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Two-body hadronic decays of E! in light front approach
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=0

In this study, we investigate the nonleptonic decays of the charmed-baryon =/ induced by the
¢ — u(dd)/(s5) transition. Utilizing the factorization assumption, we decompose the decay amplitudes in
terms of transition form factors which are then calculated within the light-front quark model. We employ
helicity amplitudes to analyze the nonleptonic decay modes of the charmed-baryons Z0 and derive
benchmark results for decay widths and branching fractions. Our calculations suggest that the branching

fractions for some of these rare nonleptonic decays are at the order of 1075-10~*, which are likely to be
detectable at experiments such as LHCb, Belle-II, etc. The potential data accumulated in the future may
help to further our understanding of the decay mechanism in the presence of charm quarks.

DOI: 10.1103/PhysRevD.108.093011

I. INTRODUCTION

Weak decays of quarks can provide valuable insights into
testing the standard model of particle physics and advancing
our understanding of CP violation in the universe. As most
quarks in nature are confined within hadrons, the study of
weak decays of quarks inside a hadron also provides a
unique opportunity to explore strong interactions. Over the
past few decades, significant progress has been made on
both the experimental and theoretical fronts, resulting in
unprecedentedly precise experimental measurements and
theoretical calculations of hadron decays.

Both theoretical and experimental studies have shown
considerable interest in the two-body hadronic decays of
charmed baryons [1-12]. Experimental data on these
decays have been extensively collected from various
sources [13—15], while theoretical calculations have proven
challenging due to the strong QCD interaction at the charm
scale. Lattice QCD is believed to ultimately offer reliable
theoretical results of form factors [16-21]. And several
theoretical studies on these decays rely on modeling QCD
dynamics to predict and test various models [22-29].
Sufficient experimental data would allow for the determi-
nation of all amplitudes classified by SU(3) symmetry
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properties, enabling systematic predictions to further test
the model and gain additional insights into strong QCD
interactions at the charm scale [30-40]. The Belle col-
laboration [3,13,14,41,42] has accumulated the world’s
largest data sample of e™e™ collision at the center-of-mass
energy of around 10 GeV, and via the B meson decay
chain, has access to all the lower-lying antitriplet charmed
baryons. A significant recent hot topic includes the
determination of absolute branching fractions for 2 —
E~ Iy, [43], uncovering notable SU(3), symmetry devia-
tions [44]. Comprehensive investigations have been con-
ducted by BESIII on the lightest charmed baryon A/,
through ete™ interactions at a center-of-mass energy of
\/s = 4.6 GeV. Should BESIII be capable of elevating the
center-of-mass energy above 4.95 GeV [15,45-48], which
corresponds closely to the mass of Z. particle pairs, it
would enable precise measurements of the absolute
branching fractions for E. decays. In contrast, the
LHCb collaboration [49-52] has amassed substantial
datasets of charmed hadrons from proton-proton collisions
at center-of-mass energies of /s = 7,8, 13 GeV. Despite
the presence of more intricate backgrounds compared to
those encountered at BESIII and Belle, a majority of recent
discoveries in the domain of charmed baryons, including
the renowned doubly charmed baryon, have been realized
at LHCb. The prompt ZF production cross-section in pPb
and Pbp collisions at a center-of-mass energy of |/syy =
8.16 TeV at the LHCb experiment is measured differ-
entially for the first time as a function of p; and y* [53].
However, some experimental results for the specific
processes are still missing. The purpose of this paper is
to utilize the light front approach in computing the rare
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nonleptonic decays of E, including those that have not yet
been observed experimentally.

As the phase space for this class of decays is extremely
limited, only a few channels are kinematically accessible.
In this study, we investigate the ¢ — u transition in the
nonleptonic decays of heavy baryons 2%, and consider
explicitly

(i) the spin-1/2 to spin-1/2 decays,

%, 2 - 30/
An, 20— Ay

The spin of the ds system in the baryons Z0 and Z¥ can
take on values of either O or 1. To simplify our analysis, we
use ZY/A/Z0 to refer to the baryons with a spin-0 ds
system, and Z° to denote the baryons with a spin-1 ds
system. In this study, we solely focused on the decay of =0
and do not consider other decay processes of Z'.

