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We present a phenomenological study on the role of charm contribution and SUð2Þ isospin symmetry in
the extraction of the Λ polarizing fragmentation functions from eþe− → Λ↑ðΛ̄↑Þhþ X annihilation
processes. We adopt the well-established transverse-momentum-dependent factorization formalism, within
the Collins-Soper-Sterman evolution scheme at next-to-leading logarithm accuracy, carefully exploiting the
role of the nonperturbative component of the polarizing fragmentation function. We then discuss the impact
of these results on the predictions for transverseΛ, Λ̄ polarization in semi-inclusive deep inelastic scattering
processes at typical energies of the future Electron-Ion Collider.
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I. INTRODUCTION

The study of the fragmentation mechanism of partons
into hadrons within the field theoretic framework of
quantum chromodynamics (QCD), along with factorization
theorems, which connect perturbative parton dynamics to
universal hadron fragmentation functions, is fundamental
to unfolding the quark and gluon structure of hadrons.
When one includes also spin and its correlations with
intrinsic transverse momentum the information one can
extract is much richer and the description is more complete.
This can be achieved, for instance, by studying the
spontaneous transverse Λ polarization in processes where
factorization theorems, in terms of transverse momentum
dependent distributions (TMDs), hold. We refer, in par-
ticular, to double-hadron production in eþe− annihilation
and semi-inclusive deep inelastic scattering (SIDIS) proc-
esses [1–3]. These are characterized by the presence of two
ordered energy scales, a small one (the transverse momen-
tum unbalance of the two hadrons in eþe− processes or the
transverse momentum of the final hadron in SIDIS) and a
large one, the virtuality of the exchanged photon.

We emphasize that the understanding of the transverse Λ
polarization, originally measured in inclusive unpolarized
proton-proton and proton-nucleus collisions in the late
1970s [4–10], still represents a challenging problem in
hadron physics. One of the earliest attempts to describe this
phenomenon within a phenomenological model was pre-
sented in Ref. [11] and further extended to SIDIS processes
in Ref. [12]. Recently, experimental data collected by the
Belle collaboration [13], for the transverse Λ; Λ̄ polariza-
tion in almost back-to-back two-hadron production in eþe−
processes, has triggered a renewed interest in the subject
matter. Preliminary studies within a simplified TMD model
at fixed scale were discussed in Refs. [14,15]. Moreover, a
series of phenomenological analyses within the TMD
factorization framework adopting the Collins-Soper-
Sterman (CSS) approach [16–18] has been carried out
[19–23]. The general TMD formalism, following the
Lorentz decomposition or the helicity approach, was
developed and presented in Refs. [24–26] for eþe−
processes, and in Refs. [27–29] for SIDIS.
One of the main goals of these phenomenological

studies, besides the description of data, is the extraction
of the polarizing fragmentation function (pFF) for Λ
hyperons, that provides information on the correlations
between the intrinsic transverse momentum in the parton-
to-hadron fragmentation process and the final hadron
polarization. In this respect, this TMD function represents
a window towards a deeper understanding of the non-
perturbative fragmentation mechanism when also spin-
polarization effects are taken into account.
In this paper, that represents a natural extension of

Ref. [23], we reanalyze Belle data for the transverse Λ
polarization limiting this study to the associated production
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case, and paying special attention to two issues, mentioned
in our previous work that here we will study in depth:
namely, the role of the SUð2Þ isospin symmetry (see also
Refs. [22,30]) and the charm contribution in the fragmen-
tation of Λ hyperons.
We consider three different scenarios, discussing their

statistical significance in the data description and the
difference in the extracted polarizing fragmentation func-
tions. We then employ these results to give predictions for
the same observable in SIDIS processes at the energies and
kinematics typical of the future Electron-Ion Collider
(EIC). We will show how new measurements could help
in disentangling among the different scenarios. The role of
intrinsic charm in the proton [31,32] will be also addressed.
This analysis will allow us to check, at the same time,

other fundamental issues, like the universality of the TMD
fragmentation functions and their QCD evolution with the
energy scale.
The paper is organized as follows: in Sec. II we present

the formalism and the cross sections for the production of a
transversely polarized spin-1=2 hadron in eþe− collisions,
in association with a light hadron, and in semi-inclusive
deep inelastic scattering processes. The main results are
then employed in the phenomenology part in Sec. III,
where we discuss the role of the charm quark contribution
and the issue of SUð2Þ isospin symmetry in the reanalysis
of Belle data [13]. Estimates for the transverse Λ=Λ̄
polarization in eþe− collisions and in SIDIS processes,
at different center of mass energies, are presented with
particular focus on how these are influenced by the choice
of the pFF parametrization and of the nucleon PDF set.
Last, in Sec. IV we provide our concluding remarks.

II. FORMALISM

In this section, we briefly recall the formalism for the
production of a transversely polarized spin-1=2 hadron in
eþe− annihilation processes, in association with an unpo-
larized light-hadron, and in semi-inclusive deep inelastic
scattering processes. The main equations will be used in the
following section to study the production of transversely
polarized Λ hyperons in both processes.

A. Double-hadron production in e+ e− processes

We start considering double-hadron production in eþe−
collisions:

eþðleþÞe−ðle−Þ → h1ðP1; S1Þh2ðP2Þ þ X; ð1Þ

where h1 is a spin-1=2 hadron, with momentum P1, spin-
polarization vector S1 and mass M1, while h2 is a light
unpolarized hadron with momentum P2 (we will neglect its
mass), and they are produced almost back to back in the
center-of-mass (c.m.) frame of the incoming leptons. For
more details we refer the reader to Refs. [23,24].

In Fig. 1 we show the kinematics of the process in the
hadron-frame configuration, where we fix the momentum
of the second hadron, h2, along the ẑL axis, while the first
one, h1, moving in the opposite hemisphere, has a small
transverse momentum P1T with respect to the second
hadron direction.
From the theoretical point of view, it is however more

convenient to adopt a different frame, where the two
hadrons are exactly back to back, along a new ẑ axis,
and the hadron transverse unbalance (P1T) is now carried
out by the virtual photon. In this frame, the differential
cross section can be expressed, neglecting terms not
relevant in the present study, as [15,24,26]

dσe
þe−→h1ðS1Þh2X

2dydzh1dzh2d
2qT

¼ σe
þe−
0 ½FUU− jS1T jsinðϕ1−ϕS1ÞF

sinðϕ1−ϕS1
Þ

TU þ�� ��; ð2Þ

where ϕS1 is the azimuthal angle of the spin of the hadron
h1. Here qT is the transverse momentum of the virtual
photon (of momentum q), related to the transverse momen-
tum of the hadron h1 as P1T ¼ −z1qT , being z1 its light-
cone momentum fraction, defined for both hadrons as

