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We compute the heavy quarkonium complex potential in a magnetic field of arbitrary strength generated
in the relativistic heavy-ion collision. First, the one-loop gluon polarization tensor is obtained in the
presence of an external, constant, and homogeneous magnetic field using the Schwinger proper time
formalism in Euclidean space. The gluon propagator is computed from the gluon polarization tensor, and it
is used to calculate the dielectric permittivity in the presence of the magnetic field. The modified dielectric
permittivity is then used to compute the heavy quarkonium complex potential. We find that the heavy
quarkonium complex potential is anisotropic in nature, which depends on the angle between the quark-
antiquark (QQ̄) dipole axis and the direction of the magnetic field. We discuss the effect of the magnetic
field strength and the angular orientation of the dipole on the heavy quarkonium potential. We discuss how
the magnetic field influences the thermal widths of quarkonium states. Further, we also discuss the
limitation of the strong-field approximation as done in literature in the light of heavy-ion observables, as the
effect of the magnetic field is very nominal to the quarkonium potential.
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I. INTRODUCTION

The heavy quarkonia, which are the bound states of
heavy quark and its antiquark (cc̄; bb̄) are one of the first
proposed signals to probe the deconfining properties of the
strongly interacting matter known as quark-gluon plasma
(QGP) produced in the heavy ion collision. Matsui and Satz
[1] proposed several decades ago that heavy quarkonium
production would be suppressed due to the shrinking of the
Debye sphere for color interactions in the QGP medium.
The presence of various nonequilibrium effects requires
the modification of phenomenological models, which can
be used to study the properties of the QGP medium. The
presence of the nonequilibrium effects such as momentum
space anisotropy due to viscous effects [2–12], moving
medium [13–18], and magnetic field [19–35] can affect
the screening phenomenon, which results in in-medium
modification of quarkonium properties.

In the past decade, the properties of strongly interacting
matter have attracted much interest in the presence of
magnetic field backgrounds. The noncentral heavy ion
collision experiments at RHIC and LHC can produce a very
strong magnetic field normal to the reaction plane [36–40],
which has motivated several interesting phenomenological
studies. These studies led to various novel phenomena
such as magnetic catalysis [41–43], chiral magnetic effect
[44–49], splitting of open charm directed flow [35,50–52],
and modification in properties of heavy quarkonia and
dynamics [53–67]. The potential models have been quite
successful in describing the quarkonium properties both in
a vacuum as well as in medium [68–71]. The quarkonium
states are well described by the Cornell potential, which
contains both the perturbative Coulombic and nonpertur-
bative confining terms [72,73]. The emergence of an
imaginary part of the potential in the presence of the
medium [74–80] has instigated the study of heavy quar-
konium complex potential [3,53,81–87]. The real part of
the quarkonium potential in the magnetic field background
has been studied by lattice QCD in the vacuum and at finite
temperature [88,89]. To our knowledge, no lattice QCD
study has been conducted on the imaginary part of the
heavy quarkonium potential.
In the present work, we aim to study the heavy

quarkonium complex potential in the presence of a gen-
eral magnetic field without any restriction on its strength.
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The heavy quarkonium potential has been studied previ-
ously in the presence of weak and strong magnetic fields
based on the assumption that the potential exhibits isotropic
behavior [53,55,56]. Recently, the effect of a general
magnetic field on the modification of the imaginary part
of the potential has been computed in Ref. [54] by consid-
ering all Landau level summations and the general structure
of the gluon propagator in the magnetic field background. In
Ref. [54], the authors have shown that the imaginary part of
the potential exhibits anisotropic behavior, but they have not
discussed the real part. In thiswork,we compute both the real
and the imaginary parts of the complex heavy quarkonium
potential in a constant magnetic field of arbitrary strength. It
would be essential to study the effect of themagnetic field on
the heavy quarkonium complex potential by assuming the
fact that the magnetic field generated in the heavy ion
collisions may not be weak or strong compared to the
temperature. Here, we employ the Schwinger proper time
formalism to study the effect of an external constantmagnetic
field of arbitrary strengthonboth the real aswell as imaginary
parts of thepotential.We alsodiscuss the effect of an arbitrary
magnetic field on the thermal widths of heavy quarkonium
states.
In the current computation, we obtain the in-medium

