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The spectra of two-dimensional suð2Þ gauge theories coupled to a single massless Majorana fermion in
integer representations, J, are numerically investigated using the discrete light-cone Hamiltonian. One of
our aims is to explore the possible presence of massless states for J > 2 in spite of the absence of a
continuous symmetry. After comparing to existing results for J ¼ 1 (adjoint fermions), we present results
for J ¼ 2, 3, 4. As expected, for J ¼ 2 there are no massless states but in contrast to the J ¼ 1 theory, the
lightest state is a boson. We find exact massless modes in the bosonic and fermionic sector for all values of
total momentum for J ¼ 3 and J ¼ 4 and, in each sector, the number of massless modes grows with the
value of the total momentum. In addition to the spectrum, we present results on the particle number and
momentum fraction distributions and argue for a separation of bulk states from edge states.
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I. INTRODUCTION

The two ends of two dimensional gauge theories coupled
to massless fermions, namely, the Schwinger model and the
’t Hooft model are well understood and serve as textbook
models for understanding the generation of a scale. suðNÞ
gauge theories coupled to Nf flavors of massless Dirac
fermions in the fundamental representation at finite N and
Nf do not generate a mass gap and are interesting in their
connection to two dimensional conformal field theories,
namely, Wess-Zumino-Witten models [1]. suðNÞ gauge
theories coupled to a single massless Majorana fermion in
the adjoint representation are known to generate a mass gap
[2–5]. These examples make it clear that two dimensional
gauge theories coupled to massless fermions serve as an
interesting class of theories to understand how a mass gap is
dynamically generated.
Recently there has been interest in studying suð2Þ gauge

theories for fermions in large representations [6]. Our focus
in this paper will be suð2Þ gauge theories with massless
Majorana fermions in the J ¼ 1, 2, 3, 4 representations of

suð2Þ. To motivate the study of this set of theories, it is
sufficient to consider theories with Nf flavors of fermions
in all representations of suð2Þ. We will utilize light-cone
gauge [7,8] where the only propagating degrees of freedom
are single component, right-handed (by choice) fermions
that will be denoted by complex functions ψfðxÞ, f ¼
1;…; Nf where x denotes the “spatial” light-cone coor-
dinate (d will denote the derivative with respect to x). The
left-handed fermions and the gauge field are constrained.
The Hamiltonian is

H ¼ H0 þHI: ð1Þ
The free part is the mass term

H0 ¼ −i
m2

2

XNf

f¼1

Z
dxψ†

fðxÞ
1

d
ψfðxÞ ð2Þ

and the factor md ψfðxÞ is the left-handed chiral fermion. The
current-current interaction is

HI ¼
g2

2
ffiffiffi
2

p
X3
a¼1

Z
dx

�
1

d
JaðxÞ

�
2

; ð3Þ

where Ja denotes the color current given by

JaðxÞ ¼
XNf

f¼1

ψ†
fðxÞLaψfðxÞ ð4Þ
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and La, a ¼ 1, 2, 3 are the traceless Hermitian suð2Þ
generators in the chosen representation of the fermions.
The momentum is

P ¼ i
XNf

f¼1

Z
dxψ†

fðxÞdψfðxÞ: ð5Þ

Upon quantization, it is best to consider x to be on a
circle of radius L and impose antiperiodic boundary
conditions on the fermions. Under discrete light-cone
quantization (DLCQ), the mode expansion of the fermionic
field is

ψ ifðxÞ ¼
1ffiffiffiffi
L

p
X∞

n¼1
2
;3
2
;���

�
aifne−i

2nπx
L þ b†ifne

i2nπxL

�
; ð6Þ

where i denotes the color index in the appropriate repre-
sentation and the modes aifn; bifn obey standard anticom-
mutation relations. All states are made up of positive
momentum fermion operators, which is one of the advan-
tages of DLCQ. In what follows, let

P
n denote, for brevity,

the sum over n ¼ 1
2
; 3
2
; � � � and let the sum over color and

flavor indices be implied. The radius of the circle, L, can be
used to set the scale. The free dimensionless Hamiltonian
operator and the dimensionless momentum operator are
given by

H0 ¼ μ2
X
n

1

n
ða†nan þ b†nbnÞ;

P ¼
X
n

2nða†nan þ b†nbnÞ; ð7Þ

where μ is the dimensionless mass measured in units of the
dimensionful coupling constant g. The color current
operators are defined by