z1 ¼
P−
1

p−
q
; z2 ¼

Pþ
2

pþ
q̄
; ð3Þ

where pq and pq̄ are the four-momenta of the quark and the
antiquark fragmenting into the hadron h1 and h2, carrying a
transverse momentum k⊥ and p⊥ with respect to the parent
quark momenta, respectively.
The two scaling variables in Eq. (2), zh1 , zh2 , are the

usual invariants (energy fractions), related to the light-cone
momentum fractions as

zh ¼
2Ph · q
Q2

¼ 2Eh

Q
≃ z

�
1þ M2

h

z2Q2

�
; ð4Þ

FIG. 1. Kinematics for the process eþe− → h1h2 þ X in the
hadron-frame configuration.
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where Q is the center-of-mass energy of the process,
Q2 ¼ q2, and where in the last relation we have neglected
terms of the order Oðk2⊥=ðzQÞ2Þ. Another scaling variable,
usually adopted in phenomenological analyses, is the
hadron momentum fraction

zp ¼ 2jPhj
Q

≃ z

�
1 −

M2
h

z2Q2

�
: ð5Þ

Notice that since for the light hadron h2 we neglect its mass,
in the following we will use z2 ¼ zh2 ¼ zp2

, within this
approximation.
The remaining variable is the fraction y ¼ P2 · leþ=P2 · q,

related to the polar angle θ in the hadron frame (see Fig. 1).
Lastly we have

σe
þe−
0 ¼ 3πα2

Q2
½y2 þ ð1 − yÞ2�: ð6Þ

In Eq. (2), the F terms are convolutions of two
fragmentation functions, where the subscripts denote the
polarization states of, respectively, the first and the second
hadron (U ¼ unpolarized, T ¼ transversely polarized).
These have the following expressions [15,23,24]:

FUU ¼ z2p1
z2p2

Hðeþe−ÞðQÞF ½D1D̄1�; ð7Þ

F
sinðϕ1−ϕS1

Þ
TU ¼ z2p1

z2p2
Hðeþe−ÞðQÞF

�
ĥ · kT
M1

D⊥
1TD̄1

�
; ð8Þ

where Hðeþe−ÞðQÞ is the hard scattering part for the
massless on-shell process eþe− → qq̄ [normalized to one
at leading order (LO)], at the center-of-mass energy Q,
D1ðz; k⊥Þ is the unpolarized TMD fragmentation
function (FF) and D⊥

1Tðz; k⊥Þ is the polarizing FF, with
ĥ ¼ P1T=jP1T j and kT ¼ −k⊥=zp1

(and similarly
pT ¼ −p⊥=zp2

), where kT (pT) is the transverse momentum
of the quark (antiquark) with respect to the hadron h1 (h2)
direction of motion. The F are proper convolutions of
TMD-FFs, defined as follows

F ½ωDD̄� ¼
X
q

e2q

Z
d2kTd2pTδð2ÞðkT þ pT − qTÞ

× ωðkT; pTÞDðz1; k⊥ÞD̄ðz2; p⊥Þ; ð9Þ

where ω is a suitable weight factor depending on the two
transverse momenta and D and D̄ are the TMD-FFs.
In order to employ the CSS evolution equations, it is

useful to write the convolutions in the conjugate bT space:

FUU ¼ z2p1
z2p2

B0½D̃1
˜̄D1�

¼ z2p1
z2p2

X
q

e2q

Z
dbT
2π

bTJ0ðbTqTÞD̃1ðz1; bTÞ

× ˜̄D1ðz2; bTÞ; ð10Þ

F
sinðϕ1−ϕS1

Þ
TU ¼ M1z2p1

z2p2
B1½D̃⊥ð1Þ

1T
˜̄D1�;

¼ M1z2p1
z2p2

X
q

e2q

Z
dbT
2π

b2TJ1ðbTqTÞ

× D̃⊥ð1Þ
1T ðz1; bTÞ ˜̄D1ðz2; bTÞ; ð11Þ

where D̃1ðz1; bTÞ is the Fourier transform of the unpolar-

ized FF, D̃⊥ð1Þ
1T ðz1; bTÞ is the first moment of the polarizing

fragmentation function in bT space, and Ji is the Bessel
function of the first kind of ith order. Notice that we have
already usedHðeþe−ÞðQÞ ¼ 1 and all light-cone momentum
fractions have to be properly understood in terms of the
corresponding energy fractions, zh.
After solving the CSS evolution equations, as discussed

in Refs. [1,23], the convolutions can be written again as:

B0½D̃1
˜̄D1� ¼

1

z21z
2
2

X
q

e2q

Z
dbT
2π

bTJ0ðbTqTÞ

× dh1=qðz1; μ̄bÞdh2=q̄ðz2; μ̄bÞ
×MD1

ðbcðbTÞ; z1ÞMD2
ðbcðbTÞ; z2Þ

× e−gKðbcðbTÞ;bmaxÞ lnðQ
2z1z2

M1M2
Þ−Spertðb�;μ̄bÞ; ð12Þ

B1½D̃⊥ð1Þ
1T

˜̄D1� ¼
1

z21z
2
2

X
q

e2q

Z
dbT
2π

b2TJ1ðbTqTÞ

×D⊥ð1Þ
1T ðz1; μ̄bÞdh2=q̄ðz2; μ̄bÞ

×M⊥
D1
ðbcðbTÞ; z1ÞMD2

ðbcðbTÞ; z2Þ

× e−gKðbcðbT Þ;bmaxÞ lnðQ
2z1z2

M1M2
Þ−Spertðb�;μ̄bÞ; ð13Þ

where the dh=js are the p⊥-integrated unpolarized frag-
mentation functions. MDi

and M⊥
D1

are, respectively, the
nonperturbative functions of the unpolarized and of the
polarizing FFs, and gK is the nonperturbative function of
the Collins-Soper Kernel. All other quantities appearing in
the above equations, necessary to properly separate the
perturbative from the nonperturbative region, are defined
and discussed in detail in Ref. [23]. See also below.
It is worth recalling that Eqs. (12) and (13) are obtained

by using the leading term of the operator product expan-
sions, for small-bT values, of the TMD distribution func-
tions [1,23]. Last, Spert is the perturbative Sudakov factor,
defined as (see also the Appendix for more details):
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Spertðb�; μ̄bÞ ¼ −K̃ðb�; μ̄bÞ ln
Q2

μ̄2b

−
Z

Q

μ̄b

dμ0

μ0

�
2γDðgðμ0Þ; 1Þ− γKðgðμ0ÞÞ ln

Q2

μ02

�
:

ð14Þ

The expression of the transverse polarization for the
hadron h1 is defined as

Ph1
n ¼ dσ↑ − dσ↓

dσ↑ þ dσ↓
¼ dσ↑ − dσ↓

dσunp
; ð15Þ

where dσ↑ð↓Þ is the differential cross section, Eq. (2), for the
production of a transversely polarized hadron along the up
(down) direction (n̂) with respect to the production plane,1

and dσunp is the unpolarized cross section.
Finally, we can write the qT-integrated transverse polari-

zation as the ratio of the two convolutions in bT space [23]:

