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Effect of time-varying electromagnetic field on Wiedemann-Franz law
in a hot hadronic matter
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We have estimated the electrical and thermal conductivity of a hadron resonance gas (HRG) for a time-
varying magnetic field, which is also compared with constant and zero magnetic field cases. Considering
the exponential decay of electromagnetic fields with time, a kinetic theory framework can provide the
microscopic expression of electrical conductivity and thermal conductivity related to baryon current in
terms of relaxation and decay times. In the absence of the magnetic field, only a single timescale appears,
and in the finite magnetic field case, their expressions carry two timescales—relaxation time and cyclotron
time period. Estimating the conductivities for HRG matter in three cases—zero, constant, and time-varying
magnetic fields, we have studied the validity of the Wiedemann—Franz law. We noticed that at a high-
temperature domain, the ratio saturates at a particular value, which may be considered as Lorenz number of
the hadron resonance gas. With respect to the saturation values, the deviation of the Wiedemann—Franz law
has been quantified at the low-temperature domain. For the first time, the present work sketches this
quantitative deviation of the Wiedemann—Franz law for hadron resonance gas at a constant and a time-

varying magnetic field.
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I. INTRODUCTION

Relativistic heavy ion collisions (RHICs) offer insight into
the properties of deconfined matter. The observation of
collective behavior in the QCD plasma of the primordial
particles, called quarks and gluons (QGP) has fascinated the
scientific community’s interest in relativistic hydrodynam-
ics. The study of dissipative hydrodynamics helps us to
understand the expansion and evolution of QGP [1-4]. The
elliptic flow coefficient (v,) calculated from ideal hydro-
dynamics is almost twice of the experimental data [5].
However, dissipative hydrodynamical calculations are in
good agreement with experimental data [6—8]. Transport
coefficients like shear viscosity are essential input parameters
for the simulation of dissipative hydrodynamics [9-11].
Owing to this, microscopic calculation of transport coeffi-
cients [12-29] of quark and hadronic matter became an
important research topic in the last 10-20 years. According to
the laws of electromagnetic theory, peripheral heavy ion
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collisions can generate a strong magnetic field. Recent
measurements of directed flow (v;) of D°/D° at the
Large Hadron Collider (LHC) and Relativistic Heavy Ion
Collider (RHIC) indicate the possibility of a massive
magnetic field [30,31]. References [32—40] and references
therein provide good studies on the time-varying properties
of this massive magnetic field, where rapidly and slowly
varying both possibilities are pointed out. We considered a
slowly varying magnetic field for the present work, which
may or may not differ from the phenomenological picture. In
that case, the hadronic phase may also face the magnetic field
and hence, in recent times, Refs. [41-43] have found the
impact of constant magnetic field on transport coefficient
calculation of hadronic matter by using the hadron resonance
gas (HRG) model. One can get a long list of Refs. [41-72] for
microscopic calculation of transport coefficients like shear
viscosity, bulk viscosity, electrical, and thermal conductivity
at a finite magnetic field. The constant external magnetic
field is not a realistic picture for the case of quark matter or
hadronic matter produced in heavy ion collision experiments.
The magnetic field can be an exponential decay function of
time [33,34,73,74], and the present work aims to explore the
transport coefficients of hadronic matter in the presence of
exponentially varying magnetic field with time.

Here, we have chosen two transport coefficients—
electrical conductivity and thermal conductivity and their

Published by the American Physical Society


https://orcid.org/0009-0004-7735-3856
https://orcid.org/0000-0002-0894-6402
https://orcid.org/0000-0003-3334-0661
https://orcid.org/0000-0003-1212-824X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.094007&domain=pdf&date_stamp=2023-11-06
https://doi.org/10.1103/PhysRevD.108.094007
https://doi.org/10.1103/PhysRevD.108.094007
https://doi.org/10.1103/PhysRevD.108.094007
https://doi.org/10.1103/PhysRevD.108.094007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SINGH, DEY, SAHOO, and GHOSH

PHYS. REV. D 108, 094007 (2023)

ratio to check the validity of the Wiedemann—Franz (WF)
law. Electrical conductivity is one of the essential properties
in determining the electromagnetic response of a medium.
Lower the conductivity, the faster the decay of the
electromagnetic field. Because QGP is an expanding
medium, its properties, including electrical conductivity,
change as it evolves. As a result, it is very complicated to
formulate [33,34] the exact decay function of the electro-
magnetic field in the medium, because of the dynamically
evolving system with highly complex physical processes
involving different degrees of freedom. Many studies have
been done to find the decay profile of the fields. Thermal
conductivity is another important transport coefficient that
determines how fast thermal equilibrium can be achieved in
the medium. QGP created at RHIC energy can have
nonzero baryon chemical potential [75]. In such a system,
thermal conductivity contributes to total dissipation
[76,77]. In the presence of a magnetic field, thermal
conductivity also gets affected because of the presence
of electrically charged particles in the medium, which are
quarks in the deconfined QGP phase and charged hadrons
in the confined hadronic phase [41-43].

In this work, we estimate the thermal and electrical
conductivity of hadronic matter in a time-varying electro-
magnetic field at finite baryon chemical potential. These
transport properties in a time-varying electromagnetic field
have recently been studied in Refs. [78,79] for the QGP
phase, using a quasiparticle-based model. Very recently,
Ref. [80] has studied the electrical properties of hadronic
matter under a time-varying electric and constant magnetic
field using the linear sigma model (LSM). We use the ideal
hadron resonance gas (HRG) model for quantitative esti-
mations in the current study. Moreover, we investigated the
validity of WF law in the presence of a constant and time-
varying electromagnetic field for the HRG matter.

The paper is organized in the following manner.
Introducing the origin of the electromagnetic field and
its effect on the transport properties of the medium, we
discuss the derivation of electrical and thermal conductivity
in the formalism Sec. II. We also briefly discuss the
calculation of relaxation time in the HRG medium. In
Sec. III, we have discussed the results in detail. The thermal
and electric transport properties of HRG matter are studied
in the context of WF law. In Sec. IV, we have summarized
the study with a possible outlook. Detailed calculation of
the conductivities concerning the formalism Sec. I is given
in the appendices.

II. FORMALISM

In this section, we calculate the thermal and electrical
conductivities of a relativistic fluid in the presence of an
external time-dependent electric and magnetic field. The
appendices contain the detailed calculation. For more
detail, the reader can go through Ref. [79] for electrical
conductivity and Ref. [78] for thermal conductivity. In a

strong field case, one should consider the Landau quan-
tization, which is ignored in the present work. So the
present work may be considered weak field approximation
estimations.