JaðxÞ ¼ ψ†ðxÞLaψðxÞ ¼
1

L

X∞
k¼−∞

½Jkae−i2πkxL �; ð8Þ

where

Jka ¼
X
n

½a†nLaanþk − b†nLt
abnþk�

þ
X
n<k

bk−nLaan; k ≥ 0; Jð−kÞa ¼ J†ka: ð9Þ

Note here that the index k runs over integers rather than
half-integers. The physical states jSi are colorless and
therefore J0ajSi ¼ 0. The interacting part of the dimen-
sionless Hamiltonian projected on to the physical states is
given by

HI ¼
X∞
k¼1

1

k2
X3
a¼1

J†kaJka: ð10Þ

One can define the flavor current operators by

JαðxÞ ¼ ψ†ðxÞFαψðxÞ ¼
1

L

X∞
k¼−∞

½Jkαe−i2πkxL �; ð11Þ

where Fα for α ¼ 0;…; N2
f − 1 are the Hermitian matrices

in the defining representation of uðNfÞ and

Jkα ¼
X
n

½a†nFαanþk − b†nFt
αbnþk�

þ
X
n<k

bk−nFαan; k ≥ 0; Jð−kÞα ¼ J†kα: ð12Þ

The two sets of current operators, namely, the color and
flavor current operators form two commuting sets of Kac-
Moody algebras

½Jka; Jk0b� ¼ iϵabcJðkþk0Þc þ
Nfk

2
δkþk0δab

½Jkα; Jk0β� ¼ ifαβγJðkþk0Þγ þ kδkþk0δαβ; ½Jka; Jk0α� ¼ 0;

ð13Þ

where ϵabc are the suð2Þ structure constants and fαβγ are the
uðNfÞ structure constants.
The existence of the flavor currents even in the case of

Nf ¼ 1 is a consequence of a continuous symmetry in
the theory and since HI commutes with Jkα, we can
conclude that the theory with massless fermions has a
massless sector with the states given by the WZW model
associated with the flavor currents. These massless states
are created by repeated action on the vacuum by J†kα for
k > 0 [1]. Furthermore, the theory will also have a
massive spectrum with a degeneracy generated by the
flavor current operators. The massless limit is subtle [9]
and it is best to think of it as the bare coupling goes to
∞, or the infrared limit. A numerical analysis of the
DLCQ Hamiltonian was analyzed quite early in [7,8] for
Nf ¼ 1 and N ¼ 2, 3, 4 colors. The emergence of the
massless spectrum in the massless limit was shown and
the connection was made to the symmetry generated by
the uð1Þ flavor current.
When the fermion is in a real representation of the color

group, which is when the fermion is in an integer
representation of suð2Þ, there is a further reduction in
the number of degrees of freedom by a factor of 2. The
representations obey Lt

a ¼ −La and we can identify b†

with a† in Eq. (6). The flavor current generators also have
to obey Fα ¼ −Ft

α and the symmetry group becomes
soðNfÞ. With Nf ¼ 1 there is no continuous flavor
symmetry and, in spite of that, massless states are expected
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when the integer representation, J, of suð2Þ is such that
J > 2 [1]. The case of J ¼ 1 is the theory with one massless
fermion in the adjoint representation and the spectrum of
the DLCQ Hamiltonian was numerically analyzed recently
in [4] as well as in [5] using alternative methods. As
expected, the spectrum was shown to have a gap and the
low lying spectrum was extracted.
Our aim in this paper is to perform a numerical

analysis of the theories with J ¼ 2, 3, 4 and one
massless Majorana fermion, where we effectively set
H ¼ HI. The momentum operator in Eq. (7) commutes
with HI and its eigenvalues, labeled by 2K, can be even
(bosonic states) or odd (fermionic states). Let us label
the eigenvalues of HI by Ei > 0 for i ¼ 1;…;∞ and
Ei ≤ Eiþ1. The dimensionless invariant mass is thereby
given by M2 ¼ EiK. The length of the circle, L, plays
the role of a regulator. The eigenvalues, Ei, and there-
fore the dimensionless invariant mass, will depend on L
and ultimately one needs to take L → ∞. The L → ∞
limit simply amounts to K → ∞ and M2 will approach a
finite value as per the usual numerical analysis of
DLCQ [4].
When there is a continuous symmetry, the massless

