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When neutrinos are propagating in ordinary matter, their coherent forward scattering off background
particles results in the so-called Mikheyev-Smirnov-Wolfenstein (MSW) matter potential, which plays an
important role in neutrino flavor conversions. In this paper, we present a complete one-loop calculation of
the MSW matter potential in the Standard Model. First, we carry out the one-loop renormalization of the
Standard Model in the on-shell scheme, where the electromagnetic fine-structure constant α, the weak
gauge-boson massesmW andmZ, the Higgs-boson massmh and the fermion massesmf are chosen as input
parameters. Then, the finite corrections to the scattering amplitudes of neutrinos with the electrons and
quarks are calculated, and the one-loopMSWmatter potentials are derived. Adopting the latest values of all
physical parameters, we find that the relative size of one-loop correction to the charged-current matter
potential of electron-type neutrinos or antineutrinos turns out to be 6%, whereas that to the neutral-current
matter potential of all-flavor neutrinos or antineutrinos can be as large as 8%. The calculations are also
performed in the MS scheme and compared with previous results in the literature.
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I. INTRODUCTION

In the past quarter of a century, neutrino oscillation
experiments have provided us with robust evidence that
neutrinos are massive and leptonic flavor mixing is sig-
nificant [1,2]. For the neutrinos propagating in matter, the
coherent forward scattering of neutrinos off the background
particles leads to the Mikheyev-Smirnov-Wolfenstein
(MSW) matter potential and could modify neutrino flavor
conversions in a remarkable way [3–6]. To be explicit, at
the tree level in the Standard Model (SM), the effective
Hamiltonian for neutrino oscillations in matter receives
extra potential terms, i.e., Ve ¼ VCC þ VNC for electron
neutrinos and Vμ ¼ Vτ ¼ VNC for muon and tau neutrinos,
where the charged-current (CC) and the neutral-current
(NC) contributions are given by

VCC ¼
ffiffiffi
2

p
GμNe;

VNC ¼ −
Gμffiffiffi
2

p ½ð1 − 4sin2θwÞðNe − NpÞ þ Nn�: ð1:1Þ

In Eq. (1.1), Gμ is the Fermi constant determined from the
muon lifetime, Ne, Np, and Nn are, respectively, the net
number densities of electrons, protons and neutrons, and θw
is the weak mixing angle. For antineutrinos, the MSW
matter potentials Vα (for α ¼ e, μ, τ) change accordingly to
opposite signs. As the NC potential VNC is universal for
three neutrino flavors, only the CC potential VCC for
electron (anti)neutrinos is relevant for neutrino flavor
conversions in matter.
At the one-loop level in the SM, it has been known for a

long time that the NC potentials V̂α
NC become dependent on

the charged-lepton masses mα (for α ¼ e, μ, τ). Given the
strong hierarchy of charged-lepton masses me ≪ mμ ≪ mτ

and Nn ¼ Np ¼ Ne for ordinary matter, one can estimate
the ratio of the flavor-dependent part of one-loop NC
potential to the tree-level CC potential as below [7,8]

ϵμτ ≡ V̂τ
NC− V̂μ

NC

VCC
≈−

3α

2πsin2θw

m2
τ

m2
W

�
ln

�
m2

τ

m2
W

�
þ 5

6

�
; ð1:2Þ

where α≡ e2=ð4πÞ denotes the electromagnetic fine-
structure constant. With the input values of α ¼ 1=137,
mW ¼ 80.377 GeV, mZ ¼ 91.1876 GeV, and mτ ¼
1.777 GeV, one has sin2θw ¼ 1 −m2

W=m
2
Z ≈ 0.223 and

thus finds the ratio in Eq. (1.2) to be ϵμτ ≈ 5.19 × 10−5.
Although such a correction is extremely small, it causes the
difference between the matter potential of νμ and that of ντ,
which affects greatly the flavor conversions of supernova
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neutrinos in the dense-matter environment [9,10]. Further
discussions about the impact of ϵμτ on neutrino oscillations
can be found in Refs. [11,12].
In the calculation of ϵμτ, however, the previous

works [7,8] concentrate on the flavor-dependent radiative
corrections, e.g., V̂τ

NC − V̂μ
NC, instead of the one-loop NC

potentials V̂α
NC themselves (for α ¼ e, μ, τ). Moreover,

the one-loop radiative corrections to the CC potential
in the on-shell scheme have not been studied thus far.1

Therefore, it is interesting to calculate neutrino matter
potentials in the SM at the one-loop level, including the
NC potential V̂α

NC for three-flavor neutrinos and the CC
potential V̂CC for the electron neutrino. The motivation for
such a calculation is twofold. First, the flavor-independent
part of the one-loop NC potential V̂α

NC is irrelevant for
flavor oscillations of three active neutrinos but may be
important for active-sterile neutrino oscillations, particularly
in the supernova environment [14,15]. Second, the future
long-baseline accelerator neutrino oscillation experiments,
such as DUNE [16] and T2HK [17], will be able to
determine neutrino mass ordering and probe leptonic CP
violation, and they are already sensitive enough to the
Earth matter effects. Obviously, the precise calculation
of V̂CC at the one-loop level is necessary to achieve
high-precision measurements of the neutrino mass ordering
and the CP-violating phase.
In this work, we carry out a complete one-loop calcu-

lation of the MSW potentials in the SM. More explicitly,
after performing one-loop renormalization of the SM in
the on-shell scheme [18–21], we compute the scattering
amplitudes for να þ f → να þ f at one loop, where
f ¼ u, d, e are the SM fermions in ordinary matter.
For the electron neutrino νe, both CC and NC interactions
must be taken into account, while only the latter is
considered for νμ;τ. For both NC and CC interactions, since
the distributions of background particles are assumed to be
homogeneous and isotropic, only the vector-type couplings
cfV;NC and cfV;CC are directly involved in matter potentials.
After obtaining finite scattering amplitudes, we extract the
matter potentials by comparing the obtained amplitudes
and those generated by the effective weak Hamiltonian
of neutrino interactions in the forward limit. After inputting
the latest values of all physical parameters, we find that
the one-loop correction to the NC potential is about 8%,
while that to the CC potential is about 6%. In the future
long-baseline accelerator neutrino oscillation experiments,
e.g., DUNE and T2HK, it is promising to probe the one-
loop correction to the CC potential. For comparison, we
also calculate the one-loop corrections in the MS scheme

with running parameters as inputs. Our results of the
vector-type couplings agree perfectly with those in the
previous work [13].
The remaining part of this paper is organized as

follows. In Sec. II, we outline the basic strategy for one-
loop calculations of the MSW matter potentials in the SM,
and explain the notations and the on-shell scheme of the
one-loop renormalization implemented in our calculations.
The analytical results for the one-loop NC and CC potentials
are presented in Secs. III and IV, respectively. Then, in
Sec. V, we specify the input parameters and evaluate the
one-loop corrections. The calculations of the vector-type
couplings at the one-loop level in the MS scheme are given
in Sec. VI. We summarize our main results in Sec. VII.
For completeness, the renormalization of the SM and some
details of our calculations are given in Appendix.

II. STRATEGY FOR ONE-LOOP CALCULATIONS

In this section, we explain how to calculate the one-loop
potentials in the SM. For the low-energy neutrinos propa-
gating in ordinary matter, the coherent forward scattering
with background particles modifies their dispersion rela-
tions and its impact on neutrino flavor conversions can be
described by the effective potentials at the amplitude level.
The ordinary matter is composed of protons, neutrons and
electrons, so the NC interactions contribute to the matter
potentials for all-flavor neutrinos, whereas the CC inter-
action is relevant only for the electron neutrinos.

A. Effective Hamiltonians and matter potentials

The amplitudes for relevant two-body scattering proc-
esses να þ f → να þ f, with α ¼ e, μ, τ and f ¼ u, d, e,
can be divided into the NC and CC parts. For the NC part,
we can directly read it off from the low-energy effective
Hamiltonian

HNC
eff ðxÞ ¼

Gμffiffiffi
2

p
h
ναðxÞγμð1 − γ5ÞναðxÞ

i
×
h
fðxÞγμðcfV;NC − cfA;NCγ

5ÞfðxÞ
i
; ð2:1Þ

where cfV;NC and cfA;NC refer, respectively, to the vector-
type and axial-vector-type couplings for the NC interaction.
At the tree level, these couplings in the SM have been
collected in Table I.

TABLE I. The vector-type and axial-vector-type couplings for
the NC interaction of neutrinos in the SM, where s≡ sin θw and
f ¼ u, d, e.

f ¼ u f ¼ d f ¼ e

cfV;NC
1
2
− 4

3
s2 − 1

2
þ 2

3
s2 − 1

2
þ 2s2

cfA;NC
1
2

− 1
2

− 1
2

1The radiative corrections in the MS scheme have been
evaluated in Ref. [13] in the low-energy effective theory. The
authors are grateful to Dr. Oleksandr Tomalak for bringing this
relevant work to our attention.
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Assuming the distribution of background fermions to
be homogeneous and isotropic, one can average the
effective Hamiltonian over all possible states of back-
ground fermions and then obtain the effective potential
for the SM left-handed neutrinos [22,23]

VNC ¼
ffiffiffi
2

p
GμNfc

f
V;NC; ð2:2Þ

where Nf is the net number density of the background

fermion f and only the vector-type coupling cfV;NC is
involved. Notice that the NC potential is independent of
neutrino flavors at the tree level.
For electron neutrinos, the CC part of the two-body

scattering amplitude can be derived from the effective
Hamiltonian

HCC
eff ðxÞ ¼

Gμffiffiffi
2

p
h
νeðxÞγμð1 − γ5ÞνeðxÞ

i
×
h
eðxÞγμðceV;CC − ceA;CCγ

5ÞeðxÞ
i
; ð2:3Þ

where the Fierz transformation has been performed and
ceV;CC ¼ ceA;CC ¼ 1 in the SM. In a similar way to the
derivation of the NC potential, one can easily get the CC
potential of electron neutrinos