A. Electrical conductivity

In the presence of an electromagnetic field, the general
form of electric current density can be expressed as

J=Jee+ ju(exb), (1)

where &, b are unit vectors along the direction of electric
field (E = Ee) and magnetic field (B = Bb), respectively.
Je represents the Ohmic current density along the direction
of the electric field, and jy is the Hall current density
perpendicular to the electric and magnetic fields. Now, we
consider a system of relativistic fluid consisting of particles

. 72 7
with energy @; = \/k; + m?, momentum k;, mass m;, and

chemical potential y; = b;up for ith species, with b; as
baryon quantum number and up as baryon chemical
potential. Here species stand for different hadrons in the
hadron resonance gas (HRG) model. Single particle dis-
tribution function at equilibrium for ith species is

1

w;—biug

1=
e T *1

(2)

where + stands for fermion and boson, respectively. The
total single-particle distribution function (f;) for a system
slightly out of equilibrium (5f) can be written as
fi = f%+68f;. In kinetic theory, electric current density
for such a system can be expressed as

- oo [ G5 ©
J - QIgI (27[>3 a)i i

i

Here, g; is the electric charge, and g; is the degeneracy of
the ith species particles. Net nonzero currents arise when
the system is out of equilibrium. To find the expression of
of i, we solve the Boltzmann transport equation (BTE) with
the help of relaxation time approximation (RTA). In the
presence of an external electromagnetic field, BTE under
RTA can be expressed as [42]

-

al‘ %i 0,» = ki = ai 51'
i+—~4+qi E+—xB])- ];:——]:’ (4)
o  w; Ox ; ok; Th

where 7% is the relaxation time of the particle. To solve the
above equation, we have to assume an ansatz of of;. The
deviation of the distribution function from equilibrium is
driven by the electromagnetic field, so leading order
contribution in §f; can be assumed as [79]

094007-2



EFFECT OF TIME-VARYING ELECTROMAGNETIC FIELD ON ...

PHYS. REV. D 108, 094007 (2023)

- - ofY
of, = (i 6 2. )

The unknown vector ﬁ,, must be derived by the electro-
magnetic field, and a general form can be assumed as (up to
first-order in time derivative)

-

QO. = a1E+a2E+a3é+a4é—|—a5(Ex E)

+ ag(E x B) + ay(E x B). (6)

In the case of second-order magnetohydrodynamics, more
coefficients arise from the second-order derivative of fields
[81], which is not considered in the present study. Here, a;
(j=1,2,---7) are unknown coefficients that determine
the strength of the respective field in driving the system out
of equilibrium. Here, we consider the case where the chiral

chemical potential is zero. So, the terms E B do not
contribute to the current [73]. Therefore, we get five
components of the current density corresponding to «,
o, a5, Ag, 7. Whereas, the coefficients a;, a, contribute to
the Ohmic current and as, ag, @; contribute to the Hall
current.

Now, we consider a time-dependent electric and mag-
netic field of the from [73,74]

B = Byexp <— é) (7)

E = Eyexp (— é) (8)

where By, E are the magnitudes of the initial fields having
decay parameters of 7z and 7z, respectively, and ¢ is the
proper time. The initial value of the fields can be obtained
from the impact parameter and size of the colliding nuclei
[39]. For a typical gold-gold collision with an impact
parameter of ~7 fm, the initial magnetic field will be of the
order of ~10m2 [73]. The decay parameters depend on
the medium’s properties, such as electrical conductivity,
which can be fixed from magnetohydrodynamic simula-
tion. For a slowly varying magnetic field, we can consider
that the inverse of cyclotron frequency is approximately
equal to the magnetic field decay parameter, i.e., 75 & ;—’B
Therefore, in the weak field limit, we can solve Eq. (4)
using Egs. (5) and (6), and get the expression of a;’s.
The components of current density corresponding to ay, a»,
as, g, and a; can be obtained from Eq. (3) as (see
Appendix A)

E a’|k;| k; .
1= L5ty [ SEE pa 5 e

1
X
L4y 4+

E Bk k
1 == et [ G F s

(27)* w
« Uty —xi
T+x) M+ )M +xi+aD)

EB BIk;| & :
=57 Lola) [ Gt F e

1
X

7
: )
() _ _EB ' &k, k_l
« Xi
(L2 (U2 (X + i+ 27)

2 _ _EB~ '/dklk o
o =-37 igl(q,) 5K — fi(1

’

o1 F )

F )7k

1
X b
T+ +xi+x7)

©)

where y; = 7—1; Here, the Ohmic current density is j, =

( ) +J£ ) and Hall currentdensity is j; = ](H) —I—j( ) +J( )
Now, from Ohm’s law, we can write

ji=dVE,, (10)

where ¢/ is the conductivity tensor. In general, it contains
contributions from all the first and higher-order derivatives
of the fields. Now, from Egs. (1) and (10), we can write

j=0.E+oy(Exb), (11)

where Ohmic (o,) and Hall (6y) conductivity compo-
nents are

), -
S 83 )
E E
(0) (1), L(2)
aH:JF:J—H +JZ *n =0y +oy tog.  (12)

The conductivity coefficients defined above are possible for
the specific form of electric and magnetic fields given in
Egs. (7) and (8), respectively. From Egs. (9) and (12),
components of electrical conductivity can be found as (in
the weak field limit)
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O¢ _3T i gl(ql) /(27[)36012 l( f)TE
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1 d3k k .
o) = 37 (e [ a1 F AT
1

X b
M +x)A+xi+x7)

317 | 2 i3
(l)zi FPRY d|ki|ﬁ 1 oy TR L
oy 3TZQL(%) /(2”)3w%f?( T
% Xi
(T4 x) A+ )N+ xi +x7)

y 1 d*|k|k
UI(LI):?)TZgi(CIi)/ zf"
1
x =
(M) N4y +x7)

fo TR i

(13)

where, I'; = ‘i’f is cyclotron frequency. For quantitative

estimation, we have approximated it as 1 (<L) for positive
Tg “—Tp

(negative) charged particle or antiparticle. This leads to the
vanishing Hall components at zero chemical potential. The
conductivity equations derived above are equivalent to their
frequency-dependent counterparts obtained in the Drude
model. In Drude model [82], real part of frequency-
dependent conductivity is o(®) = 2%, where oy is
conductivity for a static electric field, @ is frequency of
time dependent electric field, and 7 is collision time. In
Eq. (13), we find similar dependency on frequency in the

conductivities via y;(= TZ = R) where the decay param-

eters 7p or 7 are inverse of frequency of time-varying field.

For the case of a constant electric and magnetic field, we
can derive the electrical conductivity components using the
RTA formalism, and the expressions are (detailed deriva-
tion can be found in [45]),

O, =

2
alar” [ K oy g0y

3T 21) o I ENCANEL
Bk & i T

on =550l [ a0 F s,

(14)

In the absence of a magnetic field (B = 0), the Hall
component vanishes, and the Ohmic conductivity becomes

O'g—%zgi(%’) /éJTk)lezf?( F Nk (15)

B. Thermal conductivity

The temperature gradient in a system is equilibrated by
the flow of heat, and the corresponding current is deter-
mined by a coefficient called thermal conductivity. The
thermal conductivity of a charged fluid becomes aniso-
tropic in the presence of a magnetic field; instead of a single
coefficient of thermal conductivity, we get multicomponent
thermal conductivity. In the presence of a time-varying
magnetic field, heat current in the fluid rest frame can be
expressed as [78],

-

ko VT + 5 (VT x B) +55(VT x B)
ko VT + (k) + ) (VT x b)
ko VT +xy(VT x b). (16)

Ko is the leading component of thermal conductivity along
the temperature gradient, and the Hall components are
K| = K_lB, Ky = K_zB

Now, the fluid property of a medium can be described by
the energy-momentum tensor 7**, particle four flow N¥,
and with their conservation laws. In the kinetic theory, these
quantities can be expressed in terms of the particle’s energy,
momentum, and phase space integration as

e |k”k”
=0 / .