The remaining sections of this paper are orgamzed as
follows. In Sec. II, we present the theoretical framework in
detail. After outlining the parametrization of the form
factors for spin-1/2 to spin-1/2 processes, we provide
an explicit calculation of these form factors using the light-
front approach. In Sec. III, we present our numerical results
for the form factors and provide a phenomenological
analysis that includes decay widths and branching ratios.
Finally, we conclude our work with a brief summary in the
last section.

II. THEORETICAL FRAMEWORK

The nonleptonic decays under consideration are induced
by the ¢ quark transitioning to either udd or uss. The
corresponding Feynman diagram for these processes is
depicted in Fig. 1.

The effective Hamiltonians for ¢ — udd and ¢ — u5ss
are given as

Gy, o
H(C - uqq) :_Fchvuq

V2
X {C [ ayy( },S)Qﬂ] [Elﬁy”(l _},5)011]
+C2[ (17/”( yS)qa] [éﬁyﬂ(] _YS)Cﬂ]}7 (1)

FIG. 1. The Feynman diagrams for nonleptonic decays of the
heavy decay baryons we investigate.

with ¢ = d/s. Utilizing the factorization ansatz, we can
write down the nonleptonic decay amplitudes as

. G . -
IM(ER = Z0n4) = "5V eaV s {1(Py) |y (1 =75)d[0)
X (Buas (P50 ig, (1= 1) c2UP.5.)),
(2)
. =0 0 Gr * SyH
IM(‘:"C -X ’7&) :_Vc‘svma2<’7(Pi1)|sy (1 _},S)S|0>

V2
X (Buas (P, S,y (1= 75)c|E2(P.S.)),
(3)

with a, = C; + C,/N,. The C; are Wilson coefficients at
m, scale whose values can be taken from Ref. [54]:
C, = -0.636, C, = 1.346. In the above, the P and P’
are the momentum of the initial and the final baryons Z2
and X° respectively.

The hadronic contributions to these processes are
described by the hadron matrix elements, which can be
characterized by the form factors. In the case of spin-1/2 to

spin-1/2 processes, the form factors are defined as:

1 1
(2 (P =580l -roeizt(P.s=3.5.) )

S
M P P
= (P50 [P ) + 1A )+ ) |u(P.5)

_ My P
~0(P.50) | e () + )

/

P
+ )| rsulP.50) (@)
where M = M — M'.

A. Light-front quark model

The quark-diquark approximation allows us to treat
baryonic systems in a manner similar to mesonic systems.
In weak transitions, the two spectator quarks behave as
antiquarks. This approximation has been widely employed
in the study of heavy baryon decays. [55-59]. A recent
study [60] explored the three-body vertex function within
the light front quark model. By examining the A, — A,
and X, — X transitions, the authors found that the three-
body vertex function yields results consistent with the
diquark picture. This validates the use of the diquark
approximation from a certain perspective.

The four-vector in the light front frame is typically
represented as v* = (v, 07, v), where v = 00 £ 03
Within the light front quark model, a baryonic state can
be described by an internal quark and diquark. The hadron
state can then be expanded in terms of momentum space
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FIG. 2. The diquark approximation for the baryonic transition.

and flavor-spin functions. For a spin-1/2 baryon state, this
expansion takes the form:

E2(P.S.S,)) = /{d3p1}{d3pz}2(2ﬂ)353(13 —P1—D2)

x> WSS (P, P Ar o)
AAa

x c(py,41)(di)(p2s 42))s (5)

In the above equation, the term “(di)” corresponds to the
diquark shown in Fig. 2, and their helicities are denoted by
A1 and 4,. The momenta of the baryon, quark, and diquark
are represented by P, p;, and p,, respectively. The
momenta P, p;, and p, are three-dimensional momenta,
denoted by p = (p*, p,). It is important to note that the
on-shell momentum has only three degrees of freedom
despite having four components. As a result, the minus
component of the momentum is fixed by the rela-
tion p~ = (m*+ p3)/p*.