spectrum will emerge at finite K and persist for all values
of K. On the other hand, if one were to extract the
massive part of the spectrum, even with the presence of a
continuous symmetry there will be dependence on K. In
this case, one has to numerically perform a K → ∞ limit
to extract the masses in the L → ∞ limit as was done in
[7,8]. A similar analysis was done for J ¼ 1 in the suð2Þ
theory with one flavor of massless Majorana fermion. In
this theory, there is no continuous flavor symmetry and
the spectrum has a gap which is extracted from the
K → ∞ limit in [4]. We expect the situation to be similar
for J ¼ 2 since there is a gap in the spectrum, but it is
not a priori clear what should happen for theories with
one massless fermion in J > 2. In what follows, we will
show there are exact massless modes in the fermionic and
bosonic sector at finite values of K and the number of
them increases with K. The existence of massless states
at finite values of K seems to be consistent with the
presence of an infrared chiral algebra given by and even-
spin W-algebra Wð2; 4;…; 2JÞ [1]. Earlier connections
between 2D QCD and the more ubiquitous W∞-algebra
were explored in [10] due to their relevance for string
field theory and the c ¼ 1 string. Unfortunately, we are
not able to make an explicit connection to the massless
states we find and the generators of this chiral algebra.
We leave this to future exploration.
After a presentation of the technical details needed to

perform the numerical analysis of the low lying eigen-
values of the DLCQ Hamiltonian in Sec. II, we present
our results in Sec. III. We start by presenting our results
for J ¼ 1 which agree with the results in [4] thereby
confirming the numerical validity of our procedure.

This is followed by a computation of the mass gap
for J ¼ 2. A combination of exact calculation and
numerical analysis is used to show the presence of exact
zero eigenvalues of the DLCQ Hamiltonian for J ¼ 3, 4
at finite values of 2K. In addition to presenting the results
for the spectrum, we also present results on the particle
number and momentum fraction distribution. The spec-
trum is expected to remain discrete as we take K → ∞.
The level spacing at the bottom edge of the spectrum
tends to be larger compared to the middle of the spectrum
(bulk) where it almost looks continuous. In addition, as
we will see the momentum fraction distribution looks
different in the bulk of the spectrum compared to the
edge. Neither the edge states nor the bulk states are
purely made up of valence fermions and both of them
have a “sea fermion” contribution. This helps us explore
a separation between edge and bulk states.

II. TECHNICAL DETAILS

The color current operator with a single Majorana
fermion is

Jka ¼
X
n

½a†nLaanþk� þ
1

2

X
n<k

ak−nLaan k ≥ 0;

Jð−kÞa ¼ J†ka ð14Þ

where Lt
a ¼ −La. The dimensionless momentum opera-

tor is

P ¼
X
n

2na†nan: ð15Þ

For numerical purposes and ease in generating tensor
representations using Clebsch-Gordan coefficients we
move to the basis

an ¼ Rbn ⇒ Jka ¼
X
n

½b†nR†LaRbnþk�

þ 1

2

X
n<k

bk−nRtLaRbn; k ≥ 0; Jð−kÞa ¼ J†ka; ð16Þ

such that

R†LaR ¼ Ta ð17Þ

are the generators in the jJ;Mi basis for M ¼ −J;
−J þ 1;…; J − 1; J, namely,

T3jJ;Mi ¼ MjJ;Mi;
T�jJ;Mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ −M2 ∓ M

q
jJ;M � 1i;

T� ¼ T1 � iT2: ð18Þ
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The nonzero elements of the unitary matrix, R, are

RM;M ¼ 1ffiffiffi
2

p ; R−M;M ¼ iffiffiffi
2

p ; RM;−M ¼ ð−1ÞMffiffiffi
2

p ;

R−M;−M ¼ ð−1ÞM−1iffiffiffi
2

p for M > 0; R0;0 ¼ 1: ð19Þ

In this basis, the explicit expression for the dimensionless
Hamiltonian is

HI ¼
X
n;m

b†s1;nþkb
†
s2;mbs3;mþkbs4;nαs1;s2;s3;s4

þ
X

n<k;m<k

b†s1;nb
†
s2;k−nbs3;k−mbs4;mβs1;s2;s3;s4

×
X
n;m<k

½b†s1;nþkbs2;nbs3;k−mbs4;mγs1;s2;s3;s4

þ b†s1;mb
†
s2;k−mb

†
s3;nbs4;kþnδs1;s2;s3;s4 �

þ JðJ þ 1Þ
X
s;n

b†s;nþkbs;nþk; ð20Þ

where

αs1;s2;s3;s4 ¼
X
a

Ts1;s4
a Ts2;s3

a ;