3
Nﬂ—z /‘”k'kﬂ (17)

Where, particle four momentum of ith species is defined as

K = (o, F:) T and N* can be expressed as the sum of
the ideal and dissipative part respectively as

TH =Tig + 6T,

NH = N, + 6N*. (18)

The ideal parts correspond to the equilibrium distribution
function f), and the dissipative part corresponds to deviated
part of the distribution function Jf. Here the conserved
charge is baryon number, b;. So, the heat current is defined
as the energy flow related to the baryon current. Now, in the
first-order hydrodynamics [83], heat current is proportional
to the gradient of the thermal potential as
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nT2
" = VH 1
€ +p (T) (19)

where x represents the thermal conductivity and V# =
0" — u*u’d,. To derive the expression of thermal conduc-
tivity, we work in a local rest frame (LRF) of fluid, where

fluid four velocity u* = (1, 6) In the LRF using the Gibbs-
Duhem relation, the heat current three-vector takes the form

—

I1=-«VT. (20)

We can choose the velocity frame as the Landau or Eckart
frames. However, the Landau matching condition is neces-
sary to work with the relaxation time approximation [84].
In the Landau frame, 7% = 0, and in the Eckart frame,
NJ = 0. However, in both the frames, the heat current is
defined as [76,85]

I = 8T% — hN, (21)

where h = ¢t is the enthalpy per particle, €, P, and n are
total energy densny, total pressure, and net baryon density
of the system, respectively. Employing Eq. (17) in Eq. (21),
we can express the three vector form of heat current for ith
species particles in terms of microscopic quantities as

- &BIk;| k;
I, = D (w; —b;h)5f;. 22
1 /(277)3 wi (a)l 1 ) fl ( )

To find 6f, we solve the BTE in the presence of an external
magnetic field under the RTA in the LRF

1
w;

of: ki of; ki =\ ofi  of
at+@ ﬁ+q( xB) e =——". (23)

1

0k,~ TR

We can assume an ansatz of §f; for thermal conductivity as

: (24)

where a general form of S_iK up to first order time derivative
of B can be expressed as

-

o — — N X — KX
QK = alB+a2VT+a3(VTX B) +a4B+a5(VTX B)
(25)

Considering the magnetic field profile same as Eq. (8), we
can find the unknown coefficients a; [i = (1,2, ...,5)] by
solving Eq. (23) employing Eq. (25) in Eq. (24). From
Egs. (16) and (22), we can obtain the expressions of
thermal conductivity components (see Appendix B)

1 & |k;| k7 . 1
I Y et b —b.h)2F0(1 Nty ———
Ko 3TZZ.91/ 27;3@2(60’ i )fz( q:fz)TR(1+)(i+){lg)
d*|k|1?2 . Xi
K ~= (w; — bih)2f? %)zl ’ :
=530 Gt 0T Dtk
122

d3 kil ki
2 3T2Z 27 a?

or,

d3k k
KH—K1+K2 3TZZ / | _2

w;

Here, the approximation 7z = _°% creates a discrepancy

in the Hall components. The Hall coefﬁ01ents depend on
the sign of the particle’s charge. Therefore, to generate the
results, we use the minus (plus) sign in x; and «, (or k) for
negatively (positively) charged particles and antiparticles.

Now, for the case of a constant magnetic field, we can
derive the expression of thermal conductivity components
using the RTA formalism (detailed calculation can be found
in Ref. [41]):

2
w; = b2 (1 F f0)e, £

A +x)X+xi+x7)

o =B SH0F ek (26)

Bk;| k7 .y 1
=372 Zgl/ _,2 i~ bih) g (7hl;)?

x fI(1F 1),
d|k /2 Ay
& b.thiR’
Kpg = 3TZZ / 12 l) R1+( F)

x fL(1F f7). (27)
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In the absence of a magnetic field (B = 0), the Hall
component vanishes, and conductivity becomes isotropic
with

~2
Y / P b2 % ) (28)
3724, (27)3 0? i i

C. Electrical and thermal conductivity under
the hadron resonance gas model

The HRG model successfully explains the hadron yield
and various results of lattice QCD in the hadronic temper-
ature zone [86—89]. In the ideal HRG model, the system is
considered a grand canonical ensemble of noninteracting
particles. All the thermodynamical quantities can be found
from the grand canonical potential. According to the ideal
HRG model, any transport coefficient of a system would be

|

d3|l€|1€2 ,. 1
(61,')2/ P (1 ﬂ?)ﬁeﬁ*‘

1
o, = 3ng

equal to the sum of contributions from all hadron species. In
the case of electrical conductivity, only the charge hadrons
(baryons and mesons) will contribute. Therefore, compo-
nents of electrical conductivity under the HRG model for
three cases: zero magnetic fields (B = 0), constant electro-
magnetic field, and time-varying electromagnetic field [B(1)]
would be as follows. For B = 0 case, from Eq. (15)

1 Bk k? .
O, = 3T Zg (ql)Z/ (271_)3; 1(1 _f?)T}Q

baryon

1 &Pk k ,
3p Sala) [ G0+ e 29)

meson ( )

For a constant electromagnetic field case, from Eq. (14)

d’k;| k; 1
_Z (l)z/(|)|wi Y1+ D)7k R ()

baryon ( ) <T;3 Fi ) meson
1 & |k |k N 1 & |k |k 0 A
o=z > ata)” [ 1=k st >l [ 1+ D B (30)
3Tb§;n (27)3 w? BT+ (zh1))? 3Tn;n (27)} 02 R1+(zh1))?
For the case of time-varying fields [B(¢)], from Egs. (12) and (13)
1 d|k|k 27 +2 + 1
Ug:3_z 1( 1)2/ sz( fo) 2 2
Tbaryon (27) o+ D0+ D)0+ a0+ 1)
1 Blk;| k} 207 + 2 + 1
+2= D 9i(@) — [+ )] : :
3Tmzs;n (27) w} oD@+ + i+ 1)
1 Bk & 102+ + 2+ 1)
ou =7 Lola) [ G 1= ) ’
37 2 (22)* ? A DG+ D+ D)
1 &k ki xil + 2t + 20+ 1)
g o aia) [ S5 1+ )y L . G1)
3Tn;n (27) 7 R+ D@+ 00 i+ D)
|
Note that in B(t) case, for simplicity we have considered ~ For the constant magnetic field case, from Eq. (27)
T =75 and y; = 12 = TR Also, Hall conductivity is neg-
ative (positive) for negatlvely (positively) charged particles A |k | k 5 0)
and antiparticles. Ko = 3T2 Z / _2 =bih) (1= f)z
Now, according to the definition of heat flow, only the @i
baryon will contribute to thermal conductivity. Unlike %
electrical conductivity, neutral baryons will also contribute 1+ (TRFi)Z ’
to the Ohmic component of thermal conductivity. So, the Bl | k
thermal conductivity components under the HRG model Ky =5 Z / | 2 w; —b; h)2 fo fO)TR
can be expressed for the three cases as follows. For B =0 T baryon w;
case, from Eq. (28) oy
e (33)
-'2 1+ (%)

bih)? £ (1= f)7k. (32)

For B(t) case, from Eq. (26)
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bih)2f7 (1 = f7)7k

& k; k
Ko = TZZQ:/ | |

baryon
(1+;(,+)(,

d’|k;| k;
/—'—2 w; = )21 = ()l

(34)

Here, b; is
species. Enthalpy per particle, h =

the baryon quantum number of ith
total enthalpy of the system
Net baryon density

Equations (29)—(34) are the working formula for the results
obtained in the next section.