The wave function ¥ in Eq. (5) can be expressed as a
combination of spin and momentum space functions.
Specifically, it can be decomposed as:

1
V2(p1-P+mM,)
X i(py, A1) sayu(P.S.)p(x. ki ). (6)

WSS (P, Paadidy) =

As previously mentioned, the diquark can exist in either a
spin-0 scalar or spin-1 axial-vector state. In the case of a
scalar diquark, the interaction vertex I" is given by I'g = 1.
On the other hand, for a spin-1/2 baryon with an axial-
vector diquark, the corresponding interaction vertex takes
the form:

Y5 M0+m1+m2 -
y=—% M) =€ (P2, p) P ). (7
A \/§(¢*(P2 2) P-p2+m2M0€ (P2.42) > ()

In the above equation, m; and m, represent the masses of
the quark and spectator diquark, respectively. The quantity
P is the on-shell momentum of the light quark ¢ and
diquark, and satisfies the conditions P = p, + p, and
P? = Mj. Here, M, represents the invariant mass of P,
which differs from the baryon mass M due to the fact that
the quark, diquark, and baryon cannot all be on their

respective mass shells simultaneously. The momentum P
and mass M of the baryon, however, must satisfy the
physical mass-shell condition, M> = P?. It is important to
note that the momentum P is not equal to P.

In the equation (6), ¢ represents a Gaussian-type

function constructed as:
)
ere, —k
exp| —= |, 8
X1 xoM P <2 ) ®)

’ _4&)3/4

Here, e, and e, represent the energies of the quark ¢ and
diquark in the rest frame of P. The variables x; and x,
correspond to the light-front momentum fractions and
satisfy the conditions 0 < x, < 1 and x; +x, = 1. The
internal motion of the constituent quarks is described by the

internal momentum k. The internal light front momentum
and related dynamic relationships are given as:

ki = (ki ki ki) = (e; — ki e; + kip Ky )

[ A

24 k2
— <m’xiM0,ku>,
x:Mo
p;r:xler’ p;:xszr, Pu:X]PL‘Fkuv
Prl = X2pl + k2L7 kl = _kll = k2l' (9)

The & in the Eq. (8) is the internal three-momentum vector
of diquark presented as k= (kyy,ky,) = (ki k). The
parameter /5 appearing in Eq. (8) represents the momentum
distribution between the constituent quarks. By using the
definition of the internal three-momentum vector, we can
express the invariant mass squared M3 as a function of the
variables (x;, k; 1),

kh—l—m%_{_kﬂ—l—mg

2 _
MG =
X1 X2

(10)

The energy e; and k, can also be expressed in terms of the
internal variables (x;, k;| ) as follows:

e = 12 + 2lxiM(;l: m; + ki) + k.
I My mi+kp (11)
" 2 2xl~M0 ’

In what follows, we adopt the notation x = x, and
xp=1-x.

B. Form factors

The hadron matrix element for the spin-1/2 to spin-1/2
processes can be expressed as:
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1\ VA
(2 (rges) - ct(rg.5:) )

/{d%pz}z\/ — @' (X' K )p(x, ki)

(p1- P+ mMgy)(py - P+ m\My)
x S a(P SYIE( + ) (1= 75) (B + my)T

A
x u(P,S.). (12)
where
mp=m., my=m,,  my=my, P=pi+ps.
P pitps Mi=P ME—PR. (13)

The momenta of the ¢ quark in the initial baryon and u
quark in the final baryon are denoted by p, and pf,

respectively. The variable p, represents the momentum
|

of the spectator diquark. The quantities P and P’ denote the
four-momenta of the initial and final baryon states, respec-
tively, while M and M’ correspond to their physical masses.

It is noted that one can also define M, and Mj, for
the initial and final baryon states, respectively, such that

P02 = M(()/)z. The quantity T appearing in Eq. (12) is

defined as:

rS:"S:L

= 1 M/ +m +m2 _>
I, =— A ! )P )ys.
=5 (A )+ R ()P )

By comparing the LFQM results for the hadron matrix
element with Eq. (4), we can extract the form factors by
solving the following equations:

My, 1.1 P, 1.1 1
el ) [ e + A+ LA, - )
My, 1.1 P, 11 P 11 1 )
el 00 | ) + )+ @ nin, b=l i=123 0 as)
where H% K% are defined as
' /ddekL P Kk,
l 2(27)° 2/ x1 (P} - P+ mi Mg) (py - P+ m My)
x Tr{(P' + My)U 4y (P} + m)y, (1 + mi)Csia) (P + Mo){Ti}, }
W= [ P K k)
l 2(27)* 2\/%x, (p} - P+ mi M) (py - P+ m My)
X Tr{(P' + Mg)T 0y (P + m})y,urs(#1 + my)Csa) (P + Mo){Ts;}, ) (16)
|
The different Dirac structures I'; and I's; are Here, s, = (M £ M')? — ¢2, and the form factors gz -3 can