Ph1
n ðzh1 ; zh2Þ ¼

R
d2qTF

sinðϕ1−ϕS1
Þ

TUR
d2qTFUU

¼ M1

R
dqTqTdϕ1B1½D̃⊥ð1Þ

1T
˜̄D1�R

dqTqTdϕ1B0½D̃1
˜̄D1�

: ð16Þ

The integration over the azimuthal angle, ϕ1, is trivial.
Moreover, since the only terms inside the convolutions
depending on qT are the Bessel functions, we can sepa-
rately integrate them, obtaining

Z
qTmax

0

dqTqTJ0ðbTqTÞ ¼
qTmax

bT
J1ðbTqTmax

Þ; ð17Þ

Z
qTmax

0

dqTqTJ1ðbTqTÞ¼
πqTmax

2bT
fJ1ðbTqTmax

ÞH0ðbTqTmax
Þ

−J0ðbTqTmax
ÞH1ðbTqTmax

Þg; ð18Þ

where H0;1 are the Struve functions of order zero and one,
respectively. Notice that in the above integration we have
introduced a maximum value qTmax

, that has to fulfil the
condition qTmax

≪ Q, in order to guarantee the validity of
the TMD factorization [33].

B. Semi-inclusive deep inelastic scattering

Here, we present the formal expressions for the pro-
duction of a transversely polarized massive hadron h1 in
unpolarized SIDIS processes:

eðlÞNðPÞ → eðl0Þh1ðP1; S1Þ þ X; ð19Þ

where N is an unpolarized nucleon with momentum P. In
Fig. 2 we show the kinematics of the process in the γ�N
c.m. frame, where the virtual photon, with momentum
q ¼ l − l0 (virtuality q2 ¼ −Q2), and the nucleon collide
along the ẑL axis, while the hadron h1 moves towards the
negative ẑL direction with transverse momentum P1T with
respect to the γ-N direction. Notice that at variance with the
configuration adopted in the “Trento Conventions” paper
[34], the photon moves along −ẑL. As for the case of the
eþe− annihilation process, it is more convenient to adopt a
frame where the nucleon and the hadron h1 move back to
back, along a new ẑ axis, and the hadron transverse
unbalance is again carried out by the virtual photon. In
this frame, the differential cross section, limiting to the
terms relevant in the present study, can be written as

dσeN→eh1ðS1ÞX

dydxBdzhd2qT

¼ σDIS0 ½FUU− jS1T jsinðϕ1−ϕS1ÞF
sinðϕ1−ϕS1

Þ
UT þ…�; ð20Þ

with

xB ¼
Q2

2P ·q
¼ x; y¼P ·q

P · l
; zh¼

P ·P1

P ·q
¼ z¼ zp; ð21Þ

where x ¼ pþ=Pþ is the light-cone momentum fraction of
the nucleon momentum carried by the parton with momen-
tum p, and z is the light-cone momentum fraction, defined
in Eq. (3), for the final-state hadron. Notice that the last
equalities are exactly true when neglecting the nucleon and
the hadron masses, together with terms of orderOðk2⊥=Q2Þ.
It can be shown that if we keep the final hadron mass
(relevant in some kinematical regions)2 we have

FIG. 2. Kinematics for the process eN → eh1 þ X in the
hadron-frame configuration.

1Notice that in such a configuration sinðϕ1 − ϕS1Þ ¼ −1. 2The nucleon mass can be safely neglected in our study.
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zp ≃ zh

�
1 −

M2
1

z2hQ
2

xB
1 − xB

�
: ð22Þ

Another set of invariants adopted in SIDIS, useful from
the phenomenological point of view, are the following:

s ¼ ðPþ lÞ2; Q2 ¼ −q2 ¼ xBys;

ðPþ qÞ2 ¼ W2 ¼ 1 − xB
xB

Q2; ð23Þ

where s is the total c.m. energy squared and W is the
c.m. energy of the photon-nucleon system. They can be
expressed as

s ¼ 4ENEe; Q2 ¼ 4xByENEe; ð24Þ

where EN;e are, respectively, the nucleon and electron
beam energy. Lastly, for the elementary cross section, we
have [28,29]

σDIS0 ¼ 2πα2

Q2

1þ ð1 − yÞ2
y

: ð25Þ

In Eq. (20) the F terms are now convolutions of a
TMD-PDFand aTMD-FF,where again the subscripts denote
the polarization states of the initial-state nucleon and the
final-state hadron. These are defined as follows [27,35]:

FUU ¼ z2pHðDISÞðQÞF ½f1D1�; ð26Þ

F
sinðϕ1−ϕS1

Þ
UT ¼ z2pHðDISÞðQÞF

�
ĥ · kT
M1

f1D⊥
1T

�
; ð27Þ

where f1ðx; p⊥Þ is the TMD unpolarized parton distribution
function and HðDISÞðQÞ is the hard scattering part for the
massless on-shell process eq → eq, at the center-of-mass
energy Q. Once again at leading order this last quantity is
normalized to 1 and will be dropped in the following.
The convolutions can be written in the conjugate bT

space as Fourier transforms:

FUU ¼ z2pB0½f̃1D̃1�

¼ z2p
X
q

e2q

Z
dbT
ð2πÞ bTJ0ðbTqTÞf̃1ðx; bTÞD̃1ðz; bTÞ;

ð28Þ

F
sinðϕ1−ϕS1

Þ
UT ¼ M1z2pB1½f̃1D̃⊥ð1Þ

1T �;

¼ M1z2p
X
q

e2q

Z
dbT
2π

b2TJ1ðbTqTÞf̃1ðx; bTÞ

× D̃⊥ð1Þ
1T ðz; bTÞ; ð29Þ

and, after solving the CSS evolution equations, they can be
expressed in their full form as

