence α2s lnpt;max, from one soft gluon splitting to a flavored pair at large angle. In (b) and (c), the
integrated failure rate is plotted on a logarithmic scale for anti-kt with IFN for parameters ðα ¼ 1;ω ¼ 2Þ and ðα ¼ 2;ω ¼ 1Þ, for all
configurations that contribute at (b) order α2s and (c) order α4s, with up to 8 hard particles in the event and up to 6 flavors. The total failure
rate goes to zero as lnpt;max → −∞, implying the IRC safety of anti-kt with IFN to the tested order and accuracy. The absence of points
below lnpt;max ≃ −15 signals no IRC safety failures out of the 5 × 109 events studied for lower lnpt;max values (the number of events in
each of three regions of lnpt;max is indicated in the shaded bands at the bottom of the plot). The plots also include moderately small
values of lnpt;max so as to better show the overall scaling behavior.
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logarithms in the denominator of the corresponding
integral. This generic class of problem can be solved
by replacing ΔR2

ij → Ω2
ij, and, as before, we will use

Eq. (10) as our default choice for itsω parameter. We
refer to the modified algorithm as flavor-kt;Ω. This
simple adaptation is possible because the issue is not
with the original underlying strategy but rather with
the subtleties that arise in distance measures with
QCD initial-state radiation (the same comment holds
for related issues in other algorithms). As a conse-
quence, we do not expect to have to make any
modifications to the eþe− version of the flavor-kt
algorithm.

(ii) Initial-state (IHC2) issue at α2s for CMP. This issue
arises, for example, for a hard (Born) event consist-
ing of a single hard parton, supplemented with two
collinear initial-state quark and antiquark emissions,
one on each beam (see Fig. 17 and Appendix C 2).
Those initial-state emissions cluster in the first step
of the algorithm, producing a large-mass, low-pt
flavorless pseudojet at central rapidities, which can
then cluster with the hard parton, modifying its
kinematics. The problem arises because in the CMP
distance Eq. (4), the small factor from the transverse-
momenta dominates over the (only logarithmically
large) factor from the rapidity separation between
the pair. Ultimately, this leads to an α2sL2 divergence.
It can be resolved by replacing

Sij → S̄ij ¼ Sij

Ω2
ij

ΔR2
ij

ð11Þ

for oppositely flavored pairs and requiring the
parameter ω > 1 in the Ωij distance. In practice,
we find that this modification has almost no impact
on the phenomenological behavior of the algorithm
(e.g., ≲1% in Fig. 9). We refer to this modified
version of the CMP algorithm as CMPΩ, and unless
otherwise specified, we use ω ¼ 2.

(iii) Initial-state (IHC × IDS) issue at α3s for CMP. This
issue involves the same configuration and sequence
that led to a marginal issue for flavor-kt (Fig. 15), but
here it brings an α3sL divergence (Appendix C 3),
rather than α3s=L. Recall that the problem here is that
the quark from the large-angle double-soft pair can
cluster with the IHC (q̄) particle, leaving the large-
angle soft q̄ to contaminate the hard jet flavor. The
different IRC behavior of CMP versus flavor-kt can
in part be attributed to the fact that the CMP
algorithm retains the standard anti-kt form of the
beam distance, causing the beam clustering of the
IHC particle to come at the end of the algorithm. In
contrast, in the flavor-kt algorithm, the IHC beam
clustering nearly always comes before the IHC
particle can cluster with the soft large-angle quark,

reducing the phase-space associated with IRC prob-
lems for this configuration. The fix of Eq. (11), i.e.,
CMPΩ, also solves this problem.

(iv) Final-state (FHC2) issue at α2s for GHS. This
problem appears with four hard particles such that
each of two hard jets contains one flavored (q or q̄)
and one nonflavored particle, as could arise in
semileptonic tt̄ decays when considering only b’s
to be flavored. The α2s modification of the event
involves the hard-collinear splitting of one of the
energetic quarks, followed by the hard-collinear
splitting of that gluon into a q0q̄0 pair (see Fig. 20
and Appendix C 4). The accumulation stage leaves
the collinear q0q̄0 as separate flavor clusters, and
relative to the original Born event, the energy of the
hard q’s cluster is modified. During the dressing
stage, the collinear q0q̄0 annihilate immediately, but
the modification of the energy of the hard-q cluster
means that that cluster can behave differently during
the dressing stage. We envisage that this problem
could be solved by accounting for energies within
each jet during the dressing stage but have yet to
formulate a concrete modification of the algorithm.
This issue is present independently of the parameters
of the algorithm and leads to an α2sL2 divergence.

(v) Mixed initial/final-state (IDS × FDS) issue at α4s for
GHS. This problem involves a hard event with one
Born gluon (h) leading to a single hard jet.14 The
issue arises with a final-state soft-collinear q1q̄2 pair
emitted inside the jet and a large-angle q3q̄4 pair (see
Fig. 22 and Appendix C 5). If θh1 < θ12; θh2, then
the h1 clustering will be the first step of the
accumulation stage and may pass the SoftDrop
condition, resulting in a pseudojet with the energy
of h but the flavor of 1, which goes on to form a
flavor cluster separate from that of q2. The two
flavor clusters in the jet now have a large hierarchy
of energy, and the softer one (q2) may ultimately
annihilate with a large-angle soft quark (3 or 4) if the
latter has a similar (or larger) pt with respect to the
beam, resulting in the flavor of the hard jet being set
by the h1 cluster. This issue gives an α4sL3 diver-
gence for αβ > 2, and numerical results are con-
sistent with an α4sL divergence for αβ ¼ 2. The
analytical study of Appendix C 5 indicates that the
problem should be resolved when one takes αβ < 2

(if one additionally replaces ΔR2
ij → Ω2

ij), though
the above FHC2 issue remains.

The discovery of the above issues highlights the impor-
tance of having a systematic framework for testing IRC
safety. Indeed, some of these issues were first discovered
with the testing framework, as were the identification of

14We are grateful to Simone Marzani for discussions that first
led us to investigate this configuration analytically.
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αβ < 2 as a potential solution for the GHS α4s (IDS × FDS)
issue, and the requirement Eq. (9) for the IFN
algorithm. Such tests also led us to suspend study of more
general uij distances involving uij ¼ ½maxðpti; ptjÞ�2p ×
½minðpti; ptjÞ�2qΩ2

ij, specifically a dimensionless form
with p ¼ −q ¼ 1.
A final comment is that it is important to remember

that the IRC tests cover many cases but are not totally
exhaustive. Specifically, as discussed in Sec. IVA, we have
at most one power of L per power of αs, and only up to
α6s , the events that we have generated have a band gap,15

and a couple of nestings are still missing, notably as regards
double-soft emissions. Thus, our tests should not be
considered an ultimate proof of IRC safety but merely a
strong indication.

V. PHENOMENOLOGICAL ILLUSTRATIONS

In this section, we present three phenomenological test
cases, intended to convey some of the main features of our
IFN algorithms. We include comparisons to standard anti-
kt clustering and also to those prior flavor algorithms for
which we have been able to identify an IRC-safe adapta-
tion, namely, flavor-kt;Ω and CMPΩ.
The first two tests will be specific to heavy flavor, which

is the main experimental application of flavored jet algo-
rithms. The third test will be for generic flavor and can be
seen as a stress test of the algorithm’s practical performance
with light flavor at parton level.

A. Heavy flavor in pp → WHð→ μνbb̄Þ
We begin with the case of Higgs production in associ-

ation with a W boson at hadron colliders, pp → WH,
where the Higgs boson decays to a pair of b-quarks and the
W decays leptonically. This process is of interest for
obvious phenomenological reasons, e.g., because of the
sensitivity to theHWW andHbb̄ couplings, and it has been
measured by both ATLAS and CMS [39,40]. Additionally,
it is one of the processes in which one can probe high-pt
Higgs production [41,42], especially in conjunction with jet
substructure tools [43,44], bringing particular sensitivity to
new physics. For a long time, calculations at NNLO QCD

were performed with massless b quarks, which prohibited
the use of the standard anti-kt algorithm to cluster the final
state. Only recently [32] was the calculation performed
with massive b-quarks.
Here, we examine a classic resolved-jet analysis of

this process, similar to that of Ref. [32]. We use
PYTHIA8.306 [45,46] with the 4C tune [47] to generate
pp → Wð→ μνμÞHð→ bb̄Þ. Following Ref. [32], we
require the presence of a muon satisfying

jημj < 2.5; ptμ > 15 GeV: ð12aÞ
We cluster the event with a given jet algorithm, using a

jet radius of R ¼ 0.4, and identify b-flavored jets that
satisfy

jyjb j < 2.5; ptjb > 25 GeV: ð12bÞ
We require the event to have at least two such jets.
Finally, the reconstructed Higgs boson is defined as the
4-momentum sum of the two b-jets whose invariant mass is
closest to the Higgs mass.
The distribution of the transverse momentum of the

reconstructed Higgs boson is presented in Fig. 8 at hadron
level (with multiparton interactions turned on), for four
algorithms:

(i) standard anti-kt with net flavor summation (red),
(ii) anti-kt with our IFN algorithm (α ¼ 2, in green),
(iii) the CMPΩ algorithm [a ¼ 0.1, where the angular

part of the distance measure is corrected as in
Eq. (11), in black], and

(iv) the flavor-kt;Ω algorithm (α ¼ 2, in gold).
The flavor-kt;Ω algorithm leads to a reconstructed Higgs
spectrum that is markedly different from that of the anti-kt
algorithm. In particular, for ptH ≳ 300 GeV, the distribu-
tion starts to drop relative to that with anti-kt, reaching
about 60% of the latter’s value at ptH ∼ 600 GeV. As noted
in Ref. [32], this occurs because the flavor-kt algorithm
starts clustering the b and b̄ together at lower values of ptH

than for the anti-kt algorithm. When the b and b̄ end up in a
single jet, the event fails the selection requirement of
having at least two b-jets. Specifically for the decay of a
scalar particle with invariant mass m and transverse
momentum pt, for small R and in the limit of ptR ≪ m,
the efficiency for having two separate jets (without any pt
or rapidity cut on the jets) is 1 at low pt. Above some
threshold in x ¼ ptR=m > xmin, it becomes