βs1;s2;s3;s4 ¼
1

4

X
a

½ðRtRTaÞ†�s1;s2ðRtRTaÞs3;s4 ;

γs1;s2;s3;s4 ¼
1

2

X
a

Ts1;s2
a ðRtRTaÞs3;s4 ;

δs1;s2;s3;s4 ¼
1

2

X
a

½ðRtRTaÞ†�s1;s2Ts3;s4
a : ð21Þ

The momentum operator is

P ¼
X
n

2nb†nbn: ð22Þ

We can systematically solve for the colorless eigenstates of
this Hamiltonian. In the following section we will outline
how that is done.

III. RESULTS

Our first attempt to extract just the low lying spectrum of
HI using Krylov space algorithms was mired due to
numerical inaccuracies and the inability to stay in the
colorless sector. We therefore reverted to an exact evalu-
ation of HI at fixed values of K. A generic colorless state
can be written as

ψp1;…;pn
¼

XJ
s1;…;sn¼−J

cs1���snb†p1;s1 � � � b†pn;sn j0i; ð23Þ

where we have explicitly written out the spin components
s1;…; sn. The coefficients cs1���sn can be derived using
repeated application of the Clebsch-Gordan coefficients to
generate tensor representations. In this process we have
taken advantage of the reduction of states that occur when
two or more fermion momenta pi are identical. The number
of colorless states will grow with J. After enumerating the
complete list of states for a fixed momentum, we explicitly
computed the full Hamiltonian matrix on this set of states.
We successfully went up to 2K ¼ 40, 28, 22, 18 for J ¼ 1,
2, 3, 4 respectively. This was sufficient to compare with
known results at J ¼ 1 and provide new results for J ¼ 2,
3, 4. In what follows we outline the details of our results in
each representation.

A. J = 1

The spectrum for J ¼ 1 for 2K ≤ 40 is shown in the top
panel of Fig. 1. We use these results to validate our method
by a quantitative comparison with [4]. As we follow a
particular state (labeled by ordering the eigenvalue) across
different values of K, we see a small oscillation in the
eigenvalue as we vary 2K whose amplitude generally
decreases as K is increased.1 We separate the behavior
as a function of K into two sets:

(i) mod ð2K; 4Þ ¼ 1 and mod ð2K; 4Þ ¼ 3 for fer-
mionic states, and

(ii) mod ð2K; 4Þ ¼ 0 and mod ð2K; 4Þ ¼ 2 for bosonic
states.

and fit each part using the function aþ b
K þ c

K2 to obtain the
value at K ¼ ∞.2 The fits for a few edge states in the
bosonic and fermionic sector are shown in the top panel of
Fig. 1. The extrapolated values are listed in the first row of
Table I and they are in agreement with the results in [4]. The
two numbers in curly brackets correspond to the extrapo-
lated values from the two oscillating sets. If the extrapo-
lated values differ it most likely implies that numbers at
higher values of K are needed to get a better estimate.
Using our method we are able to explicitly solve for the

eigenvectors and we use this to obtain the particle number
distribution, fn, and the momentum fraction distribution,
pðxÞ, where x ¼ q

2K and q is the momentum of the
individual fermion that forms a particular eigenstate. The
particle number distribution and the momentum fraction
distribution for the edge states at 2K ¼ 39 (fermions) and
2K ¼ 40 (bosons) are shown in the left and right middle
panels respectively. The lines joining the points are only
present to guide the eye and therefore should not be
understood as a fit. The lightest state (M2 ¼ 5.7) is a
fermion and is primarily made up of three particles and the

1At times this oscillation is not discernible for the lowest lying
massive modes. Assuming there is an oscillation anyway results
in the pair of fitted masses being identical.