B0½f̃1D̃1� ¼
1

z2
X
q

e2q

Z
dbT
ð2πÞ bTJ0ðbTqTÞ

× fq=Nðx; μ̄bÞdh1=qðz; μ̄bÞ
×Mf1ðbcðbTÞ; xÞMD1

ðbcðbTÞ; zÞ

× e−gKðbcðbTÞ;bmaxÞ lnð Q2z
xMNMh

Þ−Spertðb�;μ̄bÞ; ð30Þ

B1½f̃1D̃⊥ð1Þ
1T � ¼ 1

z2
X
q

e2q

Z
dbT
ð2πÞ b

2
TJ1ðbTqTÞ

× fq=Nðx; μ̄bÞD⊥ð1Þ
1T;qðz; μ̄bÞ

×Mf1ðbcðbTÞ; xÞM⊥
D1
ðbcðbTÞ; zÞ

× e−gKðbcðbTÞ;bmaxÞ lnð Q2z
xMNMh

Þ−Spertðb�;μ̄bÞ; ð31Þ

where fq=N is the integrated unpolarized parton distribution
function, and Mf1 is the nonperturbative component of
the unpolarized PDF, with MN the nucleon mass. All the
remaining terms that appear in Eqs. (30) and (31) are the
same defined in the previous section.
The operative expression of the transverse polarization

can be obtained from Eq. (15), where now dσ↑ð↓Þ is the
differential cross section for a transversely polarized hadron
along the up(down) n̂ direction, with respect to the
production plane, in Eq. (20). For nucleons, we can directly
write the transverse polarization of the final state hadron
and the qT-integrated one as the ratio of the two con-
volutions in bT space:

Ph1
n ðxB; zh; qTÞ ¼

F
sinðϕ1−ϕS1

Þ
UT

FUU

¼ M1

R
dϕ1B1½f̃1D̃⊥ð1Þ

1T �R
dϕ1B0½f̃1D̃1�

; ð32Þ

Ph1
n ðxB; zhÞ ¼

R
d2qTF

sinðϕ1−ϕS1
Þ

UTR
d2qTFUU

¼ M1

R
dqTqTdϕ1B1½f̃1D̃⊥ð1Þ

1T �R
dqTqTdϕ1B0½f̃1D̃1�

: ð33Þ

To compute the cross section for the scattering off nuclei,
we adopt a simple approach taking the incoherent sum of
the contribution of every nucleon that composes the
nucleus, neglecting nuclear effects. That is, for the scatter-
ing off a nucleus with A nucleons and Z protons we use

dσeA→eh1ðS1ÞX ¼ Zdσep→eh1ðS1ÞX

þ ðA − ZÞdσen→eh1ðS1ÞX: ð34Þ
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III. PHENOMENOLOGY

In this section, after recalling the main results of the
analysis of Belle data [13] presented in Ref. [23], we will
focus more extensively on the role of the charm contribu-
tion and of the SUð2Þ isospin symmetry. Then we will
give predictions for the transverse Λ polarization in eþe−
collisions, for different values of the c.m. energy. Finally,
we will present estimates for the same observable in semi-
inclusive deep inelastic scattering processes, for different
values of the lepton and nucleon beam energies.

A. Two-hadron production data fit: Charm
and SUð2Þ isospin symmetry

We begin giving the setup for the phenomenological
analysis of Belle data. This is mainly based on our previous
work [23]. Here we consider only the Belle data set for the
polarization of Λ=Λ̄ hyperons produced in association with
a light hadron, π� or K�, measured at

ffiffiffi
s

p ¼ 10.58 GeV.
The 128 data points are given as a function of zΛ and zπ=K,
the energy fractions of Λ=Λ̄ and π=K particles. For the
current analysis, we impose a cut on large values of the
light-hadron energy fractions, zπ=K < 0.5, keeping only 96
data points, as discussed and motivated in Ref. [23]. We
will come back on this point below.
Wewill use the following expression to parametrize the z

dependence of the first transverse moment of the polarizing

Λ FF, D⊥ð1Þ
1T;Λ=q:

D⊥ð1Þ
1T;Λ=qðz; μbÞ ¼ N p

qðzÞdΛ=qðz; μbÞ; ð35Þ

with, as adopted and motivated in Ref. [14], q ¼
u; d; s; ū; d̄; s̄, and whereN p

qðzÞ (the superscript here refers
to the polarizing FF) is parametrized as

N p
qðzÞ ¼ Nqzaqð1 − zÞbq ðaq þ bqÞðaqþbqÞ

a
aq
q b

bq
q

: ð36Þ

In Eq. (35), dΛ=q is the collinear unpolarized Λ fragmenta-
tion function for which we employ the AKK08 set [36].
This parametrization is given for Λþ Λ̄ and adopts the
longitudinal momentum fraction, zp, as scaling variable. In
order to separate the two contributions we assume

dΛ̄=qðzpÞ ¼ dΛ=q̄ðzpÞ ¼ ð1 − zpÞdΛ=qðzpÞ: ð37Þ

This is a common way to take into account the expected
difference between the quark and antiquark FF with a
suppressed sea at large zp as compared to the valence
component. Other similar choices have a very little impact
on the fit.
Concerning the nonperturbative function M⊥

D;Λ we
employ the Gaussian model:

M⊥
D;ΛðbT; zÞ ¼ exp

�
−
hp2⊥ipb2T
4z2p

�
; ð38Þ

where hp2⊥ip is the Gaussian width, a free parameter that we
extract from the fit. Regarding the collinear FFs of the
unpolarized light hadrons, π andK, we adopt the DSS07 set
[37], while for MD we consider the PV17 model [38]:

MDðbT; zÞ ¼
g3e

−b2T
g3
4z2 þ λF

z2 g
2
4ð1 − g4

b2T
4z2Þe

−b2T
g4
4z2

g3 þ λF
z2 g

2
4

; ð39Þ

where

g3;4 ¼ N3;4
ðzβ þ δÞð1 − zÞγ
ðẑβ þ δÞð1 − ẑÞγ ð40Þ

ẑ¼ 0.5; N3 ¼ 0.21 GeV2; N4 ¼ 0.13 GeV2;

β¼ 1.65; δ¼ 2.28; γ ¼ 0.14; λF ¼ 5.50 GeV−2: ð41Þ

For the gK function, we use the one extracted in Ref. [38]:

gKðbT ; bmaxÞ ¼
g2b2T
2

; g2 ¼ 0.13 GeV2: ð42Þ

For what concerns the Λ unpolarized FF, for MD we use a
power-law model, see also Ref. [23]:

MDðbT; z; p;mÞ

¼ 22−p

Γðp − 1Þ ðbTm=zpÞp−1Kp−1ðbTm=zpÞ; ð43Þ

with p ¼ 2 and m ¼ 1 GeV [39–41]. We remark that since
at present there are no available extractions of TMD-FFs for
Λ hyperons, we will assume the above parametrization,
even if extracted for light mesons.
Notice that in the above equations all conversions among

the different scaling variables (z; zp; zh) involved are
properly taken into account.
In Eqs. (12), (13), (30), and (31) we use the following

definition for the μ̄b variable:

μ̄b ¼
C1

b�ðbTÞ
; ð44Þ

where C1 ¼ 2e−γE (with γE being the Euler-Mascheroni
constant), and the b� prescription of Ref. [38]:

b� ≡ b�ðbT ;bmin; bmaxÞ ¼ bmax

�
1 − e−b

4
T=b

4
max

1 − e−b
4
T=b

4
min

�
1=4

: ð45Þ

Moreover, we adopt
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bcðbTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2T þ b2min

q
; ð46Þ

with bmin ¼ 2e−γE=Q and bmax ¼ 0.6 GeV−1 where, in this
analysis, Q ¼ 10.58 GeV.
Since our present goal is a phenomenological analysis at