gen-kt∶ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4

p

x
; xmin ¼ 2; ð13aÞ

α ¼ 1 flav-kt∶
2

x2
; xmin ¼

ffiffiffi
2

p
; ð13bÞ

α ¼ 2 flav-kt∶
2

1þ x2
; xmin ¼ 1: ð13cÞ

15By band gap, we mean the white region between the upper
hard tip of the Lund diagrams in Fig. 6 and the upper edge of the
shaded region. The concern that one might have is that of an IRC
unsafety mechanism whereby an emission at some momentum
scale ϵ clusters with an emission at a still soft, but much larger
scale ϵ1=p (for some p > 1) in the white band-gap region, and
only after that clustering can it cause the IRC unsafety. Our test
procedure is only sensitive to values of p < lnpt;min= lnpt;max.
One would therefore like to take as large a value of that ratio as
possible, keeping in mind, however, that larger values of
lnpt;min= lnpt;max are numerically more challenging, both be-
cause of the higher precision and the need for higher statistics;
cf. footnote 13.
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The last of these, in particular, explains the qualitative
behavior seen in Fig. 8, cf. the “asymptotic analytics”
dashed line in the lower panel. Note that Eqs. (13b)
and (13c) are independent of the ΔR2

ij → Ω2
ij change

because they are evaluated in a small-angle limit, where
the two distance measures are identical.
In Fig. 8, the CMPΩ algorithm and anti-kt þ IFN give

results that are very similar to those of plain anti-kt jets, to
within about a percent. This result is not entirely trivial;
while it was expected that the new generation of flavor
algorithms should be kinematically more similar or iden-
tical to anti-kt, there was still a possibility that flavor
assignments could modify cross sections, e.g., because the
original anti-kt jets’ flavors would have been subject to
modifications from soft bb̄ pairs, while any such effect
should be substantially reduced for the new algorithms. The
absence of a numerically significant difference between jet
algorithms other than flavor-kt;Ω suggests that for signal
processes like that shown here, with R ¼ 0.4 jets, the
contribution of soft g → bb̄ contamination is relatively

small. On one hand, this means that certain experimental
signal measurements with standard anti-kt jets may not
require much unfolding in order to be compared to the
flavored jet definitions. On the other hand, if one is to
perform a higher-order calculation with the approximation
of massless b quarks, a flavored jet algorithm will still be
required in order to obtain a finite result.

B. Heavy flavor in pp → tt̄ → lν+ jets

For our second test case with heavy flavor, we consider
top-quark pair production in hadron collisions with semi-
leptonic top decays pp → tt̄ → lþ jets. We select events
by requiring at least one muon with

ptμ > 30 GeV; jημj < 2.4; ð14Þ

and additionally pt;miss > 30 GeV. We then run a jet
algorithm and examine the pt distribution of jets that
are considered b flavored according to a given jet
algorithm, with a requirement of pt > 20 GeV applied
to the jets. We again use PYTHIA8.306, but now with the
Monash13 tune [48]. It will be instructive to examine results
at both tree level (where we use b quarks as the flavored
inputs to the algorithms) and hadron level including
parton showering (where we use stable B hadrons as
the flavored inputs).
The results are shown in Fig. 9. The inclusive b-jet pt

spectrum is shown in the upper panels, on the left at
partonic tree level, i.e., without shower or hadronization,
and on the right at hadron level including showering. We
examine the same algorithms as in Fig. 8, and since we are
again interested in the similarity of the distributions to that
of standard anti-kt with net flavor summation (in red), the
lower panels show the ratio to that result. Additionally,
we include a line for standard anti-kt clustering with
“any-flavor” tagging, i.e., counting a bb̄-jet as a b-tagged
jet, which is more in line with experimental procedures than
net flavor recombination.
Let us start by examining the tree-level results in

Fig. 9(a). When each jet contains at most one parton,
the IFN algorithm is, by design, intended to give identical
results to the plain net-flavor anti-kt algorithm. Note that
the tree-level PYTHIA sample does not guarantee this
property, since our analysis does not require each of the
four tree-level partons to be in four separate jets and,
sometimes, two tree-level partons may cluster together.
Nevertheless, we see that the IFN algorithm (green) gives
results that are essentially indistinguishable from the plain
net-flavor anti-kt net-flavor (red) results. The flavor-kt;Ω
algorithm (gold) is expected to show differences, but these
are relatively modest, typically a few percent. Finally, the
CMPΩ results [with a ¼ 0.1, including the IRC fix as in
Eq. (11), in black] show a few-percent depletion of low-pt
b-jets. We believe that this is a consequence of the small
clustering distance for pairs of two low-pt b-flavored

FIG. 8. The transverse momentum spectrum of the recon-
structed Higgs boson in WHð→ μνbb̄Þ at center-of-mass energyffiffiffi
s

p ¼ 13.6 TeV, at hadron level (with stable B hadrons). The
upper panel shows the spectrum for four jet algorithms: anti-kt
with net flavor of the jet constituents (red), our IFN version of
anti-kt (with α ¼ 2, green), the CMPΩ algorithm [as adapted from
Ref. [10] with a fix of the angular measure; see Eq. (11), black],
and the flavor-kt;Ω algorithm (with α ¼ 2, gold). The lower panel
shows the ratio to standard anti-kt. CMPΩ, and our IFN
algorithms all give results very similar to those from the plain
anti-kt algorithm. In contrast, as already pointed out in Ref. [32],
flavor-kt;Ω jets can differ significantly from anti-kt kinematics at
large transverse momentum because they start clustering the b
and b̄ together into a single jet well before the scale of pt ≃
2mH=R ¼ 625 GeV where this occurs with the normal anti-kt
algorithm. This is reflected in Eq. (13c), which is used to generate
the “asymptotic analytics” curve in the lower panel.
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particles, which enhances the likelihood that such pairs will
cluster, even when well separated.
At hadron-level in Fig. 9(b), including parton shower-

ing and multiparton interactions, the qualitative pattern is
broadly similar, but with some effects enhanced relative
to what is seen at tree level. Now, there are very small
differences between anti-kt and IFN, below a percent—
this once again suggests that soft g → bb̄ induced
contamination is a small effect, as we noted in the
WH case of Sec. VA. In contrast, the relative differences
of flavor-kt;Ω and CMPΩ as compared to anti-kt now
reach 8%–10%. Further examining the results, we have
identified two effects that contribute to this: 1) a small
reduction of the ratios due the shower and hadronization,
in events where there are two B-hadrons, perhaps
because fragmentation of the b quarks enhances the
impact of modified clustering distances for flavored
particles, and 2) substantially smaller ratios, especially
at low pt, in the ∼8% of events with an additional bb̄ pair
from the showering.
Finally, regarding anti-kt with any-flavor recombination

(in blue), we see that it differs only by a few percent from
the net-flavor tagging and the IFN algorithms. The differ-
ence appears mostly to be associated with events where the
b and b̄ from the t and t̄ decays end up in a single jet.
Insofar as any-flavor recombination is a good stand-in for

standard experimental tagging, the similarity of net-flavor
and any-flavor recombination indicates only a limited need
for unfolding corrections in order for experimental tt̄ results
to be presented unfolded to an IFN-style flavor truth level.
Note, nevertheless, that there are other processes for which
this would not be true, e.g., inclusive b-jet production [2],
and a case-by-case study is needed to establish whether
any-flavor and net-flavor recombinations are similar for a
given process.

C. Full flavor at parton level in pp → Z+ j

Our final hadron-collider test is carried out at parton level
(after showering) and applies jet flavor algorithms to all
flavors of partons in the context of events with a hard jet
recoiling against a high-pt Z boson. This study is not
intended to be of direct experimental relevance but rather to
test the flavor algorithm’s performance and limitations for
addressing more theoretical questions such as the fractions
of quark vs gluon jets. In particular, knowledge of the quark
vs gluon fractions in a given sample is important when
assessing the performance of approaches that attempt to
distinguish quark vs gluon-induced jets from jet substruc-
ture and energy flow observables [49]. To do so, we study
pp → Z þ j events. We focus here on the Zð→ μþμ−Þ þ q
final state, where we require exactly two muons to
reconstruct a high-pt Z candidate:

FIG. 9. Inclusive b-jet spectrum from PYTHIA8.3 in pp → tt̄þ X → bμþνb̄qq̄0 þ X events at
ffiffiffi
s

p ¼ 13.6 TeV, at (a) partonic tree
level (i.e., no showering or hadronization) and (b) hadron level (with stable B hadrons). The distribution is shown in the upper panels, for
four jet algorithms (as in Fig. 8) and additionally for anti-kt with any-flavor recombination (i.e., a bb̄ jet counts as b-tagged). The lower
panels show the ratio to anti-kt jets with net flavor summation. The anti-kt þ IFN algorithm yields a b-jet spectrum that is almost
identical to that from the net-flavor anti-kt algorithm, across the whole pt range. The closeness to anti-kt holds both at tree level and after
showering and hadronization (with the spectrum differing maximally by less than a percent at pt ¼ 20 GeV, at hadron level). See the
text for further details.
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jημj < 2.4; ptμ > 20 GeV; ð15aÞ

pt;μþμ− > 1 TeV; mμþμ− ∈ ½80; 102� GeV: ð15bÞ

We find qualitatively consistent results for the Z þ g case.
We use PYTHIA8.306 with the Monash13 tune to generate the

events and specifically consider its pp → Z þ q process.
We cluster the events with a given jet algorithm and
examine the flavor of the leading-pt jet. At leading order,
we expect the hard recoiling jet to always carry the flavor of
the underlying quark or antiquark, and the question that we
examine is that of how often the leading jet in the full
showered sample has a flavor other than that of a single
quark or antiquark.
Schematically, it is useful to think of two mechanisms

that can cause the flavor to differ. One is that the quark can
split to qþ g with a separation ΔRqg > R. If the gluon
carries more energy than the quark, then the leading jet will
actually be a gluon jet. The rate for this to happen is
logarithmically enhanced in the small-R limit [50]. The
second mechanism to keep in mind is the contamination of
the flavor of a hard quark jet from a soft g → qq̄ splitting
(i.e., the issue of Fig. 1, which flavored jet algorithms are
supposed to mitigate against). This can have two effects: if
the soft qq̄ pair’s flavor coincides with that of the jet, then it

can cancel the jet’s flavor; much more often, a fraction
∼1 − 1=ð2nfÞ of the time, it will lead to a multiflavor jet.
To a first approximation, this effect is expected to grow
with increasing jet radius. We show results both with and
without multiparton interactions (MPIs), and we expect the
flavor contamination to be worsened by MPI, insofar as it
adds significant numbers of additional low-pt qq̄ pairs.
In Fig. 10, we show the fraction of leading-pt jets that are

flavorless (green), singly flavored (quark or antiquark,
blue), or multiflavored (neither flavorless or singly fla-
vored, red), as a function of the jet radius parameter R used
in the clustering. We perform this comparison with PYTHIA

at parton level, where the underlying event is turned off
(upper row), and with MPI turned on (lower row). From left
to right, the columns show results with the standard anti-kt
algorithm, flavor-kt;Ω (α ¼ 2), and anti-kt with our IFN
algorithm for two values of α ¼ f1; 2g (and ω ¼ 3 − α). A
first point to observe is the large multiflavored contribution
for the plain anti-kt algorithm, about 14% at R ¼ 0.4
without MPI, increasing to 19% with MPI. Increasing R
substantially worsens the situation with over 40% multi-
flavored jets for R ¼ 1 when MPI is on.
Flavor-kt;Ω improves the situation somewhat, giving a

multiflavored contribution of 5% (10%) with MPI off (on)
at R ¼ 0.4. The anti-kt algorithm with IFN brings a more