2In the few cases where we do not have enough data points to
confidently fit a quadratic, we set c ¼ 0.
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momentum fraction carried by a fermion favors a value
of 1

2
. The next state (M2 ¼ 10.8) is the lightest bosonic

state and is primarily made up of a two particle state with
a tendency for one of the fermions to have a high
momentum compared to the other. The next two extrapo-
lated states (M2 ≈ 23 coming from the second and third
lowest eigenvalues at each value of 2K) come from
bosons and these are primarily made up of six particles.

The momentum fraction distribution shows a single peak
around x ¼ 1

4
. The closeness of the extrapolated masses

and the distributions could suggest a degeneracy. The
fermionic state with an extrapolated mass of (M2 ¼ 25.5)
is also primarily made up of three particles but the
momentum fraction distribution shows three peaks
around x ¼ 5

39
; 17
39
; 31
39
. The fermionic states around M2 ≈

32 are primarily made up of five particles and the

FIG. 1. Analysis of J ¼ 1. The color red is reserved for fermionic states and the color blue for bosonic states. The extrapolated masses
in the top panel are listed in Table I.
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momentum fraction distribution show two peaks around
x ¼ 7

39
; 21
39
.

The bottom two panels show the behavior of the bulk
states. The left panel shows the momentum fraction
distribution for 100 states starting at the 100th state
for 2K ¼ 39 and 2K ¼ 40 where we have a total of 628
and 728 states respectively. The spread at each value of x
comes from the differences between states but the overall
shape is a single peak around x ¼ 7

39
. The right panel

shows the average momentum fraction for all states at
2K ¼ 29, 30, 39, 40. In spite of this model being in two
dimensions, it shows a quantitative similarity to four-
dimensional models of QCD [11]. In particular Eq. (2) in
[11] states that in the massless case one should get a
momentum fraction of 1

4
and the plot in the bottom left

panel of Fig. 1 should be compared to Fig. 2 in [11]. We
interpret the clustering of states starting around M2 ¼ 80
as the beginning of the bulk part of the spectrum. One
could try to read more structure in the plot on the bottom
right panel. Clear outliers at small M2 are isolated states.
Outliers at higher values of M2 that tend to merge into
the cluster could be interpreted as noncontinuum states
and the states in the cluster as continuum states.
Furthermore, the behavior for 2K ¼ 29 is close to 2K ¼
39 and so is the behavior for 2K ¼ 39 and 2K ¼ 40.
This suggests our interpretation of clusters and outliers
will survive the K → ∞ limit.

B. J = 2

The spectrum for J ¼ 2 and 2K ≤ 28 is shown in the top
panel of Fig. 2. The analysis follows the same steps as for
J ¼ 1 so we will not repeat the analysis details and only
focus on the results. In contrast to J ¼ 1, the lightest state
(M2 ¼ 28.6) is a boson for J ¼ 2. The contribution from
four particle states to this state is more than that of the
lightest boson state for J ¼ 1. The effect of this seems to
be a slight enhancement of the momentum fraction dis-
tribution at x ¼ 0.5 compared to the lightest boson state
for J ¼ 1. The lightest fermionic state (M2 ¼ 35.8) is

primarily made of a five particle state and the momentum
fraction distribution shows a single peak around x ¼ 11

27
.

This behavior is quite different from the lightest fermion
state for J ¼ 1 and is on par with the heavier states. There
are bosonic states around the same mass and their momen-
tum fraction distribution is close to the fermionic states.
The number density of these bosonic states favors four and
six particles almost equally. The momentum fraction
distribution for 100 states starting from the 100th state
for 2K ¼ 27 (contains 463 states) and 2K ¼ 28 (contains
598 states) shown in the bottom left panel is qualitatively
similar to J ¼ 1. Similarly to J ¼ 1, we see a clustering of
states and M2 ¼ 80 is at the beginning of the cluster.
Outliers are again seen in a manner similar to J ¼ 1.

C. J = 3

Contrary to J ¼ 1, 2 the spectrum for J ¼ 3 has exact
massless modes at finite K. Since the spectra are obtained
numerically by evaluating HI and diagonalizing it, we
explicitly work some cases analytically to establish the
existence of massless modes before we proceed to present
the numerical results.