heavy quarkonium complex potential by modifying the
Cornell potential with the dielectric permittivity which
encodes the effects of the magnetized thermal medium
[2,3,90]. The dielectric permittivity is computed using the
in-medium gluon propagators. The gluon propagator is
obtained from the one-loop polarization tensor in Euclidean
space in an external constant and homogeneous magnetic
field. The computation is done using the Schwinger proper
time formalism by considering the full interaction between
the quark and external field [91]. Using the magnetic field-
modified dielectric permittivity, we obtain the heavy
quarkonium complex potential in an arbitrary magnetic
field. We find that the potential obtained exhibits aniso-
tropic behavior because of the quark loop contribution to
the gluon self-energy. We demonstrate the effects of a
general magnetic field on the complex heavy quarkonium
potential and decay width obtained using the imaginary
part of the QQ̄ potential and check the validity of strong
field approximation in the potential model of quarkonia.
This paper is structured as follows. In Sec. II, we revisit

the derivation of the gluon polarization tensor in the pre-
sence of an arbitrary magnetic field. We obtain the gluon
propagator in the static limit and compute the dielectric
permittivity. In Sec. III, we compute the heavy quarkonium
complex potential and discuss the effect of the magnetic
field on it. In Sec. IV, we estimate the quarkonium state’s
thermal width and discuss how the magnetic field affects
them. In Sec. V, the strong field approximation of polari-
zation tensor is computed, and the corresponding effect on
the heavy quarkonium potential is studied and compared
with an arbitrary magnetic field scenario. We summarize
our results in Sec. VI.

II. DIELECTRIC PERMITTIVITY

In this section, we derive the dielectric permittivity in the
presence of an arbitrary magnetic field, which we use later
to compute the in-medium heavy quarkonium potential.
First, we calculate the gluon self-energies and propagators
in an arbitrary magnetic field.

A. Gluon self-energy in an arbitrary magnetic field

In the following, we review the computation of the
longitudinal component of gluon self-energy in the one-
loop order as followed in Ref. [91] and obtain the
longitudinal component of the gluon self-energy and
propagator in the static limit. Consider a charged particle
of charge qf and mass m moving in an external, constant,
and homogeneous magnetic field, which is directed along
the z direction (B ¼ Bẑ). Here we choose the symmetric
gauge; therefore, we have

A0ðxÞ ¼ 0; A1ðxÞ ¼ −
B
2
y;

A2ðxÞ ¼
B
2
x; A3ðxÞ ¼ 0: ð1Þ

In coordinate space, the fermion propagator, as introduced
by Schwinger, is given by [92]

Sðx; x0Þ ¼ eiex
μAμðx0ÞS̃ðx − x0Þ; ð2Þ

where the phase factor eiex
μAμðx0Þ does not contribute to the

gluon self-energywith this particular choice of the gauge (1).
The Fourier transform S̃ðkÞ of the translational invariant
part of fermion propagator S̃ðx − x0Þ in the proper time
formalism is

S̃ðkÞ ¼
Z

∞

0

dseis½k20−k23−k2⊥ tanðjqfBjsÞ=jqfBjs−m2�

× fðk0γ0 − k3γ3 þmÞ½1þ γ1γ2 tanðjqfBjsÞ�
− k⊥γ⊥½1þ tan2ðjqfBjsÞ�g; ð3Þ

where k⊥ ¼ ðk1; k2Þ is the transverse momentum. For the
finite temperature case, we note that the bosonic Matsubara
modes ωn ¼ 2nπT and fermionic ones ω̂l ¼ ð2lþ 1ÞπT,
respectively. The fermion propagator, in Euclidean space
ðk0 ¼ iω̂lÞ along with s → −is as followed in Ref. [91],
becomes

S̃lðkÞ ¼ −i
Z

∞

0

dse−s½ω̂
2
lþk2

3
þk2⊥ tanhðjqfBjsÞ=jqfBjsþm2�

× fð−ω̂lγ4 − k3γ3 þmÞ½1 − iγ1γ2 tanhðjqfBjsÞ�
− k⊥γ⊥½1 − tanh2ðjqfBjsÞ�g; ð4Þ

wherek ¼ ðk⊥; k3Þ and γμ (μ ¼ 1, 2, 3, 4) are the Euclidean
gamma matrices, which satisfy the anticommutation rela-
tion fγμ; γνg ¼ −2δμν.
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Based on the fermion propagator (4), one can obtain the
quark-loop contribution to the one-loop gluon self-energy
in the presence of a magnetic field as

