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We determine jVcbj from the inclusive semileptonic decay width of the B meson with the known N3LO
perturbative coefficients for the first time in the MS mass scheme. We make use of a recently developed
method, dual-space-renormalon-subtraction method, to separate and subtract the order Λ2

QCD=mb infrared

renormalon. This allows us to perform the analysis accurately in the MS mass scheme, in which otherwise
the perturbative series does not converge well up to the currently calculated perturbation order. Our result
reads jVcbj ¼ 0.0415ð þ10

−12 Þ, which is consistent with the previous results based on other mass schemes and
shows an independent cross-check of the current theoretical evaluation of the inclusive decay width.
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa matrix elements play
key roles in studying flavor physics such as CP violation in
the Standard Model (SM) of particle physics, and one of the
elements, jVcbj, is determined from the semileptonic B
decay processes B → Xclν. It is known, however, that
there is a sizable tension between the jVcbj values deter-
mined from the exclusive decays B̄ → Dð�Þlν and from the
inclusive decays B → Xclν. This is called the jVcbj puzzle.
According to the Particle Data Group (PDG) [1], the
average values of the exclusive and inclusive analyses
are given, respectively, by

jVcbjexcl ¼ 0.0394ð8Þ; jVcbjincl ¼ 0.0422ð8Þ: ð1Þ

It is argued that the jVcbj puzzle is difficult to be explained
by physics beyond the SM [2]. Under this circumstance,
reconfirmation of the SM analysis is important.
In the theoretical calculation of the inclusive decays, the

operator product expansion (OPE) is used. It provides a
theoretical prediction of the decay width ΓðB → XclνÞ in

the double expansion in the strong coupling constant αs and
inverse of the bottom quark mass 1=mb. In the first step of
constructing the OPE of Γ, the pole mass scheme for the
bottom quark is used because it is a natural scheme in
implementing nonrelativistic dynamics of the bottom
quark. At this point, the infrared (IR) renormalons are
present in the perturbative series expression of the leading
order (LO) Wilson coefficient (i.e., the leading term in the
OPE), and the perturbative series exhibits a factorial
divergence. They induce OððΛQCD=mbÞnÞ uncertainties
(ΛQCD ∼ 300 MeV), obscuring systematic improvement
of theoretical accuracy by the double expansion.
Switching from the pole mass scheme to a short-distance
mass scheme, one can eliminate the u ¼ 1=2 renormalon
[OðΛQCD=mbÞ uncertainty] in the LO Wilson coefficient,
resulting in a better convergence. Recent developments in
computational techniques have accomplished the next-to-
next-to-next-to-LO (N3LO) calculations of the inclusive
decay width [3] and the lepton energy moments in the
b → clν decay [4]. These lead to the latest determinations
of jVcbj, which are in agreement with the current PDG
inclusive value: Refs. [5–7] adopt the kinetic mass scheme
[8,9], and Refs. [10,11] adopt the 1S mass scheme [12–14].
In this paper, we report a jVcbj determination from

ΓðB → XclνÞ with the N3LO result adopting the MS mass
scheme for the first time. It was hitherto missing because
the convergence of the perturbative series in terms of the
MS mass is known to be slow even after the u ¼ 1=2
renormalon is canceled, owing to the fact that the MS mass
(≈4.2 GeV) is far from the pole mass (≈4.8 GeV). In
particular, Γ is proportional to m5

b, and thus the slow
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convergence of the mass relation seriously affects the
convergence of Γ. Nevertheless, since the decay width
does not depend on the choice of short-distance masses, the
prediction of jVcbj in the MS mass scheme should match
the prediction in other mass schemes (as more terms of the
perturbation series are included). This is an important
cross-check of the inclusive determinations of jVcbj.
We use the dual-space-renormalon-subtraction (DSRS)

method [15] and subtract the IR renormalon at u ¼ 1, i.e.,
the OððΛQCD=mbÞ2Þ uncertainty, aiming at better accuracy
in the determination in the MS mass scheme. The DSRS
method is founded on the well-known Borel method [16],
which provides a regularization of a divergent series caused
by renormalons. The major drawback of the Borel method
is that it requires the information of all-order perturbative
series to construct the Borel transform, which is impossible
in a practical application. The DSRS method enables us to
construct an approximate Borel transform from a finite
order of perturbative series, and to obtain a converging
result as we increase the perturbative order.
We explain the outline of theDSRSmethod [15]. Given an

observable whose typical scale is Q ≫ ΛQCD, we perform a
dual transform using the inverse Laplace integral to give a
quantity which now depends on the dual-space variable t
instead ofQ. The IR renormalons are suppressed in the dual-
space quantity due to a property of the inverse Laplace
transform; see, for instance, Eq. (26) below. In particular,
when a renormalon uncertainty is given by the integer power
inΛQCD=Q, the renormalon can be completely eliminated by
the (simplest formula of) DSRS method. However, the
simplest formula is not sufficient to completely eliminate
renormalon uncertainties in the case that they deviate from
the integer power in ΛQCD=Q; the general form of renorma-
lon uncertainties is given by fðαsðQ2ÞÞðΛQCD=QÞn, where n
is an integer and fðαsðQ2ÞÞ can be calculated perturbatively
in the form, αsðQ2Þν̃P∞

n¼0 cnαsðQ2Þn (ν̃ can be noninteger),
a function of ΛQCD=Q. There is an extended formula which
can eliminate general renormalon uncertainties but it com-
plicates calculations. For this reason, in this paper, we use the
simplest formula for simplicity of our analysis. We note,
however, that the relevant renormalon uncertainties are
largely removedbecausefðαsðQ2ÞÞ is given byfðαsðQ2ÞÞ¼
constþOðαsðQ2ÞÞ in our study. The residual renormalon
uncertainties are considered in our analyses of systematic
uncertainties.
The procedure for our jVcbj determination is as follows.

As a first trial, we treat only the OPE of the decay width
ΓðB → XclνÞ and not those of the moments. After rewrit-
ing the OPE in the MS mass, we apply the DSRS method to
the LOWilson coefficient of Γ and then the imaginary part
caused by the u ¼ 1 renormalon is separated. The separated
u ¼ 1 renormalon is assumed to be absorbed and removed
by the first nonperturbative term of the OPE, the kinetic
energy term of the B meson, μ2π. In this study, the

nonperturbative matrix elements, μ2π (and μ2G), are deter-
mined from the B andDmeson masses after the removal of
renormalons in the 1=mh expansion for the heavy-light
meson mass, by using the DSRS method. Following this
procedure we can obtain the OPE for Γ where the non-
perturbative effects are incorporated. We note that our
double expansion is systematic because of a proper treat-
ment of renormalons. By comparing our renormalon-
subtracted OPE with an experimental value of Γ, we
determine the inclusive jVcbj in the MS mass scheme
and compare it with previously determined values in other
short-distance mass schemes.
The paper is organized as follows. Section II is devoted

to an explanation of the theoretical framework of our
analysis, namely the OPE and the renormalon subtraction.
In Sec. III, we examine renormalons of the pole masses to
determine the nonperturbative matrix elements needed in
our determination of jVcbj. Section IV is the main part,
where jVcbj is determined and compared to the previous
studies. We summarize and conclude our study in Sec. V.
For the readers’ convenience, we collect the formulas from
the literature used in our analysis in Appendix A. In
Appendix B, we explain our method to estimate the
higher-order perturbative coefficient for the relation
between the pole and the MS masses.

II. OPE IN MS MASS SCHEME AND
RENORMALON SUBTRACTION

A. OPE of the decay width in MS mass scheme

In the framework of the OPE based on the heavy quark
effective theory (HQET) [17–19], the inclusive semilep-
tonic decay width ΓðB → XclνÞ is given by

Γ ¼ G2
FjVcbj2
192π3

Aewm5
b

�
CΓ
Q̄Qðmb; ρÞ þ CΓ

kinðmb; ρÞ
μ2π
m2

b

þ CΓ
cmðmb; ρÞ

μ2GðmbÞ
m2

b

þO
�Λ3

MS

m3
b

��
: ð2Þ

Here, GF ≈ 1.166 × 10−5 GeV−2 is the Fermi constant and
Aew ≈ 1.014 is the electroweak correction to the decay
width. The uncertainties of GF and Aew are negligible in
this analysis. ΛMS is the QCD scale parameter in the MS
scheme. mb ðmcÞ denotes the pole mass of the bottom
(charm) quark and ρ ¼ mc=mb. μ2π and μ2G are nonpertur-
bative matrix elements in HQET given by

μ2π ¼ −hHðvÞjh̄vðiD⊥Þ2hvjHðvÞi;
μ2G ¼ −hHðvÞjh̄v

gs
2
σμνGμνhvjHðvÞi; ð3Þ

whereDμ is the covariant derivative,Gμν is the field strength
tensor, σμν ¼ i

2
½γμ; γν� andDμ

⊥ ¼ Dμ − vμðv ·DÞ. In Eq. (3),
hv is the heavy quark field in the HQET, v ¼ pB=MB is the
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velocity of theBmeson and jHðvÞi is the meson state in the
infinite mass limit. Note that the above matrix elements
are identical forH ¼ B,D (or h ¼ b, c).CΓ