{Fi}ﬂ = {ywpwpit}’

{FSi}ﬂ = {yuyS’PnyvPLYS}v (17)
Then the form factors are solved as
— 1 1 1
f%_,% _ _M(erHz1 —2M'H — 2MH3)
! AMs_s., '
_ 1 1 1
11 M(M's Hi — 6M”H; +2(s_ + MM')H)
2 25_s% ’
_ 1 1 1
f%f% _ MMs Hj +2(s_ + MM')H; — 6M>H3) (s)

2
2s_s7

be obtained by applying the following transformation:

M - -M',
M - M,

M- M,
M- M,

Hj— —K;,

i=1
i=2,3. (19)
As the diquark can be either scalar or axial-vector, the
physical baryon state is a combination of the baryon state
with a scalar diquark and a state with an axial-vector
diquark in LFQM. Therefore, the physical form factor can
also be expressed as follows:

[formfactor|Pysical = ¢g x [formfactor]g

+ ¢4 x [formfactor],.  (20)
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TABLE 1. The spin factors for the baryon Z0 decay induced TABLE II. baryon masses [64,65] and other input parameters

by ¢ — u. [66,67].
Channel cs ca Baryon =0 >0 A n n
20 %0 \/T? Mass (GeV) 2.470 1.193 1.116  0.548 0.958
=0 A 1 Lifetime (fs) 151.9
2 Plas)c = 0.58 Plasju = 0-41
The coefficients ¢y and ¢4 are flavor-spin factors that can
be determined by the flavor-spin wave function of baryons IIL. NUMERICAL RESULTS
in the diquark basis. The flavor-spin wave functions for
spin-1/2 baryons are given by: After deriving the analytic expression in the LFQM, we
present the corresponding numerical results. For the cal-
culation, we use the quark masses from Refs. [61-63]
V3 1
0= 5 ulds]s =5 uldsls m, =my; =025GeV,  m, =037 GeV,

1 3 m,. = 1.4 GeV. (23)
A= Eu[a’s]s + gu[ds]A

20 — ¢[ds];. (21) The masses of the diquarks can be approximated as
Mgs) = Mg + M. (24)

The flavor wave functions of the diquark basis are e .
q The masses of the baryons, their lifetimes, and the input

given by: parameter |4, are presented in Table II.
1 A. Form fact
[9192] :7(611612+512611)» orim factors ]
2 To analyze the g> dependence of the form factors in
1 Eq. (4), we adopt the double-pole model parametrization
[9192]s = ﬁ (9192 = 9291)- (22) scheme as follows:
F(0)
2y
Therefore, the overlapping factors can be calculated and the Flq*) = 1_ 2 15 ( ra ) 2’ (25)
results are presented in Table I. e, m,

TABLEIIL.  Numerical results for the form factors of spin-1/2 to spin-1/2 E2 — X(A) transitions. The F(0) indicates the form factors
when g2 = 0. Results for the parameters & and m;, are obtained by fitting the form factors with the double-pole model as in Eq. (25). The
ay and a; are the parameters in the BCL model in Eq. (26). For the form factors F(0) with ¢g> = 0, we estimated their uncertainties
caused by the parameters in LFQM, namely, Bcjqy, Bujas), and my;, which are varied by 10%.