FIG. 10. Stress tests of the performance of the plain anti-kt algorithm (with net flavor summation, left column), the flavor-kt;Ω
algorithm (middle left column), and the anti-kt algorithm with flavor neutralization (with α ¼ 1, middle right column, and α ¼ 2, right
column). The stress tests are performed in pp → Z þ q collisions with ptZ > 1 TeV, as simulated with PYTHIA8.3 at parton level with
multiparton interactions disabled (enabled) on the upper row (lower row). As a function of the jet radius parameter R, the plots show the
fraction of leading jets that are multiflavored, i.e., whose flavor is neither that of a gluon nor a single quark or antiquark (red band),
singly flavored (blue band), and flavorless (green band). The key observation is the large fraction of multiflavored jets with the standard
anti-kt algorithm, which occur due to contamination of the hard jet flavor from low-momentum particles. With the flavor-kt;Ω algorithm,
we see some reduction, while anti-kt with IFN shows a further reduced rate, especially for α ¼ 2.
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substantial improvement, yielding 2% (4%) for α ¼ 1 and
1.5% (3%) for α ¼ 2.16

Examining instead the unflavored (“gluon”) jet fractions,
we find that all flavor algorithms give a ∼4% gluon-jet
fraction at R ¼ 0.4, relatively unaffected by the presence of
MPI. This figure is important to keep in mind for quark/
gluon discrimination studies [49]; the fact that a jet was
initiated by a quark in PYTHIA does not mean that the
corresponding jet observed after showering is always a
quark jet. In particular, Fig. 10 implies that if one is
attempting to tag gluon jets and reject quark jets, and one is
using PYTHIA’s Z þ q and Z þ g samples as the sources of
quark and gluon jets, then even a perfect gluon tagger will
still show an acceptance of about 4% on the Z þ q sample.
Ultimately, we would argue that the truth flavor labels

should be derived not from the generation process but by
running a jet flavor algorithm such as anti-kt þ IFN.
Nevertheless, the anti-kt þ IFN labeling remains subject
to some ambiguities, and the multiflavored jet fraction
discussed above is probably a good measure of those
ambiguities. As a future direction, one might wish to
investigate whether one can develop jet flavor algorithms
that further reduce the multiflavored jet fraction, while
maintaining other good properties.

VI. EXPLORATION OF IFN ALGORITHM
FOR e+ e − COLLISIONS

The IFN algorithm for eþe− collisions follows the same
set of rules as the pp version in Sec. III, adapting the uij
distances so that they coincide with the eþe− flavor-kt
distances, specifically

uik ≡ ½max ðEi; EkÞ�α½min ðEi; EkÞ�2−α × 2ð1 − cos θikÞ:
ð16Þ

In contrast with the hadron-collider case, there is no need to
use a modified angular distance in the eþe− form of the uij.
Additionally in step 1 of the part of the algorithm in
Sec. III B, we define i to be the particle with lower energy.
We have not explicitly performed the same full set of

IRC safety tests on the eþe− algorithm that we carried out
in the pp case. The issues identified across various
algorithms in the pp case fall into two classes: those
involving initial-state hard-collinear radiation, which is
irrelevant in the eþe− case, and those involving just the
interplay between final-state soft large-angle and hard-
collinear branchings. The analyses of these latter issues in
Appendix C are expected to be insensitive to the differences
between Eqs. (7) and (16). For this reason, we do not

anticipate IRC safety issues in the eþe−, though a detailed
study would ultimately be desirable.
The relatively clean environment of eþe− collisions

allows for a further exploration of the performance of
IFN-style algorithms. Specifically, we take a parton shower
simulation of eþe− → qq̄ events, cluster each event into
two jets, and examine the flavors of those two jets.
Typically, one expects each jet to have the flavor of the
parton in the Born event. In analogy with our pp study of
Fig. 10, we examine the fraction of events where this does
not happen, breaking it into two components, one where
each jet is flavorless (“gg”) and the other where the two jets
have neither the original qq̄ flavor nor gg flavor (“other”).
We plot these fractions as a function of

ffiffiffi
s

p
. For a well-

behaved flavor algorithm, we expect the rate of gg
configurations to decrease with increasing

ffiffiffi
s

p
, as αsð

ffiffiffi
s

p Þ,
associated with the probability of producing a qq̄g con-
figuration where the qq̄ pair ends up back to back with
respect to the gluon. Similarly, the rate of other configu-
rations should decrease as α2sð

ffiffiffi
s

p Þ, since one expects to
have to generate a hard qq̄q0q̄0 configuration to obtain an
other flavor.
We carry out the parton shower simulation with

PYTHIA8.306 (4C tune) at parton level. The jet clustering
is performed as follows: for the kt and C=A algorithms, we
use a large radius R ¼ 2π and then decluster the event back
to two jets by undoing the last stage of the clustering in
order to obtain the two hard jets. This is equivalent to
asking for two hard jets in the normal exclusive kt or
Cambridge algorithms. For the anti-kt algorithm, we use a
jet radius of R ¼ 3π=4 and take the two highest energy jets.
The specific jet radius choice is designed to be large enough
that events with multiple well-separated hard partons still
only give two hard jets but small enough that opposite
hemispheres of the event do not cluster together.
Figure 11 shows the gg (left column) and other (right

column) rates as a function of
ffiffiffi
s

p
in the range 100 to

105 GeV. This broad (and today unrealistic) energy range
is intended to help visualize the scaling behavior of the
rates. Each row corresponds to one underlying jet algo-
rithm, with different curves showing results for different
flavor approaches. Let us start by examining the gg rate for
the anti-kt algorithm and its IFN variants (top-left panel).
Over the energy range being considered, αs decreases by
almost a factor of 2. The anti-kt þ IFN algorithms show a
gg rate that is more or less consistent with αsð

ffiffiffi
s

p Þ scaling.
In contrast, the plain anti-kt algorithm (with net flavor
summation) features a rate that slowly increases. It is
natural to ascribe the growth to the IRC unsafety of the
algorithm; however, the differences between the safe (IFN)
and unsafe (plain anti-kt) variants remain relatively modest.
The situation becomes clearer when looking at the other

flavor combinations (top-right panel). Here, the plain anti-
kt algorithm gives a rate that increases from about 10%
at

ffiffiffi
s

p ¼ 100 GeV to almost 30% at
ffiffiffi
s

p ¼ 105 GeV.

16For the CMPΩ algorithm, there is freedom in how one
extends it to multiflavored events, and accordingly, we defer
study of multiflavored events with that algorithm to future work.
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In contrast, the IRC-safe IFN variants give much smaller
rates, well below 2% across the whole energy range, i.e., a
huge improvement on the plain anti-kt algorithm. With the
α ¼ 1 IFN choice, the rate decreases more or less con-
sistently with the expectation of α2s scaling. The α ¼ 2 IFN
algorithm shows a lower rate, but also a slower scaling. The
situation is broadly similar for the C=A algorithm, with the
IFN rate a little higher. For the kt family, we show only the
plain kt algorithm and the flavor-kt algorithm, since we
have not conclusively validated the IRC safety of the kt þ
IFN combination. Interestingly, the flavor-kt algorithm
shows only modest improvement in the other rate relative
to the plain kt algorithm and a scaling that is no better.
It is intriguing that different IRC safe algorithms lead to

other rates that have varying degrees of consistency with the
expected α2s scaling. While we do not yet have a complete

understanding of this phenomenon, detailed investigations
into the events have revealed all-order mechanisms that
operate across multiple scales and that, in some situations,
cause soft flavor to be successively associated with harder
and harder momenta, ultimately transferring soft flavor to
the hard jets. Further study would require detailed analysis of
the interplay between the main jet algorithm’s clustering
sequence and the IFN flavor neutralization scales. Still,
despite these observations, the IFN algorithms clearly
performmuch better than plain flavor unsafe ones, indicating
the substantial benefits for detailed flavor studies in using a
suitably chosen flavor-safe algorithm.

VII. CONCLUSIONS AND OUTLOOK

In this article, we introduced an approach to jet clustering
that maintains the kinematics of the original anti-kt and

FIG. 11. The fraction of eþe− → qq̄ events (after parton showering and clustering to two jets), in which the flavor of the two jets is
classified as being gg (left column) or any other combination that is not the original qq̄ (right column). The results are shown as a
function of

ffiffiffi
s

p
for algorithms in the anti-kt family (top row), the C=A family (middle row), and kt family (lower row). The results have

been obtained using PYTHIA8.306 at parton level, with tune 4C.
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C=A algorithms, while also providing IRC-safe jet-flavor
identification. Our IFN algorithm has passed a battery of
fixed-order IRC safety tests, which revealed a number of
unexpected and subtle issues in prior jet-flavor proposals.
While not an absolute guarantee, these tests do provide a
reasonable degree of confidence in the IRC safety of
our approach. On three benchmark jet flavor tasks, IFN
exhibits the desired phenomenological behavior. These
studies suggest that IFN can yield a theoretically sound
meaning to the concept of a flavored jet in the majority of
heavy-flavor related applications that can be envisaged at
the LHC.
There are various experimental considerations that

should be noted before deploying IFN in a full analysis.
Our algorithm, like all other attempts at IRC-safe flavor jet
algorithms, requires the complete flavor information in the
event for those flavors under consideration, e.g., b flavor.
This is highly challenging in an experimental environment
because of the difficulties of tagging low-momentum single
B hadrons, as well as quasicollinear pairs of B hadrons. The
question remains, however, whether recent advances in
machine learning can help reveal the information that is
needed and, more generally, whether experimentally one
can unfold detector-level results to particle-level jet defi-
nitions such as ours. Furthermore, for certain signal
processes, the practical impact of this issue may only be
moderate, cf. the ≲3% difference between the any-flavor
and net-flavor anti-kt results for tt̄ (Fig. 9 right).
Theoretically, we stress that the concept of jet flavor

remains subtle also beyond the scope of the discussion in
this article. We focused on the fixed-order behavior, but
there can be nontrivial interplay with the still perturbative
but complex structure induced by all-order showered
events. Beyond a perturbative analysis, there are even
more difficult issues of jet flavor in the presence of the
high densities of flavored particles that result from hadro-
nization. These questions warrant more investigation.
Nevertheless, the IFN algorithm developed here already
shows clear and substantial benefits both with respect to
standard unflavored algorithms and to prior incarnations of
flavored algorithms.