NLL accuracy, for the perturbative Sudakov factor in
Eq. (14) we use αs at LO, the anomalous dimension γK
at the second order, and the Collins-Soper kernel K̃ and γD
at the first order (see the Appendix for the explicit
expressions of the Sudakov factor and of the anomalous
dimensions). A complete next-to-next-to-leading logarithm
(N2LL) extraction could be achieved only by adopting the
coefficient functions, in the operator product expansion, at
the next order.
Last, for the integration in Eqs. (17) and (18), we use

qTmax
¼ 0.27Q. This specific value is chosen on the basis of

the results obtained in Ref. [23] (Fig. 7), where, as shown
for this particular choice of nonperturbative functions, the
χ2d.o.f. reaches its minimum.
Concerning the phenomenological analysis and the

extraction of the polarizing FFs from Belle data, we
consider three different scenarios, exploiting the role of
the charm quark contribution and the SUð2Þ isospin
symmetry:
(1) Scenario 1. Here we do not include the charm

contribution in the unpolarized cross section and
we do not impose the SUð2Þ isospin symmetry. We
then extract different Λ pFFs for the u, d, s quarks
and a single pFF for the sea (ū ¼ d̄ ¼ s̄) antiquarks.
As discussed in our previous analysis [23], the
optimal choice turns out to be an eight-parameter
fit: Nu; Nd; Ns; Nsea; as; bu; bsea, and hp2⊥ip.

(2) Scenario 2. We include the charm contribution in
the unpolarized cross section, but we still do not
impose the SUð2Þ isospin symmetry. We continue to
extract different Λ pFFs for the u, d, s quarks and a
single pFF for the sea (ū ¼ d̄ ¼ s̄) antiquarks, as in
the first scenario. Here, we need to include an
extra parameter resulting in a nine-parameter fit:
Nu; Nd; Ns; Nsea; ad; as; bu; bsea, and hp2⊥ip.

(3) Scenario 3. We include the charm contribution in the
unpolarized cross section and impose SUð2Þ isospin
symmetry for the u, d quark pFFs, while still
adopting different pFFs for the s and s̄ quarks.
Notice that the AKK08 FF set allows for a slight
violation of the SUð2Þ symmetry; therefore, even
imposing N p

u ¼ N p
d and N p

ū ¼ N p
d̄
, the extracted

pFFs will be still slightly different, see below.
In such a case the nine free parameters are
Nu;d; Nū;d̄; Ns; Ns̄; au;d; as; bu;d; bs̄, and hp2⊥ip. No-
tice that the inclusion of a further parameter for the
sea pFFs, namely bū;d̄, does not improve the quality
of the fit.

As already discussed in our previous analyses, the impo-
sition of the SUð2Þ symmetry alone within a three-flavor
scheme would lead to a very poor quality of the fit.
Once again, due to the lack of available extractions

for the charm TMD-FFs (both for light mesons and Λ
hyperons), for what concerns the nonperturbative TMD
parts we use the same parametrizations as those for light
quarks fragmenting into light mesons.
The best-fit parameters extracted for the first moment of

the pFFs are given in Table I, together with the χ2d.o.f. s for
each scenario, while in Fig. 3 we show the corresponding
estimates of the transverse Λ, Λ̄ polarizations, produced in

FIG. 3. Best-fit estimates of the transverse polarization for Λ, Λ̄ in eþe− → ΛðΛ̄Þhþ X, for Λπ� (a), Λ̄π� (b), ΛK� (c), Λ̄K� (d), as a
function of zh (h ¼ π; K) for different zΛ bins, adopting the three different scenarios: (1) green, (2) orange, and (3) violet bands. Data are
from Belle [13]. The statistical uncertainty bands, at 2σ level, are also shown. Data for zπ;K > 0.5 are not included in the fit.
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association with a light-hadron, compared against Belle
data [13].
Some comments are in order here: Comparing the

parameter values obtained within the first and second
scenario, we see a significant difference in their magni-
tudes, somehow due to the inclusion of the charm quark
contribution in the second one. However, as already shown
in our previous works [14,23], in both cases only the up
pFF is positive, while the remaining pFFs are all negative.
On the contrary, within the third scenario, we observe that
both the up and down pFF are positive, having an opposite
sign with respect to the antiup and antidown pFFs. The
strange and antistrange pFFs come out still negative. The
main point in this comparison is that if we allow for
different normalization factors for the up and down pFFs
(scenarios 1 and 2), they come out opposite in sign, leading
to a strong violation of the SUð2Þ symmetry. And this
happens even if we allow for independent normalization
factors for the sea contributions. In other words, only
imposing Nd ¼ Nu we can restore, at least approximately
with this set of unpolarized FFs, the symmetry.
Despite these differences, within all scenarios we obtain

similar sizes for the Gaussian width. The first k⊥ moments
of the polarizing FFs are shown in Fig. 4 for scenarios 1 and
2, and in Fig. 5 for scenario 3. In scenarios 1 and 2 the first
moments are all compatible, at least within the uncertainty
bands, with the exception of the strange pFF. When we
move to the third scenario the up pFF comes out still
compatible with the results in the other scenarios, with the
strange pFF somehow in between. The most interesting
finding is that since in this scenario the down pFF is

FIG. 4. First moments of the polarizing FFs, for the up (a), down (b), strange (c), and sea (d) quarks, as obtained from the fit within the
first (red dashed lines) and the second (blue dot-dashed lines) scenarios. The corresponding statistical uncertainty bands, at 2σ level, are
also shown.

TABLE I. Best-fit parameter values for the first moment of the
polarizing FF and the nonperturbative function employed to fit
the double-hadron dataset, adopting the three scenarios.