Pole model BCL model
Channel Form factor F(0) M, 1) ag a
fi 0.5988 + 0.0765 4+ 0.0500 4 0.0407 1.98 0.40 0.5827 0.9969
fa 0.1288 + 0.0222 4+ 0.0477 4+ 0.0100 0.78 0.50 0.2784 -9.2418
20 _, 50 f3 —0.5504 £ 0.1055 + 0.0934 + 0.0513 1.05 0.23 —0.8453 18.2072
e g1 0.3838 +0.0133 4+ 0.0384 4+ 0.0168 2.46 1.15 0.3432 2.5073
9 —0.4279 £ 0.1518 £ 0.1303 + 0.0593 2.64 20.5 —-0.3765 -3.1717
93 1.1520 £ 0.1626 £ 0.2791 £ 0.1190 1.30 0.60 1.4584 —18.9181
fi 0.3382 + 0.0432 4+ 0.0290 4+ 0.0229 2.12 0.70 0.3167 1.1188
fa 0.1188 +0.0170 + 0.0318 4 0.0081 0.90 0.42 0.2283 —5.6985
20 A f3 —0.3471 £ 0.0640 + 0.0583 + 0.0314 1.06 0.26 —0.5498 10.5412
e a1 0.2536 + 0.0093 4 0.0245 4+ 0.0108 2.32 0.64 0.2284 1.3106
9 —0.2977 £ 0.0751 £ 0.0694 + 0.0319 1.66 1.48 -0.3204 1.1828
g 0.8241 + 0.0758 4+ 0.1591 4 0.0685 1.21 0.37 1.1416 —-16.5172
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where F(0) is the numerical results of form factor at ¢> = 0.
And we take {—0.000,-0.001,-0.005,-0.007,-0.01,
—0.015} for ¢* and fit the two parameters mg and &.
Table III presents the numerical results for the form factors
and fitting parameters obtained using the double-pole model
which parametrizes the ¢> dependence of the form factors.
Additionally, for extrapolating the form factors to the full ¢*
region, we use the Bourrely-Caprini-Lellouch (BCL) para-
metrization [68—71] in which the form factors are expanded
in powers of a conformal mapping variable. The BCL
parametrization is shown as

ke

f(¢?) = Z (4%, 10),
)

) \/f_\/f

2(q°. 1) =

Vi Ty

t
to_t+<1—,/1—t—‘),
+

Ty = (mBh + mB(_)z. (26)
The my are the masses of the low-lying D resonance.

To analyze the g*> dependence of the form factors, we
also plot the results of the form factors as functions of ¢ in
Fig. 3. From Fig. 3, one can see that the fit results with two
different models are broadly consistent with each other.
However, the g*>-dependent form factor g, exhibits a large
discrepancy with g> ~ (mpz_— mg ) for the two models. In
the analysis presented in Ref. [59], the form factor has a
pole structure corresponding to the specific current. In our
work, the pole mass m,,. should be set to mpy. = mp,
|

iGp iCr py (cos ¢
V2 '\ V2

iM(EQ — =) =

which is consistent with the BCL model in Eq. (26).
However, the fit result of g, with the pole model is some
different from our conclusion, especially for the 20 — 0
process. Therefore, it is likely that the BCL model
describes the ¢> dependence of the form factor better.

B. Nonleptonic decays
Expressing the physical states 7 and 7" in the quark flavor

basis, we have:
(|’7>> _ (COSd) —sin¢> <|’7q>>
') singg cosgp / \ |n)
where ¢ denotes the mixing angle. Nonleptonic decay

with ) emission can be estimated with the helicity
amplitude method. In Eq. (3), the local matrix element

(n")(P)[57*(1 = 5)5|0) and (") (P)|dy*(1 = y5)d|0) can

(27)

be expressed by the decay constant f;, and fn’ as [72-74]
_ i
(0lgr" (1 = vs)qln,(P)) = Sl
(Olsy*(1 = ys)s|n(P)) = if JP* (28)

where all the other parameters are listed below

m, = 0.548 GeV,  m, = 0.958 GeV,

ay(Z°(P', S2) |y, (1 = ys)c|Z2(P. S.))

o .
iM(E - 30y = ZE pr (Sm ¢

V2 "\ V2

ay (X (P, 82)|ay, (1 = ys)c|E2(P. S.))

The helicity amplitudes in the nonleptonic decay processes
are defined as

HVS, = (E°(P ) ap,oclE(P, 2)),

HAS, = (P, X)|aporsc|Z2(P, 2)). (31)

With the help of helicity amplitude, the total decay width of
the spin-1/2 to spin-1/2 processes can be expressed as

fq=107f,, fs = 1341,
f==0.130 GeV, ¢ =39.3°, (29)
Then the amplitude of nonleptonic decays becomes
ch dfq Sinqﬁvcs v;;sfs>
vV dVdeq -+ cos ¢VCSVZSfS>
(30)

1
(|H R |H2_u|2>,
22

udfq> (Sin ¢Vcs VZsfs)2> a%v

ch dfq) (COS ¢VcsVZs s)2> a%v
(32)
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FIG. 3.

where H3, = HV}, — HAS .
nonleptonic helicity amplitudes are shown in the Appendix.
Although we have not accounted for the nonfactorizable
contributions, we can estimate their impact by varying the
value of N.. A method outlined in Ref. [47] suggests that
adjusting the value of N, in the Wilson coefficient a, =
C; + C,/N, can help estimate these contributions in B
decays. Since there are no experimental results for these
two specific processes at present, we can use a similar
process, namely 2% — A¢ [75], which does have exper-
imental data available, to determine the value of N.. To
determine the appropriate value for N,., we examine the
corresponding Feynman diagram, shown in Fig. 4.