Πμν
n ðp; BÞ ¼ −g2T

X
f

Z
d3k
ð2πÞ3

X∞
l¼−∞

trfγμS̃lðkÞ

× γνS̃l−nðk − pÞg þQμνðpÞ; ð5Þ

where, with p ¼ jpj, QμνðpÞ is the “contact” term, which
cancels the ultraviolet divergences and is independent of
both the temperature and magnetic field. Here, we are
interested in the longitudinal component of the gluon
polarization tensor, which we will use further to compute
the dielectric permittivity and hence the in-medium heavy
quarkonium potential. The longitudinal component of the
quark contribution to the one-loop gluon self-energy is
obtained after integration over k [91].

Π44
n;qðωn;p; BÞ ¼ −

X
f

g2T

8π3=2
qfB

Z
∞

0

duu1=2
Z

1

−1
dv

X∞
l¼−∞

exp

�
p2⊥
qfB

coshðqfBuvÞ − coshðqfBuÞ
2 sinh qfBu

− u

�
m2 þW2

l þ
1

4
ð1 − v2Þðω2

n þ p2
3Þ
���

p2⊥
2

coshðqfBuvÞ − v cothðqfBuÞ sinhðqfBuvÞ
sinhðqfBuÞ

−
1

u
cothðqfBuÞ

�
1 − 2uW2

l þ
1

2
uvωnWl − uð1 − v2Þp2

3

��
þQ44ðpÞ; ð6Þ

where Wl ¼ ω̂l − ½ð1 − vÞ=2�ωn. The contact term Q44ðpÞ
is independent of temperature and magnetic field and hence
can be obtained as both T and B approach zero.
After using the Poisson resummation, one can isolate

the temperature-independent and temperature-dependent
parts from the longitudinal polarisation tensor [91].

As we aim to study the effect of the magnetic field on
the heavy quark-antiquark potential in the medium, we
only discuss the temperature-dependent part of the gluon
self-energy. The temperature-dependent part of the longi-
tudinal polarisation tensor in the limit of massless quarks
becomes

Π44
n;qðωn;p; BÞ ¼ −

X
f

g2

ð4πÞ2 qfB
Z

∞

0

du
Z

1

−1
dv

X
l≥1

ð−1Þl exp
�
−

p2⊥
qfB

coshðqfBuÞ − coshðqfBuvÞ
2 sinhðqfBuÞ

−
1

4
uð1 − v2Þ

× ðp2
3 þ ω2

nÞ
�
e−

l2

4T2u

�
cosðπlnð1 − vÞÞ

�
p2⊥

coshðqfBuvÞ − v cothðqfBuÞ sinhðqfBuvÞ
sinhðqfBuÞ

þ p23ð1 − v2Þ cothðqfBuÞ
�
−
cothðqfBuÞ

u

�
l2

T2u
cos πlnð1 − vÞ − 2πlnv sin πlnð1 − vÞ

��
: ð7Þ

After evaluating the sum over l, the above Eq. (7) in the static limit becomes

Π44
q ð0;p; BÞ ¼ ΠL

q ðp; BÞ; ¼
X
f

g2

32π2
qfB

Z
∞

0

du
Z

1

−1
dv exp

�
−
1

4
p2
3uð1 − v2Þ − p2⊥

qfB

coshðqfBuÞ − coshðqfBuvÞ
2 sinhðqfBuÞ

�

×

�
2 cothqfBu

∂

∂u
ϑ4
�
0; e−

1

4T2u

	
þ
�
1 − ϑ4

�
0; e−

1

4T2u

	�

×

�
p2⊥

coshðqfBuvÞ
sinhðqfBuÞ

þ cothðqfBuÞ
�
p2
3 − p2

3v
2 − p2⊥v

sinhðqfBuvÞ
sinhðqfBuÞ

���
; ð8Þ

where ϑ4 is the Jacobi Theta function and obtained as

X∞
l¼1

ð−1Þle−al2 ¼ 1

2
½ϑ4ð0; e−aÞ − 1�: ð9Þ

In spherical polar coordinates, Eq. (8) becomes
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ΠL
q ðp; BÞ ¼