Code implementing the IFN algorithm is available from
https://github.com/jetflav/IFNPlugin, in the form of a FastJet

Plugin.
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APPENDIX A: ASYMMETRIC DOUBLE-SOFT
BRANCHING

As discussed in Fig. 1, the classic IRC safety issue
involves configurations with a double-soft g → qq̄ pair.
One surprising feature that we will encounter in
Appendixes B 1, C 1, and C 3 is that the structure of
higher-order IRC divergences in some algorithms is sensi-
tive to configurations where one of the quarks is signifi-
cantly softer than the other. Consequently, it is important to
understand the asymptotic behavior of double soft qq̄
production in such limits.
We know that collinear g → qq̄ splitting comes with a

PqgðzÞdz ¼ TRðz2 þ ð1 − zÞ2Þdz structure, which is finite
and nonzero when z → 0. One question one might ask,
though, is whether the splitting probability remains finite
and nonzero for z → 0 when the pair is not collinear
but instead separated by an angle that is commensurate
with the emission angle of the parent gluon. In this
appendix, we find that the splitting probability is indeed
finite in that limit, and we derive a simple approximate
expression for its behavior.
Consider a process with n hard massless QCD partons

with momenta fpig, and study the emission of two
additional soft quarks with momenta q1;2. The double-soft
emission probability can be written as a sum over dipole
contributions as

dPd:s: ¼ −
Xn
i≠j¼1

Ti · TjdP
ði;jÞ
d:s: ; ðA1Þ

where Ti are the standard color operators (see, e.g.,
Ref. [51] for details) and dPði;jÞ only depends on the
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momenta of the soft quarks and of the hard partons i and j. To write an explicit representation for dPði;jÞ, it is convenient to
work in the dipole center-of-mass frame. Specifically, we write

pi ¼ Eð1; 0; 0; 1Þ;
pj ¼ Eð1; 0; 0;−1Þ;
q1 ¼ pt;1ðcosh y1; 1; 0; sinh y1Þ;
q2 ¼ pt;2ðcosh y2; cosΔϕ; sinΔϕ; sinh y2Þ: ðA2Þ

We stress that pt;1;2, y1;2, and Δϕ are dipole specific and not global variables. In terms of these variables, the double-soft
emission probability reads

dPði;jÞ
d:s: ¼

�
αs
2π

�
2

4TRdpt;1dpt;2dy1dΔy
dΔϕ
2π

2pt;1pt;2 − ðp2
t;1 þ p2

t;2Þ cosΔϕþ jp⃗t;1 − p⃗t;2j2 coshΔy
ðp2

t;1 þ p2
t;2 þ 2pt;1pt;2 coshΔyÞ2ðcoshΔy − cosΔϕÞ2 ; ðA3Þ

where Δy ¼ y2 − y1 and TR ¼ 1=2. In the limit when the
soft quark pair is also collinear to parton i, Eq. (A1)
simplifies to

dPd:s: ¼ −
Xn
i≠j¼1

Ti · TjdP
ði;jÞ
d:s: → CidP

ði;jÞ
d:s: ; ðA4Þ

with dPði;jÞ
d:s: still given by Eq. (A3) and where Ci ¼ CA if

parton i is a gluon and Ci ¼ CF if it is a quark.
We can now study the asymmetric pt;2 ≪ pt;1 configu-

ration. We write pt;2 ¼ zpt;1. In the small-z region,
Eq. (A3) becomes

dPði;jÞ
d:s: ∼

�
αs
2π

�
2 4TRdpt;1dzdy1dΔydΔϕ
2πpt;1ðcoshΔy − cosΔϕÞ : ðA5Þ

We see that, as for the Pqg splitting function, this proba-
bility is finite and nonzero for z → 0. For our analysis, we
also find it useful to consider Eq. (A3) in the limit of large
rapidity separation between the two soft quarks, Δy ≫ 1.
We obtain

dPði;jÞ
d:s: ∼

�
αs
2π

�
2

8TR
dpt;1

pt;1

dpt;2

pt;2
dy1dΔy

dΔϕ
2π

×
pt;1pt;2e−Δy

ðpt;1 þ eΔypt;2Þ2
: ðA6Þ

In the asymptotic regime, the second line of Eq. (A6) is
well approximated by the expression

pt;1pt;2e−Δy

ðpt;1 þ eΔypt;2Þ2
≈min

�
pt;1

pt;2
e−3Δy;

pt;2

pt;1
e−Δy

�
; ðA7Þ

which interpolates between the 1 ≪ lnðpt;1=pt;2Þ ≪ Δy
and 1 ≪ Δy ≪ lnðpt;1=pt;2Þ limits.

In practice, we find that this interpolation works
well across the whole phase space. As shown in Fig. 12,
we find that

dPði;jÞ
d:s:;approx ≡

�
αs
2π

�
2

8TR
dpt;1

pt;1

dpt;2

pt;2
dy1dΔy

dΔϕ
2π

× min

�
pt;1

pt;2
e−3Δy;

pt;2

pt;1
e−Δy

�
ðA8Þ

provides a good approximation of the exact dPði;jÞ
d:s: result

down to values of lnðpt;1=pt;2Þ and Δy of order 1.
Furthermore, it is free of the collinear divergence when
the q and q̄ go close in angle, a collinear divergence

FIG. 12. The double-soft matrix element dPði;jÞ
d:s: in (red) its

exact form from Eq. (A3) and in (blue) the approximate form
from Eq. (A8) that we use in our numerical IRC-safety tests, as a
function of the rapidity separation Δy of the two soft partons in
the dipole center-of-mass frame. The matrix element is plotted for
pt;1 ¼ 1 GeV, and Δϕ ¼ 0, for several values of z (shown as full,
dashed, and dotted lines). The two regimes with ∼e−Δy and
∼e−3Δy scaling are clearly visible.
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that we deliberately wish to leave out, because of our
approach of allowing at most one divergence (or logarithm)
per power of αs. In our studies, we therefore use the
convenient interpolation Eq. (A8) rather than the exact
result Eq. (A3).

APPENDIX B: NUMERICAL TESTS OF IFN

In the process of developing the IFN algorithm, we tested
a number of possible variants. In this appendix, we provide
numerical support for the analytic arguments made in
Sec. III to justify our design choices.

1. Relation between α and ω

According to the arguments in Sec. III C, we need to take
particular care in choosing the values of the parameters α
and ω in the IFN algorithms. A potentially dangerous
configuration is that presented in Fig. 3. In that diagram,
two partons (one flavored and one flavorless) at central
rapidity are clustered together by the anti-kt algorithm. In
our IFN algorithms, the IRC safety issue arises from an
initial-state hard-collinear splitting, which can act as a
possible neutralization partner for the flavored hard par-
ticle. As argued in Eq. (9), the condition αþ ω > 2 ensures
that such a neutralization does not happen.
To test this argument numerically, we integrate uni-

formly over the momentum of each of a central hard quark
and hard gluon (each in the range 1 GeV to 1 TeV) and
sample an IHC emission as described in Sec. IVA. The
results are presented in Fig. 13, for various values of the
parameters α and ω. As expected, in cases where
αþ ω < 2, as well as for IFN variants that use a ΔR2

ij

type angular distance instead of our Ω2
ij, the failure rate

typically diverges for pt;max → 0 and conversely falls off as
a power law when αþ ω > 2 (green and blue curves). We
observe numerically that the border cases, αþ ω ¼ 2, are
all unsafe.
Let us see analytically why αþ ω ¼ 2 is problematic for

the specific case of α ¼ 2 (and ω ¼ 0). We note that in
the limit where ω → 0 the angular factor Ω2

ik in Eq. (7b)
differs from ΔR2

ik at most by a factor of Oð1Þ, which we
can typically neglect in the discussions below. We take
the configuration shown in Fig. 3 with pt2 ¼ z2pt3 with
z2 ≪ 1, pt3 ¼ 1. There are two competing distances in the
neutralization step,

u12 ¼ z22Δy212 ≃ z22 ln
2 1=pt1; ðB1aÞ

u23 ¼ ΔR2
23 ∼ 1: ðB1bÞ

The IFN algorithm will neutralize the flavors of 1 and 2
when z2 ln 1=pt1 < ΔR23. If we integrate over the momen-
tum of 2 and assume a dz2 distribution (see, e.g., Ref. [52])
for finite ΔR23 and take z2 → 0, then the resulting
integral is given by

R
d lnpt1

R 1= lnpt1
0 dz2, which diverges.

The analytic argument shown here does not apply to
generic values of α and ω, but as mentioned above, we
find numerically that all cases that we have tested with
αþ ω ¼ 2 diverge.

FIG. 13. IRC safety tests of anti-kt þ IFN for variants with
different angular scaling factors. The tested configuration from
Fig. 3 features two hard partons clustered together by the anti-kt
algorithm and one initial-state hard-collinear splitting. With a
ΔR2

ij angular factor, the IFN algorithms diverge for all choices
of α. Switching to the Ω2

ij angular distance, the cases where
αþ ω ≤ 2 also diverge, whereas for αþ ω > 2, they converge to
zero as a power law, as expected from Eq. (9). The right-hand-
side panels show the results on a linear scale, to help visualize the
scaling for the IRC-unsafe variants. Note that here and in some of
the following figures certain curves differ in the number of
generated events. Because the multiple curves feature different
scaling behaviors, they require a varying number of events to
make a conclusive statement about the form of the divergence (or
the absence thereof). The smallest number of events generated
among all runs performed for a given figure is shown in the three
shaded regions at the bottom of the plot.

FIG. 14. IRC safety test of anti-kt þ IFN for variants with and
without the recursion step. The tested events consist of two hard
partons supplemented with one initial-state double soft pair, as
in Fig. 4.
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2. Recursive vs nonrecursive

In Sec. III D, we presented an analytic argument to
explain why the IFN algorithms need a recursion step.
Figure 14 shows the failure rate events with two hard
partons and one IDS pair, which includes configurations
such as that of Fig. 4. It clearly shows that without
recursion the algorithm shows a growing failure rate for
pt;max → 0, while the failure vanishes for pt;max → 0 with
the recursive step turned on. The side figures help illustrate
that the failure rate goes as ln2 pt;max for α ¼ 1 and as
lnpt;max for α ¼ 2. The stronger power for α ¼ 1 arises
because failures can happen even when the IDS pair is
collinear to the beams.

APPENDIX C: IRC-UNSAFE CONFIGURATIONS

In this appendix, we analyze the specific IRC-unsafe
configurations identified in Sec. IV D for the flavor-kt,
CMP and GHS algorithms. For each of the configurations
that we have identified, we present both analytic and
numerical results to demonstrate why they are problematic.
Throughout this section, we define pti ≲ ptj to mean that
pti < ptj but that they are of similar orders of magnitude.