VCC ¼
ffiffiffi
2

p
GμNeceV;CC: ð2:4Þ

Therefore, the total matter potential for electron neutrinos
is Ve ¼ VCC þ VNC, while those for muon and tau neu-
trinos are Vμ ¼ Vτ ¼ VNC. For ordinary matter composed
of protons, neutrons, and electrons, together with the
vector-type couplings in Table I, one can simply use
Nu ¼ 2Np þ Nn and Nd ¼ 2Nn þ Np and the condition
of charge neutrality Np ¼ Ne to reproduce the results of
VCC and VNC in Eq. (1.1).
From the above derivations of the tree-level matter

potentials, it is evident that one should calculate the
renormalized scattering amplitude of να þ f → να þ f at
the one-loop level and then find out the effective
Hamiltonian corresponding to the loop-corrected ampli-
tude. Starting with the loop-level effective Hamiltonian, we
can extract the coefficient for the vector-type interactions
involving the background particles. More explicitly, for
the NC part, we identity the correction to the vector-type
coupling cfV;NC, which will be denoted asΔc

f
V;NC ≡ ĉfV;NC −

cfV;NC with ĉfV;NC being the loop-corrected coupling. For
definiteness, we take the Fermi constant to be Gμ as
determined precisely from muon decays. The one-loop
NC potential is given by V̂α

NC ¼ ffiffiffi
2

p
GμNfĉ

f
V;NC, whereas

the tree-level one reads VNC ¼ ffiffiffi
2

p
GμNfc

f
V;NC. In this case,

the relative magnitude of one-loop correction to the NC
potential is characterized by ΔcfV;NC=c

f
V;NC, as Gμ will

be anyway assigned the experimentally measured value
in both tree- and loop-level calculations. Similarly, the
correction to the CC potential will be represented by
ΔceV;CC=ceV;CC, where ΔceV;CC ≡ ĉeV;CC − ceV;CC and ĉeV;CC
is the loop-level coupling.

B. On-shell renormalization

The one-loop renormalization of the SM in the on-
shell scheme can be found in the monograph [24] and also
in many excellent review papers [18–21]. For complete-
ness, a brief summary of the on-shell renormalization
of the SM is presented in the Appendix, and the basic
procedure is sketched in this subsection in order to explain
our conventions.
For the classical Lagrangian of the standard electroweak

theory, we shall closely follow the definitions and notations
in Ref. [21]. As usual, the quantization of the SM can
be performed by introducing the gauge-fixing terms and the
Faddeev-Popov ghosts, and then the Feynman rules can be
derived, where the ’t Hooft-Feynman gauge will be chosen
for simplicity. At the one-loop level, the ultraviolet (UV)
divergences in the one-point Green’s function (i.e., the
Higgs tadpole diagrams), one-particle-irreducible two-point
Green’s functions and three-point vertex functions can be
separated out by using the dimensional regularization,
where the space-time dimension is set to d ¼ 4 − 2ϵ and
the UV-divergent term in the limit of ϵ → 0 shows up as

Δ≡ 1

ϵ
− γE þ lnð4πÞ; ð2:5Þ

where γE ≈ 0.577 is the Euler-Mascheroni constant. In
principle, only the particle masses and coupling constants
need to be renormalized to guarantee finite S-matrix
elements in the SM [25,26], but the wave function renorm-
alization of physical fields is necessary to keep the Green’s
functions finite as well.
After expressing the bare model parameters and physical

fields in terms of the renormalized ones and the corre-
sponding counterterms, as summarized in the Appendix,
one can calculate the Higgs tadpole diagrams, two-point
Green’s functions and three-point vertex functions, which
are in general UV divergent. Then, the on-shell renorm-
alization conditions on the renormalized Green functions
are imposed to remove the UV divergences and thus
determine the counterterms. Finally, a complete set of
renormalized parameters are chosen as inputs and imple-
mented to calculate the S-matrix elements of our interest.
Some comments are helpful.
(1) Input parameters. As has been done in Ref. [21],

we shall choose the input parameters as the fine
structure constant α, the W-boson mass mW , the
Z-boson mass mZ, the Higgs-boson mass mh, and
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the charged-fermion masses mf. Since mW and mZ

have been chosen as input parameters, the weak
mixing angle is defined via cos θw ≡mW=mZ.
For later convenience, the abbreviations c≡ cos θw
and s≡ sin θw will be used. Moreover, s2w ≡
sin 2θw ¼ 2sc and c2w ≡ cos 2θw ¼ c2 − s2 are also
implemented to simplify the expressions.
With the physical parameters chosen above, the

electromagnetic coupling constant e ¼ ffiffiffiffiffiffiffiffi
4πα

p
is

related to the weak gauge coupling constant g via
the weak mixing angle, i.e., e ¼ gs. Whenever the
coupling constants e and g appear, their definitions
should be understood in terms of the fine-structure
constant α and the weak mixing angle θw.

(2) One-loop amplitudes. The contributions to the
amplitudes of να þ f → να þ f at the one-loop level
can be divided into three categories, i.e., the self-
energies of weak gauge bosons including the tadpole
diagrams, the vertex corrections and the box dia-
grams. With all the counterterms previously deter-
mined in the on-shell scheme, the UV-divergent
terms are all canceled out and the finite corrections
are obtained. The one-loop diagrams have been
calculated by using Package-X [27,28], and the Pas-
sarino-Veltman functions [29] are implemented to
express one-loop integrals as in the Appendix.
In the following expressions, xi ≡m2

i =m
2
W and

yi ≡m2
i =m

2
Z are introduced with “i” referring to the

particle type. The fermion masses for external legs
are retained, but they are much smaller compared to
the gauge-boson masses and thus all the terms of
OðxeÞ orOðxqÞ for q ¼ u, d can be safely neglected.
It should be noticed that as we are interested in
the forward scattering amplitudes, the diagrams with
the photon propagator with p2 ¼ 0 attached to the
charged fermions will not contribute due to the on-
shell renormalization of the electric charge. In addi-
tion, neutrinos are massless in the SM and the quark
flavor mixing is ignored. For the latter assumption,
the reason is simply that the off-diagonal elements of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix are
much smaller than the diagonal ones and the vertices
involving a pair of quarks not in the same isospin-
doublet are highly suppressed.

(3) Finite corrections. Once the finite corrections to
the amplitudes are obtained, one can extract the
vector-type coefficients in the corresponding effective
Hamiltonian and derive the one-loop corrections to
the matter potentials of neutrinos. For the NC part,
the renormalized self-energy of the Z boson, the
neutrino or charged-fermion vertex, and the box
diagrams are denoted as iΣr

Z, ieΓr
ναναZ

or ieΓr
ffZ,

and iMf
NC, respectively, so the correction to the

vector-type coupling is

ΔcfV;NC ¼
�
−
Σr
Z

m2
Z
þ s2wΓr

ναναZ

�
cfV;NC þ s2wΓr

ffZ

−
4m2

W

g2
Mf

NC: ð2:6Þ

Similarly, for the CC part, with the renormalized self-
energy of the W boson, the corrected vertex, and
the box diagrams denoted as iΣr

W , ieΓr
νeeW

, and
iMCC, respectively, the correction to the vector-type
coupling turns out to be

ΔceV;CC ¼
�
−
Σr
W

m2
W
þ 2 ×

ffiffiffi
2

p
sΓr

νeeW

�
ceV;CC

−
4m2

W

g2
MCC: ð2:7Þ

Note that the factor of two associated with the vertex
correction Γr

νeeW
in Eq. (2.7) arises from the fact that

the νe-e-W vertex appears twice in the diagrams.
The self-energy, vertex and box contributions on the

right-hand sides of Eqs. (2.6) and (2.7) will be presented
in Secs. III and IV, respectively. With the latest values
of the input parameters, we shall evaluate these finite
corrections in Sec. V.

III. THE NEUTRAL-CURRENT POTENTIAL

A. The Fermi constant

As shown in Eqs. (2.2) and (2.4), the NC and CC
potentials at the tree level are usually given in terms of the
Fermi constant Gμ, which is related to the adopted physical
parameters by Gμ ¼ g2=ð4 ffiffiffi

2
p

m2
WÞ ¼ πα=ð ffiffiffi

2
p

m2
Ws

2Þ. At
the one-loop level, however, such a relation is corrected as

g2

4
ffiffiffi
2

p
m2

W

≡ Ĝμð1 − ΔrÞ; ð3:1Þ

where Ĝμ stands for the one-loop corrected Fermi constant
and the finite radiative corrections are collected in Δr. With
the help of Eqs. (A10)–(A14), we can evaluate Δr by [21]

Δr ¼ −
∂ΣA

Tðp2Þ
∂p2

����
p2¼0

þ c2

s2

�
ΣZ
Tðm2

ZÞ
m2

Z
−
ΣW
T ðm2

WÞ
m2

W

�

þ ΣW
T ðm2

WÞ − ΣW
T ð0Þ

m2
W

− 2
c
s
ΣAZ
T ð0Þ
m2

Z

þ α

4πs2

�
6þ 7 − 4s2

2s2
ln

�
m2

W

m2
Z

��
: ð3:2Þ

Since the Fermi constant determined from the muon
lifetime is the most precise, it is convenient to use it in the
studies of low-energy weak interactions. For the tree-level
matter potential, one may just input the value ofGμ extracted
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from the muon lifetime, namely, Gμ ¼ Gexp
μ . On the other

hand, at the one-loop level, we implement the relation in
Eq. (3.1) to determine Ĝμ from the same experimental
observation, i.e., Ĝμð1 − ΔrÞ ¼ Gexp

μ . In this case, the tree-

level matter potential is given by V ¼ ffiffiffi
2

p
GμNfc

f
V, while the

one-loop potential is V̂ ¼ ffiffiffi
2

p
Ĝμð1 − ΔrÞNfðcfV þ ΔcfVÞ.