Q̄Q; C
Γ
kin andC

Γ
cm

areWilson coefficients which are calculated perturbatively.
Up to Oð1=m2

bÞ, CΓ
kin ¼ − 1

2
CΓ
Q̄Q due to the reparametriza-

tion invariance (RPI) [20,21].1 At present, CΓ
Q̄Q ¼P∞

n¼0 XnðρÞαsðmbÞn and CΓ
cm ¼ P∞

n¼0 YnðρÞαsðmbÞn are
calculated up to Oðα3sÞ [3,22–28] and OðαsÞ [29–32],
respectively. Note thatOðΛMSÞ nonperturbative terms such
as Λ̄ do not appear for this observable because the HQET
Lagrangian does not contain the dimension-four operator
whose form is h̄v O hv (up to the equation of motion).
We rewrite the OPE by the MS mass m̄h, using the pole-

MS mass relation up to Oðα3sÞ [33–36]. Then the u ¼ 1=2
renormalon of the LO Wilson coefficient CΓ

Q̄Q is canceled

with that of the prefactor m5
b in Eq. (2). The expression is

given by

Γ ¼ G2
FjVcbj2
192π3

Aewm̄5
b

�
C̄Γ
Q̄Qðm̄b; ρ̄Þ

�
1 −

μ2π
2m2

b

�

þ C̄Γ
cmðm̄b; ρ̄Þ

μ2G
m2

b

þO
�Λ3

MS

m3
b

��
; ð4Þ

where the expansion parameter is kept to be the inverse
of the pole mass. C̄Γ

Q̄Q ≡ ðmb=m̄bÞ5CΓ
Q̄Q and C̄Γ

cm ≡
ðmb=m̄bÞ5CΓ

cm are calculated by rewriting mb and mc in
terms of m̄b and m̄c. We define ρ̄ ¼ m̄c=m̄b. The LO
renormalon of C̄Γ

Q̄Q is at u ¼ 1,2 generating the imaginary

part of OðΛ2

MS
=m2

bÞ, if C̄Γ
Q̄Q is regularized in the Borel-

resummation method. The Borel-resummation regulariza-
tion of C̄Γ

Q̄Q is given by

½C̄Γ
Q̄Q�� ¼ ½C̄Γ

Q̄Q�PV � i Im½C̄Γ
Q̄Q�; ð5Þ

where ½C̄Γ
Q̄Q�PV is the regularizedWilson coefficient defined

by the principal value integral of the Borel-resummation
integral and

Im½C̄Γ
Q̄Q� ¼ OðΛ2

MS
=m2

bÞ: ð6Þ

(See, e.g., Sec. 3.1 of Ref. [15] for a review of the Borel-
resummation method.) Identification of a renormalon-free

contribution in the Wilson coefficient is scheme dependent,
and the conventional way is to identify it with the principal
value (PV) part inEq. (5). The imaginary part ofOðΛ2

MS
=m2

bÞ
is expected to be absorbed by the nonperturbative part μ2π ,
realizing the cancellation of the IR renormalon. In this way,
the OPE in the double expansion in αs and 1=mb can achieve
an accurate description of Γ, and in principle enables precise
determination of jVcbj in the MS mass scheme.

B. Nonperturbative matrix elements

In this subsection we summarize the property of the
nonperturbative matrix elements μ2π and μ2G, which is the
prerequisite of the analysis in the 1=mh expansion of the B
and D meson masses. The masses of H ¼ B and D are
formulated by

MðsÞ
H ¼ mh þ Λ̄þ μ2π

2mh
þ AðsÞCM

cmðmhÞ
μ2GðmhÞ
2mh

þO
�Λ3

MS

m2
h

�
; ð7Þ

where sð¼ 0; 1Þ denotes the spin of H. The leading
contribution to MH is the heavy quark pole mass mh
(h ¼ b, c), which has an uncertainty due to the IR
renormalons starting from OðΛMSÞ. The leading nonper-
turbative correction is OðΛMSÞ, and in the sum, namely in
mh þ Λ̄, there is no uncertainty of OðΛMSÞ. The first
nonperturbative correction Λ̄ ¼ OðΛMSÞ is the contribution
from the light degrees of freedom of H, which can be
written by the matrix element of the light sector of the QCD
Hamiltonian. By construction of the effective field theory,
μ2π and μ2G are identical to those in Eq. (3). The Wilson
coefficient of μ2π=ð2mhÞ is exactly 1 due to RPI, and CM

cm

has been calculated up to Oðα3sÞ [37]. Since the chromo-
magnetic interaction breaks the spin symmetry in the
HQET Lagrangian, the μ2G term is proportional to a
spin-dependent coefficient AðsÞ; AðsÞ ¼ −1 for s ¼ 0
(pseudoscalar mesonH�) and AðsÞ ¼ 1=3 for s ¼ 1 (vector
meson H).
Up to this order, we can separate the spin-dependent part

by a simple combination of MðsÞ
H . A clever choice is to

express it by the difference of the mass squared of the H
mesons as

3

4
ðM2

H� −M2
HÞ ¼ CM

cmðmhÞμ2GðmhÞ þO
�Λ3

MS

mh

�
; ð8Þ

where power dependence on the pole mass mh does not
appear in the LO calculation. From this 1=mh expansion,
one can see that μ2G does not have an OðΛ2

MS
Þ renormalon

(at u ¼ 1). (If it had, there were no quantities which could

1Reparametrization invariance is due to the Lorentz invariance
of full QCD, which fixes the renormalization constant of the
kinetic energy term μ2π .

2In the large-β0 approximation, the u ¼ 1 renormalon is absent
both in the pole-MS mass relation and in CΓ

Q̄Q. Beyond this
approximation, it is possible that the u ¼ 1 renormalon exists and
therefore we assume that it does.
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cancel it.) Thus, we do not consider the IR renormalon of
this part in the following analysis. In Ref. [10], the value of
μ2Gðm̄bÞ using CM

cm at N3LO [37] is determined as

μ2Gðm̄bÞ ¼ 0.284� 0.014 GeV2; ð9Þ

in which the uncertainty is comparable to OðΛ3

MS
=m̄bÞ, the

power correction in Eq. (8), reflecting the fact that the fixed-
order result of CM

cm contains the u ¼ 1=2 renormalon.3

The μ2G-independent part is given by a linear combina-
tion of MH and MH� as

½MH�spin ave ¼
MH þ 3MH�

4
¼mh þ Λ̄þ μ2π

2mh
þO

�Λ3

MS

m2
h

�
:

ð10Þ

We assume that the largest two IR renormalon contribu-
tions are those corresponding to u ¼ 1=2 and u ¼ 1. The
imaginary part from those IR renormalons is absorbed into
Λ̄ and μ2π, respectively. The imaginary part of the pole mass
in the PV prescription is expressed as

½mh�� ¼ ½mh�PV � iN1=2ΛMS � iN1

Λ2

MS

½mh�PV
þO

� Λ3

MS

½mh�2PV

�
;

ð11Þ

where ½mh�� is the regularized pole mass. ½mh�PV denotes
the renormalon-subtracted pole mass in the PV prescription
and we call it the PV mass of h. N1=2 and N1 are the
normalization constants of the imaginary part. We note that
the Wilson coefficients for Λ̄ and μ2π are independent ofmb.
The renormalon-subtracted formula of ½MH�spin ave. is
expressed by

½MH�spin ave ¼ ½mh�PVþ½Λ̄�PVþ
½μ2π�PV
2½mh�PV

þO
�Λ3

MS

m2
h

�
; ð12Þ

where ½Λ̄�PV and ½μ2π�PV are defined by ½Λ̄�PV ¼
Λ̄� iN1=2ΛMS and ½μ2π�PV ¼ μ2π � iN1Λ2

MS
.

The matrix elements ½Λ̄�PV and ½μ2π�PV can be determined
by comparing the experimental values of MH and theo-
retical calculations in Eq. (12) for H ¼ B, D. In this fit, a
more accurate result for ½mh�PV allows us to determine the
nonperturbative matrix elements more accurately (unless
the neglected higher power corrections become significant).
To this end, we aim at accurate calculation of ½mh�PV
in Sec. III.

We would like to emphasize that Eqs. (12) and (8) are the
same form betweenH ¼ B,D (h ¼ b, c), and, in particular,
the nonperturbative matrix elements are identical. This is
because the matrix elements are defined to be independent
of the mass of the heavy quark (infinite mass limit). In order
to subtract renormalons of mb and mc properly, the same
light quark theory should be used. We choose nf ¼ 3

theory, i.e., we assume that up, down and strange quarks are
massless and charm and bottom quarks are mas-
sive (mc;mb ≫ ΛMS).

4

C. u= 1 renormalon of C̄Γ
Q̄Q

and its subtraction

In this subsection we discuss the detailed form of the
u ¼ 1 renormalon uncertainty of C̄Γ

Q̄Q and consider an

efficient way to subtract it. Cancellation of the u ¼ 1
renormalon in the PV prescription requires the condition

0 ¼ Im

�
½C̄Γ

Q̄Q��
�
1 −

μ2π
2m2

b

��
OðΛ2

MS
=m2

bÞ

¼ �Im½C̄Γ
Q̄Q�OðΛ2

MS
=m2

bÞ − ½C̄Γ
Q̄Q�PV

Imμ2π
2½mb�2PV

; ð13Þ

leading to

Im½C̄Γ
Q̄Q�OðΛ2

MS
=m2

bÞ ∝ ½C̄Γ
Q̄Q�PV

Λ2

MS

½mb�2PV
; ð14Þ

where we used Imμ2π ∝ Λ2

MS
. Equation (14) shows that the

u ¼ 1 renormalon of C̄Γ
Q̄Q deviates from the integer power

of ΛMS=mb, because ½C̄Γ
Q̄Q�PV is a function of αsðmbÞ,

which gives rise to complicated dependence on ΛMS=mb.
We note that, in the DSRS method, when a renormalon
uncertainty has an integer power behavior, i.e., ðΛQCD=QÞn
(where n is an integer and Q a typical scale of an
observable), we can use a simple formula.5 We then
introduce a function F ¼ log½C̄Γ

Q̄Q� instead of C̄Γ
Q̄Q itself.