1. IHC × IDS subtlety at α3
s for flavor-kt

The flavor-kt (and GHS) algorithms encounter a prob-
lematic configuration at order α3s, shown in Fig. 15,
associated with the choice of angular measure. There is
a hard parton (1, with flavor q) that produces the only hard
jet in the event, together with a soft gluon g that splits to a
soft large-angle qq̄ pair (2 and 3), and additionally an
initial-state collinear gluon splitting that produces an
energetic small-angle quark of flavor q̄ (4). For the sake
of the discussion, we assume that the transverse momentum
of 2 is smaller than that of 3, by a factor z23,

pt2 ¼ z23pt3: ðC1Þ
We take the rapidity and azimuth of 1 to be zero,
y1 ¼ ϕ1 ¼ 0. Additionally, we take E4 ¼ z41E1, which
implies

y4 ¼ ln
2z41pt1

pt4
: ðC2Þ

For concreteness, we work with the α ¼ 2, R ¼ 1 variant
of the flavor-kt algorithm. The interparticle distances for
the flavor-kt algorithm were given in Eq. (2), and addi-
tionally, we will need to take into account a beam distance
with the right-moving beam. When i is flavored (as it will
always be in the example here),

dflav-ktiB ¼½maxðpti;ptBðyiÞÞ�α½minðpti;ptBðyiÞÞ�2−α; ðC3Þ

with

ptBðyÞ ¼
X
i

pti½Θðy − yiÞeyi−y þ Θðyi − yÞ�; ðC4Þ

so that

ptBð0Þ ≃ pt1; ðC5aÞ

ptBðy4Þ ≃ pt4 þ pt1e−y4 ≃ pt4

�
1þ 1

2z41

�
; ðC5bÞ

where we have used the fact that pt4 ≪ pt1. In the absence
of the soft quark pair, there are three distances:

d14 ¼ p2
t1ΔR2

14 ≃ p2
t1y

2
4; ðC6aÞ

d1B ≃ p2
t1; ðC6bÞ

d4B ≃ p2
t4

�
1þ 1

2z41

�
2

: ðC6cÞ

The smallest is d4B, since pt4=z41 ≪ pt1 and so initial-state
collinear particle 4 clusters first, leaving a flavored jet
consisting of particle 1.
Now, we examine the additional distances that arise

when the soft qq̄ (23) pair is present. The beam distances
d2B and d3B are both similar to d1B ¼ p2

t1, since they are at
central rapidities where ptB ∼ pt1. The distances that will
matter for the clustering are

d23 ¼ p2
t3ΔR2

23 ∼
p2
t2

z223
; ðC7aÞ

d24 ¼ maxðp2
t4; p

2
t2ÞΔR2

24 ∼maxðp2
t4; p

2
t2Þ ln2

z241p
2
t1

p2
t4

;

ðC7bÞ
FIG. 15. Example configuration to illustrate issues that arise
across multiple algorithms when using a standard ΔR-type
angular measure in interparticle distances.
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where ∼ implies that we leave out factors of Oð1Þ, e.g.,
from ΔR2

23 ∼ 1. We neglect d34, since in the moderately
small z23 limit where we will be working [cf. Eq. (C1)]
d34 > d24.
If d23 is the smallest of the distances across Eqs. (C6)

and (C7), particles 2 and 3 annihilate, then 4 clusters with
the beam, and the hard jet has flavor q. If d4B is the smallest,
4 clusters with the beam, then 2 and 3 annihilate, and the
hard jet has flavor q. The problematic situation is when d24
is the smallest of the distances, causing 2 and 4 to
annihilate. This leaves 3, which can cluster with 1, resulting
in a flavorless hard jet.
To understand the likelihood of this occurring, we first

introduce the shorthand

lij ¼ ln
pti

ptj
: ðC8Þ

Let us first consider pt4 < pt2 (l24 > 0). The d24 will be
the smallest one when

d24 < d23 → l14 þOðln z41Þ <
1

z23
; ðC9aÞ

d24 < d4B → l14 þOðln z41Þ <
e−l24

z41
: ðC9bÞ

Ignoring azimuthal integrals (and the rapidity of 2 and 3),
we now have to integrate over four phase-space variables,
which we take to be l14, l24, z23, and z41. We have found
that we can ignore the Oðln z41Þ terms in Eq. (C9) and
rewrite the limits as

z23 <
1

l14

; z41 <
e−l24

l14

; ½l24 > 0�: ðC10Þ

Since both z fractions will be small, we will perform the
integrations over z23 and z41 using the constant small-z
limit of Pg→qq̄ðzÞdz. The overall rate of 24 clustering (with
l24 > 0) is then given by

Nðl24>0Þ
24;flav-kt

∼ α3s

Z
∞

0

dl14

Z
l14

0

dl24

Z 1
l14

0

dz23

Z e−l24
l14

0

dz41

∼ α3s

Z
∞ dl14

l2
14

; ðC11Þ

where in setting the lower limits of the l14 and l24 integrals
to zero, we are ignoring any constraints from the interplay,
e.g., with the z23 integral. A similar analysis can be carried
out for l24 < 0 (or equivalently l42 > 0), giving

z41 <
1

l14

; z23 <
e−l42

l14

; ½l42 > 0�; ðC12Þ

and yielding

Nðl42>0Þ
24;flav-kt

∼ α3s

Z
∞ dl14

l2
14

: ðC13Þ

This and Eq. (C11) both converge in the infrared, i.e., for
l14 → ∞; however, this convergence is extremely slow. In
particular, if one places an upper limit pt4 > ϵ, the result
converges as ðln 1=ϵÞ−1, which is consistent also with what
we find in our numerical tests; cf. the magenta (α ¼ 2)
points in Fig. 16. While this is strictly IRC safe at this order,
one should worry that at the next order there may be
logarithmic enhancements proportional to l14 (for example
from running-coupling effects), which would be sufficient
to make the integral diverge. Accordingly, it would seem
wise for future uses of the flavor-kt algorithm to adopt the
same kind of ΔR2

ij → Ω2
ij replacement as used in our IFN

algorithm, and similarly for any other algorithms that make
use of similarly defined distances, e.g., the GHS flavor-
dressing algorithm.
A final comment concerns the α ¼ 1 case. The analysis

is somewhat more involved than for α ¼ 2, and it is also
clear from Fig. 16 that the issue is reduced with α ¼ 1.
Our investigations are consistent with a 1= lnp ϵ scaling,
with a larger value of p than for the α ¼ 2 case. One might
wish to investigate this point further; however, it would
anyway seem wise to use the ΔR2

ij → Ω2
ij replacement also

for α ¼ 1.

2. IHC2 issue at α2
s for CMP

An issue arises in the CMP algorithm at order α2s for a
configuration like the one shown in Fig. 17. We consider
two initial-state hard-collinear emissions, a q and a q̄

FIG. 16. Failure rate of the flavor-kt algorithm for the con-
figuration of Fig. 15, in particular illustrating results for α ¼ 2
(magenta points) that are qualitatively consistent with the
expected 1= lnpt;max behavior (dashed line). Also shown are
results for α ¼ 1, as well as the results for flavor-kt;Ω, i.e., the
adaptation with an Ωij angular distance, illustrating the much
faster drop of the failure rate.
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(labeled 1 and 2), from the forward and backward beams,
respectively, and additionally one hard large-angle particle
(numbered 3 in the figure). The initial-state hard-collinear
emissions have a very small transverse momentum
(pt1; pt2 ≪ pt3) but large energies (E1; E2 ∼ E3). Let us
assume pt3 ¼ E3 ¼ 1, and particle 3 is simply aligned
along the x axis. Then, we have that y1 ∼ − lnpt1 and y2 ∼
lnpt2 in the hard-collinear limit. For simplicity, we will
work with R ¼ 1.
The CMP algorithm will strongly favor clustering 1 and

2 together first. The global scale [pt;global-max in Eq. (5)] is
set by the pt of the hardest pseudojet currently available,
pt3, so the value of κ12 is small,

κ12 ¼
1

2a
p2
t1 þ p2

t2

p2
t3

≪ 1; ðC14Þ

and the distance between the oppositely flavored particles 1
and 2 is thus given by

d12 ¼
1

maxðp2
t1; p

2
t2Þ

ΔR2
12

�
1 − cos

�
π

2
κ12

��
ðC15aÞ

≃
1

maxðp2
t1; p

2
t2Þ

ΔR2
12

1

2

�
π

2
κ12

�
2

ðC15bÞ

≃
π2

32a2
ΔR2

12

maxðp2
t1; p

2
t2Þ

p4
t3

; ðC15cÞ

≃
π2

32a2

�
ln
pt3

pt1
þ ln

pt3

pt2

�
2maxðp2

t1; p
2
t2Þ

p4
t3

; ðC15dÞ

where ΔR12 is dominated by the large rapidity difference.
The other distances are

diB ¼ 1

p2
ti
; i ¼ f1; 2; 3g; ðC16aÞ

di3 ∼
y2i
p2
t3
; i ¼ f1; 2g: ðC16bÞ

When pt1; pt2 ≪ pt3, it is straightforward to see that
d12 < d1B; d2B and d12 < d13; d23 [the logarithms in
Eq. (C15d) have no impact on this]. Therefore, the first
step of the algorithm will be to cluster particles 1 and 2,
giving a flavorless pseudojet with transverse momentum,
rapidity, and squared invariant mass of

pt;ð1þ2Þ ∼maxðpt1; pt2Þ; ðC17aÞ

yð1þ2Þ ≃
1

2
ln
E1

E2

; ðC17bÞ

m2
ð1þ2Þ ≃ 4E1E2: ðC17cÞ

From the point of view of standard jet clustering, the
(1þ 2) pseudojet is unusual because its transverse momen-
tum is much smaller than its invariant mass.
The (1þ 2) pseudojet will cluster with particle 3 if it is

within a distanceΔRð1þ2Þ;3<R¼1. For any pt1; pt2 ≪ pt3,
there is always a finite azimuthal and E1, E2 phase space
region such that that condition is satisfied, and the resulting
1þ 2þ 3 cluster will have significantly different kinemat-
ics than particle 3, because of the extra energy brought
by particles 1 and 2. Thus, the jets can differ between the
1,2,3 event and the event with just particle 3. The rate for
this to happen is given by constants from the azimuthal
and energy integrations multiplying divergent integrals
over pt1 and pt2,