As the experimental value Gexp
μ is used to evaluate the

matter potential at either the tree- or one-loop level, we shall
characterize the magnitude of radiative corrections by

V̂
V
− 1 ¼

ffiffiffi
2

p
Gexp

μ NfðcfV þ ΔcfVÞffiffiffi
2

p
Gexp

μ Nfc
f
V

− 1 ¼ ΔcfV
cfV

: ð3:3Þ

It is worthwhile to mention that Eq. (3.3) is applicable to
both NC and CC potentials, for which one should make use
of the corresponding vector-type couplings and their radi-
ative corrections. Therefore, in the subsequent discussions,

we focus only on the radiative corrections to the vector-type
couplings.

B. Self-energy of Z boson

The relevant Feynman diagrams of the scattering
να þ f → να þ f for the NC potential have been shown
in Fig. 1. After calculating the one-loop amplitudes, we can
extract the corrections to the vector-type coupling cfV;NC.
First, let us look at the self-energy of Z boson in Fig. 1(3),

where the shaded circle represents all possible contribu-
tions. The self-energy of Z-boson contributes to ΔcfV;NC
as −ðcfV;NC=m2

ZÞΣr
Z, where iΣr

Z denotes the renormalized
self-energy.
(1) Bosonic contributions. The bosonic contributions

to the Z-boson self-energy involve gauge bosons,
the Higgs boson, the Goldstone bosons, and the
Faddeev-Popov ghosts running in the loop. The final
result can be written as

ð4πÞ2Σr
Z−b ¼

g2m2
Z

8c2ð1 − yhÞ
ðy4h − 6y3h þ 17y2h − 22yh þ 4Þ ln yh −

3

2
g2m2

Zð4c4 þ 4c2 − 1ÞDiscBðm2
Z;mW;mWÞ

þ g2m2
Z

4c2ðyh − 4Þ ðy
3
h − 7y2h þ 20yh − 28ÞDiscBðm2

Z;mh;mZÞ

þ g2m2
Z

24c2
ð6y2h − 21yh − 288c6 − 264c4 þ 112c2 þ 49Þ; ð3:4Þ

where the function DiscBðp2; m0; m1Þ is related to the
Passarino-Veltman function via

B0ðp2;m0; m1Þ ¼ Δþ ln
�
μ2

m2
1

�
þ 2þ DiscBðp2; m0; m1Þ

−
m2

0 −m2
1 þ p2

2p2
ln

�
m2

0

m2
1

�
; ð3:5Þ

with μ being the renormalization mass scale. The explicit
form of DiscBðp2; m0; m1Þ reads

DiscBðp2; m0; m1Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

0; m
2
1; p

2Þ
p

p2
ln

"
m2

0 þm2
1 − p2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

0; m
2
1; p

2Þ
p

2m0m1

#
;

ð3:6Þ

where the Källén function

λðx; y; zÞ≡ x2 þ y2 þ z2 − 2xy − 2yz − 2zx ð3:7Þ

has been defined.

FIG. 1. The relevant Feynman diagrams of the scattering να þ f → να þ f for the NC potential with f ¼ u, d, e at the tree level (1)
and at the one-loop level (2)–(5). The shaded circle represents the radiative corrections to the vertices and propagators. The box diagrams
in (5) are UV finite and the dashed box indicates all possible realizations of internal lines.
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(2) Fermionic contributions. For the fermions running in the loop, we have

ð4πÞ2Σr
Z−f ¼

X
f

4e2m2
Z

12yf − 3
f6yf½a2fð1 − 4yfÞ þ 2v2fyf�DiscBðm2

Z;mf;mfÞ þ ð4yf − 1Þ½a2fð1 − 12yfÞ

þ v2fð6yf þ 1Þ�g; ð3:8Þ

where we have defined vf ≡ cfV;NC=s2w and af ≡ cfA;NC=s2w. Note that the summation is over all the SM fermions
and three colors for each type of quarks are taken into account.

C. Vertex contributions

Then, we calculate the vertex corrections, for which the Feynman diagrams have been depicted in Figs. 1(2) and 1(4).
For later convenience, we introduce the following functions:

FZðp2Þ ¼
X
f

f½4a2fm2
f − p2ða2f þ v2fÞ�B0ðp2;mf;mfÞ−4ða2f þ v2fÞB00ðp2;mf;mfÞ þ 2ða2f þ v2fÞA0ðmfÞg; ð3:9Þ

FWðp2Þ ¼
X
ff;f0g

½ðm2
f þm2

f0 ÞB0ðp2;mf;mf0 Þ − 4B00ðp2;mf;mf0 Þ−p2B0ðp2;mf;mf0 Þ þ A0ðmfÞ þ A0ðmf0 Þ�; ð3:10Þ

FAðp2Þ ¼
X
f

Q2
f½−4B00ðp2;mf;mfÞ − p2B0ðp2;mf;mfÞ þ 2A0ðmfÞ�; ð3:11Þ

FAZðp2Þ ¼
X
f

Qfvf½−4B00ðp2;mf;mfÞ − p2B0ðm2
Z;mf;mfÞ þ 2A0ðmfÞ�; ð3:12Þ

whereQf denotes the electric charge and ff; f0g refers to the pair of fermions in the same isospin-doublet. As the subscripts
of these functions indicate, they represent the contributions from the self-energies of Z-boson, W-boson, photon, and the
A − Z mixing in Eqs. (A11)–(A14). In addition, their derivatives F 0

Vðm2
VÞ≡ dFVðp2Þ=dp2jp2¼m2

V
for V ¼ W, Z, A are

also needed.
(1) The να-να-Z vertex. The contribution to ΔcfV;NC is given by s2wc

f
V;NCΓr

ναναZ
with

ð4πÞ2Γr
ναναZ

¼ −
g2xα
s2w

ðln xα þ 3Þ þ g2c2w
s2w

�
FZðm2

ZÞ
m2

Z
−
FWðm2

WÞ
4s2m2

W

�
þ g2s

2c
½F 0

Zðm2
ZÞ − F 0

Að0Þ�

þ g2

48cs3
ð120c6 þ 68c4 − 106c2 þ 17ÞDiscBðm2

Z;mW;mWÞ

−
g2

6s32wðyh − 4Þ ½ð4c
2 − 3Þy3h − ð29c2 − 21Þy2h þ ð88c2 − 60Þyh − 132c2 þ 84�DiscBðm2

Z;mh;mZÞ

−
g2

48c5s3
ð96c8 þ 88c6 − 100c4 þ 14c2 þ 1ÞDiscBðm2

W;mW;mZÞ

þ g2c2w
48cs3

ðx2h − 4xh þ 12ÞDiscBðm2
W;mh;mWÞ

þ g2

12s32w
½ð4c2 − 3Þy3h − ð21c2 − 15Þy2h þ ð42c2 − 30Þyh − 60c2 þ 36� ln yh

−
g2c2w
12s32w

ðc2x3h − 6c2x2h þ 12c2xh − 24Þ ln xh

þ g2

96c7s3
½ð12c6 − 6c4Þyh − 158c6 þ 106c4 − 12c2 − 1� ln

�
m2

W

m2
Z

�

þ g2

48c5s
½ð4c2 − 1Þy2h − 6c2yh − 240c8 − 356c6 þ 252c4 þ 10c2 − 1�: ð3:13Þ
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Notice that the flavor-dependent terms proportional to xα are the same as those in Refs. [7,8], and our results are also
consistent with Eqs. (5.46) and (5.47) in Ref. [18].

(2) The f-f-Z vertex. With the radiative corrections to the vector-type couplings in the renormalized vertices Γr
ffZ, the

total contributions to ΔcfV;NC can be expressed as s2wΓr
ffZ for f ¼ u, d, e. All the terms proportional to the quark and

electron masses of OðxfÞ can always be neglected due to the suppression by the W-boson mass.
(i) u-u-Z vertex. The renormalized vertex reads