So the way we compute the branching ratio for this
process. we vary the value of N, and determine that the

The expressions of the

0.24 |-

0.22 -

0.20 + = BCL model

_>50)

=

018f —===- .

fa(

0.16 |-

0.42 -

0.41

~— BCL model

_>50y

=

040 e e B

gq(

0.39 |-

151

14T — BCL model

_>30)

=c

pole model

93(

13+

12

0.0 0.1 0.2 0.3 04 0.5

a[Gev?]

The ¢* dependence form factors of Z0 — X0 process with BCL model (Orange line) and pole model (blue line).

©
w1

[1]
oo
_/
A 2
o
o
L
<
>

FIG. 4. The Feynman diagrams for nonleptonic decays of the
decay E0 — A¢ we investigate.
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TABLE IV. Numerical results of decay width and branching fraction in heavy baryon nonleptonic decays using

BCL model f(g?

) at N, = 5.4 £+ 1.2. We have assessed the uncertainties arising from variations in N, and the

parameters within LFQM, namely, B4, Bu(as)» and my;, each of which was subject to a 10% variation.

Channel I'(x107'% GeV) Br(107%)
20 5 30 4.85+1.62+£0.51+0.39+0.34 1.12£0.38 £ 0.12 £ 0.09 £ 0.08
20 - 30y 6.64 £2.22 +£0.92 £0.76 £ 0.85 1.53 £0.51 £0.21 £0.18 £0.19

branching ratio matches the experimental result of
4.9 4+ 1.5 x 107*. Specifically, we find that the branching
ratio equals the experimental value when N, = 5.4 + 1.2.
Using the formulas above and choosing N, = 5.4 + 1.2,
we give numerical results of hadron nonleptonic two-body
decays in Table IV.

Using the formulas above, we give numerical results of
the nonleptonic two- body decay processes 20 — X%() in
Table V and 2% — An() in Table IV.

There are other procedures used for similar processes that
suggest different values for N, for example, Ref. [75]
suggests that N, may be around 7 according to the process
AT = p¢. We can roughly estimate the nonfactorization
effect by varying the N .. This strategy is used in Ref. [12], it
has been suggested that the nonfactorizable contributions in
B decays can be estimated through a variation of N, in
Wilson coefficient a; or a,. In accordance with our selection
criteria and the criteria adopted in reference [75], the chosen
range for our parameter N. is as follows 3,5.4, c0. The
effects are estimated in Table VI. The results show that for
this kind of processes Z0 — X% /5’ or E0 — A%/, the
decay width and branching fraction varies somewhat with
different N.. In Table VI, we also show the results of the
branching ratios obtained by global fit and MIT-bag in
Refs. [28,29]. The outcomes of our results align closely with
those of reference [28] within the margin of error. However,
it is noteworthy that the central value of the process
29 — Ay exhibits a specific deviation. When considering
the error, the two results also remain consistent within the
margin of error. In comparison to Ref. [29], it appears that
the central values of our results exhibit an order of
magnitude difference (it seems the error associated with
Ref. [29] is not presented). Reference [28] study a series of
decays of the charmed baryon state based on the SU(3)
flavor symmetry. In Ref. [29], both factorizable and non-
factorizable contributions are considered in the topologic

diagram approach. To explore less model-dependent
observables, we can utilize the ratios of branching ratios
for certain decay channels as a means to study the variations
in decay widths resulting from different values of N..
Therefore one can define the value Ryo(y) as

F(E? -2 )
R =R =)
[(Ee — Ar)
Ra=—ro—h 33
ATTEY S A (33)

The values of these ratios are shown in Table VI. This ratio
is a quantity independent of the parameter N, indicating
reduced model dependence in the observables. This
enhanced predictability makes it a valuable candidate for
experimental testing.