X
f

g2qfB

32π2

Z
∞

0

du
Z

1

−1
dv exp

�
−
1

4
p2cos2θuð1 − v2Þ − p2sin2θ

2qfB sinhðqfBuÞ
ðcoshðqfBuÞ − coshðqfBuvÞÞ

�

×

�
2 cothðqfBuÞ

∂

∂u
ϑ4
�
0; e−

1

4T2u

	
þ
�
1 − ϑ4

�
0; e−

1

4T2u

	��
p2sin2θ coshðqfBuvÞcschðqfBuÞ

þ cothðqfBuÞ
�
p2cos2θð1 − v2Þ − vp2sin2θ

sinhðqfBuvÞ
sinðqfBuÞ

���
: ð10Þ

Here the coupling constant g depends upon magnetic field,
i.e., g2ðΛ2; BÞ ¼ 4παsðΛ2; BÞ, where αs is the one-loop
running coupling constant in the magnetic field background
as followed in [32,93]

αsðΛ2; jeBjÞ ¼ αsðΛ2Þ
1þ b1αsðΛ2Þ ln

�
Λ2

Λ2þjeBj
	 ; ð11Þ

and the one-loop strong coupling in the absence of any
magnetic field is

αsðΛ2Þ ¼ 1

b1 ln

�
Λ2

Λ2

MS

� ; ð12Þ

where b1 ¼ ð11Nc−2NfÞ
12π and ΛMS ¼ 176 MeV for Nf ¼ 3.

Here we take Λ for quarks as Λq ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2=π2

p
and

for gluons as Λg ¼ 2πT. We take the zero chemical
potential (μ) here. The quark loop contribution to the
gluon self-energy, ΠL

q ðpÞ for B ¼ 0 case can be written as

ΠL
q ðpÞ ¼ −

3g2

2π2

Z
∞

0

kdk

ek=T þ 1

×

�
2þ ðp2 − 4k2Þ

2kp
log

�
p − 2k
pþ 2k

��
: ð13Þ

The magnetic field dependence only comes through the
quark loop contribution to the gluon self-energy, as gluons
do not interact with the magnetic field. Therefore, the gluon
contribution to the self-energy remains the same as without
the magnetic field.

ΠL
g ðω;pÞ ¼m2

Dg

�
1−

ω

2p
ln

�
ωþp
ω−p

�
þ iπ

ω

2p
Θðp2−ω2Þ

�
;

ð14Þ

where m2
Dg ¼ g02T2Nc

3
with g02 ¼ 4παsðΛ2Þ with αsðΛ2Þ

defined in Eq. (12). The above equation (14) can be
rewritten in terms of real and imaginary parts as

ℜΠL
g ðω;pÞ ¼ m2

Dg

�
1 −

ω

2p
ln
�
ωþ p
ω − p

��
;

ℑΠL
g ðω;pÞ ¼ m2

Dg
πω

2p
Θðp2 − ω2Þ: ð15Þ

The total longitudinal component of gluon self-energy is
the sum of the gluon and quark contribution

ΠLðωn;p; BÞ ¼ ΠL
g ðωn;pÞ þ ΠL

q ðωn;p; BÞ; ð16Þ

which can be written in terms of real and imaginary parts.
We compute the gluon self-energy’s real and imaginary
parts in the static limit (ω → 0). The real part of self-energy
reads

ℜΠLðω;p; BÞ ¼ ℜΠL
g ðω;pÞ þℜΠL

q ðω;p; BÞ; ð17Þ

and the imaginary part of the self-energy ℑΠL reads

ℑΠLðω;p; BÞ ¼ ℑΠL
g ðω;pÞ þ ℑΠL

q ðω;p; BÞ: ð18Þ

The imaginary contribution from the quark loop can be
obtained by using the identity

ℑΠL
n;qðωn;pÞ ¼

1

2i
lim
ε→0

½ΠL
q ðωn þ iε;pÞ − ΠL

q ðωn − iε;pÞ�:
ð19Þ

Further, we compute both the real and imaginary part of
the longitudinal component of the gluon propagator using
the gluon self-energy. The spectral function approach, as
defined in Ref. [94], is used to obtain the imaginary part of
the gluon propagator as

ℑDLðω;pÞ ¼ −πð1þ e−βωÞAL; ð20Þ

where AL is defined as

ALðω;pÞ ¼ 1

π

eβω

eβω − 1
ρLðω;pÞ: ð21Þ

The spectral function ρL can be expressed in the Breit-
Wigner form as
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ρLðωn;p;BÞ ¼
ℑΠLðωn;p;BÞ