1. Fermionic sector

The fermionic sector will consist of n-particle states
where n is odd.
(1) 2K ¼ 3: Since the only partition here is f1; 1; 1g,

there is only state, namely, ϕ1 ¼ ψ 1
2
;1
2
;1
2
. A direct

computation yields

HIϕ1 ¼ 0 ð24Þ

so this is an exact massless mode.
(2) 2K ¼ 5: We have partitions f3; 1; 1g and f1; 1; 1;

1; 1g. We cannot construct a colorless five-particle
state where all the momenta are the same, therefore
the only state is ϕ1 ¼ ψ 3

2
;1
2
;1
2
. A direct computation

yields

HIϕ1 ¼ 0 ð25Þ

so this is an exact massless mode.
(3) 2K ¼ 7: In this case we have four allowed partitions:

f5; 1; 1g, f1; 3; 3g, f3; 1; 1; 1; 1g, f1;1;1;1;1;1;1g.
Therefore the four states that form a basis are
ϕ1 ¼ ψ 5

2
;1
2
;1
2
, ϕ2 ¼ ψ 1

2
;3
2
;3
2
, ϕ3 ¼ ψ 3

2
;1
2
;1
2
;1
2
;1
2

and ϕ4 ¼
ψ 1

2
;1
2
;1
2
;1
2
;1
2
;1
2
;1
2
. The matrix HI in this four state basis is

HI ¼

0
BBB@

12 −12 6
ffiffiffi
3

p
0

−12 12 −6
ffiffiffi
3

p
0

6
ffiffiffi
3

p
−6

ffiffiffi
3

p
15 −6

ffiffiffi
7

p

0 0 −6
ffiffiffi
7

p
42

1
CCCA ð26Þ

TABLE I. Table of extrapolated masses of a few edge states.

Representation Boson masses Fermion masses

J ¼ 1 f10.8; 10.8g f5.7; 5.7g
f22.7; 22.8g f25.5; 25.5g
f23.0; 22.7g f31.7; 32.7g

f30.2; 33.5g
J ¼ 2 f28.6; 28.6g f35.7; 35.9g

f36.1; 36.7g f34.6; 34.9g
f39.9; 47.4g

J ¼ 3 f66.1; 66.8g f71.1; 65.2g
J ¼ 4 21.6 f31.7; 30.8g
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The eigenvalues of this matrix are f0; 0; 30; 51g and
the two massless modes are given by

Φ1 ¼
1ffiffiffi
2

p ðϕ1 þ ϕ2Þ;

Φ2 ¼
ffiffiffiffiffiffiffiffi
42

170

r
ðϕ1 − ϕ2Þ − 4

ffiffiffiffiffiffiffiffi
7

170

r
ϕ3 −

4ffiffiffiffiffiffiffiffi
170

p ϕ4:

ð27Þ

2. Bosonic sector

The smallest choice is 2K ¼ 4 since two particles with
identical momenta cannot form a colorless state.
(1) 2K ¼ 4: We have two partitions f3; 1g and

f1; 1; 1; 1g. The two particle state is unique and
we label it as ϕ1 ¼ ψ 3

2
;1
2
. We only have one four

particle state which we label as ϕ2 ¼ ψ 1
2
;1
2
;1
2
;1
2
. The

matrix, HI , in this two state basis is

FIG. 2. Analysis of J ¼ 2. The color red is reserved for fermionic states and the color blue for bosonic states. The extrapolated masses
in the top panel are listed in Table I.
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HI ¼
�
24 12

12 6

�
: ð28Þ

The eigenvalues of this matrix are f0; 30g and the
single massless mode is given by

Φ ¼ 1ffiffiffi
5

p ðϕ1 − 2ϕ2Þ: ð29Þ

The massless mode is thereby made of two and four
particle states.

(2) 2K ¼ 6: We have four partitions, namely, f5; 1g,
f3; 3g, f3; 1; 1; 1g and f1; 1; 1; 1; 1; 1g. The only
two particle state is ϕ1 ¼ ψ 5

2
;1
2
since the two particles

should have different momenta. The only four
particle state is ϕ2 ¼ ψ 3

2
;1
2
;1
2
;1
2
. There is no colorless

FIG. 3. Analysis of J ¼ 3. The color red is reserved for fermionic states and the color blue for bosonic states. The extrapolated lowest
nonzero masses in the top panel are listed in Table I.
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six particle state with identical momenta. The
matrix, HI , in this two state basis is

HI ¼
�
18 9

9 9
2

�
: ð30Þ

The eigenvalues of this matrix are f0; 45
2
g and the

single massless mode is given by

Φ ¼ 1ffiffiffi
5

p ðϕ1 − 2ϕ2Þ: ð31Þ

The massless mode is thereby made with two and
four particle states.