It turns out that the u ¼ 1 renormalon of F has an integer
power as follows:

3Although we neglect the power correction indicated in
Eq. (8), its typical uncertainty is properly reflected in Eq. (9)
in this manner.

4It is known that the nf ¼ 3 theory can describe the renorma-
lon structure more properly than the nf ¼ 4 theory. Physically,
internal massive quarks in loops do not contaminate the IR
structure. That is, it can be understood that internal charm quarks
with nonzero (finite) masses do not contribute to the renormalon
divergence of the bottom quark pole mass.

5An extended formula is available to subtract the renormalon
uncertainty of the form fðαsðQ2ÞÞðΛQCD=QÞn, where fðαsðQ2ÞÞ
is given as a series in αsðQ2Þ. In this paper, however, we
exclusively use the simple formula for simplicity of analysis.
When there remains unremoved renormalon uncertainties due to
the use of the simple formula, effects of the residual renormalon
are estimated and taken into account in our error budget.
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ImF ¼ Im log½C̄Γ
Q̄Q� ¼ Im log

�
1� i

Im½C̄Γ
Q̄Q�OðΛ2

MS
=m2

bÞ

½C̄Γ
Q̄Q�PV

þOðΛ3

MS
=m3

bÞ
�

∝
Λ2

MS

½mb�2PV
ð1þOðΛMS=mbÞÞ: ð15Þ

Based on this observation, we consider F and apply the
DSRS method to separate u ¼ 1 renormalon from it.6 Then
½C̄Γ

Q̄Q�PV can be reproduced by the exponentiation of F.

III. DETERMINATION OF HQET PARAMETERS
BY RENORMALON SUBTRACTION

A. PV masses in the DSRS method

We determine the PV masses from the MS masses using
the DSRS method. The perturbative relation between the
pole mass mh and the MS mass m̄h of the heavy quark is
given by

mh − m̄h

m̄h
≡ δhðm̄hÞ ¼

X∞
n¼0

dðhÞn ðLm̄Þαsðμ2Þnþ1: ð16Þ

Here, Lm̄ ¼ logðμ2=m̄2
hÞ, and m̄h ¼ mMS

h ðmMS
h Þ. dðhÞn ðLm̄Þ

is a polynomial of Lm̄ and can be determined by comparing
the coefficient of αsðμ2Þnþ1 on both sides of the relation

X∞
n¼0

dðhÞn ðLQÞαsðμ2Þnþ1 ¼ eĤ logðμ2=m̄2
hÞ
X∞
n¼0

dðhÞn αsðμ2Þnþ1;

ð17Þ

where dðhÞn ¼ dðhÞn ð0Þ. The operator Ĥ is given with the
QCD beta function β by

Ĥ ¼ −βðαsðμ2ÞÞ
∂

∂αsðμ2Þ
;

βðαsÞ ¼ μ2
dαsðμ2Þ
dμ2

¼ −
X∞
i¼0

biαsðμ2Þiþ2; ð18Þ

which operates on the αsðμ2Þ expansion on the right-hand
side of Eq. (17). In this paper, we use the five-loop beta
function [38–41] and the five-loop running coupling in

practice. The coefficients dðhÞn with massless light quarks
are calculated up to n ¼ 3 [33,35,42–46] and the contri-
bution of massive internal quark, i.e. the massive charm
quark contribution to the mass relation of the bottom quark,
or, the massive bottom quark contribution to the mass
relation of the charm quark, is known up to n ¼ 2 [47,48].
Although the massive internal quark contribution at n ¼ 3
is not available at present, we expect that the n ¼ 3
coefficients can be well approximated by the known
n ¼ 3 result in the massless case based on the following
observation. First we consider the bottom quark mass
relation with the massive internal charm quark up to n ¼ 2:

δbðm̄bÞ ¼ 0.4244αs þ 1.037α2s þ 3.744α3s þOðα4sÞ; ð19Þ

where αs ¼ αð3Þs ðm̄2
bÞ with m̄b ¼ m̄ð5Þ

b . The mass relation
for the charm quark including (not-completely-decoupled)
effects of the bottom quark is given by

δcðm̄cÞ ¼ 0.4244αs þ 1.044α2s þ 3.757α3s þOðα4sÞ; ð20Þ

where αs ¼ αð3Þs ðm̄2
cÞ with m̄c ¼ m̄ð4Þ

c . On the other hand,
the mass relation with only three massless internal quarks
(without massive quarks), known up to n ¼ 3, is given by

δhðm̄hÞjmassless ¼ 0.4244αs þ 1.046α2s þ 3.751α3s

þ 17.44α4s þOðα5sÞ; ð21Þ

where αs ¼ αð3Þs ðm̄2
hÞ. Comparing Eqs. (19)–(21), they are

very close; the massive internal quark effects are below 1%
at next-to-leading order (NLO), and below 0.2% at next-to-
next-to-leading order (NNLO) if we use the three-flavor
coupling constant. This behavior is actually expected
theoretically [49–51]. Therefore, we expect that the
N3LO correction in Eqs. (19) and (20) can be well
approximated by that of Eq. (21) and use

δbðm̄bÞ ¼ 0.4244αs þ 1.037α2s þ 3.744α3s

þ 17.44α4s þOðα5sÞ; ð22Þ

δcðm̄cÞ ¼ 0.4244αs þ 1.044α2s þ 3.757α3s

þ 17.44α4s þOðα5sÞ; ð23Þ

6Although we reduced the renormalon uncertainty to the form
ðΛMS=½mb�PVÞ2, the complete subtraction of the u ¼ 1 renorma-
lon is still not possible by the simple formula of the DSRS
method for the following reason. Complete subtraction of a
renormalon is possible when it behaves as ðΛMS=QÞn, where Q
is the typical scale we choose in the DSRS calculation. Then it is
reasonable to choose Q ¼ ½mb�PV, but this is practically difficult;
when we do so we need to give perturbative series in terms of
½mb�PV,which is conceptually different frommb. Theway to do this
is not clear for us at present.We then chooseQ ¼ m̄b, inwhich case
the renormalon form is not an integer power of 1=m̄b. We estimate
the uncertainty from this incompleteness in Sec. IVA.
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in our analysis. (See Ref. [52] as a preceding estimate for the
fourth order coefficient.) The perturbative coefficients exhibit
the factorial growth due to IR renormalons.We assume that δh
contains the renormalons at u ¼ 1=2; 1;…, whose effect
appears as the imaginary part of OððΛ2

MS
=m̄2

hÞuÞ.
Using the DSRS method, we consider the dual transform

to suppress the IR renormalons at u ¼ 1=2; 1;… and give
the dual space series δ̃h. Following the notation in Ref. [15]
and choosing the parameters as ða; u0Þ ¼ ð2;−1=2Þ, the
dual transform of δh is given by

δ̃hðpÞ ¼
Z

t0þi∞

t0−i∞

dt
2πi

etp
2

t−1δhðm̄h ¼ 1=tÞ

¼
X∞
n¼0

d̃ðhÞn ðLpÞαsðμ2Þnþ1; ð24Þ

where Lp ¼ logðμ2=p4Þ, and d̃n can be read from

X∞
n¼0

d̃ðhÞn αsðμ2Þnþ1 ¼ 1

Γð1 − 2ĤÞ
X∞
n¼0

dðhÞn αsðμ2Þnþ1: ð25Þ

Renormalon suppression in the dual space can be under-
stood by the dual transform of the (approximate) imaginary
part of δh,

Z
t0þi∞

t0−i∞

dt
2πi

etp
2Λ2u

MS
t2u−1 ¼

ðΛ2

MS
=p4Þu

Γð1 − 2uÞ ; ð26Þ

which is zero for u ¼ 1=2; 1;….7 The explicit form of the
dual-space series δ̃h is given by

δ̃bðpÞ ¼ eĤ logðμ2=p4Þ
h
0.4244αs þ 0.6865α2s

þ 0.6872α3s − 2.656α4s þOðα5sÞ
i
; ð27Þ

for the bottom quark and

δ̃cðpÞ ¼ eĤ logðμ2=p4Þ
h
0.4244αs þ 0.6928α2s

þ 0.6906α3s − 2.747α4s þOðα5sÞ
i
; ð28Þ

for the charm quark. Here αs ¼ αð3Þs ðμ2Þ and we use the
N4LO beta function and inputs are set to the central values
of

m̄b ¼ 4.18þ0.03
−0.02 GeV; m̄c ¼ 1.27� 0.02 GeV;

αð5Þs ðM2
ZÞ ¼ 0.1179� 0.0009; ð29Þ

from PDG [1]. Throughout this paper we use these values
unless stated explicitly. The convergence of the series is
improved in the dual space [Eqs. (27) and (28)] compared
with the original ones [Eqs. (22) and (23)]. Using the
formula in Ref. [15], the PV mass ½mh�PV is calculated as