ðp2−ℜΠLðωn;p;BÞÞ2þℑΠLðωn;p;BÞ2
;

ð22Þ

where p ¼ jpj. After substituting Eq. (22) in Eq. (20), we
obtain the longitudinal component of the gluon propagator,
DL in terms of real and imaginary parts. In the static
(ω → 0) and massless light quark limit, we obtain

DLðp; BÞ ¼ −1
p2 þ ΠLðp; BÞ þ

iπTΠLðp; BÞ
pðp2 þ ΠLðp; BÞÞ2 : ð23Þ

Using the gluon propagator, we obtain the dielectric
permittivity as [2,3,53]

ϵ−1ðp; BÞ ¼ p2

p2 þ ΠL − iπT
pΠL

ðp2 þ ΠLÞ2 ; ð24Þ

where ΠL ≡ ΠLðp; BÞ.
We use the dielectric permittivity expression (24) to

compute the in-medium heavy quarkonium complex poten-
tial in an arbitrary magnetic field.

III. IN-MEDIUM HEAVY QUARKONIUM
POTENTIAL

In this section, we obtain the in-medium heavy quarko-
nium potential by using the modified dielectric permittivity
computed in the previous section. We obtain the in-medium
heavy quarkonium potential by correcting the Cornell
potential in Fourier space with the dielectric permittivity,
which encodes the effects of the magnetized thermal
medium [3,13,90]

Vðr; T; BÞ ¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1ÞVCornellðpÞ

ϵðp; BÞ ; ð25Þ

where VCornellðpÞ is the Fourier transform of the Cornell
potential VCornellðrÞ ¼ −α=rþ σr, which is given by

VCornellðpÞ ¼
ffiffiffi
2

π

r
α

p2
− 2

ffiffiffi
2

π

r
σ

p4
; ð26Þ

where α and σ are the strong coupling constant and the string
tension, respectively. Here we take α ¼ 4=3αsðΛ2; BÞ and
σ ¼ 0.18 GeV2 and ϵðpÞ is the dielectric permittivity, which
is defined in Eq. (24). After substituting Eqs. (24) and (26)
in Eq. (25), we obtain both the real as well as imaginary
part of the potential, which contains both the perturbative
Coulombic and nonperturbative string terms. The real part of
the potential can bewritten in terms of Coulombic and string
terms as

ℜVðr; T; BÞ ¼ ℜVcðr; T; BÞ þℜVσðr; T; BÞ; ð27Þ

where the Coulombic term is

ℜVcðr; T; BÞ ¼ −
α

2π2

Z
d3p

�
eip·r

p2 þ ΠL −
ΠL

p2ðp2 þ ΠLÞ
�
;

ð28Þ

and the string term reads

ℜVσðr; T; BÞ ¼ −
σ

π2

Z
d3p
ð2πÞ3 ðe

ip·r − 1Þ 1

p2ðp2 þ ΠLÞ :

ð29Þ

Here p · r ¼ rp½sin θ sinΘ cosðϕ −ΦÞ þ cos θ cosΘ� and
the angles θðΘÞ and ϕðΦÞ are polar and azimuthal angles
in momentum (coordinate) space, respectively. After inte-
grating over the azimuthal angle, we obtain

ℜVðr; T; B;ΘÞ ¼ −
1

π

Z
sin θdθdp
p2 þ ΠL ½ðαΠL − 2σÞ

× ðαp2 þ 2σÞeipr cos θ cosΘ
× J0ðpr sin θ sinΘÞ�; ð30Þ

where J0 is the Bessel’s function of the first kind.
Similarly, we compute the imaginary part of the quar-

konium potential. The imaginary part of the potential is
given by

ℑVðr; T; BÞ ¼ T
Z

d3p
2π

ðeip·r − 1ÞΠLp
ðp2 þ ΠLÞ2

�
α

p2
þ 2σ

p4

�
: ð31Þ

After integrating over the azimuthal angle, we obtain

ℑVðr;Θ; T; BÞ ¼ −T
Z

sin θdθdp
ðp2 þ ΠLÞ2Π

L

�
αpþ 2σ

p

�

× f1 − eipr cos θ cosΘJ0ðpr sin θ sinΘÞg:
ð32Þ

We numerically solve the real (30) and imaginary (32) parts
of the potential. In Fig. 1, we plot the real part of the
potential as a function of separation distance r for different
strengths of the magnetic field eB. The left panel shows for
the QQ̄ dipole axis alignment along the direction of the
magnetic field (Θ ¼ 0), whereas the right panel shows its
perpendicular alignment with respect to the magnetic field
(Θ ¼ π=2). We find that the real part of the potential
becomes flattened with the magnetic field, due to an
increase in screening with B. The effect of screening is
seen to be slightly higher in the perpendicular case than
along the direction of magnetic field.
In Fig. 2, we plot the imaginary part of the potential for