Scenario

Parameters (1) (2)

Nu 0.144þ0.122
−0.076 0.178þ0.171

−0.096
Nd −0.140þ0.034

−0.057 −0.376þ0.262
−0.439

Ns −0.151þ0.071
−0.102 −0.121þ0.053

−0.098
Nsea −0.09þ0.054

−0.099 −0.127þ0.079
−0.129

ad 0.774þ1.074
−0.773

as 2.046þ0.967
−0.732 0.848þ0.913

−0.553
bu 3.57þ2.017

−1.471 2.71þ2.387
−1.511

bsea 2.606þ2.629
−1.596 1.59þ2.138

−1.294
hp2⊥ip 0.097þ0.045

−0.034 0.093þ0.054
−0.045

χ2d.o.f. 1.174 1.259

Scenario
Parameters (3)

Nu;d 0.130þ0.036
−0.031

Nū;d̄ −0.174þ0.052
−0.048

Ns −0.263þ0.136
−0.183

Ns̄ −0.150þ0.056
−0.06

au;d 2.838þ4.565
−2.213

as 2.164þ1.158
−0.903

bu;d 10.58þ13.56
−7.004

bs̄ 1.545þ0.926
−0.818

hp2⊥ip 0.116þ0.042
−0.042

χ2d.o.f. 1.361
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positive [SUð2Þ constrained], the negative sea contributions
are larger in size.
It is important to stress here that in the extraction of the

first moment of the polarizing FFs we do not impose any
positivity bound, that, in principle, could prevent a proper
sampling of the parameter space. On the other hand we
have checked, a posteriori, that this is fulfilled in all
scenarios considered.
Moving to the comparisonwith data, we can generally say

that all three scenarios are able to describe reasonably, or
even quite, well theΛπ�, Λ̄π�, ΛK−, and Λ̄Kþ polarization
data. However, as already pointed out in our first works,
where we did [23] or did not [26] employ the full TMD
machinery,within scenario 1 one cannot describe, at variance
with the Λπ case, the ΛKþ and Λ̄K− data with zK > 0.5.
Quite interestingly, when we include the charm contri-

bution, imposing or not the SUð2Þ isospin symmetry, we
can still obtain similar good fits with a simultaneous very
good description of these data points (even if not included
in the analysis), see Figs. 3(c) and 3(d), lower panels. This
result, focusing on ΛKþ for simplicity, can be understood
as follows: in scenarios 2 and 3 the inclusion of the charm
contribution in the denominator, with non negligible charm
FFs both for Kþs and Λs, requires larger, in size, pFFs in
the fit. Moreover, since this extra piece in the denominator
happens to be a decreasing function in zK the polarization
eventually increases in size with zK .
From the present study, it is very likely that the inclusion

of the charm contribution, at least in the unpolarized cross
section, must be considered necessary for the analysis of
Belle data. Several attempts to include this contribution
also in the numerator of the transverse polarization (that is

parametrizing also pFFs for charm quarks) have been
carried out but no significant improvement on the χ2d.o.f.
value or in the description of data has been found. While
this is certainly an open issue for future work, present data
do not allow to constrain the contribution of the polarizing
FF for the charm quark. For this reason we do not show the
corresponding fit.
Similar conclusions, even if on a more qualitative ground

since they do not provide any χ2 value and any uncertainty
band, have been obtained in Ref. [22]. Here, by including
the charm contribution, also for the polarizing FFs (result-
ing in a 20-parameter fit) they show that Belle data can be
described reasonably well even without any isospin sym-
metry violation.
In this respect, we agree that the issue of SUð2Þ

symmetry has to be taken with care and that cannot be
solved by analyzing only the data on the transverse
polarization of Λ=Λ̄ produced in eþe− processes. More
experimental information is therefore certainly needed.

B. Predictions for the transverse Λ polarization
in e + e− collisions at different energies

Here we give some predictions at different energies,
focusing on Λ-K production, with the aim to look for
possible significant differences among the three scenarios.
In Fig. 6 we show the estimates for the transverse
polarization of Λs produced with K� mesons, at different
energies, namely, 8.48 (left panel) and 12.58 GeV (right
panel). Notice that in the first case we cannot have the
zΛ ¼ 0.25 bin for kinematical reasons. At both energies,
only the first zΛ bins show some discrepancies at large zK

FIG. 5. First moments of the polarizing FFs, for the up/down (a), antiup/-down (b), strange (c) and antistrange (d) quarks, as obtained
from the fit within the third scenario. The corresponding statistical uncertainty bands, at 2σ level, are also shown.
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values between the predictions obtained within scenarios 2
and 3. On the other hand, for higher values of zΛ all
predictions become very similar, within the uncertainties.
This, also true for high energy values, could prevent
the distinction between the two scenarios in future eþe−
measurements.

C. Predictions for the transverse Λ polarization
in SIDIS

In this section, by using Eqs. (30)–(33), we present the
predictions for the transverse Λ polarization in unpolarized
SIDIS electron-proton and electron-deuterium collisions,
for different values of their beam energies, and considering
the three previously presented scenarios.
A similar analysis, showing also estimates obtained

from our previous extraction [23], has been presented in
Ref. [30]. In this paper they consider in detail the transverse
Λ polarization only, including the charm contribution and
imposing SUð2Þ symmetry (see Ref. [22] and our com-
ments above). In this respect, our predictions are indeed in
qualitative agreement with theirs. On the other hand, they
do not show any result for the Λ̄ case, that, as we will
discuss below, represents a much more powerful tool to
discriminate different scenarios. It is also worth noticing
that a comprehensive phenomenological impact study on
the transverse Λ polarization at the future EIC, even if
limited to scenario 1 and at LO accuracy, has been carried
out in Ref. [20]. In this work they include EIC pseudodata
to reweight the parametrization of the polarizing FFs as
extracted from Belle eþe− data, leading to a significant
reduction in the theoretical uncertainties.
Concerning the present analysis, for Λ hyperons we

employ the unpolarized nonperturbative function in
Eq. (43), and the polarizing FF first moment and non-
perturbative function in Eqs. (35), (36), and (38), adopting
the parameters given in Table I. As for the proton PDFs, we
use for the unpolarized ones the CT14 next-to-next-to-
leading order (NNLO) set [42], and for the nonperturbative
function the one extracted in Ref. [38], which has the
following form:

Mf1ðbT; xÞ ¼
1

2π
e−g1

b2
T
4

�
1 −

λg21
1þ λg1

b2T
4

�
; ð47Þ

where

g1 ¼ N1

ð1 − xÞαxσ
ð1 − x̂Þαx̂σ ; ð48Þ

x̂ ¼ 0.1; N1 ¼ 0.28 GeV2;

α ¼ 2.95; σ ¼ 0.173; λ ¼ 0.86 GeV−2: ð49Þ

Regarding the neutron PDF, we use the same proton
nonperturbative function and unpolarized PDF set but with
the following substitution for the up and down quarks:

un ¼ dp; dn ¼ up; ūn ¼ d̄p; d̄n ¼ ūp: ð50Þ

In the following we show estimates for the transverse Λ
polarization integrated over its transverse momentum (or,
more precisely, over qT), using Eq. (33).
We will consider two different values of the c.m. energyffiffiffiffiffiffiffi
seN

p
, Eq. (24), reported in Table II, corresponding to

various combinations of nucleon (electron) beam energies
EN (Ee). We will keep fixed y to 0.4, and explore different
values of xB and zΛ.
In Fig. 7 we show the estimates for the qT-integrated

transverse Λ=Λ̄ polarization in electron-proton (deuterium)
collisions, see Eqs. (33) and (34), for different values offfiffiffiffiffiffiffi
seN

p
, xB, and zΛ, in the three scenarios. Since we adopt a

fixed ratio qTmax
=Q ¼ 0.27, by exploring large values of Q,

up to 30 GeV in our case, for certain xB values we enter the
region of large qT (up to 8 GeV).