N ∼ α2s

Z
pt3

ϵ

dpt1

pt1

Z
pt3

ϵ

dpt2

pt2
¼ α2s ln2 ϵ; ðC18Þ

where we have explicitly included a cutoff scale ϵ in order
to make the nature of the divergence manifest.
In Sec. IV D, we proposed a modification of the CMP

algorithm, Eq. (11). For a generic ω, Eq. (C15d) in
particular is replaced by

dðΩÞ12 ∼
�

p2
t3

pt1pt2

�
ωmaxðp2

t1; p
2
t2Þ

p4
t3

; ðC19aÞ

∼
maxðp2

t1; p
2
t2Þ

pt1pt2p2
t3

·

�
p2
t3

pt1pt2

�
ω−1

: ðC19bÞ

FIG. 17. Example Oðα2sÞ configuration that yields an issue for
the CMP algorithm. There are two oppositely flavored initial-
state hard-collinear splittings (b and b̄, labeled 1 and 2) and a hard
particle 3 at central rapidity.
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When ω ¼ 1, dðΩÞ12 will be of same order as d3B if pt1 ∼ pt2.
Schematically, that suggests that there can still be a
divergence of the form

N ∼ α2s

Z
pt3

ϵ

dpt1

pt1

Z
pt3

ϵ

dpt2

pt2
δðlnpt2 − lnpt1Þ ¼ α2s ln ϵ;

ðC20Þ

i.e., with one power of the logarithm. With a more complete
calculation, one can verify that that divergence is indeed
present for ω ¼ 1. For ω > 1, the second factor in

Eq. (C19b) instead ensures that dðΩÞ12 ≫ d3B, thus ensuring
particle 3 becomes a jet before any 1þ 2 clustering and
resolving the IRC safety issue with the kinematics of jet 3.17

Results of the numerical IRC safety tests are presented in
Fig. 18 for the original algorithm (with an angular factor
ΔR2 in the distance measure, in blue) and for the algorithm
with an IRC-safe angular distance (for values of the
parameter ω ¼ 1, in orange, and ω ¼ 2, in red). The results
confirm the above analyses, showing a quadratic

divergence in the original algorithm, while the divergence
is linear for ω ¼ 1 and fully lifted for ω ¼ 2.18

Finally, note that the flavor-kt algorithm does not suffer
from the issue presented here thanks to the form of its beam
distance: the initial-state emissions 1 and 2 would be
declared as beam jets and so be removed from further
consideration early in the clustering sequence.

3. IHC × IDS issue at α3
s for CMP

The subtlety from Appendix C 1 for the flavor-kt and
GHS algorithms has an interesting manifestation in the
CMP algorithm. We consider again the scenario of Fig. 15,
with the same set of variables and in a configuration where
pt4 ≪ pt2. We will concentrate on the two distances that
are smallest, which, neglecting Oð1Þ factors, read

d23 ∼
p2
t2

z223p
4
t1
; d24 ∼

p2
t2

p4
t1
y24: ðC21Þ

As before, the probability for a 2þ 4 recombination
must be finite for IRC safety. The 2þ 4 recombination
will occur if

z23 ≲ 1

y4
¼ 1

l14 þ ln 2z41
: ðC22Þ

We neglect the ln 2z41 term in the denominator (and take
the z41 integral to give a constant), integrate over all pt4
values, over pt2 > pt4 and over the allowed z23 range (with
the same constant splitting function approximation as in
Appendix C 1). We then obtain the probability for a 2þ 4
clustering,

N24 ∼ α3s

Z
∞

0

dl14

Z
l14

0

dl24

Z
1=l14

0

dz23; ðC23Þ

which is divergent. If we regulate the upper integration
region of the l14 integral with ∞ → ln 1

ϵ, the probability
scales as

N24 ∼ α3s ln
1

ϵ
: ðC24Þ

FIG. 18. Results of the numerical tests for CMP for a
configuration as in Fig. 17, with the ΔR2 angular factor in the
distance measure, as in the original algorithm (in blue), and with a
corrected angular factor as in Eq. (11) where ω ¼ 1 (in orange),
and ω ¼ 2 (in red). Miniature plots on the right depict the
integrated failure rate on a linear scale to help read the functional
form of the divergence. The original algorithm suffers from a
quadratic divergence, the corrected measure with ω ¼ 1 from a
linear divergence, and the fix with ω ¼ 2 is IRC safe.

17Once particle 3 has been declared a jet and removed from the
clustering, the 1þ 2 cluster, if formed, would become a jet in its
own right. Standard jet analyses place a cut on the jet pt, which
ensures that a residual lone massive, but low-pt 1þ 2, cluster
does not count as a hard jet. However, one could imagine a
scenario where one cuts not on pt but on p2

t þm2, and in this
case, the 1þ 2 cluster would count as an additional hard jet. In
such a case, one could envisage that this would cause IRC
unsafety even for ω > 1. We have not explored this question
further, insofar as analyses do not normally cut on p2

t þm2.

18Note that Fig. 1 (left) of Ref. [10] has studied pp →
lþl−bbb̄ (with massless b’s), which should include the con-
figuration of our Fig. 17. That figure does not appear to show a
divergence as the technical cutoff is reduced. At first sight, that
may seem surprising; however, two considerations should be kept
in mind. First, the configuration of Fig. 17 requires an initial-state
gluon to originate from a b → gb splitting, which is responsible
for only a small fraction of incoming gluons. Second, the impact
of the IRC unsafety is to smear the rapidity distribution of the b
jet, and a smearing of broad distribution tends to have a limited
impact on the integral of the broad distribution within some
window (Ref. [10] used jybj < 2.4). As a result, it is conceivable
that the expected squared logarithmic divergence in Fig. 1 (left) of
Ref. [10] might be too small to clearly see in that figure.
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As with the other occurrences of this kind of issue, the
replacement Eq. (11) solves the problem, as can be seen
from the numerical IRC safety tests for this configuration
shown in Fig. 19.

4. FHC2 issue at α2
s for GHS

For the discussion here and in Appendix C 5, we assume
a version of the GHS algorithm with an Ω2

ij style angular
distance in the dressing (flavor-kt-like) phase, since we
know from Appendix C 1 that this is required for the flavor-
kt algorithm, which is the basis of the algorithm’s dressing
step. To make this clear, in plots where this modification is
used, we refer to the algorithm as GHSΩ.
Let us consider a hard event as that in Fig. 20. The event

has four particles, which wewill call g1, q, q̄, and g2, starting
from the left. We will work through the algorithm to see
what happens if a hard, but collinear gluon g, is emitted from
the q and splits collinearly to q0q̄0 (with ΔRq0q̄0 ≪ 1 much
smaller than any other scale in the problem).

Focusing on the hard event first (i.e., without the
emission of the hard collinear gluon g), we assume that
the anti-kt algorithm clusters the four particles into two jets
(j1 and j2), as indicated in the figure. We can further
assume that ΔRg1q;ΔRg2q̄ > Rcut ∼ 0.1, so that the hard
gluons g1 and g2 are not accumulated into q and q̄ in that
phase of the algorithm.
First, we will consider the case α < 2. For any angular

structure of the event satisfying the above limits, we take
the momenta of g1; g2; q, and q̄ such that the event without
the g → q0q̄0 emission has the following properties:

dqj1 > dqq̄ > dq̄j2 ; ðC25aÞ

ptq < ptq̄: ðC25bÞ

As a result, the first dressing step is for the q̄ flavor to be
assigned to jet j2, followed by the q flavor being assigned
to jet j1. Thus, both j1 and j2 are flavored. Note that for a
full analysis one should also take into account diB beam
distances for all flavored particles i. To help understand
why we can ignore it, suppose that all the hard particles
have rapidities close to zero, which results in ptBð0Þ in
Eq. (C4) being approximately the scalar sum of all the
particles’ transverse momenta. That scale will tend to be a
few times larger than the transverse momenta of any of the
individual particles, which ensures that the distance of any
cluster to its jet will be smaller than the diB, as will the dqq̄
if the two jets are not too far away in angle.
Next, we consider the impact of the emission of the

collinear hard gluon from q with ptg ¼ zptq, followed by
its splitting into a collinear q0q̄0 pair. Recall that we work
withΔRq0q̄0 ≪ Rcut so that it is the smallest angular distance
in the event. The algorithm goes through the accumulation
step and will identify four flavor clusters: q̂0, ˆ̄q0, and the
original q̂ and ˆ̄q. The angular structure is otherwise
unchanged, so we get no further flavor accumulation. To
lighten the notation, below we will leave out the explicit
“hats” for the flavor clusters, especially as the flavor
clusters coincide with the original particles.
The final step is the flavor dressing: the q0; q̄0 pair will

annihilate first, as it should because the pair came from a
common parent gluon. These flavor clusters (including
their kinematics) are discarded from further consideration,
and any distance involving them is removed from the list.
The remaining distances (d0) for the event with the g → q0q̄0
splitting are then given in terms of the hard event’s
distances (d) as

d0qj1 ¼ ð1 − zÞ2−αdqj1 ; ðC26aÞ

d0qq̄ ¼ ð1 − zÞ2−αdqq̄; ðC26bÞ

d0̄qj2 ¼ dq̄j2 ; ðC26cÞ

FIG. 20. Example Oðα2sÞ configuration that yields an issue for
the GHS algorithm. There are four hard particles (that one can
imagine recoiling against a hard gluon or electroweak system on
the other side of the event), a collinear emission of a hard gluon g
from one of the flavored particles (the q), which then splits
collinearly to a flavored pair q0q̄0.

FIG. 19. Failure rate of the CMP algorithm for the configura-
tion of Fig. 15, both for the original formulation and our
modification, Eq. (11), showing a divergence for the former
and none for the latter.
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where the ð1 − zÞ2−α factor arises because of the reduction
in transverse momentum of the q after emission of the
g → q0q̄0 (which carries a fraction z of its original q
momentum). The potentially dangerous scenario is that
where the ordering of distances, Eq. (C25a), is modified,

d0qq̄ < min ðd0qj1 ; d0q̄j2Þ; ðC27Þ
because then q and q̄’s flavors will annihilate, leaving
flavorless hard jets, associated with a squared logarithmic
divergence from the two nested hard collinear divergences.
There is a finite range of z in which this occurs,

1 − z <

�
dq̄j2
dqq̄

� 1
2−α
; ðC28Þ

thus confirming the presence of IRC unsafety from the
configuration of Fig. 20 for α < 2.
When α ¼ 2, we instead consider a hard event satisfying

ptq > ptq̄ rather than the inequality in Eq. (C25b), in which
case we have

d0qj1 ¼ dqj1 ; ðC29aÞ

d0qq̄ ¼ max

�
ð1 − zÞ2; p

2
tq̄

p2
tq

�
dqq̄; ðC29bÞ

d0q̄j2 ¼ dq̄j2 : ðC29cÞ
Again, there is the possibility of d0qq̄ becoming the smallest
of the three distances, with the outcome that the q and q̄
flavors would annihilate, leaving flavorless hard jets, with a
squared logarithmic divergence associated with the collin-
ear splittings.
The set of distances in the argument above is perhaps

somewhat complicated, with angular factors to consider,
the beam distances and the extra subtleties of the α ¼ 2
case. Therefore, in Fig. 21, we show the outcome of our
IRC safety tests, illustrating that the divergence is indeed
present for the two combinations α ¼ 1, β ¼ 1 and α ¼ 2,
β ¼ 2. We leave to future work the possibility of identify-
ing a concrete modification of the algorithm that solves this
problem; nevertheless, we anticipate that one line of
investigation could be to allow accumulation of kinematics
within a jet during the dressing stage.
A final comment is that this configuration can appear at

NNLO for a process such as fully hadronic tt̄ production,
however only if one asks for two massive b-tagged jets. It
also appears at N4LO for a process such as Zbb̄ production.