½mh�PV ¼ m̄hð1þ ½δhðm̄hÞ�PVÞ; ð30Þ
where

½δðm̄hÞ�PV ¼ t
Z

∞

0;PV
dp2e−tp

2

δ̃hðpÞ

¼ 1

m̄h

Z
∞

0;PV
dp2e−p

2=m̄h

X∞
n¼0

d̃ðhÞn ðLpÞαsðμ2Þnþ1:

ð31Þ
½δðm̄hÞ�PV can be obtained with good accuracy as more
perturbative coefficients are used. This is because, by
setting μ ∝ p2, we can take the integration contour such
that αs is always small and hence the integrand in Eq. (31)
is a convergent series.
We note that the dual transform eliminates the u ¼ 1

renormalon of the form m̄h × Λ2

MS
=m̄2

h, which is different
from the actual u ¼ 1 renormalon in Eq. (11). We estimate
the uncertainty caused by the residual renormalon uncer-
tainty. The imaginary part by the u ¼ 1 renormalon in
Eq. (11) can be expressed as

Λ2

MS

½mh�PV
¼

Λ2

MS

m̄h

m̄h

½mh�PV

¼
Λ2

MS

m̄h

�
1 − dðhÞ0 αsðm̄2

hÞ þO
�
αsðm̄2

hÞ2
��

; ð32Þ

where ½mh�PV is expanded in αsðm̄2
hÞ using the pole-MS

mass relation.8 The dual transform defined by Eq. (24)
eliminates the contribution of the form

ðconstÞ × m̄h

�
ΛMS

m̄h

�
2u
; ð33Þ

for u ¼ 1=2; 1;…, and thus the Oðαsðm̄2
hÞΛ2

MS
=m̄hÞ uncer-

tainty remains unremoved. The typical size of the uncer-
tainty for ½mh�PV given by our calculation procedure is
estimated as7As noted previously, it has not been made clear whether the

u ¼ 1 renormalon exists or not. However, we note that even in the
case where the u ¼ 1 renormalon is absent, our analysis to
suppress the u ¼ 1 renormalon is valid; in Ref. [53] it has been
demonstrated that with a choice of the parameters ða; u0Þ to
suppress nonexisting renormalons the DSRS calculation still
converges to a correct PV result.

8While ½mh�PV is a well-defined quantity where renormalons
are subtracted, its perturbative expansion again has a factorially
divergent behavior. We expect that if the perturbative expansion is
truncated at the first few orders as in Eq. (32) it gives a reasonable
estimate, not affected strongly by renormalons.
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Λ2

MS

m̄b
dðbÞ0 αsðm̄2

bÞ ≈
0.32 GeV2

4.18 GeV
×

4

3π
× 0.21 ≈Oð2 MeVÞ;

ð34Þ

for the bottom quark and

Λ2

MS

m̄c
dðcÞ0 αsðm̄2

cÞ ≈
0.32 GeV2

1.27 GeV
×

4

3π
× 0.39 ≈Oð10 MeVÞ;

ð35Þ

for the charm quark. These uncertainties are small com-
pared to the total uncertainties in our determination as we
see below. In addition, we expect that the normalization
constant of the u ¼ 1 renormalon is small [54,55] and the
above estimates assuming the normalization constant to be
Oð1Þ would be conservative.
For later use, we estimate the N4LO correction to δh and

to its dual transform δ̃h. The procedure for this estimate is
briefly explained in Appendix B. We use

dðb;cÞest4 ≈ 111.3� 7.72; ð36Þ

and

d̃ðbÞest4 ≈−15.25�7.72; d̃ðcÞest4 ≈−15.54�7.72; ð37Þ

for the dual space. The uncertainty is from the determi-
nation of the normalization constant of the u ¼ 1=2
renormalon.
Now we evaluate the PV mass of the bottom quark.

Figure 1 shows the scale dependence of ½mb�PV when we set
μ ¼ sp2 (Lp ¼ log s2) and truncate the series in Eq. (31) at
αkþ1
s for h ¼ b; see Eq. (27). The colored curves represent

the results for k ¼ 0, 1, 2, 3, 4 when the inputs are set to the
central value of the PDG values. As a reference, the

estimated result for k ¼ 4 by using dðbÞest4 is given by
the purple curve and the uncertainty is displayed by the
dotted and dot-dashed curves. Since the N3LO curve is
stable at the stationary point around log2 s ¼ 3, we give the
central value by the green line and the uncertainty by the
band as in Fig 1. The uncertainty is estimated by the scale
variation from s0=2 to 2s0 around the stationary point
s ¼ s0 ≈ 7.408.9 Since there are multiple stationary points,
we choose the one about which the PV mass is most stable
against the scale variation by a factor 2 or 1=2. We obtain

½mb�PV¼4.822ð10ÞPTð2Þsubu¼1ð33Þm̄b
ð0Þm̄c

ð8Þαs GeV
¼4.822ð10Þthð34Þinput GeV¼4.822ð36ÞGeV; ð38Þ

where the central value is given by the value of the N3LO
curve at s ¼ s0 ≈ 7.408. The number in the first brackets in
the first line denotes the uncertainty from the scale
dependence discussed above. The second one is estimated
by the subleading effect of the u ¼ 1 renormalon consid-
ered in Eq. (34). The third, fourth and fifth ones represent
the uncertainties from the input PDG values of m̄b, m̄c and
αsðM2

ZÞ, respectively. In the second line, the uncertainties
are combined in quadrature. The first two uncertainties are
accounted for the theoretical uncertainty and the others are
for the input uncertainty. It can be seen that the theoretical
uncertainty is small enough (∼0.2%) compared to the case
where the u ¼ 1=2 renormalon remains; in this case an
OðΛMS=m̄bÞð∼7%Þ uncertainty is expected. This shows a
successful subtraction of the renormalon by the DSRS
method. One can also see that the theoretical uncertainty is
smaller than the input uncertainty.

FIG. 1. Determination of ½mb�PV using the DSRS method. The colored curves represent the scale dependence of NkLO results for
k ¼ 0, 1, 2, 3, 4. The input parameters are m̄b ¼ 4.18 GeV, m̄c ¼ 1.27 GeV and αsðM2

ZÞ ¼ 0.1179. The green line and shaded area
show the determined value using the N3LO result.

9Although s0 ≈ 7.408 is relatively large, one can confirm that
the error band overlaps with the values around s ¼ 1 (or
log2 s ¼ 0).
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Let us make a brief comment on the input parameter m̄b.
The result in Eq. (38), in terms of the PDG value, is a
conservative estimate. The Flavor Lattice Averaging Group
(FLAG) [56] has recently reported

m̄b ¼ 4.171ð20ÞGeV fromNf ¼ð2þ1Þ lattice; ð39Þ

and

m̄b ¼ 4.203ð11Þ GeV from Nf ¼ ð2þ 1þ 1Þ lattice;
ð40Þ

where Nf denotes the number of active quarks in the lattice
simulations. By adopting these values, we obtain

½mb�PV ¼ 4.812ð22Þm̄b
GeV ðN3LO; Nf ¼ ð2þ 1ÞÞ;

ð41Þ

and

½mb�PV¼ 4.847ð12Þm̄b
GeV ðN3LO;Nf ¼ð2þ1þ1ÞÞ;

ð42Þ

respectively. The uncertainties from other sources, as in
Eq. (38), are almost unchanged. Note that there is a slight
inconsistency between the values of m̄b by the lattice
simulation for Nf ¼ 2þ 1 and Nf ¼ 2þ 1þ 1. The val-
ues given here are only for comparison and not used in our
actual analysis.
Next we evaluate the PV mass of the charm quark. The

procedure is similar to that of the bottom quark, but unlike
the bottom quark case, we find that at present, the number
of known perturbative coefficients is insufficient to deter-
mine ½mc�PV precisely. In this analysis, we therefore use

dðcÞest4 to determine ½mc�PV. Figure 2 shows the scale

dependence of ½mc�PV when we set μ ¼ sp2 and truncate

δ̃c at αkþ1
s . The uncertainty from dðcÞest4 is shown as dotted

and dot-dashed curves. We obtain

½mc�PV¼1.468ð19ÞPTð12Þd4ð10Þsubu¼1ð0Þm̄b
ð24Þm̄c

ð4ÞαsGeV
¼1.468ð25Þthð25Þinput GeV¼1.468ð35ÞGeV; ð43Þ

where the central value is given by the value of the N4LO
solid curve at s ¼ s0 ≈ 1.086. The second uncertainty

comes from the uncertainty in the estimate of dðcÞest4 , and
the rest is the same as the bottom quark case. The
theoretical uncertainty (composed of the first three uncer-
tainties) is comparable to the input uncertainty. As in the
case of the bottom quark, we present the outputs using
FLAG [56] values:

m̄c ¼ 1.275ð5Þ GeV from Nf ¼ ð2þ 1Þ lattice; ð44Þ

m̄c ¼ 1.278ð13Þ GeV from Nf ¼ ð2þ 1þ 1Þ lattice;
ð45Þ

which give

½mc�PV ¼ 1.474ð6Þm̄c
GeV ðN4LO; Nf ¼ ð2þ 1ÞÞ;

ð46Þ

½mc�PV¼ 1.478ð16Þm̄c
GeV ðN4LO;Nf ¼ð2þ1þ1ÞÞ;

ð47Þ

respectively.