Θ ¼ 0 (left) and Θ ¼ π=2 (right) for the different values of
the magnetic field. The imaginary part of the potential
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shows different behavior at smaller and larger r; it increases
with the magnetic field at smaller r and decreases in
magnitude with the increase in the magnetic field at larger
r. The decrease in magnitude with the magnetic field is
observed to be higher for Θ ¼ π=2 compared to Θ ¼ 0.

Note that the magnetic field dependence is insignificant for
the potential, especially in the range eB ¼ 0 to eB ¼ 15m2

π .
Figure 3 shows the real and imaginary part of the

potential as a function of magnetic field for different values
of Θ at r ¼ 1 fm. We observe that the real part of the

1 2 3 4 5

–1.0

–0.8

–0.6

–0.4

–0.2

0.0

1 2 3 4 5

–1.0

–0.8

–0.6

–0.4

–0.2

0.0

FIG. 2. The imaginary part of the potential is plotted as a function of quark-antiquark separation r forΘ ¼ 0 (left) and Θ ¼ π=2 (right)
at T ¼ 170 MeV.
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0.2

0.4

0.6

0.8

FIG. 1. The real part of the potential is plotted as a function of quark-antiquark separation r for Θ ¼ 0 (left) and Θ ¼ π=2 (right) at
T ¼ 170 MeV.
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0.24
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FIG. 3. The complex potential is plotted as a function of the strength of the magnetic field for different values ofΘwhen r ¼ 1 fm and
T ¼ 200 MeV. The left panel shows the variation of the real part of the potential. The right panel shows the variation of the imaginary
part of the potential.
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potential varies in response to a magnetic field at different
rates according to direction. The magnetic field dependence
is found to be maximum in Θ ¼ π=2 direction and
minimum along the direction of the magnetic field, which
establishes the anisotropy of the potential in the magnetic
field. The magnitude of the imaginary part of the potential
initially increases when the magnetic field increases, and
diminishes as the magnetic field intensifies. Both compo-
nents of the potential depend on both the magnitude of the
magnetic field and the angle, however, this dependence is
minimal.
The imaginary part increases in magnitude with the

increase in the magnetic field initially, and the magnitude
decreases as the magnetic field increases. Both the parts of
the potential depend on the magnetic field and the angle
between the dipole axis and the magnetic field, but the
dependence is rather weak.
In the next section, we use the imaginary part of the

potential to obtain the thermal widths of the quarkonium
states.

IV. THERMAL WIDTH

In this section, we compute the thermal widths of the
quarkonium states. The imaginary part of the potential
estimates the thermal width, ΓQQ̄, when treated as a
perturbation of the vacuum potential. We compute the
decay width of the quarkonium states as [3,86]

ΓQQ̄ðT; BÞ ¼ −hψðrÞjℑVQQ̄ðr; T; B;ΘÞjψðrÞi; ð33Þ

where ψðrÞ is the unperturbed Coulombic wave function.
As the leading contribution to the imaginary potential for a
deeply heavy-quark bound state is Coulombic, which
justifies the use of Coulomb wave functions to calculate
the thermal width. The wave function for the ground and
excited states is given by

ψ1sðrÞ ¼
1

ðπa30Þ1=2
e−r=a0 ;

ψ2sðrÞ ¼
1

4ð2πa30Þ1=2
�
2 −

r
a0

�
e−r=2a0 ; ð34Þ

where a0 ¼ 2=CFmQαs is the Bohr radius of the QQ̄
system and mQ is the heavy quark mass. After substituting
Eqs. (34) and (32) in Eq. (33), we obtain the thermal width
of the quarkonium states for the ground state as