ð4πÞ2Γr
uuZ ¼ g2ð5 − 2c2Þ

6s2w

�
FZðm2

ZÞ
m2

Z
−
FWðm2

WÞ
4s2m2

W

�
þ e2ð8c2 − 5Þ

6s2w
½F 0

Zðm2
ZÞ − F 0

Að0Þ�

þ 4e2

3m2
Z
FAZðm2

ZÞ −
g2ð2c2 − 5Þ
288cs3

ðx2h − 4xh þ 12ÞDiscBðm2
W;mh;mWÞ

−
g2

36s32wðyh − 4Þ ½ð16c
4 − 28c2 þ 15Þy3h − ð104c4 − 185c2 þ 105Þy2h

þ ð256c4 − 472c2 þ 300Þyh − 288c4 þ 564c2 − 420�DiscBðm2
Z;mh;mZÞ

þ g2

96cs3
ð320c8 − 360c6 − 236c4 þ 398c2 − 23ÞDiscBðm2

Z;mW;mWÞ

þ g2

288c5s3
ð96c8 − 104c6 − 372c4 þ 78c2 þ 5ÞDiscBðm2

W;mZ;mWÞ

þ g2

72s32w
½ð16c4 − 28c2 þ 15Þy3h − ð72c4 − 129c2 þ 75Þy2h

þ ð144c4 − 258c2 þ 150Þyh − 96c4 þ 204c2 − 180� ln yh
þ g2ð2c2 − 5Þ

72s32w
ðc2x3h − 6c2x2h þ 12c2xh − 24Þ ln xh

þ g2

576c7s3
½ð30c4 − 12c6Þyh þ 16c8 þ 134c6 − 418c4 þ 68c2 þ 5� ln

�
m2

W

m2
Z

�

þ g2

288c5s
½ð16c4 − 12c2 þ 5Þy2h − 6c2ð8c2 − 5Þyh − 1920c10 þ 400c8

þ 1652c6 − 1100c4 − 42c2 þ 5�: ð3:14Þ

(ii) d-d-Z vertex. The renormalized vertex is given by

ð4πÞ2Γr
ddZ ¼ −

g2ð2c2 þ 1Þ
6s2w

�
FZðm2

ZÞ
m2

Z
−
FWðm2

WÞ
4s2m2

W

�
þ e2ð1 − 4c2Þ

6s2w
½F 0

Zðm2
ZÞ − F 0

Að0Þ�

−
2e2

3m2
Z
FAZðm2

ZÞ −
g2ð2c2 þ 1Þ
288cs3

ðx2h − 4xh þ 12ÞDiscBðm2
W;mh;mWÞ

þ g2

36s32wðyh − 4Þ ½ð8c
4 − 8c2 þ 3Þy3h − ð52c4 − 49c2 þ 21Þy2h

þ ð128c4 − 104c2 þ 60Þyh − 144c4 þ 84c2 − 84�DiscBðm2
Z;mh;mZÞ

−
g2

96cs3
ð160c8 − 120c6 − 84c4 þ 146c2 − 3ÞDiscBðm2

Z;mW;mWÞ

þ g2

288c5s3
ð96c8 þ 184c6 þ 36c4 − 18c2 − 1ÞDiscBðm2

W;mZ;mWÞ
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−
g2

72s32w
½ð8c4 − 8c2 þ 3Þy3h − ð36c4 − 33c2 þ 15Þy2h þ ð72c4 − 66c2 þ 30Þyh

− 48c4 þ 12c2 − 36� ln yh þ
g2ð2c2 þ 1Þ

72s32w
ðc2x3h − 6c2x2h þ 12c2xh − 24Þ ln xh

−
g2

576c7s3
½6ð2c2 þ 1Þc4yh þ 8c8 − 170c6 − 50c4 þ 16c2 þ 1� ln

�
m2

W

m2
Z

�

−
g2

288c5s
½ð8c4 þ 1Þy2h þ 6c2ð1 − 4c2Þyh þ ð960c10 þ 160c8 − 292c6 þ 172c4 þ 6c2 − 1Þ�: ð3:15Þ

(iii) e-e-Z vertex. The renormalized vertex is

ð4πÞ2Γr
eeZ ¼ g2ð2c2 − 3Þ

2s2w

�
FZðm2

ZÞ
m2

Z
−
FWðm2

WÞ
4s2m2

W

�
þ e2ð3 − 4c2Þ

2s2w
½F 0

Zðm2
ZÞ − F 0

Að0Þ�

−
2e2

m2
Z
FAZðm2

ZÞ þ
g2ð2c2 − 3Þ

96cs3
ðx2h − 4xh þ 12ÞDiscBðm2

W;mh;mWÞ

þ g2

12s32wðyh − 4Þ ½ð8c
4 − 16c2 þ 9Þy3h − ð52c4 − 107c2 þ 63Þy2h

þ ð128c4 − 280c2 þ 180Þyh − 144c4 þ 348c2 − 252�DiscBðm2
Z;mh;mZÞ

−
g2

96cs3
ð480c8 − 600c6 − 388c4 þ 650c2 − 43ÞDiscBðm2

Z;mW;mWÞ

−
g2

96c5s3
ð96c8 − 8c6 − 236c4 þ 46c2 þ 3ÞDiscBðm2

W;mW;mZÞ

−
g2

24s32w
½ð8c4 − 16c2 þ 9Þy3h − ð36c4 − 75c2 þ 45Þy2h þ ð72c4 − 150c2 þ 90Þyh − 48c4

þ 132c2 − 108� ln yh −
g2ð2c2 − 3Þ

24s32w
ðc2x3h − 6c2x2h þ 12c2xh − 24Þ ln xh

−
g2

192c7s3
½ð18c4 − 12c6Þyh þ 96c12 − 240c10 þ 224c8 þ 62c6 − 250c4 þ 40c2 þ 3� ln

�
m2

W

m2
Z

�

−
g2

96c5s
½ð8c4 − 8c2 þ 3Þy2h − 6c2ð4c2 − 3Þyh − 960c10 þ 320c8 þ 1004c6 − 676c4 − 26c2 þ 3�:

ð3:16Þ

This renormalized vertex has also been cal-
culated in Ref. [18], where the results in
Eqs. (5.42)–(5.44) agree perfectly with ours.

D. Box-diagram contributions

Finally, we consider the box diagrams shown in
Fig. 1(5). The contribution to ΔcfV;NC is actually given by
−ð4m2

W=g
2ÞMf

NC, where the relevant amplitudes from the
one-loop box diagrams are expressed as iMf

NC with f ¼ u,
d, e. These amplitudes are UV finite and no renormalization
is needed. For the scattering with the neutrino να, the box

diagrams for three different types of background particles
lead to

ð4πÞ2Mu
NC ¼ −

g4

8m2
W

�
5 − 4c2

4c2
þ xαðln xα þ 1Þ

�
; ð3:17Þ

ð4πÞ2Md
NC ¼þ g4

2m2
W

�
20c2− 1

16c2
þ xαðlnxαþ 1Þ

�
; ð3:18Þ

ð4πÞ2Me
NC ¼þ g4

2m2
W

�
28c2− 9

16c2
þ xαðlnxαþ 1Þ

�
: ð3:19Þ
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The first two results are consistent with Eqs. (7.1)–(7.3) in
Ref. [30], whereas the final one is the same as in Eq. (5.51)
of Ref. [18]. The neutrino flavor-dependent parts have
been found to be compatible with the previous calculations
in Refs. [7,8].

IV. THE CHARGED-CURRENT POTENTIAL

In parallel with the discussions about the NC potential,
there are also three types of radiative corrections to the CC
potentialVCC, whichwill be denoted byΔceV;CC. The relevant

Feynman diagrams of the elastic scattering between electron
neutrinos and electrons νe þ e → νe þ e for the CC potential
have been given in Fig. 2.

A. Self-energy of W boson

First, we consider the self-energy ofW boson in Fig. 2(3),
where the shaded circle represents all possible contribu-
tions. The contribution to ΔceV;CC from the W-boson self-
energy can be expressed as −ðceV;CC=m2

WÞΣr
W , where iΣr

W

denotes the renormalized self-energy.

(1) Bosonic contributions. The W-boson self-energy receives the contributions from all the bosons running in the loop,
and the renormalized self-energy is

ð4πÞ2Σr
W−b ¼ −

g2m2
Z

4c2
ð12c6 þ 44c4 − 13c2 − 1ÞDiscBðm2

W;mZ;mWÞ

þ g2m2
W

4ðxh − 4Þ ðx
3
h − 7x2h þ 20xh − 28ÞDiscBðm2

W;mh;mWÞ

−
g2m2

W

8ðxh − 1Þ ðx
4
h − 6x3h þ 17x2h − 22xh þ 4Þ ln xh

−
g2m2

Z

8c4s2
ð16c10 − 4c8 − 118c6 þ 83c4 − 10c2 − 1Þ ln

�
m2

W

m2
Z

�

þ g2m2
W

24c4
½c4ð6x2h − 21xh − 370Þ þ 75c2 þ 6�: ð4:1Þ

(2) Fermionic contributions. The self-energy correction with fermions in the loop reads

ð4πÞ2Σr
W−f ¼ g2m2

W

X
ff;f0g

�
m4

W

6

�−x3f þ x2fxf0 þ xfðx2f0 − 4xf0 þ 3Þ − x3f0 þ 3xf0 − 2

λðm2
f; m

2
f0 ; m

2
WÞ

−
1

m4
W
½3x2f − 2xfð3xf0 − 1Þ þ 3x2f0 þ 2xf0 − 2�

	
DiscBðm2

W;mf;mf0 Þ

þ 1

4ðxf − xf0 Þ
½x4f − 4x3fxf0 þ x2fð6x2f0 − 1Þ − 4xfx3f0 þ x4f0 − x2f0 � ln

�
xf
xf0

�

−
1

12
½6x2f þ 3xfð1 − 4xf0 Þ þ 6x2f0 þ 3xf0 − 4�

	
: ð4:2Þ

We should sum over all the contributions from the SM fermions, where ff; f0g denotes the pair of fermions in the
same isospin doublet, and take into account three colors for each type of quarks.

FIG. 2. The relevant Feynman diagrams of the scattering νe þ e → νe þ e for the CC potential at the tree level (1) and at the one-loop
level (2)–(5). The notations are the same as those in Fig. 1.
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B. Vertex contributions

Then, we turn to the CC vertex corrections, which have been shown in Figs. 2(2) and 2(4). The total contribution to
ΔceV;CC from the νe-e-W vertex can be expressed as

ffiffiffi
2

p
sΓr

νeeW
ceV;CC with the renormalized vertex iΓr

νeeW
defined as follows

ð4πÞ2Γr
νeeW

¼ g2

c2

�
FZðm2

ZÞ
m2

Z
−
FWðm2

WÞ
4s2m2

W

�
−e2

�
F 0

Að0Þ−
F 0

Wðm2
WÞ

4s2

�
þ g2

24s2ð4−xhÞ
½ðc2−2Þx3h− ð5c2−13Þx2h

þ4ðc2−8Þxhþ12ðc2þ3Þ�DiscBðm2
W;mh;mWÞ−

g2

24c4s2
ð60c8−8c6þ71c4−22c2−2ÞDiscBðm2

W;mW;mZÞ

−
g2

24s2
ðy2h−4yhþ12ÞDiscBðm2

Z;mh;mZÞþ
g2

24s2
ð48c6þ68c4−16c2−1ÞDiscBðm2

Z;mW;mWÞ

þ g2

48s2
ðy3h−6y2hþ18yh−20c2Þ lnyh−

g2

48
½ðc4þc2þ2Þx3h− ð6c2þ9Þx2hþ18xhþ168c2−8� lnxh

þ g2

48c6s2
ðc6y3h−6c6y2hþ18c6yh−48c10−36c8þ166c6−119c4þ18c2þ2Þ ln

�
m2

W

m2
Z

�

þ g2

24c4
½ðc2þ2Þy2h−6c2yh−96c8−224c6þ32c4þ23c2þ2�: ð4:3Þ

As mentioned before, the same CC vertex appears both in
Figs. 2(2) and 2(4), so a factor of 2 is present in the vertex
correction in Eq. (2.7).