FIG. 2. Determination of ½mc�PV from the actual perturbative expansion using the DSRS method. The colored curves represent the
scale dependence of NkLO results for k ¼ 0, 1, 2, 3, 4. Inputs for calculations are the same as Fig. 1. The green line and shaded area
show the determined value using the estimated N4LO result.
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B. Determination of Λ̄ and μ2π
In this subsection we determine the HQET parameters in

Eq. (12). We use the PDG values of the meson masses [57]
given by

MB ¼
5.27965þ5.27934

2
GeV; MB� ¼ 5.32470GeV:

ð48Þ

and

MD ¼ 1.86484þ1.86966
2

GeV; MD� ¼ 2.00685GeV;

ð49Þ

where the uncertainties assigned by PDG are negligible in
our analysis. Using the results of Eqs. (10), (12), (38) and
(43), we obtain

½Λ̄�PV ¼ 0.486ð16ÞPTð5Þd4 ð5Þsub u¼1ð6Þ1=m2
h
ð48Þm̄b

ð11Þm̄c
ð13Þαs GeV

¼ 0.486ð19Þth ð50Þinput GeV ¼ 0.486ð54Þ GeV; ð50Þ

and

½μ2π�PV ¼ 0.05ð9ÞPTð5Þd4 ð4Þsubu¼1ð5Þ1=m2
h
ð14Þm̄b

ð11Þm̄c
ð5Þαs GeV2

¼ 0.05ð12Þth ð18Þinput GeV2 ¼ 0.05ð22Þ GeV2: ð51Þ

The “perturbation theory” (PT) uncertainty is estimated as
follows. Denoting ½mb�PV ¼ 4.822þ 0.010 · δðbÞPT GeV and

½mc�PV ¼ 1.468þ 0.019 · δðcÞPT GeV [see Eqs. (38) and
(43)], we set only one δPT to either þ1 or −1 (whereas
the other δs are set to zero) and see the difference of the
determined nonperturbative parameters from the central
value. We take the maximum difference as our PT un-
certainty among the four cases. The uncertainties regarding
d4 and “sub u ¼ 1” are estimated in a similar manner. (The
d4 uncertainty is relevant only to ½mc�PV.) In estimating the
fourth uncertainty related to the truncation of the 1=mh

expansion, we add a term Λ3

MS
=m̄2

h with its coefficient

either −1; 0;þ1 and take the maximum difference among
the cases we turn on only one of the coefficients. We
estimate the input uncertainties similarly but noting the
point that the variation of ½mb�PV and ½mc�PV are not
independent in this case; for instance, a larger αsðM2

ZÞ
gives a lager ½mb�PV and a smaller ½mc�PV.
The theoretical uncertainty of Λ̄ is small compared to

OðΛMSÞ ∼ 300 MeV, reflecting the subtraction of the u ¼
1=2 renormalon. For μ2π, however, even the theoretical
uncertainty has a magnitude of OðΛ2

MS
Þ, as if the u ¼ 1

renormalon remained in our calculation. We believe that the
small number of the known perturbative coefficients results
in a large perturbative uncertainty of ½mc�PV, which is
reflected in μ2π . The perturbative uncertainty will be reduced
once higher-order perturbative corrections are incorporated
provided the renormalons are properly subtracted, and the
theoretical uncertainty should eventually be reduced to an
accuracy of ∼0.04 GeV2, the scale of the residual u ¼ 1

renormalon, cf. Eq. (35). It is also important to check the
effects of higher power corrections, after subtracting higher
renormalons beyond u ¼ 1. This will be the task of our
future study.
Let us briefly compare our results with other studies. In

Ref. [58],

½Λ̄�PV ¼ 0.435ð31Þ GeV; ½μ2π�PV ¼ 0.05ð22Þ GeV2

ð52Þ

are reported. In this fit, only the u ¼ 1=2 renormalon is
subtracted, while the Oð1=mhÞ corrections are included.
They argue that the uncertainty of μ2π originates from the
u ¼ 1 renormalon. We have, however, a different inter-
pretation. In our analysis, the u ¼ 1 renormalon is already
subtracted but the result still has the same order uncertainty
as theirs. Hence, it would be simply due to insufficiency of
perturbative order at the current status. The subtraction of
the u ¼ 1 renormalon would matter only when higher order
perturbative coefficients are available. In Ref. [55],

½Λ̄�PV ¼ 477ðμÞ−8þ17ðZmÞþ11
−12ðαsÞ−8þ9ðOð1=mhÞÞþ46

−46 MeV

ð53Þ

is obtained, in which only the u ¼ 1=2 renormalon is
subtracted and the Oð1=mhÞ corrections are neglected
(including the μ2π term). The above two results are con-
sistent with our determination within the assigned
uncertainties.
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IV. DETERMINATION OF jVcbj
A. Subtracting u= 1 renormalon from

the decay width OPE

The OPE of the inclusive semileptonic B decay width is
given by Eq. (4), and we apply the DSRS method to the
most important part in the OPE, that is C̄Γ

Q̄Q. It is given by

C̄Γ
Q̄Q ¼

�
mb

m̄b

�
5

CΓ
Q̄Qðmbðm̄bÞ; ρ ¼ mcðm̄cÞ=mbðm̄bÞÞ

¼ ð1þ δbðm̄bÞÞ5
X∞
n¼0

Xn

�
ρ ¼ ρ̄

1þ δcðm̄cÞ
1þ δcðm̄bÞ

�

× αsðmbðm̄bÞ2Þn

¼
X∞
n¼0

X̄nðρ̄Þαsðm̄2
bÞn; ð54Þ

where δcðm̄cÞ and αsðmbðm̄bÞ2Þ are expanded in αsðm̄2
bÞ. In

rewriting, we change the number of flavors of the coupling
constant to nf ¼ 3. The explicit form of C̄Γ

Q̄Q is given by

C̄Γ
Q̄Q≈0.5114ð1þ1.593αsþ3.579α2s þ8.894α3s þOðα4sÞÞ;

ð55Þ

where αs ¼ αð3Þs ðm̄2
bÞ. Because of the fifth power of mb

contained in Γ, the perturbative series shows a slow
convergence even after cancellation of the u ¼ 1=2
renormalon.
Let us take the logarithm of C̄Γ

Q̄Q as

F ¼ log½C̄Γ
Q̄Q� ¼ log

�
X̄0 þ

X∞
n¼1

X̄nαsðm̄2
bÞn

�
ð56Þ

≡ log X̄0 þ
X∞
n¼0

χnαsðm̄2
bÞnþ1; ð57Þ

where we use logð1þ xÞ ¼ P∞
n¼1ð−1Þnþ1xn=n to con-

struct χn. The explicit form of Fðm̄bÞ is

F ≈ −0.6707þ 1.593αs þ 2.311α2s þ 4.540α3s þOðα4sÞ;
ð58Þ

where αs ¼ αð3Þs ðm̄2
bÞ. We find that the logarithmic trans-

form partially cancels the large coefficients we have
in Eq. (55).
Choosing the parameters of the DSRS method as

ða; u0Þ ¼ ð1;−1Þ, the dual transform of F is defined by

F̃ðpÞ ¼
Z

t0þi∞

t0−i∞

dt
2πi

etp
2

t−1Fðm̄b ¼ 1=
ffiffi
t

p Þ

¼ log X̄0 þ eĤ logðμ2=p2ÞX∞
n¼0

χ̃nαsðμ2Þnþ1; ð59Þ

in which the u ¼ 1 renormalon is suppressed. [Note that the
mass dimension of the dual variable p2 is different from
that of the PV mass, cf. Eq. (24).] χ̃n can be read from

X∞
n¼0

χ̃nαsðμ2Þnþ1 ¼ 1

Γð1 − ĤÞ
X∞
n¼0

χnαsðμ2Þnþ1; ð60Þ

and F̃ is given by

F̃ ≈ −0.6707þ 1.593αs þ 1.653α2s þ 1.185α3s þOðα4sÞ;
ð61Þ

where αs ¼ αð3Þs ðp2Þ. This shows a better convergence
behavior than Eq. (58).
The inverse dual transform gives the regularized quantity

½F�� by

½Fðm̄bÞ�� ≡ ½Fðm̄bÞ�PV � i ImFðm̄bÞ

¼ log X̄0 þ
Z
C∓

dp2

m̄2
b

e−p
2=m̄2

beĤ logðμ2=p2Þ

×
X∞
n¼0

χ̃nαsðμ2Þnþ1; ð62Þ

where the integral is evaluated numerically. C∓ is the
contour avoiding the Landau singularity of αsðs2p2Þ in the
integrand (when μ2 is set proportional to p2) slightly below/
above the positive real axis. We solve the renormalization
group equation of αs along C�.
We note that we suppress renormalons of the form

ðconstÞ ×
�
ΛMS

m̄b

�
2u
; ð63Þ

for u ¼ 1; 2; 3;… in this calculation. This indicates that the
Oðαsðm̄2

bÞΛ2

MS
=m̄2

bÞ uncertainty remains. In a parallel
manner to Eq. (34) or (34), we estimate its possible
uncertainty for jVcbj [see sub u ¼ 1 in Eq. (75)].
We compute ½C̄Γ

Q̄Q�PV and investigate the scale depend-
ence. Figure 3 shows the scale dependence of