5. IDS × FDS issue at α4
s for GHS

The GHS algorithm exhibits an interesting interplay
between initial-state and final-state double-soft emissions
at order α4s if αβ ≥ 2. The configuration that we consider
here is that represented in Fig. 22, involving a hard Born
event with one or more unflavored jets. That event is then

supplemented with a double-soft pair (1, 2) that is collinear
to an (originally) unflavored jet and an additional large-
angle double-soft pair (3, 4) outside the jet.
We are specifically interested in the situation where

θ1g ≲ fθ2g; θ12g ≪ 1; ðC30aÞ

pt1 ∼ pt2 ≪ ptg; ðC30bÞ

pt3 ∼ pt4 ≪ ptg; ðC30cÞ

θ23 ∼ θ34 ∼ 1: ðC30dÞ

FIG. 21. Failure rate of the GHS algorithm for the FHC × FHC
configuration of Fig. 20, illustrating the quadratic divergence,
specifically for α ¼ 1, β ¼ 1 and α ¼ 2, β ¼ 2. Other parameters
are Rcut ¼ 0.1, zcut ¼ 0.1, and pt;cut ¼ 100 GeV. The jet radius R
has been sampled in the range 0.3–1.57. The version of the GHS
algorithm used is one where ΔR2

ij in the dressing stage has been
replaced with Ω2

ij using ω ¼ 3 − α (the original ΔR2
ij similarly

gives a squared logarithmic divergence).

FIG. 22. An FDS × IDS kinematic configuration that causes
problems for GHS algorithms for αβ ≥ 2.
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During the accumulation step, there is a possibility that 1
clusters with g, giving a hard bg1 flavor cluster, leaving an
unclustered, much softer 2̂ flavor cluster. If during the
subsequent dressing phase, 2̂ goes on to annihilate with 3̂

rather than with bg1, then the resulting hard jet will be
flavored.
The SoftDrop condition for 1 to cluster with g is given by

pt1

ptg
> θβ1g; ðC31Þ

where throughout our discussion here we neglect factors of
order 1 (e.g., Rcut and zcut). There is no further accumu-
lation since all particles are now flavored and the flavored
clusters will be bg1, 2̂, 3̂, and 4̂. The angle between the bg1
and the jet direction will be given by

θ
jbg1 ∼ pt2

ptg
θ2g: ðC32Þ

Without loss of generality, we can consider the case where
d2̂3̂ < d2̂4̂, and then the distances to take into account
during the dressing phase are

d
jbg1 ∼ p2

t2θ
2
2g; ðC33aÞ

dbg12̂ ∼ dj2̂ ∼ p2
tg

�
pt2

ptg

�
2−α

θ22g; ðC33bÞ

d2̂3̂ ∼maxðpt2; pt3Þαminðpt2; pt3Þ2−α; ðC33cÞ
d3̂4̂ ∼ p2

t3; ðC33dÞ
where, again we have ignored factors of order 1, e.g., from
angular distances. The hard jet will acquire a flavor if the
SoftDrop condition of Eq. (C31) is satisfied and if addi-
tionally 2̂ fails to annihilate the flavor of the bg1 cluster. This
will occur if d23 < d34 and d23 < dj2̂ ≃ dbg12.19 In determin-

ing whether these conditions are satisfied, it is helpful to
introduce shorthands

li ¼ ln
ptg

pti
; ðC34aÞ

lθ ¼ ln
1

θ2g
ðC34bÞ

and to observe that in the SoftDrop condition (C31), we can
replace 1 → 2, since this only affects Oð1Þ terms.

Our conditions then become [to within Oð1Þ offsets]
SD∶ l2 < βlθ; ðC35aÞ

d34 > d23∶ l2 > l3; ðC35bÞ
dg2 > d23∶ ð2 − αÞl2 þ 2lθ < αl3 þ ð2 − αÞl2; ðC35cÞ
where the last line already underwent some simplification
(using the second line) and can then be further simplified
to read

2lθ < αl3: ðC36Þ
Assembling all inequalities, we obtain

2lθ < αl3 < αl2 < αβlθ: ðC37Þ
We immediately see that if αβ < 2 there is no available
logarithmic integration region, and so no IRC divergence
from this configuration. Conversely, if αβ > 2, we expect
to see a cubic logarithmic divergence from integrals over
lθ, l3, and l2. For αβ ¼ 2, the Oð1Þ factors become
critical, and it is easiest to carry out a numerical study,
but it is reasonable to expect a divergence with a single
logarithm.
The results of the numerical study are shown in Fig. 23 for

four combinations of α and β. They confirm our expectations
and suggest that if one wishes to employ a GHS-style
algorithm one should use it with αβ < 2. Nevertheless,
one would still need to find a solution to the separate issue
identified in Appendix C 4 (which cannot be resolved just
through parameter choices) and then verify that the resulting
algorithm passes a full set of IRC safety tests.

FIG. 23. Failure rate of the GHS algorithm for the α4s FDS ×
IDS configuration of Fig. 22, illustrating the cubic divergence
for parameter choices involving αβ > 2, the linear divergence for
αβ ¼ 2, and convergence for αβ < 2. In its dressing stage, the
GHS implementation for these runs uses an Ω2

ij angular distance
instead of ΔR2

ij, where ω ¼ 3 − α. Other parameters are
Rcut ¼ 0.1, zcut ¼ 0.1, and pt;cut ¼ 100 GeV.

19Note that the d23 < d34 condition implies that pt2 cannot be
substantially larger than pt3, which leads to d

jbg1 being the

smallest of all the distances. Consequently, the first step of the
dressing is that the flavor of bg1 is assigned to the jet and the bg1
cluster is removed from consideration.
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APPENDIX D: SUMMARY PLOTS FOR IRC-SAFE ALGORITHMS

In this appendix, we present summary plots from our IRC safety tests for the three approaches that have passed all those
tests: IFN, CMPΩ, and flavor-kt;Ω. In Figs. 24 and 25, we show the results from the IRC-safety tests for the anti-kt and C=A
algorithms with IFN, i.e., each of the algorithms labeled as safe in Table I. Figures 26 and 27 show corresponding results for
our adaptations of the flavor-kt and CMP algorithms, supporting the conclusion that they, too, are IRC safe.

FIG. 24. Summary of IRC safety test results at orders αs to α6s for the anti-kt algorithm with IFN.

FIG. 25. Same as Fig. 24, for the C=A algorithm with IFN.
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FIG. 26. Same as Fig. 24, for the flavor-kt;Ω algorithm.

FIG. 27. Same as Fig. 24, for the CMPΩ algorithm.

FLAVORED JETS WITH EXACT ANTI-kt KINEMATICS … PHYS. REV. D 108, 094010 (2023)

094010-33



[1] A. Banfi, G. P. Salam, and G. Zanderighi, Infrared safe
definition of jet flavor, Eur. Phys. J. C 47, 113 (2006).

[2] A. Banfi, G. P. Salam, and G. Zanderighi, Accurate QCD
predictions for heavy-quark jets at the Tevatron and LHC,
J. High Energy Phys. 07 (2007) 026.

[3] S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock, and
B. R. Webber, New clustering algorithm for multi-jet cross-
sections in eþe− annihilation, Phys. Lett. B 269, 432 (1991).

[4] S. Catani, Y. L. Dokshitzer, M. H. Seymour, and B. R.
Webber, Longitudinally invariant Kt clustering algorithms
for hadron hadron collisions, Nucl. Phys. B406, 187 (1993).

[5] S. D. Ellis and D. E. Soper, Successive combination jet
algorithm for hadron collisions, Phys. Rev. D 48, 3160
(1993).

[6] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet
clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[7] R. Gauld, A. Gehrmann-De Ridder, E. W. N. Glover, A.
Huss, and I. Majer, Predictions for Z-boson production in
association with a b-jet at Oðα3sÞ, Phys. Rev. Lett. 125,
222002 (2020).

[8] S. Caletti, A. J. Larkoski, S. Marzani, and D. Reichelt,
Practical jet flavour through NNLO, Eur. Phys. J. C 82, 632
(2022).

[9] S. Caletti, A. J. Larkoski, S. Marzani, and D. Reichelt, A
fragmentation approach to jet flavor, J. High Energy Phys.
10 (2022) 158.

[10] M. Czakon, A. Mitov, and R. Poncelet, Infrared-safe
flavoured anti-kT jets, J. High Energy Phys. 04 (2023) 138.

[11] R. Gauld, A. Huss, and G. Stagnitto, Flavor identification of
reconstructed hadronic jets, Phys. Rev. Lett. 130, 161901
(2023).

[12] S. Weinzierl, The forward-backward asymmetry at NNLO
revisited, Phys. Lett. B 644, 331 (2007).

[13] Z. Trócsányi, G. Somogyi, and F. Tramontano, Fully
differential decay rate of a standard model Higgs boson
into two b-jets at NNLO, Acta Phys. Pol. B 46, 2097 (2015).

[14] G. Ferrera, G. Somogyi, and F. Tramontano, Associated
production of a Higgs boson decaying into bottom quarks
at the LHC in full NNLO QCD, Phys. Lett. B 780, 346
(2018).

[15] F. Caola, G. Luisoni, K. Melnikov, and R. Röntsch, NNLO
QCD corrections to associatedWH production andH → bb̄
decay, Phys. Rev. D 97, 074022 (2018).

[16] R. Gauld, A. Gehrmann-De Ridder, E. W. N. Glover, A.
Huss, and I. Majer, Associated production of a Higgs boson
decaying into bottom quarks and a weak vector boson
decaying leptonically at NNLO in QCD, J. High Energy
Phys. 10 (2019) 002.

[17] M. Czakon, A. Mitov, M. Pellen, and R. Poncelet, NNLO
QCD predictions for W+c-jet production at the LHC,
J. High Energy Phys. 06 (2021) 100.

[18] H. B. Hartanto, R. Poncelet, A. Popescu, and S. Zoia, Next-
to-next-to-leading order QCD corrections to Wbb̄ produc-
tion at the LHC, Phys. Rev. D 106, 074016 (2022).

[19] H. B. Hartanto, R. Poncelet, A. Popescu, and S. Zoia,
Flavour anti-kT algorithm applied to Wbb̄ production at
the LHC, arXiv:2209.03280.