C. Box-diagram contributions

Finally, the contributions from the UV-finite box dia-
grams should be included, for which the Feynman dia-
gram has been shown in Fig. 2(5). Since the electrons
are present in the background, electron neutrinos interact
with them via both NC and CC processes. In particular,
for the box diagrams, it is impossible to categorize the
contributions into either NC or CC type. However, it is
clear that both νμ and ντ interact with the background
particles only through the NC interaction. For this reason,
we select the box diagrams that are universal for all
three types of neutrinos as the NC part, whereas the
remaining ones are the CC part. The contribution from
box diagrams can be written as −ð4m2

W=g
2ÞMCC with the

amplitude

ð4πÞ2MCC ¼ −
g4

8m2
Ws

2

�
2s4ðln xe − 1Þ

þ ð2c4 þ 6c2 − 3Þ ln
�
m2

W

m2
Z

��
: ð4:4Þ

Here it is worth mentioning that for the box diagram
involving the internal photon propagator, the generalized
Fierz identity [31]

νeðxÞð1þ γ5ÞeðxÞeðxÞð1 − γ5ÞνeðxÞ

¼ −
1

2
νeðxÞγμð1 − γ5ÞνeðxÞeðxÞγμð1þ γ5ÞeðxÞ; ð4:5Þ

has been utilized to transform the contributions into the
correction to the vector-type coupling.

V. NUMERICAL RESULTS

Given the finite corrections in the previous sections, we
now specify the input parameters and evaluate the one-loop
corrections to the matter potentials. The latest values of
relevant input parameters are quoted from the Particle Data
Group [1] and summarized below:
(1) The fine structure constant

α≡ e2=ð4πÞ ¼ 1=137.035999084: ð5:1Þ

(2) The gauge-boson and Higgs-boson masses2

mW ¼ 80.377 GeV; mZ ¼ 91.1876 GeV;

mh ¼ 125.25 GeV: ð5:2Þ

(3) The quark masses

mu ¼ 2.16 MeV; mc ¼ 1.67 GeV;

mt ¼ 172.5 GeV; md ¼ 4.67 MeV;

ms ¼ 93.4 MeV; mb ¼ 4.78 GeV: ð5:3Þ

2The latest measurement ofW-boson mass given by the CDF-II
collaboration is mW ¼ 80.433 GeV [32], yielding a 7σ discrep-
ancy with the SM expectation. However, we have checked that the
difference in the correction to the matter potential caused by such
a discrepancy appears at the order of Oð10−4Þ.
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(4) The charged-lepton masses

me ¼ 0.511 MeV; mμ ¼ 105.658 MeV;

mτ ¼ 1.777 GeV: ð5:4Þ

All the particle masses quoted above refer to the on-shell
masses, except for those of three light quarks (i.e., u, d,
and s). Instead, the running masses of three light quarks at
the energy scale of μ ¼ 2 GeV are used, since the on-shell
masses of light quarks are not well-defined due to the
nonperturbative nature of quantum chromodynamics at
low energies.
From Eq. (2.2), we can observe that the tree-level

NC potential induced by each type of fermions in the
matter is proportional to the vector-type coupling cuV;NC ¼
0.2026, cdV;NC ¼ −0.3514, and ceV;NC ¼ −0.0539, where
these couplings have been displayed in Table I and

evaluated by using s2 ¼ 1 −m2
W=m

2
Z ≈ 0.223. The cor-

responding corrections to these vector-type couplings
from the Z-boson self-energy, vertex corrections, and
box diagrams are listed in Table II, accordingly. The
flavor-dependent corrections are labeled as “fd,” where
we have chosen the flavor α ¼ τ for example. It shows
clearly that the flavor-dependent contributions are two
to three orders of magnitude smaller than the flavor-
independent ones. Therefore, in the final results of
ΔcfV;NC in the last column of Table II, we only list
the dominant flavor-independent values.
Then, we can translate the NC potential induced by

quarks and electrons into that by protons, neutrons and
electrons via the relations among their number densities,
namely, Nu ¼ 2Np þ Nn, Nd ¼ Np þ 2Nn, and Ne ¼ Np.
The one-loop correction to the NC potential is thus
given by

ΔcV;NC
cV;NC

¼ Npð2ΔcuV;NC þ ΔcdV;NC þ ΔceV;NCÞ þ NnðΔcuV;NC þ 2ΔcdV;NCÞ
NnðcuV;NC þ 2cdV;NCÞ

≈ 0.062þ 0.02
Np

Nn
; ð5:5Þ

where the relation 2cuV;NC þ cdV;NC þ ceV;NC ¼ 0 has been
implemented. Therefore, for the ordinary matter with
Np ≈ Nn, the one-loop correction to the NC potential is
about 8.2%.
Similar to the case of the NC potential, we collect all the

contributions to ΔceV;CC in Table III. It shows that there is a
correction of about 6% to the CC matter potential. Whereas
the NC potentials are the same for three-flavor neutrinos,
except for the tiny flavor-dependent contributions, this

correction to the CC potential of electron neutrinos will
play an important role in neutrino flavor conversions. In the
near future, the long-baseline accelerator neutrino experi-
ments DUNE and T2HK will make use of the MSW effect
to resolve the sign of Δm2

31, and also determine the octant
of θ23 and the CP-violating phase δCP. In consideration of
both one-loop corrections to the matter potential and the
uncertainty in the matter density, we shall carry out a more
dedicated study to explore their impact on the determi-
nation of neutrino mass ordering and the precise measure-
ments of the CP-violating phase at both DUNE and T2HK
in a separate work.

VI. RESULTS IN THE MS SCHEME

Although we have carried out all the calculations in the
on-shell scheme, it is also interesting to make a comparison

TABLE III. The one-loop contributions to ΔceV;CC from the
W-boson self-energy, vertices, and box diagrams. The tree-level
vector-type coupling is ceV;CC ¼ 1.

Self-energy νe-e-W Box diagrams ΔceV;CC
−6.4 × 10−3 4.5 × 10−2 1.9 × 10−2 5.8 × 10−2

TABLE II. The one-loop corrections to the vector-type couplings cfV;NC for f ¼ u, d, e from the Z-boson self-energy, vertex
corrections, and box diagrams. Here “fd” stands for the flavor-dependent part, for which we choose the heaviest charged lepton α ¼ τ as
an example.

Self-energy να-να-Z f-f-Z Box diagrams ΔcfV;NC
f ¼ u

−2.1 × 10−3
5.1 × 10−3 −6.0 × 10−3

7.9 × 10−4 −2.2 × 10−3
1.5 × 10−6 (fd) −4.2 × 10−6 (fd)

f ¼ d
3.7 × 10−3

−8.8 × 10−3 −3.3 × 10−3
−6.1 × 10−3 −1.5 × 10−2−2.6 × 10−6 (fd) 1.7 × 10−5 (fd)

f ¼ e
5.6 × 10−4

−1.4 × 10−3
15.3 × 10−3

−5.3 × 10−3
9.2 × 10−3−3.9 × 10−7 (fd) 1.7 × 10−5 (fd)
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with those in the MS scheme. For the one-loop corrections
to the MSW potentials in the MS scheme, the relevant
Feynman diagrams are the same as in the on-shell scheme.
But some differences should be noted. First, the input
parameters are chosen as the running fine-structure con-
stant αðμÞ and the running masses fmWðμÞ; mZðμÞ; mhðμÞ;
mfðμÞg. The bare parameters and fields, marked by the
subscript “0,” can be separated into the renormalized ones
and the renormalization constants. For the coupling and
mass parameters, we have

e0 ¼ ZMS
e eðμÞ ¼ ð1þ δZMS

e ÞeðμÞ;
M2

0 ¼ M2ðμÞ þ δM2

MS
; ð6:1Þ

whereM represents mW , mZ, mh, and mf, and δM2

MS
is the

corresponding counterterm in the MS scheme. The bare
fields of physical particles can be expressed as follows

W�
0μ ¼

ffiffiffiffiffiffiffiffiffi
ZMS
W

q
W�

μ ¼
�
1þ 1

2
δZMS

W

�
W�

μ ;

 
Z0μ

A0μ

!
¼

0
BB@

ffiffiffiffiffiffiffiffiffi
ZMS
ZZ

q ffiffiffiffiffiffiffiffiffi
ZMS
ZA

q
ffiffiffiffiffiffiffiffiffi
ZMS
AZ

q ffiffiffiffiffiffiffiffiffi
ZMS
AA

q
1
CCA
 
Zμ

Aμ

!

¼
 
1þ 1

2
δZMS

ZZ
1
2
δZMS

ZA

1
2
δZMS

AZ 1þ 1
2
δZMS

AA

! 
Zμ

Aμ

!
;

h0 ¼
ffiffiffiffiffiffiffiffiffi
ZMS
h

q
h ¼

�
1þ 1

2
δZMS

h

�
h;

fi;0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Zf;MS
ij

q
fj ¼

�
1þ 1

2
δZf;MS

ij

�
fj: ð6:2Þ

Second, different from the on-shell scheme where all the
counterterms are fixed by the on-shell renormalization
conditions, those in the MS scheme contain only the UV-
divergent parts. More specifically, after separating out the
divergences in the Green’s functions, the counterterms are
just given by the terms proportional to Δ. For example,
with the self-energy correction of Z boson in Fig. 4, the

wave function and mass counterterms of Z boson in
Eqs. (6.1) and (6.2) read

δZMS
Z ¼

�
g2ð18c4 þ 2c2 − 1Þ

6c2
−
4e2

3

X
f

ða2f þ v2fÞ
�
Δ;