½C̄Γ
Q̄Q�PV ¼ X̄0Re exp

�Z
C∓

dp2

m̄2
b

e−p
2=m̄2

b

×
Xk
n¼0

χ̃nðlog s2Þαsðs2p2Þnþ1

�
; ð64Þ
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where χ̃ðlog s2Þ is determined by the relation similar to
Eq. (17). The colored curves represent the results for k ¼ 0,
1, 2. Around s ¼ Oð1Þ, we can see the flat region in
the N3LO result. In this analysis, we find the minimal

sensitivity scale s ¼ s0 such that the difference between
½C̄Γ

Q̄Q�PV at s ¼ 2s0 and s ¼ s0=2 is minimized. For the

N3LO curve, we obtain s0 ≈ 0.7624. At s ¼ s0,
½C̄Γ

Q̄Qðm̄bÞ�PV is given by

½C̄Γ
Q̄Qðm̄bÞ�PV ¼ 0.511Re e

ð0.470þ0.0507iÞOðαsÞþð0.0864þ0.0314iÞOðα2s Þ
þð−0.00408−0.00337iÞOðα3s Þ ð65Þ

¼ 0.511jLO þ 0.306jNLO þ 0.0719jN2LO − 0.00338jN3LO; ð66Þ

where the NkLO correction for k ¼ 1, 2, 3 in Eq. (66) is
calculated by the difference of the right-hand side of
Eq. (65) evaluated by truncating the exponent at OðαksÞ
and atOðαk−1s Þ. We estimate the perturbative uncertainty by
the difference between the values at s ¼ s0 and s ¼ 2s0.
(The difference between the values at s ¼ s0 and s ¼ s0=2
is smaller.) Then we obtain

½C̄Γ
Q̄Qðm̄bÞ�PV ¼ 0.886� 0.016; ð67Þ

which is displayed by the green line and shaded area in
Fig. 3. Note that the size of the N3LO correction in Eq. (66)
is, by accident, smaller than the uncertainty in Eq. (67)
which we adopt in our analysis.
Let us compare the DSRS result and the conventional

perturbative expansion given by Eq. (54). The right panel of
Fig. 3 shows the scale dependence of the fixed-order
perturbation result, which is given by

C̄Γ
Q̄Qðm̄bÞjfix ¼ eĤ logðμ2=m̄2

bÞ
Xk
n¼0

X̄nαsðμ2Þnþ1; ð68Þ

with μ ¼ μ0 and we truncate at Oðα3sÞ after expanding the
exponential factor eĤ logðμ2=m̄2

bÞ. We can find a stationary
point on the N3LO curve of the fixed-order result at
μ ¼ μ0 ≈ 1.1387 GeV. The fixed order result at this scale
is given by

C̄Γ
Q̄Qðm̄bÞjfix ¼ 0.511jLO þ 0.299jNLO þ 0.0717jN2LO

þ 0.00239jN3LO; ð69Þ
which appears to be almost the same as Eq. (66). However,
the value of C̄Γ

Q̄Qjfix changes rapidly when the scale is

varied around the stationary point. This is because of the
unphysical singularity of αs at μ ∼ ΛMS. On the other hand,
the DSRS result shows milder scale dependence around the
stationary point than the fixed-order result, which is partly
due to the removal of the unphysical singularity by the
DSRS method. The uncertainty estimated from the scale

FIG. 3. Comparing the scale dependence of C̄Γ
Q̄Q calculated by the DSRS method (left panel) and by the fixed-order perturbation (right

panel). The colored curves represent the scale dependence of NkLO results for k ¼ 1, 2, 3. The green lines and shaded areas exhibit the
determined value using the N3LO result and the uncertainty, respectively. For the fixed order result, we do not choose μ ¼ μ0=2 to
estimate the uncertainty because it gives an unreasonably large uncertainty because of the Landau pole singularity.
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variation is about twice larger than the DSRS result in
Eq. (67). Furthermore, it is observed that the N3LO values
at the stationary points in DSRS and the fixed order
calculation are close to each other. We expect the good
convergence of Eq. (64) to continue at higher orders as a
consequence of the subtraction of the renormalons.

B. jVcbj determination

In this section, we determine jVcbj using the DSRS result
of C̄Γ

Q̄Q in the previous section. We use the renormalon-
subtracted OPE of Γ given by

Γ ¼ G2
FjVcbj2
192π3

Aewm̄5
b

�
½C̄Γ

Q̄Q�PV
�
1 −

½μ2π�PV
2½mb�2PV

�

þ C̄Γ
cm

μ2G
½mb�2PV

�
; ð70Þ

where we neglect theOðΛ3

MS
=m3

bÞ OPE corrections and the

residual u ¼ 1 renormalon effect of Oðαsðm̄bÞΛ2

MS
=m2

bÞ.
We use ½mb�PV, ½C̄Γ

Q̄Q�PV, C̄Γ
cm, ½μ2π�PV and μ2G given by

Eqs. (38), (67), (A16), (51), and (9), respectively. The NLO
correction to C̄Γ

cm of OðαsÞ given by Eq. (A17) is used to
estimate the systematic uncertainty. The experimental value
of Γ is obtained as follows. In this analysis, we neglect the
isospin breaking and assume that the semileptonic decay
width of B0 and that of B� is the same. Then we have the
semileptonic decay width Γ by

Γ ¼ B=τB; ð71Þ
where B ¼ BðB → XclνÞ represents the semileptonic
branching ratio obtained for the admixture of B0=B�. τB
is the lifetime of the B meson given by

τB ¼ τB� þ τB0

2
þ 1

2
ðfþ− − f00ÞðτB� − τB0Þ; ð72Þ

as explained in Sec. III A of Ref. [14]. Here fþ− and f00 are
the fractions of the BþB− production and the B0B̄0

production from the ϒð4SÞ decay, respectively. We give
the value τB by

τB ¼ ð1.519� 0.004Þ þ ð1.638� 0.004Þ
2

× 10−12 sec

¼ ð1.579� 0.004Þ × 10−12 sec; ð73Þ

neglecting the second term in Eq. (72) since it is smaller
than the uncertainty of τB� or τB0. See Ref. [59] for the ratio
fþ−=f00. In our analysis we use the value of B,

B ¼ ð10.63� 0.19Þ%; ð74Þ

which is given in Ref. [6] as the average of the Belle
measurement [60] and BABAR measurement [61].10 Our
result of jVcbj in the MS mass scheme is given by

jVcbj ¼ 0.0415ð4ÞPTð þ6
−9Þm̄b

ð4Þm̄c
ð2Þαsð1ÞτBð4ÞBð1Þμ2π ð0Þμ2G

× ð0Þh:o:Ccm
ð1Þ1=m3

b
ð0Þsub u¼1

¼ 0.0415ð þ10
−12Þ; ð75Þ

where the brackets in the first line denote the systematic
uncertainties. The first uncertainty comes from the pertur-
bative uncertainty estimated by Eq. (67). The second, third
and fourth uncertainties are caused by the uncertainties of
the PDG inputs. The fifth and sixth uncertainties come from
the uncertainties of the experimental data in Eqs. (73) and
(74), respectively. The last five uncertainties are related to
the nonperturbative corrections, ½μ2π�PV given by Eq. (51),
μ2G given by Eq. (9), the NLO correction to C̄Γ

cm, the
neglected OðΛ3

MS
=m3

bÞ OPE correction and the residual
u ¼ 1 renormalon effect, respectively. We estimate the
uncertainty regarding 1=m2

b by adding the OðΛ3

MS
=m3

bÞ
term of the form dð0Þρ3LS=½mb�3PV with dð0Þ ≈ −17 and
ρ3LS ¼ 2Λ3

MS
≈ 2 × ð300 MeVÞ3.11 In the second line we

combine the uncertainties. While the perturbative uncer-
tainty is at the percent level, the uncertainty from m̄b is
dominant among the systematic uncertainties, which
reflects the fact that Γ is proportional to the square of
jVcbj and the fifth power of m̄b. That is, the relative
uncertainty of jVcbj and that of m̄b are related by

δjVcbj
jVcbj

≈ −
5

2
×
δm̄b

m̄b
: ð76Þ

Therefore, it is important to determine m̄b accurately in
order to improve the accuracy of jVcbj determination.

C. Comparison with determinations
in other mass schemes

We compare the results of existing jVcbj determinations
in different short-distance mass schemes; the kinetic mass

10In Ref. [6], results for B with a lepton energy cut are
extrapolated to the full phase space by using a theoretical
calculation of the decay width in the kinetic mass scheme.
Although our determination in the MS mass scheme is not
completely independent of the kinetic mass scheme determina-
tion in this sense, the scheme dependence of Eq. (74) is expected
to be small enough because it is stated that the power corrections
in the OPE are not significant in obtaining Eq. (74) [6].