D. The relaxation time under the HRG model

In the case of the ideal HRG model, particles are
noninteracting. Here we will calculate the relaxation time
of a hadron for 2 — 2 elastic collision process with all the
other hadrons (baryons and mesons) that exist in the
medium. Relaxation time 7y is energy (or momentum)
dependent. However, a momentum-independent relaxation
time is required for RTA to obey the energy-momentum
conservation law. Therefore, we calculate the thermal
average relaxation time for the process mentioned above
between ith and jth particles. The thermal average relax-
ation time of particle i can be expressed as [41,77,90]

()" Zn (35)

Where, j runs for all the hadrons in the medium except i;

s
nj=[ nr

; 9, and thermal averaged cross section (6;;v;;)
in the center of mass frame can be expressed as

6 [c]
< j J> 8Tm12m12K2(mi/T)K2(mj/T) /(m,»erj)z

s—(m:—m: 2
s = (mi—m)"] [s = (m; + m;)?|K, (V/s/T).

NG
(36)

Here, /s is the center of mass energy; m;, m; are the mass
of the particles; K; and K, are the modified Bessel
functions of the second kind of first and second order,
respectively. ¢ = z(r; + rj-)2 is total scattering cross sec-
tion for hard sphere of radius r; and r;. For quantitative
estimations, we considered the same radius for all mesons
as 0.2 fm, and for all baryons, it is 0.62 fm [91].

III. RESULT

For quantitative estimation of conductivities, we used the
ideal HRG model, taking into account all the resonances
(baryons and mesons) from the particle data group (PDG)
[92] having spin 0, 1,1/2, and 3/2. In electrical conduc-
tivity, only the charged hadrons contribute. In thermal
conductivity, only baryons (charged and neutral) directly
contribute, and mesons contribute via the particle’s relax-
ation time and enthalpy of the system.

In Fig. 1, we have plotted the Ohmic (upper panel) and
Hall (lower panel) components of scaled electrical con-
ductivity as a function of 7. For Ohmic component o,, we
have shown results at zero baryon chemical potential for
three cases: zero magnetic field (B = 0), the constant
magnetic field with eB = 0.03 GeV?, and time-varying
fields [B(#)] with a fixed decay parameter 7z = 9 fm. For
B = 0 case, o, decrease with T. At B =0, o, is directly
proportional to 7. Therefore, the major contribution in the
T dependent profile is from relaxation time 7z, which
decreases with increasing 7" in the HRG system with a fixed
scattering cross section. For quantitative estimation of the
relaxation time, we fixed baryons’ radius 0.62 fm and
mesons’ radius 0.2 fm [91]. For the case of B(¢) and
eB = 0.03 GeV?, 6, increase with T and saturates below
B = 0O case at high T in the hadronic temperature zone. This
is because, unlike B =0 case, o, in the presence of a
magnetic field is approximately inversely proportional to 7
that can be found from Eq. (31). ¢, for time-varying case
with 75 = 9 fm remain higher than constant field case with
eB = 0.03 GeV?2. This is because, in the B(t) case, there is
an additional contribution from 02” in Eq. (13) arising due
to time-varying electric field. 7 dependency for slowly
varying field case is approximately the same as constant

'_
& PRt - B(t) (t=9fm)
107 L7 eB =0. 03 GeV?
Lattice data Ref.[93
B Lattice data Ref. 94]
L I L I L I L I L
0.08 0.1 0.12 0.14 0.16 0.18

T (GeV)

FIG. 1. Scaled electrical conductivity components (,,05/T)
as a function of temperature (7'). The black solid line for zero
magnetic fields (B = 0), blue dashed line for time-varying fields
[B()], and cyan dash-dotted line for constant magnetic field
eB = 0.03 GeV?. Lattice results of ¢,/T from Refs. [93,94] are
also shown for comparison.
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magnetic field case. Note that, in the case of a slowly-
varying field, conductivity is independent of the magnitude
of the field. However, at the constant magnetic field,
conductivity depends on the magnitude of the field through
cyclotron frequency. We have compared our B = 0 curve
with lattice results of o, /T from Refs. [93,94], which reflects
that the order of magnitude of our HRG estimations is a good
agreement with earlier knowledge. It indirectly indicates
that our tuning parameters for meson and baryon scattering
cross section or hard sphere radius have been well guessed.
Although, a broad numerical band of estimated electrical
conductivity (see the Table of Ref. [95]) of quark and
hadronic matter can be found in the literature, which is
beyond the scope of the present work.

In the lower panel of Fig. 1, the Hall component of
electrical conductivity is plotted for time-varying electro-
magnetic field and constant magnetic field case. Hall
conductivity only exists at a finite chemical potential. At
zero upg, Hall conductivity vanishes due to equal and
opposite contributions from particle and antiparticle.
There is a sign dependency on the particle’s charge in
the expression of oy in Eq. (31). Therefore, the absolute
value of 6y is minimal compared to o, for the HRG system.
oy for B(r) case is higher than constant eB case because of
extra contributions from ag) and 02) due to time time-
varying electric and magnetic field, respectively.

In Fig. 2, we have plotted thermal conductivity compo-
nents as a function of temperature at baryon chemical
potential up = 0.1, 0.3 GeV. In the upper panel, Ohmic-
type conductivity x, is plotted for three cases: zero
magnetic field (B = 0), the constant magnetic field with
eB = 0.03 GeV?, and time-varying fields B(t) with a fixed
decay parameter 73 = 9 fm. x, decrease with 7 for all the
three cases. For B = 0 case, k is proportional to 7 which
explain the 7 dependency. For the case of B(t) and
eB = 0.03 GeV?, k, is inversely proportional to 7, but
its trend cannot be observed in the curves. It indicates some

>

()

S

r [ =——B=0 U=~
¥ 0.01 —— = B®):tg=9%m TS T=—o_
¢B =0.03 GeV’ pg = 0.3GeV
I | I | I | I | I
0.08 0.1 0.12 0.14 0.16 0.18

T (GeV)

FIG.2. Components of thermal conductivity (x) as a function of
temperature (7).

other sources which control the temperature profile. Unlike
electrical conductivity, thermal conductivity integrand car-
ries enthalpy density per net baryon density, which blows
up at low temperatures. This is one of the major reasons for
getting the decreasing profile of k(7). Another source is
neutral hadrons, which also contribute to thermal conduc-
tivity. Neutral particles do not get affected by the electro-
magnetic field or Lorentz force. Therefore, x, for neutral
particles is the same as for the B = 0 case, which decreases
with temperature. With the increase in up, the thermal
conductivity decreases because the rise in baryon chemical
potential increases the enthalpy per particle with 7, which
reduces the thermal conductivity. Similar results were also
found in Ref. [41]. An interesting result is that x, of B(¢) is
a bit smaller than that of constant B, which can be
understood by comparing their expressions.

In the lower panel of Fig. 2, the Hall component x is
plotted for B(t) and eB = 0.03 GeV? cases. ky decreases
with T for both the cases. Although kg is approximately
inversely proportional to 7z, T dependency is dominated by
the thermodynamical phase-space part, carrying enthalpy
density per net baryon density, which decreases with T.
This will be better understood when we discuss Fig. 3 in the
coming paragraphs. We notice that the magnitude of kj is
roughly one order less than kj, for two reasons. Neutral
hadrons do not participate in Hall thermal conductivity, and
for charged hadrons, antiparticle contribution is subtracted
from particle contribution instead of addition. The value of
ky for B(r) case is higher than the constant field case.
Because, in the case of B(#), xy has an additional
component k, Eq. (26), which is missing in the constant
magnetic field case Eq. (27).