δm2

Z;MS
¼ −

�
g2m2

Zð42c4 − 10c2 − 7Þ
6c2

þ 4e2

3

X
f

½a2fð6m2
f −m2

ZÞ −m2
Zv

2
f�
	
Δ: ð6:3Þ

In the above equation, the dependence on the ’t Hooft
mass scale μ of the gauge coupling and masses is sup-
pressed, and the running weak mixing angle is defined as

cos θMS
w ðμÞ≡mWðμÞ=mZðμÞ. The summation over all the

SM fermions is implied. After the renormalization pro-
cedure in the MS scheme, we are left with finite corrections
to the scattering amplitudes, from which the vector-type
couplings can be extracted and the one-loop corrections to
the MSW potential of neutrinos can be derived.
We take the neutrino-electron scattering να þ e → να þ e

as an illustrative example, since the background electrons
contribute to both NC and CC potentials. The scattering of
neutrinos with background quarks can be dealt with in a
similar way. Now the scattering amplitudes under consid-
eration are still described by one-loop diagrams in Figs. 1
and 2. In the MS scheme, the finite amplitudes expressed in
terms of running parameters can be obtained by simply
removing the divergent terms. Then, the matter potentials
can be extracted from the amplitudes with the help of
Eqs. (2.6) and (2.7). Besides, as the residue of the fermion
self-energy is not fixed at 1 in the MS scheme, loop cor-
rections to the neutrino and electron external legs should
also be taken into account. Such contributions can be treated
as connecting the self-energies in Figs. 7(1)–7(6) to the tree-
level diagram of the scattering process in Figs. 1 and 2.
As shown in Eq. (6.2), the wave function renormalization
of external fermion legs will contribute a factor of 1=2 to
the scattering amplitudes. Collecting all the contributions
together, we find the total correction to the vector-type

coupling ce;MS
V;NC as follows:

Δce;MS
V;NCðμÞ ¼

3g2yt
4c2

ð4c2 − 3Þ ln
�
μ2

m2
t

�
−
3g2yhð4c2 − 3Þ
8c2ðyh − 1Þ ln

�
μ2

m2
h

�
þ g2ð4c4 − 8c2 þ 3Þ ln

�
μ2

m2
W

�

−
g2ðyh − 4Þ
8c2ðyh − 1Þ ð4c

2 − 3Þ ln
�
μ2

m2
Z

�
þ g2

16c2
½4c2ðyh − 21Þ − 3yh þ 39�: ð6:4Þ

Here we set all the fermions to be massless except for the top quark. For the CC potential, the total correction to the vector-

type coupling ce;MS
V;CC reads
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Δce;MS
V;CCðμÞ ¼

3g2yh
4ðyh − c2Þ ln

�
μ2

m2
h

�
−
3g2yt
2c2

ln

�
μ2

m2
t

�
−

g2

s22w
ð7c2 − 4Þ ln

�
μ2

m2
Z

�

þ g2

4s2ðyh − c2Þ ½8c
4 − c2ð5yh þ 11Þ þ 8yh� ln

�
μ2

m2
W

�
þ g2

8c2
ð14c2 − yh − 6yt þ 7Þ: ð6:5Þ

The corrections to the NC potential from quarks in the MS scheme can also be calculated similarly, and we just give the
final results

Δcu;MS
V;NCðμÞ ¼ −

g2yhð8s2 − 3Þ
8c2ðyh − 1Þ ln

�
μ2

m2
h

�
þ g2ytð8s2 − 3Þ

4c2
ln

�
μ2

m2
t

�
þ 1

3
g2ð3c2 − 8s4 þ 3s2Þ ln

�
μ2

m2
W

�

−
g2ðyh − 4Þð8s2 − 3Þ

24c2ðyh − 1Þ ln

�
μ2

m2
Z

�
þ g2

48c2
½24c2 þ ðyh − 1Þð8s2 − 3Þ�; ð6:6Þ

for the up quark and

Δcd;MS
V;NCðμÞ ¼

g2yhð4s2 − 3Þ
8c2ðyh − 1Þ ln

�
μ2

m2
h

�
−
g2ytð4s2 − 3Þ

4c2
ln

�
μ2

m2
t

�
−
1

3
g2ð3c2 − 4s4 þ 3s2Þ ln

�
μ2

m2
W

�

þ g2ðyh − 4Þð4s2 − 3Þ
24c2ðyh − 1Þ ln

�
μ2

m2
Z

�
þ g2

48c2
½4c2ðyh − 37Þ − yh þ 13� ð6:7Þ

for the down quark.

The one-loop corrections to the effective couplings
have been previously calculated in the low-energy effec-
tive theory of the SM in Ref. [13]. The vector-type
couplings in our work are related to the lepton coefficients

in Ref. [13] by ĉe;MS
V;NCðμÞ ¼ gLðμÞ þ gRðμÞ and ĉe;MS

V;CCðμÞ ¼
gðμÞ. For the couplings of quarks, the corresponding

relation reads ĉq;MS
V;NC ¼ gqLðμÞ þ gqRðμÞ. Since we are inter-

ested in the neutrino forward scattering, there is no
contribution from the neutrino-photon coupling gνlγ in
Eq. (1) of Ref. [13]. On the other hand, as the quark flavor
mixing has been ignored, the term associated with jVtqj2 in
gqLðμÞ is also absent in the final result. With these two points
in mind, we have made a comparison between our results
and those in Eqs. (10) and (11) of Ref. [13] and found
complete agreement.
As the vector-type couplings have been obtained in both

the on-shell and MS schemes, it is helpful to compare
between the one-loop matter potentials V̂CC and V̂NC in the

on-shell scheme and their counterparts V̂MS
CC and V̂MS

NC at
μ ¼ mZ in the MS scheme. The matter potentials are
physical observables and thus should be scheme indepen-
dent. As already shown in Sec. V, with the input on-shell
parameters, the CC potential V̂CC reads

V̂CC¼
πα

m2
Ws

2
NeĉeV;CC≈1.679×10−5

�
Ne

cm−3

�
GeV−2cm−3;

ð6:8Þ

where 1 GeV−2 cm−3 ≈ 7.684 × 10−33 eV in natural units
should be noticed. The NC potential from electrons is

V̂NC ¼ πα

m2
Ws

2
NeĉeV;NC

≈ −7.118 × 10−7
�

Ne

cm−3

�
GeV−2 cm−3: ð6:9Þ

If the input on-shell parameters in our calculations are
implemented to extract the MS parameters at μ ¼ mZ
through the matching conditions at one loop order, then
one should obtain the same results for the matter potentials.
However, to further compare with the results in Ref. [13],
we adopt the input MS parameters therein, i.e.,

αð5ÞðmZÞ−1 ¼ 127.955;

s2ðmZÞ≡ 1 −m2
WðmZÞ=m2

ZðmZÞ ¼ 0.23144;

mWðmZÞ ¼ 80.961 GeV;

mZðmZÞ ¼ 92.3499 GeV; mtðmZÞ ¼ 170.9 GeV:

ð6:10Þ

Since the Higgs boson is absent in the tree-level diagrams,
the conversion between the Higgs-boson pole mass to its
MS mass leads only to higher-order effects and thus its pole
mass is used. The effective couplings at the scale μ ¼ mZ
are listed in the first line of Table 3 in Ref. [13], which

can be converted into ĉe;MS
V;CCðμÞ and ĉe;MS

V;NCðμÞ at μ ¼ mZ.
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Then the matter potentials from electrons in the MS scheme
can be calculated as below

V̂MS
CC ¼ παð5ÞðmZÞ

m2
WðmZÞs2ðmZÞ

Neĉ
e;MS
V;CCðmZÞ

≈ 1.652 × 10−5
�

Ne

cm−3

�
GeV−2 cm−3 ð6:11Þ

for the CC potential, and

V̂MS
NC ¼ παð5ÞðmZÞ

m2
WðmZÞs2ðmZÞ

Neĉ
e;MS
V;NCðmZÞ

≈ −7.109 × 10−7
�

Ne

cm−3

�
GeV−2 cm−3 ð6:12Þ

for the NC potential. Compared with the corresponding
values in Eqs. (6.8) and (6.9) in the on-shell scheme, we find
that they are very close to each other. The relative difference
for the CC potential is about 1.61% while that for the NC
potential is about 0.12%. Such a small discrepancy can be
attributed to the higher-order corrections that have also been
considered in Ref. [13] in the extraction of the input MS
parameters from the experimental measurements of the on-
shell parameters. First, the determination of αð5ÞðmZÞ−1
from the fine-structure constant α in the Thomson limit
involves the decoupling of quarks and charged leptons and
the renormalization-group running. TheOðααsÞ corrections
in the beta function of αðμÞ have also been included. Then,
the higher-order corrections to the relationship between on-
shell and MS parameters, such as weak gauge boson masses
and the top-quark mass, have been partially considered.
It is worth commenting very briefly on the renormaliza-

tion schemes for precision calculations. Generally speaking,
the on-shell scheme is advantageous in the sense that the on-
shell parameters can be directly extracted from experimental
measurements. The experimental determination of different
MS parameters is usually carried out at different energy
scales associated with relevant physical processes, so the
renormalization-group equations should be implemented to
obtain the complete set of MS parameters at a common
scale. However, the MS scheme together with the approach
of effective field theories is practically more convenient to
deal with higher-order corrections beyond one-loop and any
theories with different mass scales, as in Ref. [13]. In any
case, our calculations of the one-loop matter potentials for
neutrinos in the on-shell scheme are complementary to
those in the MS scheme in Ref. [13].

VII. SUMMARY

In this paper, we have performed a complete calculation
of the MSW matter potential for all-flavor neutrinos at the
one-loop level in the SM. Following the on-shell renorm-
alization of the SM, we have calculated the one-loop

amplitudes for the coherent forward scattering of neutrinos
with the SM fermions present in the ordinary matter.
The radiative corrections to the vector-type couplings of
neutrinos in both NC and CC processes have been obtained
and used to determine the MSW matter potential. The
same calculations are also carried out in the MS scheme,
and the results are compared with those in the literature.
With the latest values of the SM parameters, we evaluate
the finite corrections to the matter potentials and find that
the correction to the NC potential is about 8% while that
to the CC potential is about 6%.
In the coming precision era of neutrino oscillation

physics, one has to reconsider the radiative corrections
at the percent level to the interactions of neutrinos with
matter. For instance, the JUNO experiment will push the
relative errors in the measurement of the oscillation para-
meters sin2 θ12, Δm2

21, and Δm2
31 even down to the sub-

percent level [33,34]. The next-generation long-baseline
accelerator neutrino experiments are expected to determine
the neutrino mass ordering, the octant of θ23 and the value
of the CP-violating phase δCP. The experimental sensi-
tivities of DUNE and T2HK to these unknown parameters
are also sufficiently high to probe the one-loop corrections
to the MSW matter potential. In this sense, we believe that
our calculations are not only useful for the study of
neutrino oscillation phenomenology but also serve as an
instructive example for precision calculations in the whole
field of neutrino physics.
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APPENDIX: RENORMALIZATION
OF THE STANDARD MODEL

In this appendix, we explain some details about the on-
shell renormalization of the SM and list all the relevant one-
loop diagrams for completeness.
The renormalization procedure that we have adopted

follows closely that in Ref. [21]. Instead of repeating the
derivations of all the counterterms, we just highlight some
key points relevant to our calculations. More details of the
on-shell renormalization can be found in a number of
excellent reviews [18–21], where the SM Lagrangian and
the Feynman rules are explicitly given.