11In Ref. [7], ρ3LS is determined by the global fit and its size is
given by jρ3LSj ¼ 0.15 GeV3 ≫ Λ3

MS
≈ 0.027 GeV3. In our esti-

mation, we assume the natural size of the nonperturbative matrix
elements of OðΛn

MS
Þ because we do not introduce a factorization

scale μfð≫ ΛMSÞ. We multiply the factor 2 trying to avoid
underestimating the effects.
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and 1S mass schemes. The kinetic mass is defined by
introducing a factorization scale μf, which enables sub-
traction of the u ¼ 1=2 and u ¼ 1 renormalons of the quark
pole mass simultaneously. By construction, the kinetic
quark mass and nonperturbative parameters have factori-
zation scale dependence. Using the latest perturbative
calculation of CΓ

Q̄Q and pole-kinetic mass relation up to

Oðα3sÞ, jVcbj is determined as [5]

jVcbj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðB → XclνÞ

ð10.66� 0.15Þ%

s
× 0.04216ð51Þ; ð77Þ

in which BðB → XclνÞ is the semileptonic branching ratio
and the N3LO calculations of the total decay width Γ and
the NNLO calculation of the lepton energy and hadronic
mass moments dΓ=dq2 are used. Another (more recent)
result using the N3LO calculations of the decay width and
the lepton energy moments is given by [6]

jVcbj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðB → XclνÞ

ð10.63� 0.19Þ%

s
× 0.04199ð65Þ: ð78Þ

The 1S mass [12,13] is another short-distance mass
defined by half of the (perturbatively calculated) mass of
the heavy quarkonium (a bound state of a heavy quark and
an antiheavy quark). Since the heavy quarkonium is a
sufficiently UV object with a small radius, contributions
from IR degrees of freedom are decoupled naturally. jVcbj
is determined using the N3LO perturbative expansion of the
pole-1S mass relation from the energy levels of two
different bottomonium states ϒð1SÞ and ηbð1SÞ [10].
The results are given by

jVcbj ¼ 0.0421ð7Þsys ðfrom ϒð1SÞÞ;
jVcbj ¼ 0.0429ð7Þsys ðfrom ηbð1SÞÞ: ð79Þ

In this determination, the branching ratio B ¼ ð10.65�
0.16Þ% from the PDG [1] is used. Since there is a large
difference of the central values in Eq. (79), the combined
result [10]

jVcbj ¼ 0.0425ð7Þsysð8Þspin ¼ 0.0425ð11Þ ð80Þ

includes a large systematic uncertainty from the difference
of the spin dependence of the 1S bottomonium states. This
result is free from the u ¼ 1=2 renormalon but not from the
u ¼ 1 renormalon.
Figure 4 shows the comparison of the results of the

DSRS method to the previous studies. Each solid line and
bandwidth represents the central value and combined
uncertainty, respectively. The first result is ours in the
MS mass scheme, given by Eq. (75). The second [5] and
third [6] results are the N3LO results in the kinetic mass

scheme, given by Eqs. (77) and (78), respectively. The
fourth one [10] is the N3LO result in the 1S mass scheme,
given by Eq. (80). We note that the results of Refs. [5,6] are
obtained with global fits using moments, where consistency
checks of the OPE are therefore provided, while our present
study and Ref. [10] use only the total decay width. The last
two values are the PDG inclusive and exclusive values
given by Eq. (1). We note that these determinations use the
similar values for B.12 Our result in the MS mass scheme is
consistent with the results in other mass schemes within the
uncertainty. It is also consistent with the PDG value from
the inclusive decays, while it is in tension with that from the
exclusive decays.
Now we discuss the size of the uncertainty of our result

in comparison to those of the kinetic mass schemes, which
are smaller by a factor of 2 or so. As already noted, the
largest source of the uncertainty of our result stems from
the uncertainty of the input bottom quark MS mass.
Furthermore, the uncertainty of the charm quark MS mass
is one of the large uncertainties. We use the PDG values for
these input masses. On the other hand, in the kinetic mass
scheme determinations, the more accurate input MS
masses, m̄bðm̄bÞ ¼ 4.198� 0.012 GeV and m̄cðm̄cÞ ¼
1.280� 0.013 GeV taken from the FLAG2019 [62], are
used. For comparison, the jVcbj value determined in our
method by using the quark masses from the FLAG2019 is
given by

jVcbj ¼ 0.0411ð4ÞPTð4Þm̄b
ð2Þm̄c

ð3Þαsð1ÞτBð4ÞBð1Þμ2πð0Þμ2G
× ð0Þh:o:Ccm

ð1Þ1=m3
b
ð0Þsub u¼1

¼ 0.0411ð8Þ; ð81Þ

FIG. 4. Comparison of jVcbj determinations by the DSRS
method and previous studies.

12Recently some experimental data have been reported, which
indicate a smaller value for B.
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where the convention of the uncertainties is the same as
Eq. (75). Figure 5 shows a comparison of jVcbj with several
input quark masses. We add the result with the FLAG 2021
masses of the bottom and charm quarks as in Eqs. (40) and
(45). We see that the uncertainty size becomes more or less
comparable to the more recent kinetic-mass scheme result
in Eq. (78). Nevertheless, given the current status of the
FLAG results with different numbers of dynamical quarks
[see Eqs. (39) and (40)], we choose to take a conservative
attitude to use the PDG masses.

V. SUMMARY AND CONCLUSIONS

As one of the precision tests of the SM, we performed a
determination of jVcbj from the inclusive semileptonic
decay width. We employed the MS mass scheme to
examine theoretical consistency of inclusive determination
of jVcbj, which has been performed in other mass schemes.
The LO Wilson coefficient in the OPE of ΓðB → XclνÞ in
the MS mass scheme has the u ¼ 1 renormalon, which is
absorbed by the first nonperturbative matrix element μ2π
(one of the HQET parameters). We use the DSRS method
to remove the renormalon from the Wilson coefficient and
to determine μ2π with renormalon subtraction.
μ2π is determined from the masses of the B andDmesons.

The LO term of the 1=mh expansion of the heavy-light
meson mass is the heavy quark pole mass mh. HQET
describes the nonperturbative corrections in a systematic
expansion in 1=mh. From the quark pole masses mb and
mc, we separated the u ¼ 1=2 and u ¼ 1 renormalons,
which are canceled by the HQET parameters Λ̄ and μ2π ,
respectively. The HQET parameters ½Λ̄�PV and ½μ2π�PV,
which are defined in the infinite mass limit and with
renormalons removed, are important parameters used to
predict multiple observables of the B and D mesons. Using
the DSRS method for the known pole-MS mass relation up
to Oðα4sÞ (and with estimated α5s coefficient) with the PDG

values of m̄b and m̄c as inputs, the renormalon-subtracted
quark pole masses in the PV scheme, called the PV masses,
are determined as

½mb�PV ¼ 4.822ð36Þ GeV; ½mc�PV ¼ 1.468ð35Þ GeV;
ð82Þ

where the uncertainties represent combined systematic
uncertainties. The perturbative series show expected good
convergent behaviors, and both PV masses would have
smaller theoretical uncertainties when perturbative calcu-
lations of the next order are achieved. This is owing to the
removal of the renormalons. On the other hand, in each
mass determination, the uncertainty due to the input value of
the MS mass is large. More precise determination of the MS
masses is an important task for future precision physics.
Using the results of the PV masses, we determined ½Λ̄�PV

and ½μ2π�PV as

½Λ̄�PV ¼ 0.486ð54Þ GeV; ½μ2π�PV ¼ 0.05ð22Þ GeV2;

ð83Þ

where the systematic uncertainties are combined. The size
of the (combined) systematic uncertainty for ½Λ̄�PV is
sufficiently small, reflecting the fact that the IR renorma-
lons of the pole mass are properly removed. The ½μ2π�PV
result has apparently large perturbative uncertainty, but this
would be due to the lack of higher-order perturbative
coefficients in the pole-MS mass relation (especially for the
charm quark). The results are consistent with the previous
studies in the same (PV) scheme [55,58].
The DSRS method is also applied to the LO Wilson

coefficient of the semileptonicB decaywidthΓðB → XclνÞ.
Although theMSmass is not favored in previous studies due
to the large perturbative corrections between the pole mass
and the MS mass, we found that the convergence of the
Wilson coefficient improves when the DSRS method is
applied; the DSRS method can suppress the u ¼ 1 renor-
malon and eliminate the unphysical singularity at μ ∼ ΛMS.
The DSRS result is consistent with the fixed-order calcu-
lationwhich does not subtract the u ¼ 1 renormalon, and has
smaller scale dependence.
Our result of jVcbj determination using the renormalon-

subtracted Wilson coefficient is given by

jVcbj ¼ 0.0415ð þ10
−12Þ; ð84Þ

where the uncertainties are combined. We use the PDG
values for the input parameters m̄b, m̄c, and αs. We
incorporate the nonperturbative corrections described by
two HQET parameters ½μ2π�PV and μ2G, which are determined
from the masses of the B and D mesons, and from the
hyperfine splitting of the B mesons, respectively. The
experimental input values of the branching ratio and

FIG. 5. Comparison of jVcbj with various input values of heavy
quark masses.
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the lifetime are close to the ones used in the previous
studies. The uncertainty due to the perturbative calculation
is reduced to an accuracy of one percent, due to a series
with good convergence constructed using the DSRS
method. On the other hand, the uncertainty from the input
parameters, in particular the bottom quark mass, is large.
(Our error estimate is based on the PDG bottom and charm
mass values).
Our results for ½Λ̄�PV, ½μ2π�PV and jVcbj are consistent with

those of the previous studies using other short-distance
mass schemes or other renormalon subtraction schemes. In
particular, the value as well as the uncertainty of jVcbj are
consistent with other determinations from the inclusive
decays, provided uncertainties of the input bottom and
charm masses are appropriately taken into account. The
determined jVcbj value has a tension with that from the
exclusive decays. Thus, our study provides a consistency
check of the theoretical calculations used in jVcbj deter-
mination from the inclusive decays.
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APPENDIX A: PERTURBATIVE COEFFICIENTS

We collect the perturbative coefficients necessary for the
analyses in this paper.