In Fig. 3, thermal conductivity components scaled by
7xT? are plotted against T at uy = 0.1 GeV for the time-
varying case. The upper and lower panels represent the
and xy components. Here, we have plotted the results for

Hg=0.1GeV
200 T I T I T I T I T =
. B=0 7]
150 P~ — — - 1=05 -
™ \ =
-, N e %=1 _
100 _\2. N — = y=15 .
P SN c
TN -
50 SIS D= —— -~
| N N m e S e S T e |
o—t—t—t—t—+—t+—+—+—
IR 7
Lo, J
el
(R IR -
i 20 oy
2I o B ’\\:.\~ .
| e T e -.n—_—-.—;-:-:.':-—-:"'""'-i
1 I 1 I 1 I 1 I 1
0.08 0.1 0.12 0.14 0.16 0.18
T (GeV)
FIG. 3. Scaled thermal conductivity as a function of temper-

ature. Here, y = 2. A higher value of y represents faster decay of

T

the field. The faster the decay, the lower the conductivity.
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three different ratios of relaxation time to decay parameter,
x(=2%) =0.5, 1, 1.5. To focus on the effect of the decay

parameter, we assume the same 7, for all the hadrons.
x> 1 and < 1 correspond to faster and slower decay of
fields respectively. x, for B =0 case is also shown for
comparison. Although x, decreases in the presence of a
magnetic field, x increases with the decrease in y. This
indicates that the slower the decay of fields higher the
conductivity along the temperature gradient. This effect is
irrespective of the magnitude of the fields. However,
the Hall component shows different behavior. xy is
higher when the decay parameter equals relaxation time.
Moreover, ky has a relatively small dependency on the
decay parameters. Here, T dependency from 7y is canceled
due to scaling and fixed value of 7. Therefore, temperature
dependency only arises due to the thermodynamical phase-
space part in the expression of x, and xy, which decrease
with 7. The combined effect from the thermodynamical
phase-space part and 7z on T profile of thermal conduc-
tivity have already been seen in Fig. 2.

In Fig. 4, components of electrical conductivity scaled
with 7xT? are plotted against T. Electrical conductivity
components also show a similar dependency on decay
parameters as in the case of thermal conductivity in Fig. 3.
Here, unlike thermal conductivity, the thermodynamical
phase-space part of ¢, and oy increase with 7. So,
according to these Figs. 3 and 4, we can roughly conclude
that slower decay (y < 1) of the magnetic field can enhance
the electrical and thermal conductivity along perpendicular
direction of the magnetic field. Whereas Hall components
of electrical and thermal conductivity become maximum
when relaxation time and decay time become the same or
x = 1. The aim of Figs. 3 and 4 is just to see the role of the
faster or slower decay time of magnetic field on the
electrical and thermal conductivity, whereas the aim of
Figs. 1 and 2 were to provide the exact estimation by
including 7" dependency of relaxation time.

Hg = 0.1 GeV

0.012 T T T T T T T T T
0.009f — B=0 —
o //
. B _ -7
£ oo006f- e - -

o -

5 - T
U e -

op——t———
0.0004 - ——— y=05 e
« L x=1 2
o« == x=15 ‘)“) 7 A
& 0.0002 - R rad -

-‘) //
Ko

- /’,';/ T

0 ! | -o-——‘-‘P"——‘Jn.‘— 1 ! 1 !

0.08 0.1 0.12 0.14 0.16 0.18
T (GeV)

FIG. 4. Scaled electrical conductivity as a function of temper-
ature. Here, y = j—z A higher value of y represents faster decay of

the field. Faster the decay, the lower the conductivity.

In the end, we build the ratio of thermal and electrical
conductivity components with the aim of the validity
checking of the Wiedemann-Franz (WF) law. This ratio
tells the interplay between electrical and thermal conduc-
tivity for any substance, which helps us to understand the
relative importance of charge and heat diffusion in that
substance. According to the WF law, in the case of metals,
the thermal-to-electrical conductivity ratio is proportional to
the system’s temperature, and the proportionality constant is
known as the Lorenz number. The Lorenz number of quark
and hadronic matter have been calculated in a few
Refs. [78,96-98], where most of them [78,96,97] have
found that it varies with temperature, indicating a violation
of the WF law. References [78,96] estimated Lorenz number
in the presence of an electromagnetic field for the QGP
medium using a quasiparticle-based model, and Ref. [97]
estimated the same using the van der Waals HRG
(VDWHRG) model in the absence of the magnetic field.
These studies found that WF law is violated in QGP and
HRG matters. In contrast, Ref. [98] found that the Lorenz
number is independent of temperature for the hot QCD
matter under the color string percolation (CSP) model, where
only quarks participate in both the thermal and electrical
conduction, which is analogous to the case of metal, where
electrons participate dominantly in both the thermal and
electrical conduction. Also, instead of the hydrodynamics-
based expression for thermal conductivity, the expression
obtained in Ref. [98] is similar to the free electron theory in
metal. This difference between metal and hydrodynamics-
based expression of electronic conduction becomes a matter
of interest in both experimental [99], and theoretical
[100,101] condense matter physics, which opened a new
research domain, called electron hydrodynamics [101].

In Fig. 5, Lorenz number, Ly = kq/(0,T) (upper panel)
and Hall-Lorenz number, Ly = ky/(cyxT) (lower) are

1g=0.1GeV B0
-—— - B(t):‘rB:Qfm
- B =0.03 GeV’
4
| 1 | 1 | 1
I ! I ! I !
= -
IEPC] S
| 1 | 1 | 1
0.12 0.14 0.16 0.18
T (GeV)

FIG. 5. Lorenz number as a function of temperature. In the
upper panel Ly = =~ and in the lower panel Ly = 7/ —. Red
horizontal straight line (long dashed) is drawn for reference to

show a violation of the WF law.
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plotted against 7" axis at ygp = 0.1 GeV for B = 0 case,
time-varying case [B(f)] with 73 =9 fm, and constant
magnetic field case with eB = 0.03 GeV? for HRG matter.
In the upper panel, we have found that the Lorenz number
varies with temperature for the three cases, indicating a
possible violation of the Wiedemann-Franz law in the HRG
matter, for heat conductivity related to baryon current. In
the absence of a magnetic field, the Lorenz number varies
slowly with temperature in contrast to the constant and
time-dependent electromagnetic field. Although L,
depends on T throughout the whole hadronic temperature
range, it behaves independently of T at the high 7 region,
suggesting a slight metal-like behavior. A Red dashed
straight horizontal line is drawn for reference from the
saturated values of Lorenz number at high temperature,
which indicates that B =0 and B # 0 cases can have
different saturation points. If we focus on the deviation
from these saturation values, we see the ranking—constant
B case > B(t) case > B = 0 case. In the HRG matter, we
find another ingredient that can be responsible for violating
WF law. Here, charged and neutral baryons contribute to
thermal conductivity, while the charged baryons and
mesons contribute to electrical conductivity. This in-equal
component contribution in thermal and electrical conduc-
tivity can be responsible for the Lorenz number to be T
dependent, which was already found in earlier Ref. [97] for
zero magnetic fields. In the lower panel of Fig. 5, we can
find that the Hall-Lorentz number Ly, which is also
deviating mostly from any saturation values. The fact
shows similarity with the condensed matter physics, where
Hall-Lorenz number for various metals and alloys also
shows a violation of the WF law [102,103].