1. Renormalization constants

Once the set of input physical parameters is chosen, one
can decompose the bare parameters and fields, which will
be marked by the subscript “0,” into the renormalized ones
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and the counterterms. More explicitly, the bare parameters
are given by

e0 ¼ Zee ¼ ð1þ δZeÞe;
m2

W;0 ¼ m2
W þ δm2

W;

m2
Z;0 ¼ m2

Z þ δm2
Z;

m2
h;0 ¼ m2

h þ δm2
h;

m2
f;0 ¼ m2

f þ δm2
f; ðA1Þ

while the renormalization of the physical fields is as
follows

W�
0μ ¼

ffiffiffiffiffiffiffi
ZW

p
W�

μ ¼
�
1þ 1

2
δZW

�
W�

μ ;�
Z0μ

A0μ

�
¼
� ffiffiffiffiffiffiffiffi

ZZZ
p ffiffiffiffiffiffiffiffi

ZZA
p

ffiffiffiffiffiffiffiffi
ZAZ

p ffiffiffiffiffiffiffiffi
ZAA

p
��

Zμ

Aμ

�

¼
�
1þ 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1þ 1

2
δZAA

��
Zμ

Aμ

�
;

h0 ¼
ffiffiffiffiffiffi
Zh

p
h ¼

�
1þ 1

2
δZh

�
h;

fLi;0 ¼
ffiffiffiffiffiffiffiffiffi
Zf;L
ij

q
fLj ¼

�
1þ 1

2
δZf;L

ij

�
fLj ;

fRi;0 ¼
ffiffiffiffiffiffiffiffiffi
Zf;R
ij

q
fRj ¼

�
1þ 1

2
δZf;R

ij

�
fRj : ðA2Þ

The subscripts i and j of the fermion fields refer to
different generations. In our calculations, the flavor mixing
among different generations of quarks plays an insignifi-
cant role, so we ignore it and its radiative corrections.
Hence only the i ¼ j case is considered and the CKM
matrix is taken to be the identity matrix. A more careful
treatment of the renormalization of the CKMmatrix can be
found in Refs. [36–38]. In addition, the renormalization of
unphysical fields is irrelevant to the one-loop scattering
amplitudes and will be neglected as well.

2. Fixing the counterterms

The one-loop self-energies of the scalar and fermion
fields are denoted as iΣ, while those of gauge fields as
iΣT with

iΣV
μνðp2Þ ¼ iΣV

T

�
gμν −

pμpν

p2

�
þ iΣV

L

pμpν

p2
; ðA3Þ

for V ¼ W;Z; A; AZ. The counterterms are fixed by
imposing the on-shell conditions and can be expressed
in terms of the self-energies. The mass and wave function
counterterms of gauge bosons and the Higgs boson are
given by

δm2
W ¼−ReΣW

T ðm2
WÞ; δZW ¼Re

∂ΣW
T ðp2Þ
∂p2

����
p2¼m2

W

;

δm2
Z ¼−ReΣZ

Tðm2
ZÞ; δZZ ¼Re

∂ΣZ
Tðp2Þ
∂p2

����
p2¼m2

Z

;

δm2
h ¼þReΣhðm2

hÞ; δZh ¼−Re
∂Σhðp2Þ
∂p2

����
p2¼m2

h

: ðA4Þ

The counterterms for the photon and A-Z mixing are

δZAA ¼ ∂ΣAA
T ðp2Þ
∂p2

����
p2¼0

; δZAZ ¼ 2Re
ΣAZ
T ðm2

ZÞ
m2

Z
;

δZZA ¼ −2
ΣAZ
T ð0Þ
m2

Z
: ðA5Þ

Notice that there is a minus sign for the gauge-boson
self-energy in our notations compared to those in
Refs. [19–21]. Such a difference just arises from the
definition of the gauge-boson self-energy, which is
denoted as iΣT in our work while as −iΣT in the previous
literature. As a result, all the counterterms corresponding
to the gauge-boson self-energies in Eqs. (A4) and (A5)
have an opposite sign.
For the fermion masses and wave functions, the counter-

terms are fixed by

δmf ¼ mf

2
Re½Σf;L

ii ðm2
fÞ þ Σf;R

ii ðm2
fÞ þ 2Σf;S

ii ðm2
fÞ�;

δZf;L
ii ¼ −ReΣf;L

ii ðm2
fÞ −m2

f
∂

∂p2
Re½Σf;L

ii ðp2Þ þ Σf;R
ii ðp2Þ þ 2Σf;S

ii ðp2Þ�
���
p2¼m2

f

;

δZf;R
ii ¼ −ReΣf;R

ii ðm2
fÞ −m2

f
∂

∂p2
Re½Σf;L

ii ðp2Þ þ Σf;R
ii ðp2Þ þ 2Σf;S

ii ðp2Þ�
���
p2¼m2

f

: ðA6Þ

As has been mentioned in the main text, the terms of OðxfÞ can be safely neglected, so only the first terms in the wave
function counterterms of fermions need to be taken into account. Note that the fermion self-energy has been decomposed
as below
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Σf
iiðp2Þ ¼ =pPLΣ

f;L
ii ðp2Þ þ =pPRΣ

f;R
ii ðp2Þ þmfΣ

f;S
ii ðp2Þ;

ðA7Þ

with the chiral projection operators PL;R ¼ ð1 ∓ γ5Þ=2.
The renormalization constant of the electric charge can

be expressed in terms of the self-energies by implementing
the Ward identity, namely,

δZe ¼ −
1

2
δZAA −

s
2c

δZZA; ðA8Þ

which is independent of the fermion species. This occurs as
the consequence of the universality of the electric charge.
Finally, although the weak mixing angle has not been

chosen as an input parameter, it is usually convenient to
introduce a counterterm for it as well and use it to simplify
the Feynman rules of the vertex counterterms. However, the

counterterms of the cosine and sine of the weak mixing
angle are related to the counterterms of gauge-boson
masses by

δc
c
¼ 1

2

�
δm2

W

m2
W

−
δm2

Z

m2
Z

�
;

δs
s
¼−

c2

2s2

�
δm2

W

m2
W

−
δm2

Z

m2
Z

�
: ðA9Þ

3. Self-energies

As all the relevant counterterms are governed by the self-
energies, we shall explicitly show the results of the self-
energies and give some explanations whenever necessary.
In our calculations, the tadpole contribution to the gauge-
boson self-energies is included. In subsequent discussions,
we focus only on the real parts of the transverse self-
energies that contribute to the counterterms.

a. Tadpole

The inclusion of the tadpole diagrams iT renders the mass counterterms of gauge bosons to be gauge independent. All the
tadpole diagrams are plotted in Fig. 3, and the total contribution is

iT ¼ ig
ð4πÞ24mW

½−8m2
fA0ðmfÞ þ 2m2

hA0ðmWÞ þm2
hA0ðmZÞ þ 3m2

hA0ðmhÞ

þ 4dm2
WA0ðmWÞ − 4m2

WA0ðmWÞ þ 2dm2
ZA0ðmZÞ − 2m2

ZA0ðmZÞ�: ðA10Þ

Notice that a symmetry factor of 1=2 should be considered in Figs. 3(1), 3(2), and 3(7), while a minus sign for the ghost
loops in Figs. 3(4)–3(6) and the fermion loop in the Fig. 3(9) must be included.

b. Z boson

The one-loop self-energy corrections for Z boson are shown in Fig. 4. The contribution to the self-energy of Z boson is

ΣZ
Tðp2Þ ¼ g2

ð4πÞ24c2 fð16c
4p2 þ 8c2wm2

WÞB0ðp2;mW;mWÞ− 4m2
ZB0ðp2;mZ;mhÞ þ 4B00ðp2;mh;mZÞ

þ ½16c4ðd− 1Þ− 16c2 þ 4�B00ðp2;mW;mWÞ−A0ðmhÞ−A0ðmZÞ− ½8c4ðd− 1Þ− 8c2 þ 2�A0ðmWÞg

þ 2e2

ð4πÞ2
X
f

f½4a2fm2
f −p2ða2f þ v2fÞ�B0ðp2;mf;mfÞ−4ða2f þ v2fÞB00ðp2;mf;mfÞ þ 2ða2f þ v2fÞA0ðmfÞg: ðA11Þ

The summation is over all the SM fermions. In addition, the tadpole diagrams contribute the term of gmZT=ðm2
hcÞ.

c. W boson

The one-loop diagrams for the W-boson self-energy are listed in Fig. 5. The total result is

ΣW
T ðp2Þ ¼ g2

4ð4πÞ2 fð8m
2
W − 4m2

Zs
2 þ 16p2c2ÞB0ðp2;mW;mZÞ − 4m2

WB0ðp2;mW;mhÞ

þ 4½4c2ðd − 2Þ þ 1�B00ðp2;mW;mZÞ þ 4B00ðp2;mW;mhÞ
þ 4s2ðλ2 þ 4p2ÞB0ðp2;mW; λÞ þ 16s2ðd − 2ÞB00ðp2;mW; λÞ
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þð6 − 4dÞA0ðmWÞ − 4ðd − 2Þs2A0ðλÞ − A0ðmhÞ þ ½4c2ð2 − dÞ − 1�A0ðmZÞg

þ g2

2ð4πÞ2
X
ff;f0g

½ðm2
f þm2

f0 ÞB0ðp2;mf;mf0 Þ − 4B00ðp2;mf;mf0 Þ

−p2B0ðp2;mf;mf0 Þ þ A0ðmfÞ þ A0ðmf0 Þ�: ðA12Þ

To avoid the infrared divergence, we have introduced
a tiny mass λ for the photon, which should be kept
during the whole calculation and then set to zero in
the end. The summation is performed over ff; f0g,
which denotes a pair of fermions in the same
isospin doublet. The tadpole contribution is given
by gmWT=m2

h.

d. Photon and A-Z mixing

Different from the cases of gauge bosons, whose self-
energies directly contribute to the corrections of the matter
potential, the self-energy of the photon, and the A-Z
mixing are relevant for the counterterm of the electric
charge as indicated in Eq. (A8). Given one-loop diagrams
in Fig. 6, the self-energy of the photon A reads

FIG. 4. The one-loop diagrams for the Z-boson self-energy and the corresponding counterterm in diagram (14). The notations are the
same as those in Fig. 3.