[20] M. Czakon, A. Mitov, M. Pellen, and R. Poncelet, A
detailed investigation of W þ c-jet at the LHC, J. High
Energy Phys. 02 (2023) 241.

[21] R. Gauld, A. Gehrmann-De Ridder, E. W. N. Glover, A.
Huss, A. R. Garcia, and G. Stagnitto, NNLO QCD pre-
dictions for Z-boson production in association with a charm
jet within the LHCb fiducial region, Eur. Phys. J. C 83, 336
(2023).

[22] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber,
Better jet clustering algorithms, J. High Energy Phys. 08
(1997) 001.

[23] M. Wobisch and T. Wengler, Hadronization corrections to
jet cross-sections in deep inelastic scattering, in Proceedings
of the Workshop on Monte Carlo Generators for HERA
Physics (Plenary Starting Meeting) (DESY, Hamburg,
Germany, 1998), pp. 270–279, arXiv:hep-ph/9907280.

[24] S. Hoeche, F. Krauss, S. Schumann, and F. Siegert, QCD
matrix elements and truncated showers, J. High Energy
Phys. 05 (2009) 053.

[25] A. Karlberg, G. P. Salam, L. Scyboz, and R. Verheyen, Spin
correlations in final-state parton showers and jet observ-
ables, Eur. Phys. J. C 81, 681 (2021).

[26] M. van Beekveld, S. Ferrario Ravasio, K. Hamilton, G. P.
Salam, A. Soto-Ontoso, G. Soyez, and R. Verheyen,
PanScales showers for hadron collisions: All-order valida-
tion, J. High Energy Phys. 11 (2022) 020.

[27] G. P. Salam and G. Soyez, A practical seedless infrared-safe
cone jet algorithm, J. High Energy Phys. 05 (2007) 086.

[28] J. Gallicchio and Y.-T. Chien, Quit using pseudorapidity,
transverse energy, and massless constituents, arXiv:1802
.05356.

[29] A. Buckley and C. Pollard, QCD-aware partonic jet
clustering for truth-jet flavour labelling, Eur. Phys. J. C
76, 71 (2016).

[30] W. Bartel et al. (JADE Collaboration), Experimental studies
on multi-jet production in eþe− annihilation at PETRA
energies, Z. Phys. C 33, 23 (1986).

[31] S. Bethke et al. (JADE Collaboration), Experimental in-
vestigation of the energy dependence of the strong coupling
strength, Phys. Lett. B 213, 235 (1988).

[32] A. Behring, W. Bizoń, F. Caola, K. Melnikov, and R.
Röntsch, Bottom quark mass effects in associated WH
production with the H → bb̄ decay through NNLO QCD,
Phys. Rev. D 101, 114012 (2020).

[33] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, Soft
Drop, J. High Energy Phys. 05 (2014) 146.

[34] B. Andersson, G. Gustafson, L. Lonnblad, and U.
Pettersson, Coherence effects in deep inelastic scattering,
Z. Phys. C 43, 625 (1989).

[35] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual,
Eur. Phys. J. C 72, 1896 (2012).

[36] Y. Hida, X. S. Li, and D. H. Bailey, Quad-double arithmetic:
Algorithms, implementation, and application, in Proceed-
ings of the 15th IEEE Symposium on Computer Arithmetic
(IEEE Computer Society, Washington DC, USA, 2000),
pp. 155–162.

[37] M. Dasgupta, F. A. Dreyer, K. Hamilton, P. F. Monni, G. P.
Salam, and G. Soyez, Parton showers beyond leading
logarithmic accuracy, Phys. Rev. Lett. 125, 052002
(2020).

[38] K. Hamilton, R. Medves, G. P. Salam, L. Scyboz, and G.
Soyez, Colour and logarithmic accuracy in final-state parton
showers, J. High Energy Phys. 03 (2021) 041.

FABRIZIO CAOLA et al. PHYS. REV. D 108, 094010 (2023)

094010-34

https://doi.org/10.1140/epjc/s2006-02552-4
https://doi.org/10.1088/1126-6708/2007/07/026
https://doi.org/10.1016/0370-2693(91)90196-W
https://doi.org/10.1016/0550-3213(93)90166-M
https://doi.org/10.1103/PhysRevD.48.3160
https://doi.org/10.1103/PhysRevD.48.3160
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1103/PhysRevLett.125.222002
https://doi.org/10.1103/PhysRevLett.125.222002
https://doi.org/10.1140/epjc/s10052-022-10568-7
https://doi.org/10.1140/epjc/s10052-022-10568-7
https://doi.org/10.1007/JHEP10(2022)158
https://doi.org/10.1007/JHEP10(2022)158
https://doi.org/10.1007/JHEP04(2023)138
https://doi.org/10.1103/PhysRevLett.130.161901
https://doi.org/10.1103/PhysRevLett.130.161901
https://doi.org/10.1016/j.physletb.2006.11.076
https://doi.org/10.5506/APhysPolB.46.2097
https://doi.org/10.1016/j.physletb.2018.03.021
https://doi.org/10.1016/j.physletb.2018.03.021
https://doi.org/10.1103/PhysRevD.97.074022
https://doi.org/10.1007/JHEP10(2019)002
https://doi.org/10.1007/JHEP10(2019)002
https://doi.org/10.1007/JHEP06(2021)100
https://doi.org/10.1103/PhysRevD.106.074016
https://arXiv.org/abs/2209.03280
https://doi.org/10.1007/JHEP02(2023)241
https://doi.org/10.1007/JHEP02(2023)241
https://doi.org/10.1140/epjc/s10052-023-11530-x
https://doi.org/10.1140/epjc/s10052-023-11530-x
https://doi.org/10.1088/1126-6708/1997/08/001
https://doi.org/10.1088/1126-6708/1997/08/001
https://arXiv.org/abs/hep-ph/9907280
https://doi.org/10.1088/1126-6708/2009/05/053
https://doi.org/10.1088/1126-6708/2009/05/053
https://doi.org/10.1140/epjc/s10052-021-09378-0
https://doi.org/10.1007/JHEP11(2022)020
https://doi.org/10.1088/1126-6708/2007/05/086
https://arXiv.org/abs/1802.05356
https://arXiv.org/abs/1802.05356
https://doi.org/10.1140/epjc/s10052-016-3925-z
https://doi.org/10.1140/epjc/s10052-016-3925-z
https://doi.org/10.1007/BF01410449
https://doi.org/10.1016/0370-2693(88)91032-5
https://doi.org/10.1103/PhysRevD.101.114012
https://doi.org/10.1007/JHEP05(2014)146
https://doi.org/10.1007/BF01550942
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1103/PhysRevLett.125.052002
https://doi.org/10.1103/PhysRevLett.125.052002
https://doi.org/10.1007/JHEP03(2021)041


[39] A. M. Sirunyan et al. (CMS Collaboration), Evidence for
the Higgs boson decay to a bottom quark–antiquark pair,
Phys. Lett. B 780, 501 (2018).

[40] G. Aad et al. (ATLAS Collaboration), Measurements of
WH and ZH production in theH → bb̄ decay channel in pp
collisions at 13 TeV with the ATLAS detector, Eur. Phys.
J. C 81, 178 (2021).

[41] G. Aad et al. (ATLAS Collaboration), Measurement of
the associated production of a Higgs boson decaying into
b-quarks with a vector boson at high transverse momentum
in pp collisions at

ffiffiffi
s

p ¼ 13 TeV with the ATLAS detector,
Phys. Lett. B 816, 136204 (2021).

[42] A. M. Sirunyan et al. (CMS Collaboration), Inclusive search
for highly boosted Higgs bosons decaying to bottom quark-
antiquark pairs in proton-proton collisions at

ffiffiffi
s

p ¼ 13 TeV,
J. High Energy Phys. 12 (2020) 085.

[43] J. M. Butterworth, A. R. Davison, M. Rubin, and G. P.
Salam, Jet substructure as a new Higgs search channel at
the LHC, Phys. Rev. Lett. 100, 242001 (2008).

[44] S. Marzani, G. Soyez, and M. Spannowsky, Looking Inside
Jets: An Introduction to Jet Substructure and Boosted-
Object Phenomenology (Springer, New York, 2019),
Vol. 958.

[45] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai,
P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.
Skands, An introduction to PYTHIA 8.2, Comput. Phys.
Commun. 191, 159 (2015).

[46] C. Bierlich et al., A comprehensive guide to the physics and
usage of PYTHIA 8.3, arXiv:2203.11601.

[47] R. Corke and T. Sjostrand, Interleaved parton showers and
tuning prospects, J. High Energy Phys. 03 (2011) 032.

[48] P. Skands, S. Carrazza, and J. Rojo, Tuning PYTHIA 8.1: The
Monash 2013 tune, Eur. Phys. J. C 74, 3024 (2014).

[49] P. Gras, S. Höche, D. Kar, A. Larkoski, L. Lönnblad, S.
Plätzer, A. Siódmok, P. Skands, G. Soyez, and J. Thaler,
Systematics of quark/gluon tagging, J. High Energy Phys.
07 (2017) 091.

[50] M.Dasgupta,F.Dreyer,G. P.Salam,andG.Soyez,Small-radius
jets to all orders in QCD, J. High Energy Phys. 04 (2015) 039.

[51] S. Catani and M. H. Seymour, A general algorithm for
calculating jet cross-sections in NLO QCD, Nucl. Phys.
B485, 291 (1997); B510, 503(E) (1998).

[52] M. van Beekveld, W. Beenakker, E. Laenen, and C. D.
White, Next-to-leading power threshold effects for inclusive
and exclusive processes with final state jets, J. High Energy
Phys. 03 (2020) 106.

FLAVORED JETS WITH EXACT ANTI-kt KINEMATICS … PHYS. REV. D 108, 094010 (2023)

094010-35

https://doi.org/10.1016/j.physletb.2018.02.050
https://doi.org/10.1140/epjc/s10052-020-08677-2
https://doi.org/10.1140/epjc/s10052-020-08677-2
https://doi.org/10.1016/j.physletb.2021.136204
https://doi.org/10.1007/JHEP12(2020)085
https://doi.org/10.1103/PhysRevLett.100.242001
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arXiv.org/abs/2203.11601
https://doi.org/10.1007/JHEP03(2011)032
https://doi.org/10.1140/epjc/s10052-014-3024-y
https://doi.org/10.1007/JHEP07(2017)091
https://doi.org/10.1007/JHEP07(2017)091
https://doi.org/10.1007/JHEP04(2015)039
https://doi.org/10.1016/S0550-3213(96)00589-5
https://doi.org/10.1016/S0550-3213(96)00589-5
https://doi.org/10.1016/S0550-3213(98)81022-5
https://doi.org/10.1007/JHEP03(2020)106
https://doi.org/10.1007/JHEP03(2020)106