IV. SUMMARY AND CONCLUSION

In summary, we have estimated the thermal and electrical
conductivity in a time-varying electromagnetic field in the
hadronic matter. We know thermal conductivity is the
proportionality coefficient between thermal current density
and temperature gradient, while electrical conductivity is the
proportionality coefficient between electric current density
and electric field. Following those macroscopic definitions,
we have calculated their microscopic expressions in the
kinetic theory framework by using the Boltzmann transport
equation under the relaxation time approximation. In the
presence of a magnetic field, the conductivity tensor
becomes anisotropic. The two components—perpendicular
and Hall components will depend on the magnetic field, but
the parallel one remains independent of the magnetic field. If
z is the magnetic field direction, then x or y directional
conduction will be perpendicular components, x-y or y-x
conduction will be Hall components, and z directional
conduction will be parallel components. This anisotropic
conduction picture can be found using a magnetic field and
Lorentz force term in the Boltzmann equation. Now, when
one goes to the (slowly) time-varying magnetic field, then

along with the leading coefficients, coming for a constant
magnetic field, some additional coefficients will contribute
to the calculations.

In the present work, we have estimated thermal and
electrical conductivity and their ratio to check the validation
of the so-called WF law for HRG system in the presence of a
time-varying magnetic field, which is also compared with
constant and zero magnetic field cases. Relaxation time for
all baryons and mesons is fixed by two different values of
hard-sphere scattering cross sections, and they follow a
decreasing (roughly exponential) temperature profile. Using
that relaxation time in electrical and thermal conductivity in
the absence of a magnetic field, we get a similar kind of
decreasing profile in the temperature axis. Now, the role of a
constant magnetic field and time-varying magnetic field will
be to introduce the new timescales—cyclotron time and
decay time, respectively, which will couple with relaxation
time and make an effectively shorter relaxation time in the
system. As a result, the magnetic field always reduces the
electrical and thermal conductivity along a perpendicular
direction. We have found the ranking—zero magnetic field
> time-varying magnetic field > constant magnetic field for
electrical conductivity and ranking—zero magnetic field >
constant magnetic field > time-varying magnetic field for
thermal conductivity. While searching for the validity of WF
law, we have found that the ratio between thermal and
electrical conductivity follows a similar ranking of thermal
conductivity due to its dominant magnitude. We have
observed the deviation of WF law in the entire hadronic
temperature domain, although, at high temperatures, a
possibility of saturation value is noticed. Concerning the
saturation value, if we measure the deviation of WF law,
then we will find a ranking—constant magnetic field >
time-varying magnetic field > zero magnetic field. We have
also estimated the Hall-Lorenz number for the HRG matter,
which also shows a possible violation of WF law in the
presence of a magnetic field. It is important to note here that
this study specifically applies to heat conductivity related to
baryon current. HRG is a multicomponent system with
different conserved charges, baryon, (electric) charge, and
strangeness. To have a complete understanding of the HRG
system in the presence of a magnetic field, one needs to
include thermal conductivity related to (electric) charge and
strangeness current, whereas Refs. [104,105] would be
useful. Reference [105] shows that at zero baryon chemical
potential, the relation between electrical conductivity and
charge diffusion coefficient is a manifestation of WF law.
Furthermore, the relaxation time calculated here, consider-
ing hard sphere scattering with a fixed cross section for all
the baryons and mesons differs from the actual scenario.
Also, results obtained using the RTA method would be
deviated from the Chapman-Enskog method, as shown in
Ref. [105].

Some of the observations in the present study are as
follows. The transport coefficients for the time-varying
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fields are independent of the initial field strength in the
weak field limit that is being considered here. Additionally,
we have noticed that for faster decay of the fields, the
perpendicular components of electrical and thermal con-
ductivity decrease when the decay time is shorter than the
relaxation time. In other words, conduction can be
enhanced in a slow decay picture. On the other hand,
the Hall conductivity can be maximum in a specific case
when relaxation time equals the decay time of the field.

Present work indicates that the actual time-varying
magnetic field picture of transport coefficient calculations
1s a bit more tedious, but estimation can differ from the
constant magnetic field picture. Other transport coefficients
like shear viscosity, bulk viscosity, etc., can also be studied
in the future for this time-varying magnetic field. The
present study is restricted by the slowly time-varying
framework, which may be considered an open and future
scope to find a general framework.
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APPENDIX A: ELECTRICAL CONDUCTIVITY

In the presence of an external electromagnetic field, BTE
under RTA can be expressed as

ofi ki ofi (= ki Z\ ofi _Of;
iy M i G (E+ S xB) =2 (Al
o o az+q’< T ) T (A1)
From Eq. (5), we have,
of, = (5 -8,) 2 (a2)
i i o aw
Substitution of Eq. (A2) into Eq. (A1) leads to,
- —
-\ ofY dw; - ki = = 0k; of?
B) i g (E+=xB) (Q,)—LL
> awi()?;—l_ql( +60ix > ( 6)6?;‘)0)1‘
(A3)

The second term in Eq. (A3) contributes only to the viscosity and thermal conductivity of the medium but it has a null

contribution in the case of electrical conductivity.
The unknown Q, from Eq. (6) is,

fio. = 01E+QZE+Q3§+(Z4§+G5(EX E) +QG(EX E) +a7(EX E)

Substitution of Eq. (A4) in Eq. (A3) leads to,

(A4)

{E’ (a’l E4ayE +dy E +as(E x B) + as(E x B) + as(E x B) + dg(E x B) + ag(E x B) + dy(E x B) + a; (E x §))

(0]

> o070 - E > > > > > 5 o > S
+q,-E-F,?~af' —i—qi(E—l——’xB) : <a1E—|—a2E+a5(ExB)+a6(ExB)+a7(ExB))}
i

B2

W,

1 —
=——k -

TR

{(a1E+ ayE + as(E x B) + ag(E x B) + a(E

of

aa),-

(AS)

0&),- ’

In this analysis, we consider only the terms with first-order derivatives of the fields and neglect terms with higher-order
derivatives. Therefore, the terms with d», dg, d7 are ignored in the current analysis. Hence Eq. (AS) turns to be,
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{w,.U;. (a, E+aE + ds(Ex B) + as(E x B) + a5 (E x B) + ag(E x B) + ay (I

of} r
+q,v,-E e (E-a,E+E- azE) + gion (v}

h‘u
=
N—

- N > - - > d :
+qia6(7ixB- (ExB)) +q[a7(?ixB- (ExB))}af
)
1 > > > o 5 o - 5.y 0f9
=K {aE ot a(E x B) + ag(E x B) + ar(Ex B)} 2
TR 0w,
T N
= {a) v; - () E4+aE 4+ ds(E X B) + as(E x B) + as(E x B) + ag(E x B) + a7(E % B)) + q;; E'aa)
i
+ (B @B+ E-wE) - g (7 - (Ex B)) = g (5 (Ex B)) + qias (=57 - B)(E - B) + (57 - E)(B - B) )
Hoo s o _ S =\ of?
+ gt (= BYE - B) + (5 - E)B - B)) + qio (~(77 - B)E-B) + (¥ - E)B-B)) } =+
1
oF [ a a oo .
=2 -{a1E+a2E+a5(ExB)+a6(ExB)+a7(E><B)} . (A6)
TR dw;
|
Now, we compare the coefficients of same tensor structure ~ Where
on both sides of the above equation one by one. With the .
comparison of coefficient of (; - E) on both sides, we get, a -1 _uf —4
KN : X — , A— r @i . G = ; ,
wial+qi+Qia5(B'B)+Qia7(B'B):_f_ikal’ <a2> 4 _ 1 < 0 >
w; T
1 as(B-B) gy (B-B) g, ith, F — Yy
:>d1:—{—ia1+qla5( ) | gion( )+&}. (A7) Wwith. F = /B(B—1;B). | N
Th w; w; w; Equation (A10) can be solved by diagonalizing the
matrix A and using the method of the variation of constants.
The comparison of coefficients of (E)E), (U—;EXE)’ The eigenvalues corresponding to matrix A are, 1; =