(3) 2K ¼ 8: The partitions are f7; 1g, f5; 3g, f5; 1;
1; 1g, f3; 3; 1; 1g, f3; 1; 1; 1; 1; 1g and f1; 1; 1; 1;
1; 1; 1; 1g. There is only one unique two particle
state for each partition. These states are labeled as
ϕ1 ¼ ψ 7

2
;1
2
and ϕ2 ¼ ψ 5

2
;3
2
. There are a total of seven

colorless four particle states when all momenta are
different. For the partition f5; 1; 1; 1g, four of the
seven states become null states. The other three
states are identical and we label this as ϕ3 ¼ ψ 5

2
;1
2
;1
2
;1
2
.

However, the partition f3; 3; 1; 1g has three ortho-
normal states which are ϕ4 ¼ ψ1

3
2
;3
2
;1
2
;1
2

, ϕ5 ¼ ψ2
3
2
;3
2
;1
2
;1
2

and ϕ6 ¼ ψ3
3
2
;3
2
;1
2
;1
2

. The six particle state is unique and

we label it as ϕ7 ¼ ψ 3
2
;1
2
;1
2
;1
2
;1
2
;1
2
. There is some freedom

in choosing the three orthonormal states for the
partition f3; 3; 1; 1g and thus the matrix HI has a
form dependent on this choice and we do not write it
here. The eigenvalues are f0; 0; 16.21474290;
21.17414599; 30; 51; 60g and the two massless
modes are made up of two, four and six particle states.

Having established the presence of exact massless modes
for small values of 2K, we proceed to present the results for
values of 2K ≤ 22. The massive part of the spectrum is
plotted in the top panel of Fig. 3. The number of massless
modes grows with 2K and are listed in Table II. We do not
see a simple formula that fits the growth. We compute a
single fermion number distribution and a single momentum
fraction distribution for the massless modes. The results
are shown in the left and right middle panels of Fig. 3.

The fermion number distribution for the boson massless
modes is broad with a peak at six particles while the
distribution for the fermion massless modes is a bit more
sharp with a peak at five particles. The momentum fraction
distibution for the boson and fermion massless modes are
essentially identical and it is broad with a peak around
x ¼ 3

22
. We are not able to determine whether the lightest

nonmassless mass is a boson or fermion. The fits favor
fermion over boson as seen in Table I but we note that theK
dependence for the boson mass is less than the one for the
fermion mass. The particle number distribution of the
lightest massive boson at 2K ¼ 22 is mainly made up of
two and four particles while the one for the lightest massive
fermion at 2K ¼ 21 is made up of three, five and seven
particles with a peak at five particles. The momentum
fraction distribution of both massive modes are broad.
The one for the massive boson favors x ¼ 9

22
; 21
22
. The

momentum fraction distribution in the bulk is similar to
J ¼ 1, 2 and we see evidence of clustering to begin
around M2 ¼ 125.

D. J = 4

We have results for the spectrum for 2K ≤ 18 and
massive part of the spectrum is plotted in the top panel
of Fig. 4. The number of zero modes grows with 2K and are
listed in Table II. Although the number of zero modes at
small values of 2K is less for J ¼ 4 compared to J ¼ 3, the
growth is faster. The fermion number distribution for the
boson zero modes shown in the left-middle panel of Fig. 4
is qualitatively similar to J ¼ 3 while the distribution for
the fermion zero modes favors larger particle number
compare to J ¼ 3 with a peak at seven particles. The
momentum fraction distribution for the boson and fermion
zero modes is very similar to J ¼ 3 but there are small
deviations between boson and fermion zero modes possibly
due to the computation performed at a smaller value of 2K.
Unlike J ¼ 3, the lightest massive state is clearly a boson
(M2 ¼ 21.6) and the lightest massive fermion has a mass of
M2 ¼ 31. The particle number distribution of the lightest
massive boson at 2K ¼ 18 is mainly made up of six and
eight particles while the one for the lightest massive
fermion at 2K ¼ 17 is dominated by five particles. The
momentum fraction distribution of both massive modes are

TABLE II. Number of massless modes for each momentum at J ¼ 3, 4. We have results only for 2K ≤ 18
when J ¼ 4.