Γ1sðT; BÞ ¼ −
1

πa30

Z
d3re−2r=a0ℑVðr; T; B;ΘÞ; ð35Þ

Γ1sðT; BÞ ¼
2T
a30

Z
drdΘr2 sinΘe−2r=a0

Z
sin θdθdp
ðp2 þ ΠLÞ2Π

L

×

�
αpþ 2σ

p

�
; ð36Þ

and for the first excited states (2S) as

Γ2sðT; BÞ ¼
T

16a30

Z
drdΘr2 sinΘ

�
2 −

r
a0

�
2

e−r=a0

×
Z

sin θdθdp
ðp2 þ ΠLÞ2Π

L

�
αpþ 2σ

p

�
: ð37Þ

We numerically compute the thermal widths of the
ground (36) and excited (37) states of the bottomonium
and charmonium states. In Fig. 4, we present plots of the
thermal widths of the ground and first excited states of
bottomonium (on the left) and charmonium (on the right) as
a function of temperature for both eB ¼ 0 and eB ¼ 15m2

π .
It is observed that the thermal width increases with an

increase in temperature, as anticipated. The magnetic field
effect is more on the first excited state than the ground state
for both the bottomonium and charmonium states. At larger
r, the effect of the magnetic field on the imaginary part of the
potential is more due to the larger size of the excited states.
Hence the excited states are more sensitive to the magnetic
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FIG. 4. The thermal widths of bottomonium (left) and charmonium (right) states as a function of temperature at B ¼ 0 and 15m2
π

are shown.
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field than the ground state. Figure 5 shows the variation of
thermal width with the magnetic field at different temper-
atures for bottomonium (left) and charmonium (right) states.
We find that the thermal widths are more sensitive to the
magnetic field at lower temperatures than the higher temper-
atures. The magnetic field effects decrease with the increase
in heavy quarkmass and decrease in the size of bound states.
It can be concluded from the figures that the magnetic field
has only a negligible effect on the thermal width compared to
the temperature.

V. STRONG FIELD APPROXIMATION

In this section, we compute the longitudinal component
of the gluon self-energy in the strong magnetic field
approximation (T ≪

ffiffiffiffiffiffiffiffiffijeBjp
). In the strong magnetic field

limit (jeBj → ∞), the fermion propagator [Eq. (4)] for
massless case becomes

S̃lðkÞ ¼ −i
Z

∞

0

dse−s½ω̂
2
lþk2

3
þk2⊥=jqfBjs�

× ð−ω̂lγ4 − k3γ3Þ½1 − iγ1γ2�;

¼ ie−k
2⊥=jqfBj ω̂lγ4 þ k3γ3

ω̂2
l þ k23

½1 − iγ1γ2�; ð38Þ

which is similar to the expression for the fermion propa-
gator computed for the lowest Landau level approximation
in Refs. [31,95]. In jeBj → ∞ limit, the temperature
dependent part of the longitudinal component of the gluon
self-energy (7) reduces to the dominant term as

ΠL
q ðωn;p; BÞ ¼ −

X
f

g2

ð4πÞ2
ðqfBÞ2
T2

e−p
2⊥=2qfB

Z
∞

0

du
u2

×
Z

1

−1
dve−cu

X
l≥1

ð−1Þðlþ1Þl2e−d=u

× cos πlnð1 − vÞ; ð39Þ

where c¼ ð1−v2Þðp2
3þω2

nÞ=ð4qfBÞ and d ¼ l2qfB=4T2.
The integration over u can be done analytically using the
relation

Z
∞

0

du
u2

e−cu−d=u ¼ 2

ffiffiffi
c
d

r
K1ð2

ffiffiffiffiffi
cd

p
Þ: ð40Þ

Here KnðzÞ represents the modified Bessel function of
the second kind. Therefore, the longitudinal component of
the gluon self-energy (39) for the strong magnetic field
approximation in the static limit (ωn → 0) becomes

ΠL
q ðp;BÞ ¼ −

X
f

g2qfB

8π2T
e−p

2⊥=2qfB
X
l≥1

ð−1Þðlþ1Þ

×
Z

1

−1
dvlp3

ffiffiffiffiffiffiffiffiffiffiffiffi
1− v2

p
K1

�
lp3

2T

ffiffiffiffiffiffiffiffiffiffiffiffi
1− v2

p �
: ð41Þ

Further, we compute the Debye screening mass from
Eq. (7) in the limit p → 0, for the regime where T ≪

ffiffiffiffiffiffi
eB

p

m2
DðT; BÞ ¼ −lim

p→0
ΠL

q ðp; BÞ;