(v; - Ex B), and (v; - E x B) gives us the values of a,, @s,
ag, and a; respectively as

W;
1 g,
i1
a5 = ——ia5 + )
Tg W;
i qi%
Qg = —TR a5 — )
w;
a; = —Thas (A8)

These coupled differential equations for @; and as can be
described in the following matrix equation as

dX
— =AX+G,

. (A10)

1

cqiF
———l— A i
T 2= R+ ]

The elgenvectors corresponding to these eigenvalues are,

—iF (iF
v = , vy = .
: 1 2\
Hence, linear independent solutions corresponding to
homogeneous part of differential equation Eq. (A10) are,

—iFem iFem”
Hl — 5 H2 - .
enl 6'72

Where,
=t a1 [ Far, (A1)
j 0 U

with a; = —1, a, = 1. Therefore, the fundamental matrix

for Eq. (A10) is

—iFen [Fe™
Y = . (A12)
e'n e’
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We seek a particular solution of equation with given form
of Eq. (A10) is
Y,=YU. (A13)

Where U is a column matrix of form,

ul
u?2

Uy

We can see that Y, is a column matrix with same
coefficients as that of matrix X. The differentiation of
Eq. (A13) with respect to time gives us, Y, = Y'U + YU'.
Here Y’ = AY. Hence, Y;, =AY, + YU'.

Comparison of above equation with Eq. (A10) shows
G=YU.

The determinant of matrix Y is —2iFe". So

1 — 4 jFen
| =——=—det| “ ,
—2iFe" 0 en

, 1 q —iFen -4
= ————det .
27 2iFe! ¢ e 0

After integrating both « and u/, with respect to time, we get
the U matrix as

U— qi < f %dr )
. e .
2iw; \ - [ dt
Substituting the value of U from above equation into
Eq. (A13)

y _ (4FﬂliFﬂi><f%?m:>
2iw; el e - [<Fdt

p
e i

<

<

(Al14)

With,

F
iql;
Hence, we get the particular solution,
a —ik Fe™ + ikyFe™
%‘(l)—< ! 2 ) (Al6)
(2% klem + kze’h

So, a; = —ik|Fe' 4+ ik, Fe™, as = kje™ + kye™.

With, T'; = ‘{U—F finally we get,
T
a = —5’(116'71 _|_]ze'12)’
iq;

as = ——— (I, — I,e™).

o (A17)

i

Substitution of Eq. (A17) in a; of Eq. (A8) leads to,

iThq;
az :—R 1(116’71 —126112).

(A18)
i
With use of Egs. (A8) and (A17), we obtain,
1,1
a = —& i " i
i 1 1; 2 ’
1, 1)? V e
(F+a)7+ ()
(% B n;ir?)llem i (% i @) L
a — 5 9
: 1 + 7212
q 1
= |
) I
(Fra)+ (=
2F2 g 2F2 g
(TSF, + lga‘:,g>11 el 4+ (T];F _ tg;:;) 12(3’72
a 7’ b
0 1+ 72217
2 i
a =1L °R (A19)
w;

In the presence of electromagnetic field the general form of
electric current density can be expressed as in Eq. (1),

Jj=Jee+jn(exb), (A20)
From Eq. (3),
- &|k;| k
= .- L f A21
J El_ qlg,/(zﬂ)3 i (A21)

with f; = f9 + f;.
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Substituting Eq. (A2) in Eq. (A21) we get,

- Bl ki — = of°
- e T A )
j qugz/(zﬂ)ga_);( P Q) 30
-1 Pl &
jzgzi:qigi e a_):(alE—I-azE—i-aS(ExB)
= of?

(A22)

For the case of a time-evolving magnetic field, we have j, =
(jgo) +j£l)) and jy= (]L) —I—]g) +]§,>) as in Eq. (A20). The

components of net current density are of the given form,

P& - of?
f 32 l l/ : )aa)

w;
_>2
B,
qu, > ()50
2 3 dfo

H 3qul
d3|k .
H 32 q.9 l/ > Ex awi

a):
d Kk = of
Z g [ L] ‘:<a7<ExB>>aw, (a23)
With use of Eq. (A19), we get
0 _Ex k| K 0
Je =372 9i(4:)? /( 7w 2f( :Ff)R1+ T2
.(1)__£ _ &k;| k7 0 07 2
Je = 3T igl(ql) /( ) zf( :Ffi)TR
« L+ yi—xi
U +2) (W +x) (U +xi 7))
(0) _EB d3|k|k 0 0, 2
JH —3—ngi(%) /(2) 3f( F )k
1
X 3
(T2 (L +xi+x7)
. EB | K
Jg)z—ﬁzgi(qi)/ il | 3f° (1 F f9)7k
% Xi
U +2) (L +2) (L +xi +17)
.(2)__E_B . /d3|k|k 0
i =37 l_g,(ql) o aw’ P(1LF £k
1
(A24)

X .
(T4+x) (1 +xi+27)

From Egs. (12) and (A24), components of electrical con-
ductivity can be found as

1 d*|k; k A
o = Satar [ EEE o+ o

1
X42’
1+)(1 +Zl

m_ L PR K o1 - oy T8
A= g5 alal [ Gt F I E

y L+ yi—xi
(T+x) M+ )M +xi+4D)

1 d3k k .
o) = 57 e [ a1 F AT,

1
T4z 2
1 &Pk;| K P31
ag)zﬁzgi(%’) /( |)| 2f0( fo) .

Xi
X 9’
T4+ x) U+ )X +xi +x7)

1 d3k k 3
o = g ala) [ s o g

1
X b
T+ +xi+x7)

(A25)
with I; = 22,

APPENDIX B: THERMAL CONDUCTIVITY
The general form of ﬁK from Eq. (25) is

- . — — - N — -
QK:(ZIB+(12VT+G3(VTXB)+a4B+(15(VTXB)

- g > - > g N
:alB+a2VT+a4B+(a3|B|—l—a5]B|)(VTXb). (Bl)
The unknown coefficients a; (i =(1,2,...,5)) can be
obtained by substituting Eq. (B1) in the Boltzmann
equation. The Boltzmann equation under the relaxation
time approximation

a—f"+k— a—f’+q <k' xé) -aﬁ:—é—f". (B2)

o w; 0x w; ok; Tk

Employing Eq. (B1) in Eq. (B2), The first term in left hand
side (lhs) of the equation becomes,

N - > fr g > g -
a)i’l)i.{dl B+(ZIB —+ asz + a3(VT X B) —+ a3(VT X B)
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The second term in lhs of the Boltzmann equation leads to,

of i _ d
ox, a—(f0 +6fi)
o of i
- (3_x,-(f?) (5fl)
9 I .
B a_xz{l + exp (B(w; — biﬂi))} -
VT o
= —(w _bih>70a)i' (B4)