FIG. 3. The tadpole diagrams contributing to the gauge-boson self-energies, where the Higgs boson h, the Goldstone bosons fϕ�; χg,
the Faddeev-Popov ghosts fcþ; c−; cZ; cAg, the gauge bosons fW�; Zg, and all the massive fermions f are running in the loop.
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ΣA
Tðp2Þ ¼ 2e2

ð4πÞ2 ½ð3p
2 þ 4m2

WÞB0ðp2;mW;mWÞ − 2ðd − 2ÞA0ðmWÞ�

þ 2e2

ð4πÞ2
X
f

Q2
f½−4B00ðp2;mf;mfÞ − p2B0ðp2;mf;mfÞ þ 2A0ðmfÞ�: ðA13Þ

Note that there is no correction to the longitudinal self-energy of the photon, as expected from the unbroken U(1)
gauge symmetry.
The Feynman diagrams for the A-Z mixing are similar to those for the photon self-energy, as shown in Fig. 6.

The analytical expression reads

ΣAZ
T ðp2Þ ¼ g2s

ð4πÞ2c f½c
2ð3 − 2dÞ þ s2�A0ðmWÞ þ 2½c2ð2d − 3Þ − s2�B00ðp2;mW;mWÞ

þ 2½c2ðm2
W þ 2p2Þ þm2

Ws
2�B0ðp2;mW;mWÞg þ

2e2

ð4πÞ2
X
f

Qfvf½−4B00ðp2;mf;mfÞ

− p2B0ðp2;mf;mfÞ þ 2A0ðmfÞ�: ðA14Þ

As in the case of the photon self-energy, the diagrams with the ghost loops and those with the W-ϕ loops give identical
corrections.

e. Fermion

The fermion self-energy will be involved in the vertex counterterms. From the one-loop diagrams in Fig. 7 and with the
decomposition in Eq. (A7), we obtain

FIG. 5. The one-loop diagrams for the W-boson self-energy and the corresponding counterterm in diagram (19).
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Σf;Lðp2Þ ¼ −
g2

4ð4πÞ2 f½4ðd − 2Þs2ðaf þ vfÞ2 þ xf�B1ðp2;mf;mZÞ þ xfB1ðp2;mf;mhÞ

þ 4ðd − 2ÞQ2
fs

2B1ðp2;mf; λÞ þ 2ðdþ xf0 − 2ÞB1ðp2;mf0 ; mWÞg;

Σf;Rðp2Þ ¼ −
g2

4ð4πÞ2 f4ðd − 2Þs2½ðaf − vfÞ2B1ðp2;mf;mZÞ þQ2
fB1ðp2;mf; λÞ�

þ xf½B1ðp2;mf;mhÞ þ B1ðp2;mf;mZÞ þ 2B1ðp2;mf0 ; mWÞ�g;

Σf;Sðp2Þ ¼ g2

4ð4πÞ2 f½4s
2dða2f − v2fÞ − xf�B0ðp2;mf;mZÞ − 2½2dQ2

fs
2B0ðp2;mf; λÞ þ xf0B0ðp2;mf0 ; mWÞ�

þ xfB0ðp2;mf;mhÞg: ðA15Þ

For massless and electrically neutral neutrinos, the con-
tributions from Figs. 7(1), 7(2), or 7(4) are vanishing, since
the relevant interaction vertices are proportional to either
the fermion mass or the electric charge.

It is worthwhile to mention that although the obtained
self-energies are seemingly different from those in Ref. [21],
cf. Eqs. (B.1)–(B.4) and (B.6)–(B.8) therein, they are
actually identical after transforming the Passarino-Veltman

FIG. 7. The one-loop diagrams for the self-energy of the fermion f and the corresponding counterterm in diagram (7). Here f0 and f
represent the fermions in the same isospin doublet.

FIG. 6. The one-loop diagrams for the self-energy of the photon and the A-Z mixing, and the corresponding counterterms in
diagram (10).
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functions A0, B00, and B1 into B0. With these
self-energies, we can fix all the counterterms as in
Eqs. (A4)–(A9).

4. Amplitudes from the counterterms

The counterterms result in new interaction vertices
and additional diagrams to the scattering amplitudes
of our interest. The Feynman rules for the counterterms
have been derived in the previous literature [18–21], and
the amplitudes from the counterterms can be easily
obtained.

a. Self-energies of gauge bosons

The mass and wave function counterterms of gauge
bosons induce the following contribution

iðm2
Z;WδZZZ;W þ δm2

Z;WÞgμν; ðA16Þ

where p2 ¼ 0 has been assumed for the intermediate
gauge bosons in the case of forward scattering. Further-
more, considering the external fermions, one obtains the
scattering amplitudes of να þ f → να þ f from the self-
energy counterterms

iMZ
c ¼ ig2

4m4
Zc

2
ðm2

ZδZZZ þ δm2
ZÞ

× ναγμPLναfγμðcfV;NC − cfA;NCγ
5Þf; ðA17Þ

iMW
c ¼ ig2

4m4
W
ðm2

WδZW þ δm2
WÞ

× ναγμPLναfγμðcfV;CC − cfA;CCγ
5Þf: ðA18Þ

b. Vertex counterterms

The general fermion-vector-boson interaction from the
counterterms can be expressed as

δΓFFV
μ ¼ ieγμðC−f PL þ Cþf PRÞ; ðA19Þ

with F stands for relevant fermions interacting with a
given gauge boson V. All the one-loop diagrams for the
corrections to the f-f-Z vertex have been shown in Fig. 8.
The coefficients in front of chiral projection operators are
defined as

C�f ¼ g�f

�
δg�f
g�f

þ 1

2
δZZZ þ δZf;RðLÞ

ii

�
þ 1

2
QfδZAZ; ðA20Þ

where

gþf ¼ −
s
c
Qf; δgþf ¼ −

s
c
Qf

�
δZe þ

1

c2
δs
s

�
; ðA21Þ

g−f ¼ I3f − s2Qf

sc
; δg−f ¼ I3f

sc

�
δZe þ

s2 − c2

c2
δs
s

�
þ δgþf ;

ðA22Þ

FIG. 8. The one-loop diagrams for the corrections to the f-f-Z vertex and the corresponding counterterm in diagram (15).
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with the weak isospin generator I3f of the SM fermions. The
scattering amplitude from the counterterms turns out to be

iMΓ
c ¼ −ig2s

2m2
Zc

½ναγμC−ναPLναfγμðcfV;NC − cfA;NCγ
5Þf

þ f̄γμðC−f PL þ Cþf PRÞfναγμPLνα�; ðA23Þ
from which one can see that some corrections to the vector-
type coupling are proportional to the tree-level coupling
cfV;NC whereas others are not.
Several comments on Fig. 8 are helpful. For massless

and electrically neutral neutrinos, the contributions from

Figs. 8(1), 8(2), 8(4), 8(5), 8(7), 8(10), or 8(12) are
vanishing. As the corrections of OðxfÞ for f ¼ u, d, e
are highly suppressed, the contributions from those dia-
grams can also be neglected. The flavor-dependent terms
in the vertex correction come from Figs. 8(3), 8(6), 8(9),
8(11), 8(13), and 8(14), which are consistent with the
observations in Refs. [7,8]. Meanwhile, since neutrinos
are purely left handed in the SM, only C−να takes part in the
correction.
The one-loop diagrams for the corrections to the νe-e-W

vertex are given in Fig. 9. The counterterm is similar to
that in Eq. (A19) but with

FIG. 9. The one-loop diagrams for the corrections to the νe-e-W and the corresponding counterterm in diagram (11).

FIG. 10. The one-loop box diagrams for the να þ u → να þ u scattering.
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C−f ¼ 1ffiffiffi
2

p
s

�
δZe −

δs
s
þ 1

2
δZW þ 1

2
ðδZα;L

ii þ δZνα;L
ii Þ

�
;

Cþf ¼ 0: ðA24Þ

As the diagrams with the vertices proportional to the
electron mass can be neglected, we just concentrate on
those in Figs. 9(3), 9(8), 9(9), and 9(10).

5. Box diagrams

The box diagrams are presented in Figs. 10–12, which are
actually UV finite. The final results of the amplitudes have
been given and discussed in the main text. Notice that the
diagrams involving W or ϕ lead to the flavor-dependent
corrections.
To simplify the expressions, one can expand the

analytical formulas around the small fermion masses.

FIG. 11. The one-loop box diagrams for the να þ d → να þ d and να þ e → να þ e scattering. For the electrons, only the NC
contributions similar to quarks have been shown.

FIG. 12. The one-loop box diagrams for the νe þ e → νe þ e scattering, where the contributions unique for electron neutrinos are
retained and categorized as the CC type.

JIHONG HUANG and SHUN ZHOU PHYS. REV. D 108, 093010 (2023)

093010-22



However, there are two types of small fermion masses, namely, the charged-lepton masses and light quark masses. Given the
strong mass hierarchy, i.e.,me ≪ mu ≈md ≪ mμ ≪ mτ, we should first expand the results aroundmu;d ¼ 0 andme ¼ 0 and
safely neglect Oðxu;d;eÞ terms.
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