¼
X
f

g2qfB

8π2T2

Z
∞

0

du
u2

coth qfBu
X
l≥1

ð−1Þlþ1l2

× e−l
2=4uT2

;

¼
X
f

g2qfB

4π2
: ð42Þ

In the absence of a magnetic field, the Debye screening
mass becomes
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FIG. 5. Thermal widths of bottomonium (left) and charmonium (right) states as a function of magnetic field for T ¼ 170 MeV and
250 MeV.
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m2
DðTÞ ¼

1

3
CAg2T2 þ

X
f

g2

8π2T2

Z
∞

0

du
u3

×
X
l≥1

ð−1Þlþ1l2e−l
2=4uT2

;

¼ 1

3
CAg2T2 þ 1

6
Nfg2T2: ð43Þ

The longitudinal component of gluon self-energy in strong
field approximation obtained inEq. (41) can be substituted in
Eq. (25) to study the behavior of quarkonium potential in the
strong field approximation. In Fig. 6, we show the effect of
arbitrary magnetic fields and the strong field approximation
on the real part of the potential. We find that the real part of
the potential is more suppressed for the case of an arbitrary
magnetic field as compared to strong field approximationdue
to larger screening in an arbitrary B. We can see that the
potential with approximation differs in large values from the
exact potential for any realistic magnetic field magnitude,
and the difference gradually reduces as the magnetic field
increases. Hence we can say that the strong field approxi-
mation is invalid, and one should consider the general case
while studying the properties of quarkonium states.

VI. SUMMARY

In the present work, we have evaluated the influence of a
magnetic field on the heavy quarkonium complex potential.
We initially computed the dielectric permittivity from the
static limit of the gluon propagator. This propagator was
derived from the one-loop gluon self-energy in the pre-
sence of an external magnetic field, which was evaluated
using Schwinger’s proper time formalism in Euclidean
space. The effect of the magnetic field enters through the
quark-loop contribution to the gluon self-energy and cou-
pling constant. Then, we computed the in-medium heavy
quarkonium complex potential using the modified dielectric

permittivity. Results showed that this potential is anisotropic
and varies with magnetic field strength and angleΘ between
quark-antiquark axis and direction of magnetic field.
For very high magnetic field strengths, the real part of the

potential gets flattened due to an increase in screening with
eB. On the other hand, the imaginary part of the quarkonium
potential experiences a rise in magnitude at short distances,
followed by a decrease at long distances. Furthermore, the
inclusion of a magnetic field introduces an angular depend-
ence into the potential. Finally, we observed that the overall
effect of the magnetic field on the complex potential is rather
small for realistic strengths of magnetic field generated in
heavy ion collisions.
We computed the decay widths of the ground and first

excited states of bottomonium (ϒ;ϒ0) and charmonium
(J=ψ ;ψ 0) using the imaginary part of the potential. We
found that the excited states ðϒ0;ψ 0Þ are more sensitive to
the magnetic field than the ground states ðϒ; J=ψÞ. The
effect of magnetic fields decreases with increasing heavy
quark mass and decreasing size, making the charmonium
states more sensitive to magnetic field strength than the
bottomonium states. For the decay widths, as the temper-
ature increases, the sensitivity to magnetic fields decreases,
eventually disappearing at high temperatures.
We have further compared our results with the strong-field

approximated potential.We found that such an approximated
potential does not even come close to the potential without
such an approximation for any realistic magnetic field value
generated in heavy ion collisions. The approximation makes
the screening much weaker as compared to an estimation for
the arbitrary magnetic field. The strong magnetic field
approximated screening however gradually increases as
the magnetic field increases. The present investigation
invalidates the strong magnetic field approximation usually
adopted in literature for the heavy quarkonium complex
potential. For the realistic strengths of magnetic fields, one
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FIG. 6. The real part of the potential as a function of r is shown on the left side for an arbitrary (black solid) and strong magnetic field
approximation (red dashed) at T ¼ 170 MeV and Θ ¼ 0. The right side illustrates the same potential as a function of eB at these
conditions.
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needs to take the effects of a general magnetic field as has
been attempted here.Moreover, it may also be noted that, the
weak-field expansion introduces new divergences in the
gluon propagators, and one needs away to regulate it. Hence,
it is essential to study the effect of arbitrarymagnetic fields on
the heavy quarkonium complex potential and the properties
of quarkonium states.
In the future, we would like to extend our computation

for the moving medium in the presence of an arbitrary
magnetic field.
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