Here, in the above equation, we have ignored the con-
tributions of shear and bulk viscosity components. The
third term in the lhs leads to,

—

— . B = =
@;v; {dy B+aB+ d, VT + a3(VT x

) +(X3(VTXB) +a4B—|—a4B+a5(VTX

of;  ofY  a5f; arY o of?
oy o) Oy _ ol 5 0 o
akl‘ ak, ak, aa)i aa)i
The identity (vi x B) - H% = (. Thus we are left with
only Q o, term of the above equation. Hence,
af; - -
a—il = —aq;v; - (?T X B) + a3q;v; - 6)T(B B)
l I = g S o
_a3Qi”i'B(B'VT)+a5qzyt VT(BB)
N e
—asq;v; -B(B-VT) (B6)

Finally, after the substitution of above results in both sides
of Eq. (B2), we get

— 5

B) +as(VT x B)}

vT - — - s s = — Lo
— (@; =bih) V] - — = aq; 0] (E)T X B) + a3q;v; - VT(B- B) — a3q;v; - B(B- VT) + asq;v; - VT(B - B)
—asq;7; - BB-VT) = —ZHay 5 - B+ v, VT + a5 - (VI x B) + a5 - B+ asv, - (VT xB)}.  (BY)
R
In current analysis, we consider only the terms with first- X
order derivatives of the fields and neglect higher-order dr AX+G, (B10)

derivative terms. Let us now compare the coefficients of
same tensor structure on both sides of above equatlon one
by one. The comparison of the coefficients of 7 - B on both
sides leads to,

dl =-S5 +—03.
TR w;

Slrmlarly the comparison of coefficients of 7; - B v; - v T,

(V T x B) and v;
respectlvely as

(VT X B) gives us ay, ds, as, O3

1 (B-B—7iB-B bk
dzz—{f—iaz+(ql( -k )>a3_(01 - }

R ; Tw;
1
a3 = ——ia3 +—a2,
TR i
5 = —T;ea3 (Bg)

Here, a; from Eq. (B8) and «,, d3 Eq. (B9) can be
expressed in terms of matrix equation as

where the matrices take the following forms,

> =
-1 0 #(B-V7)
a TR @;
X=|a |, A=| o -1 _aF? i
T ®;
az 0 4i _1
w; TR’
0
i—bih
G = wT(o,- ’
0
with F = \/B(B — 74,B). Equation (B10) can be solved by

diagonalizing the matrix A and using the method of the
variation of constants. The eigenvalues corresponding to

. _ 1 . q,F . _ _
matrix A are, 4; = _ﬁ—'— a;igs, with a; =0, a, = —1,
as = 1.

The eigenvectors corresponding to these eigenvalues are,

— —
1 A (B-VT)
iF iF
n=|0)  wm=| _jFr [\ =] F
0 1 1
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Hence, the linear independent solutions corresponding to
homogeneous part of differential Eq. (B10)

m Up) e
e Ce e
yvi=| 0 |, Vo= | —iFe™ |, y3=| iFen
0 e’72 e'73

Where,

i(B-VT) -

i(B- t q;i
C=—7F% n,z—g—&-ajj Fdt.  (B11)

Therefore, the fundamental matrix for Eq. (B10) is

er]l Ce'h _Z:erh
Y=| 0 —iFen iFem (B12)
0 6772 6”3

We seek a particular solution of equation with given form
of Eq. (B10) is

Y,=7YU, (B13)
where U is a column matrix of unknowns.
ul
u2
u=| " |. (B14)
Mn

From Egs. (B10) and (B13) we can see that Y, is a
column matrix with same coefficients as that of matrix X.
Further, the differentiation of Eq. (B13) with respect to
time gives us Y’p = YU+ YU'’, where Y’ = AY. Hence,
Y, =AY, +YU'. Comparison of above equation with
Eq. (B10) tells us

G=YU. (B15)

The determinant of matrix Y is —2iFe”. Then,

| 0 Cer  —Lel
/o w=bh . ) .
U= det [ =7 iFe™ iFe'™
0 6'72 6”3
- K:e_’“ w; — blh
-~ iF Tw;, )
enl O _Ce’h
b
uh = iEg det| O ‘”T—wt iFe
0 0 e
o —e w; — blh
- iF 2Tw; )’
erll Ceflz O
1 . b
M/3 = Wdet 0 —iFem wTT y
0 e 0

o e s w; — blh (B16)
iF \ 2Tw; )’
After integrating u, u}, and uy with respect to time, we get
the matrix U as
- ,=b;h
—¢i wTTif 1
. w;—b;h
U= l 2T w; 52

__swi=bih
l 2T w; 53

(B17)

Where &; = f%dr.
After substitution the above value of U in Eq. (B13)
results in,

e Ceﬂz _é‘eﬂz _Ciwlf_—at,)[ihgl
Y,=| 0 —iFer iFen i%mns |
0 el e’ —i wzi;bih 53
w;
a Ceﬂl é’eﬂz _é’eﬂs cy
a | = 0 —iFe™ iFen Cy
a3 0 e e’ c3
Hence,

a; = cife 4 cfem — c3fe™,
Oy = —CyriFe™ + c3iFe™,

a3 = e + czes. (B18)

The functions ¢(f), ¢,(t), and c¢3(¢) can be defined as

_ _; (@i=bh) _ : (@=b;h) _ _; (@i=bjh)
¢ =i S =i, 6, and o3 = —i 5T 6.

L . .
Here, B = Bye 75, and 73 is used as a parameter. For time

varying field we get F = By/1 + %
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Hence, it leads to the given form of,

Compare the coefficients of Egs. (B20) and (B21)

; fO
—bh
’ b / 27'[ )aZ (660,
; aryons
A Llg it ¢
1 e

K| = / a |k| k2( ; —bih)as (afo>
(Blg) baryons i

of!
or= ) (=rha) (2.
bdryons awi
. . . (B22)
The microscopic definition of heat flow can take from
Eq. (22),
here
> d%]k | k where,
I;= w; —b;h)é
= | G- bimof.
1 Bl — - —b.h ++1
— 2w, =) {aB+a, VT (@; = b;h) v
32/(27[)3011' l(a)z i ){al +a2 s T = 2,
l L, 1) ey
Y (?Jrr) sl e
—i—a;(VTXB)—I—qu—I—aS(VTXB)} P) (BZO) B 8
(O
o — (@1 =) ! (B23)
In the presence of time-varying magnetic field heat current 3T Tw;Bry i\ 2
in the fluid rest frame can be expressed as [78] 141 >2 + ( '*G)
T Tp B
- — — ~
1= KovT+ (K] =+ Kz)(VT X b)
—
=k VT +xy(VT x D) (B21)  Substitute value of a, and a; from Eq. (B23) into Eq. (B22)
|
1 Bk, k7 A 1
—— Ny D8 bk — 0] £9),
=57 20 | G =P Sk M)
1 &k, k7 2
- 4 L2 (w; —b;h)? ! 0(1 0
=372 | Gapar @ S Tt R
1 &k, k7 . e
— 4 D2 (@, —b.h)%T L
23T Zgl (27)3 w? (@; = bih)"e

0
Fa+x)0 +%+Z%)f,-(1 ¥ 79,
or,

d3k k;
Ky =K +ky = TZZ/ ||_2 = by,

— L fY N, B24
ey (LI (B24)
wherexi:%.
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