2K 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

J ¼ 3, bosons 1 1 2 2 4 4 7 8 12 14

J ¼ 3, fermions 1 1 2 2 3 4 6 7 10 13

J ¼ 4, bosons 1 1 2 2 5 5 10 12

J ¼ 4, fermions 0 0 1 1 2 4 7
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broad. The momentum fraction distribution in the bulk is
similar to J ¼ 1, 2, 3 and we see evidence of clustering
beginning at small values of M2 with many outliers up
to M2 ¼ 400.

IV. CONCLUSIONS

An understanding of the origin of the mass gap in
strongly interacting gauge theories is a fundamental

problem in particle physics and it has been and will
continue to be useful to study toy models to address this
question. Two dimensional gauge theories coupled to
massless fermions comprise an ideal set of toy models.
A continuous flavor symmetry exists in the case of
fermions in the fundamental representation resulting in a
gapless theory with a conformal sector given by the
appropriate WZW model. This continuous symmetry is
absent when the fermions are in a real representation of the

FIG. 4. Analysis of J ¼ 4. The color red is reserved for fermionic states and the color blue for bosonic states. The extrapolated lowest
nonzero masses in the top panel are listed in Table I.
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gauge group. We take a first step in this paper to study two
dimensional gauge theories coupled to massless Majorana
fermions in representations other than the adjoint repre-
sentation. We focused on suð2Þ gauge theories coupled to
massless Majorana fermions in integer, J, representations.
Our aim was to explore the interesting observation in [1],
namely, J ¼ 1 and J ¼ 2 theories have a gap whereas
J > 2 theories are gapless. We studied the low lying
spectrum of the Hamiltonian in the light-cone gauge by
imposing anti-periodic boundary conditions in the spatial
direction. We performed an exact diagonalization of the
Hamiltonian and validated our method by comparing our
results with the ones in [4]. As expected, the J ¼ 2 theory
has a gap with the lightest state being a boson.
Since the theories with a single flavor of Majorana

fermion do not have a continuous flavor symmetry,
we expected massless modes to appear only in the limit
K → ∞ (2πKL is the momentum) where the effect of the size
of circle, L, has been removed. Instead we found exact
massless modes at finite values of K. But the degeneracy in
the massless part of the spectrum is not present in the
massive part of the spectrum. If there is a conformal sector
in the infrared limit, we expect the existence of an infinite
number of massless modes. We find evidence in support of
this statement as the number of exact massless modes
grows with 2K in both the bosonic and fermionic sectors.
The faster growth of the number of massless modes for
J ¼ 4 when compared to J ¼ 3 could have to do with the
precise nature of the infra-red chiral algebra.
The suð2Þ gauge theories with fermions in a representa-

tion J was studied in the limit of J → ∞ in [6]. The limit
considered there was to keep λ ¼ g2J2 fixed as J → ∞.
Since the interacting Hamiltonian, HI , has a factor of g2 in

front, we have plotted the upper bound (bulk states) of the
scaled spectrum, MJ , as a function of 2K for J ¼ 1, 2, 3, 4 in
Fig. 5. Noting that J ¼ 4 is probably not large, it is curious
that the plots for all four values of J collapse into one curve
in spite of the expected finite size effects of the circle. On
the other hand, the data shown in Table I shows that the
lightest masses do not obey this scaling.
Our numerical study does not permit us to easily study

large values of K. The number of basis states that make up
an eigenvector grows exponentially with K as shown in
Fig. 6 making it difficult to reach larger values of K. Since
the Hamiltonian is purely fermionic, an attractive approach
might be tensor network algorithms [12].
As a next step we plan to study the low lying spectrum of

a mixed theory—suð2Þ gauge theory with two Majorana
fermions in the J1 and J2 representations with J1 ≠ J2. The
relative gauge coupling is a parameter and we plan to study
the spectrum as a function of the ratio of the coupling
constants. This will shed some light into the flow between
two theories where both are gapless, one is gapless or both
are gapped. It will also be interesting to study the theory
with two flavors of Majorana fermions in the same
representation but with different couplings. This will enable
us to move from a model with a continuous symmetry to
one where it is not present.
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FIG. 5. For each J we plot the largest mass scaled by J as a
function of 2K.

FIG. 6. We have plotted the number of states as a function of
2K for J ¼ 1, 2, 3, 4. We fitted each curve to Ce2αK and list the α
values for each curve.
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