FIG. 6. Estimates of the transverse Λ polarization in eþe− → ΛK� þ X at Q ¼ 8.48 GeV (left panel), and at Q ¼ 12.58 GeV (right
panel), as a function of zK for different zΛ bins, for the three different scenarios: (1) green, (2) orange, and (3) violet bands. The statistical
uncertainty bands, at 2σ level, are also shown.

TABLE II. Nucleon and electron beam energies and the
corresponding c.m. energy.

EN (GeV) Ee (GeV)
ffiffiffiffiffiffiffi
seN

p
(GeV)

41 5 28.6
100 10 63.2
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First, we notice that scenarios 1 and 2 lead to Λ=Λ̄
polarization with similar size and behavior, for the two
values of

ffiffiffiffiffiffiffi
seN

p
both for proton and deuteron targets.

We can see how the Λ polarization tends to decrease,
becoming negative, as zΛ increases, while the Λ̄ polariza-
tion is always negative. In particular, for

ffiffiffiffiffiffiffi
seN

p ¼ 28.6 GeV
[Figs. 7(a) and 7(c)], the polarization has the same pattern
and size in each xB bin, while for greater

ffiffiffiffiffiffiffi
seN

p
values

[Figs. 7(b) and 7(d)], we have a general reduction in size of
the polarization as xB grows.
For what concerns the third scenario, we can see that the

polarization follows a pattern similar to that illustrated for
the first and second scenarios, but with some differences.
The Λ polarization has a similar or slightly greater size than
in the other two scenarios; the most significant difference
can be found for the Λ̄ polarization, which is much greater
in size, reaching values of about 40% for xB ¼ 0.6 andffiffiffiffiffiffiffi
seN

p ¼ 28.6 GeV.
Finally we provide a comment on the strong similarities

between the Λ̄ polarizations in ep and eD collisions: the
reasons can be traced back to the dominant contribution
driven by the up and down distribution functions in both
targets. For Λ̄ production this enters directly convoluted
with the polarizing FF for sea quarks in the numerator and
the unpolarized sea FF in the denominator. In Λ production
this does not happen since the up and down parton
distributions couple in a different way to the up and down
pFFs when one considers a proton or a deuterium target.
At variancewith the case of the double-hadron production

in eþe− collisions, the estimates for the transverse
polarization within the second and third scenarios are
clearly separated. Thus, future measurements of transversely

polarized Λ=Λ̄ in SIDIS will potentially allow us to gain
further insights and to distinguish between the two scenarios.
It is worth noticing that the corresponding estimates for

the transverse polarization as a function of the Λ=Λ̄
transverse momentum, P1T , are not able to discriminate
among the different scenarios.

D. Role of intrinsic charm contribution

From the previous discussion it is clear that the charm
contribution in the fragmentation process can be relevant for
the study of the transverseΛ polarization. Therefore, herewe
explore how the employment of collinear PDFs including an
intrinsic charm (IC) component in the proton can play
a role in this context. To this end, we consider again the
CT14NNLO set, with only the perturbative charm compo-
nent, and its CT14NNLO-IC version [43], which in
addition embodies the Brodsky-Hoyer-Peterson-Sakai
(BHPS) model [31] for the intrinsic charm contribution.
Furthermore, to better understand if possible differences
with respect to the analysis of the previous subsections are
effectively due to intrinsic charm or rather to the different
PDF set adopted, we also employ the neural-network parton
distribution functions (NNPDF) set of Ref. [44], again both
in the version with only the perturbatively generated charm
component (NNPDF4.0-NNLO-pch) and the one including
also an intrinsic charm contribution (NNPDF4.0-NNLO).
First, in Fig. 8 we present a comparison of the estimates

of the transverse Λ=Λ̄ polarization (upper/lower panels) in
electron-proton (a) and deuterium (b) scattering at

ffiffiffiffiffiffiffi
seN

p ¼
28.6 GeV and y ¼ 0.4, obtained using the second scenario
[charm included in the unpolarized cross section, no SUð2Þ
symmetry imposed] for the polarizing FFs and three of the

FIG. 7. Estimates of the transverse Λ=Λ̄ polarization in electron-proton (a),(b) and electron-deuterium (c),(d) scattering at
ffiffiffiffiffiffiffi
seN

p ¼
28.6 (a), (c) and 63.2 GeV (b), (d), at y ¼ 0.4, as a function of zΛ for different xB bins, and the three scenarios: (1) green, (2) orange, and
(3) violet. The statistical uncertainty bands, at 2σ level, are also shown.
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mentioned PDF sets, CT14NNLO(noIC), CT14NNLO-IC,
and NNPDF4.0-NNLO. We may observe that, within the
uncertainty bands, the estimated polarization obtained
using the BHPS model for IC (violet bands) and the
NNPDF set (green bands) do not differ significantly from
the predictions shown in the previous section without the
IC component (orange bands). This behavior holds also for
smaller and greater values of the c.m. energy. Although not
shown in the plots for readability, for completeness we have
checked that no significant differences appear when adopt-
ing the NNPDF4.0-NNLO-pch set. Therefore, Fig. 8 tells
us that, within scenario 2 and the statistical uncertainties of
the fit, it is difficult to clearly distinguish among different
collinear PDF sets and the presence or not of an intrinsic
charm component.
As we can see in Fig. 9, the situation can be very different,

at least at large xB and zΛ values, when adopting the third
scenario [charm included in the unpolarized cross section,
SUð2Þ symmetry imposed]. This is true for both proton (a)

and deuterium (b) targets. In fact, at low zΛ values the
estimates obtained with the three PDF sets adopted overlap
within the uncertainties, as for the second scenario in Fig. 8.
However, as both xB and zΛ increase, significant differences
start appearing. Let us remind that at fixed c.m. energy and y,
Q2 also increases at larger xB values. Interestingly enough,
for the Λ case (upper panels) the difference seems to
originate from the PDF set adopted (compare the violet
and green bands, for different PDF sets both including IC)
rather than from the presence or not of an intrinsic charm
component (see orange and violet bands, same PDF set with
or without IC). On the contrary, for the Λ̄ polarization (lower
panels), the similar discriminating power at large xB and zΛ
seems to be due to the presence or not of the intrinsic charm
contribution rather than to the PDF set considered. Again,
we have checked that this is true even when adopting the
NNPDF4.0-NNLO-pch set with no IC contribution.
Finally, in Fig. 10 we compare in a different way some of

the results presented in Figs. 8 and 9. Limiting to the case of

FIG. 8. Estimates of the transverse Λ=Λ̄ polarization (upper/lower panels) in electron-proton (a) and electron-deuterium (b) scattering
at

ffiffiffiffiffiffiffi
seN

p ¼ 28.6 GeV and y ¼ 0.4, as a function of zΛ and for different xB bins, obtained using the second scenario parameters for the
first moment of the pFFs and different PDF sets: CT14NNLO(noIC) (orange bands), CT14NNLO-IC with the BHPS model for IC
(violet bands), and NNPDF4.0-NNLO (green bands). The statistical uncertainty bands, at 2σ level, are also shown.