Before closing this section we wish to point out that our
analysis did not take the imaginary part of the decay
amplitudes into account. In principle, the imaginary part
could be important especially in the study of CP violation,
and may arise from two different sources: the perturbative
contributions such as quark loops; or the long-distance
contributions from such as final state interactions (see
Refs. [76,77] for example). Usually in QCD approach like
QCD factorization [78], quark loops can be expressed as a
vertex correction to the effective Wilson coefficients.
Although it is unlikely to attribute these corrections into
the effective color number, it is likely that varying the N,
may partially reflect the size of such corrections. The
generalized factorization approach before the QCD fac-
torization has used this method to estimate the uncertain-
ties [12]. For the long-distance contributions, a systematic
analysis is not available for charmed baryon decays
especially in the absence of a collection of all available
effective couplings at the hadron level. We hope this can
be conducted in an improved analysis in the future.

TABLE V. Numerical results of decay width and branching fraction in heavy baryon nonleptonic decays using

BCL model f(q?

) at N, = 5.4+ 1.2. We have assessed the uncertainties arising from variations in N, and the

parameters within LFQM, namely, 4, Bujas)> and my;, each of which was subject to a 10% variation.

Channel I(x107'% GeV) Br(107%)
205 Ay 1.70 £0.57 £0.18 £0.14 £ 0.13 0.39 £ 0.13 £ 0.04 £ 0.03 £ 0.03
20— Ay 2.53£0.85+£0.35£0.27 £0.31 0.58 £ 0.19 £ 0.08 £ 0.06 £ 0.07
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TABLE VI. Numerical results of decay width and branching fraction in doubly heavy baryon nonleptonic decays using f(g?) when
N.=3,54, .

N.=3 N,=54 N, = o0 Reference [28] Reference [29]
Channel R T(x107'® GeV) Br(10™) I'(x107'® GeV) Br(10™) I'(x107'® GeV) Br(10™)  Br(107™) Br(107%)
20 - 30 073 1.14 0.26 4.85 1.12 13.12 3.02 3.6709 5.0
B0 - 30 1.56 0.36 6.64 1.53 17.96 4.13 1. 7jl32
20— Apy 0.68 0.40 0.09 1.70 0.39 4.61 1.06 1. 6j&§ 8.1
B s Ay 0.59 0.14 2.53 0.58 6.83 1.57 9. 4jé186

IV. SUMMARY ACKNOWLEDGMENTS

The two-body hadronic decays decays of the baryons
29 - 3%%() and 22 — An() are studied in this work. In this
work, we employed the light-front-quark model to study
nonleptonic decays of the baryons ZU. Specifically, we
utilized the diquark picture, where the two spectator heavy
quarks can be approximated as a scalar or an axial-vector
diquark, and treated the baryon state as a meson state. We
obtained the form factors defined by the hadronic matrix
element of the effective operators sandwiched between the
Z9 and the light baryon state and then used them to estimate
the decay widths and branching fractions of two-body
nonleptonic decays.

We have used the helicity amplitudes to obtain the
phenomenological results, which include the predicted
branching fractions. With the lifetime of Z0 presented in
Table II, we have calculated the branching fractions and
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for their useful discussions. The research received partial
funding from the National Natural Science Foundation of
China (NSFC) under the Grants No. 12125503,
No. U2032102, No. 12335003.

APPENDIX: HELICITY AMPLITUDE

The helicity amplitudes for the spin-1/2 to spin-1/2
nonleptonic decay processes can be expressed in terms of
the form factors defined in the hadron matrix element.
Here, we define (M2 — M)+ > = M. The helicity
amplitudes can then be written as follows:

—i./s.m _ o1 NN NN
= L RMMT M MG,

listed them in Table IV. Lastly, we explore the dependence H Vz_%’% 7;

on N, and introduce new observations denoted as R, which

exhibit minimal sensitivity to parameters. These quantities HV% = HVi -

are less model-dependent, rendering them suitable for

experimental testing. This study represents an exploratory HA? —iy/s-my 2M(M + M) g%l‘%

endeavor, taking into account the nonperturbative nature of
matrix elements. To delve deeper into these nonperturbative

R \/_

1,1
matrix elements, we also plan to employ the first-principle - +92 — i a9 ), (A1)
lattice method for conducting additional calculations. The

obtained phenomenological results are helpful in the search 1

for such types of decay processes in future experiments. HAZ, ) = HA/l 2 (A2)
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