1. QCD beta function

The QCD β function is known up to Oðα6sÞ (five-loop
accuracy) [38–41]:

βðαsÞ ¼ −
X4
i¼0

biαiþ2
s ; ðA1Þ

b0 ¼
1

4π

�
11 −

2

3
nf

�
; b1 ¼

1

ð4πÞ2
�
102 −

38

3
nf

�
;

ðA2Þ

b2 ¼
1

ð4πÞ3
�
2857

2
−
5033

18
nf þ

325

54
n2f

�
; ðA3Þ

b3 ¼
1

ð4πÞ4
�
149753

6
þ 3564ζ3 −

�
1078361

162
þ 6508

27
ζ3

�
nf þ

�
50065

162
þ 6472

81
ζ3

�
n2f þ

1093

729
n3f

�
; ðA4Þ

b4 ¼
1

ð4πÞ5
�
8157455

16
þ 621885

2
ζ3 −

88209

2
ζ4 − 288090ζ5

þ nf

�
−
336460813

1944
−
4811164

81
ζ3 þ

33935

6
ζ4 þ

1358995

27
ζ5

�

þ n2f

�
25960913

1944
þ 698531

81
ζ3 −

10526

9
ζ4 −

381760

81
ζ5

�

þ n3f

�
−
630559

5832
−
48722

243
ζ3 þ

1618

27
ζ4 þ

460

9
ζ5

�
þ n4f

�
1205

2916
−
152

81
ζ3

��
: ðA5Þ

nf is the number of active quark flavors, and ζn ¼
P∞

k¼1 k
−n is the Riemann zeta function.

2. Mass of heavy-light meson

Based on HQET, the 1=mh expansion of the heavy-light meson whose mass is MH is given by

MðsÞ
H ¼ mh þ Λ̄þ μ2π

2mh
þ AðsÞCcmðmhÞ

μ2GðmhÞ
2mh

þO
�Λ3

MS

m2
h

�
; ðA6Þ

where sð¼ 0; 1Þ denotes the spin of H. The Wilson coefficient of the chromomagnetic term Ccm is calculated up to Oðα3sÞ
[37], which was used to evaluate μ2Gðm̄bÞ [10]. The numerical values of the coefficients of

Ccm ¼ 1þ
X2
n¼0

αsðmhÞnþ1ccmn ; ðA7Þ
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with αs ¼ α
ðnfÞ
s , are given by

ccm0 ≈ 0.6897; ðA8Þ

ccm1 ≈ 2.2186 − 0.1938nf; ðA9Þ

and

ccm2 ≈ 11.079 − 1.7490nf þ 0.0513n2f: ðA10Þ

3. Total decay width of inclusive
semileptonic B decay

The OPE of the total decay width of B → Xclν is
given by

Γ ¼ G2
FjVcbj2
192π3

Aewm5
b

�
CΓ
Q̄Q

�
1 −

μ2π
2m2

b

�

þ CΓ
cm

μ2G
m2

b

þO
�Λ3

MS

m3
b

��
: ðA11Þ

The leading Wilson coefficient CΓ
Q̄Q in terms of a pole mass

is perturbatively calculated as

CΓ
Q̄Q ¼

X3
n¼0

αsðm2
bÞnXnðρÞ; ðA12Þ

with ρ ¼ mc=mb and αs ¼ αð5Þs . X0, X1, and X2 are
calculated [22–28] as

X0 ¼ 1 − 8ρ2 − 12ρ4 logðρ2Þ þ 8ρ6 − ρ8; ðA13Þ

X1 ¼ −
2

3π

�
−ð1 − ρ4Þ

�
25

4
−
239

3
ρ2 þ 25

4
ρ4
�
þ ρ2 logðρ2Þ

�
20þ 90ρ2 −

4

3
ρ4 þ 17

3
ρ6
�

þ ρ4 log2ðρ2Þð36þ ρ4Þ þ ð1 − ρ4Þ
�
17

3
−
64

3
ρ2 þ 17

3
ρ4
�

logð1 − ρ2Þ

− 4ð1þ 30ρ4 þ ρ8Þ logðρ2Þ logð1 − ρ2Þ − ð1þ 16ρ4 þ ρ8Þð6Li2ðρ2Þ − π2Þ

− 32ρ3ð1þ ρ2Þðπ2 − 4Li2ðρÞ þ 4Li2ð−ρÞ − 2 logðρ2Þ log
�
1 − ρ

1þ ρ

��
; ðA14Þ

and X2 is known in the expansion in ρ,

X2 ≈ −2.158 − 0.8333ρþ ð−65.01 − 39.22 logðρÞ þ 0.2701 log2ðρÞÞρ2
þ ð−118.7 − 129.8 logðρÞÞρ3 þ ð128.2 − 124.6 logðρÞ − 16.52log2ðρÞ þ 1.081 log3ðρÞÞρ4
× ð−41.65 − 80.98 logðρÞÞρ5 þ ð98.42 − 39.30 logðρÞ þ 16.77 log2ðρÞÞρ6
× ð−14.86þ 1.954 logðρÞÞρ7 þ ð0.09796 − 0.1094 logðρÞÞρ8 þOðρ9Þ: ðA15Þ

X3 is known as the expansion in δ ¼ 1 − ρ up to Oðδ20Þ [3].
CΓ
cm has been calculated toOðαsÞ order [29–32]. In this paper, to determine the central value of jVcbj, we use the LO term

CΓ
cmjLO given by

CΓ
cmjLO ¼ −

1

2
ð3 − 8ρ2 þ 24ρ4 − 24ρ6 þ 5ρ8 þ 12ρ4 logðρ2ÞÞ: ðA16Þ

The NLO term is used for the estimation of uncertainty, which is given by

CΓ
cmjNLO ≈ −2.42 × X0ðρ̄Þαsðm̄bÞ; ðA17Þ

where “≈” means that we use the numerical value of CΓ
cmjNLO at μ ¼ mb since the analytic result is not available.

To change the flavor of running coupling constant from nf flavors to ðnf − 1Þ flavors, we use a flavor threshold relation
[63] given by
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α
ðnf−1Þ
s

α
ðnfÞ
s

¼ 1 −
lh

6π
α
ðnfÞ
s þ

�
l2
h

36
−
19

24
lh þ c2

�
ðαðnfÞs Þ2

þ
�
−

l3
h

216
−
131

576
l2
h þ

−6793þ 281ðnf − 1Þ
1728

lh þ c3

�
ðαðnfÞs Þ3 þOðα4sÞ; ðA18Þ

with αs ¼ αsðμ2Þ, μh ¼ m̄ðμhÞ, lh ¼ logðμ2=μ2hÞ and

c2 ¼
11

72
; c3¼−

82043

27648
ζð3Þþ564731

124416
−

2633

31104
ðnf−1Þ:

ðA19Þ

In this paper, we take a scale for matching αð5Þs to αð4Þs as

μ ¼ μh ¼ m̄b, and for matching αð4Þs to αð3Þs as μ ¼ μh ¼ m̄c.
We note that in the matching relation between αð5Þs and

αð3Þs , power terms in mc=mb appear in the third order
coefficient [64] (which does not appear in the two-step
matching using the above matching relation). In our study,
this effect is relevant in the procedure to obtain the three-

flavor ΛMS from αð5Þs ðM2
ZÞ. Based on the discussion given

in Ref. [64], we expect that the effect of these terms is
smaller than our uncertainty and therefore neglect them.We
also note that the power terms are not relevant to obtaining
the perturbative series in the three-flavor coupling within
our study. When we give the perturbative series for the
pole-MS mass relation in the three-flavor coupling, this
effect is relevant to the α4s order term and beyond but we use
estimated coefficients at these orders. The perturbative
series for the semileptonic decay width is given to the α3s
order, where the power terms are irrelevant.

APPENDIX B: ESTIMATE OF dðhÞ4

We estimate dðhÞ4 based on the asymptotic form of the
perturbative coefficients governed by the u ¼ 1=2 renor-
malon. [See, e.g., Eq. (30) of Ref. [65] with r replaced by
m̄h.] The only unknown parameter in the asymptotic form
is the normalization constant, which can be estimated by

the ratio of the actual coefficients (up to dðhÞ3 ) and the
coefficients of the asymptotic form. We give the central

value of the normalization constant by dðhÞ3 =dðhÞðasymÞ
3 .

dðhÞðasymÞ
n is obtained in the expansion in 1=n and we

include up to Oð1=n3Þ (which is possible with the knowl-

edge of b4) in giving dðhÞðasymÞ
3 . The uncertainty of the

normalization constant is estimated by the difference

between dðhÞ2 =dðhÞðasymÞ
2 and dðhÞ3 =dðhÞðasymÞ

3 . We confirmed

that when we give dðhÞðasymÞ
3 up to the Oð1=n2Þ term for

dðhÞ3 =dðhÞðasymÞ
3 , the variation of the normalization constant is

smaller than the uncertainty determined above. Using this
normalization constant and its uncertainty, we obtain

Eq. (36). There are previous works estimating dðhÞ4 using
similar and different methods. See, e.g., Refs. [50,66].
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