FIG. 9. Estimates of the transverse Λ=Λ̄ polarization (upper/lower panels) in electron-proton (a) and electron-deuterium (b) scattering
at

ffiffiffiffiffiffiffi
seN

p ¼ 28.6 GeV and y ¼ 0.4, as a function of zΛ and for different xB bins, obtained using the third scenario parameters for the first
moment of the pFFs and different PDF sets: CT14NNLO(noIC) (orange bands), CT14NNLO-IC with the BHPS model for IC (violet
bands), and NNPDF4.0-NNLO (green bands). The statistical uncertainty bands, at 2σ level, are also shown.
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deuterium target, we compare in the same kinematic regime
the estimates for Λ=Λ̄ polarization (upper/lower panels)
obtained in scenarios 2 and 3, by adopting both the PDF
sets including the IC contribution, CT14NNLO-IC and
NNPDF4.0-NNLO. In the Λ polarization case (upper
panels) we can see that at least at low-intermediate xB
and zΛ values the two scenarios give different predictions
(irrespective of the PDF set adopted), although the present
uncertainties prevent a clear separation among them. The
situation is different for the Λ̄ case (lower panels), where in
the full xB range and at small-intermediate zΛ values the
two scenarios seem to be well distinguishable, independ-
ently of the PDF set adopted.
Summarizing, the present exploratory study shows that

there are several open and interesting issues to be further
investigated, when also more precise data will become
available, allowing for more refined TMD-PDF and TMD-
FF parametrizations.

IV. CONCLUSIONS

In this paper we have carried out a comprehensive
reanalysis, within a TMD framework at NLL accuracy, of
the transverseΛ=Λ̄ polarizationdata fromBelle collaboration
in the associated two-hadron production in eþe− processes.
Inparticular,wehave focusedon the role of isospin symmetry
and of the charm contribution in the extraction of the
polarizing fragmentation functions. While requiring SUð2Þ
symmetry alone (within a three-flavor scheme) leads to a very
unsatisfactory fit, we have shown that all other scenarios
considered allow for very similar and quite good descriptions
of the available data. We can then conclude that Belle eþe−
data, or more generally eþe− processes, alone are not able to
discriminate among the different scenarios and, in particular,
to shed light on the SUð2Þ symmetry issue.

We have therefore explored this fundamental aspect by
considering the same observable in SIDIS processes. By
assuming the expected universality of the polarizing FFs
we have given several predictions for the kinematical setup
reachable at the EIC, exploiting three different scenarios. In
such a case, by including the charm contribution in the
unpolarized cross section, one can indeed distinguish
between a scenario where isospin symmetry is respected
or not. We have also considered a pFF for charm quarks in
the numerator of the polarization without any improvement
in the fit. For completeness, we have discussed the role of
the intrinsic charm in the proton for SIDIS processes and
shown that the above conclusion does not change.
The spontaneous transverse Λ polarization remains a

challenging subject, but at the same time offers a unique
opportunity to study the fragmentation mechanism and,
more specifically, spin and transverse momentum correla-
tions. The present study, focused on processes where
TMD factorization has been proven to hold, provides
a further step to shed light on this very interesting
phenomenon.
As we have shown, future EIC measurements can play a

significant role in this context: certainly in testing the
phenomenological results obtained in eþe− annihilation
processes and, more generally, in testing fundamental
issues like the universality of the polarizing FFs, their
scale dependence, their flavor decomposition a well as the
role of SUð2Þ symmetry.
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APPENDIX: PERTURBATIVE
SUDAKOV FACTOR

Here we give the analytic expression of the perturbative
Sudakov factor presented in Eq. (14):

Spertðb�; μ̄bÞ ¼ −K̃ðb�; μ̄bÞ ln
Q2

μ̄2b

−
Z

Q

μ̄b

dμ0

μ0

�
2γDðgðμ0Þ; 1Þ− γKðgðμ0ÞÞ ln

Q2

μ02

�
:

ðA1Þ

FIG. 10. Estimates of the transverse Λ=Λ̄ polarization (upper/
lower panels) for electron-deuterium scattering at

ffiffiffiffiffiffiffi
seN

p ¼
28.6 GeV and y ¼ 0.4, as a function of zΛ and for different xB
bins, obtained using the second and third scenario parameters for
the first moment of the pFFs and different PDF sets: CT14NNLO-
ICwith BHPS IC [black (scenario 2) and violet (scenario 3) bands]
and NNPDF4.0-NNLO [orange (scenario 2) and green (scenario 3)
bands]. The statistical uncertainties, at 2σ level, are also shown.
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As discussed in Sec. III, since our goal is a phenom-
enological analysis at NLL accuracy, we take αs at LO
order:

αsðμ2Þ ¼
1

β0 lnðμ2=Λ2
QCDÞ

; ðA2Þ

and we expand the anomalous dimensions as follows:

γK ¼
X
n

γ½n�K

�
αs
4π

�
n

γD ¼
X
n

γ½n�D

�
αs
4π

�
n
; ðA3Þ

up to, respectively, the second and first order. Given that the
first order term of K̃ðb�; μ̄bÞ is zero [1,45], the perturbative
Sudakov factor can be written again as

Spertðb�; μ̄bÞ ¼
γ½1�D

4πβ0
ln

�
lnðQ=ΛQCDÞ
lnðμ̄b=ΛQCDÞ

�
þ γ½1�K

4πβ0

�
lnðQ=μ̄bÞ − lnðQ=ΛQCDÞ ln

�
lnðQ=ΛQCDÞ
lnðμ̄b=ΛQCDÞ

��

þ γ½2�K

2ð4πβ0Þ2
�
−

lnðQ=μ̄bÞ
lnðμ̄b=ΛQCDÞ

þ ln

�
lnðQ=ΛQCDÞ
lnðμ̄b=ΛQCDÞ

��
; ðA4Þ

where [46]

β0 ¼
11CA − 4TFnf

12π
; γ½1�D ¼ 6CF;

γ½1�K ¼ 8CF; γ½2�K ¼ CACF

�
536

9
−
8π2

3

�
−
80

9
CFnf; ðA5Þ

with CF ¼ 4=3, CA ¼ 3, TF ¼ 1=2, and ΛQCD ¼ 0.2123 GeV for nf ¼ 3 or ΛQCD ¼ 0.1737 GeV for nf ¼ 4.
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